Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/habanalabs.h
26436 views
1
/* SPDX-License-Identifier: GPL-2.0
2
*
3
* Copyright 2016-2023 HabanaLabs, Ltd.
4
* All Rights Reserved.
5
*
6
*/
7
8
#ifndef HABANALABSP_H_
9
#define HABANALABSP_H_
10
11
#include <linux/habanalabs/cpucp_if.h>
12
#include "../include/common/qman_if.h"
13
#include "../include/hw_ip/mmu/mmu_general.h"
14
#include <uapi/drm/habanalabs_accel.h>
15
16
#include <linux/cdev.h>
17
#include <linux/iopoll.h>
18
#include <linux/irqreturn.h>
19
#include <linux/dma-direction.h>
20
#include <linux/scatterlist.h>
21
#include <linux/hashtable.h>
22
#include <linux/debugfs.h>
23
#include <linux/rwsem.h>
24
#include <linux/eventfd.h>
25
#include <linux/bitfield.h>
26
#include <linux/genalloc.h>
27
#include <linux/sched/signal.h>
28
#include <linux/io-64-nonatomic-lo-hi.h>
29
#include <linux/coresight.h>
30
#include <linux/dma-buf.h>
31
32
#include <drm/drm_device.h>
33
#include <drm/drm_file.h>
34
35
#include "security.h"
36
37
#define HL_NAME "habanalabs"
38
39
struct hl_device;
40
struct hl_fpriv;
41
42
#define PCI_VENDOR_ID_HABANALABS 0x1da3
43
44
/* Use upper bits of mmap offset to store habana driver specific information.
45
* bits[63:59] - Encode mmap type
46
* bits[45:0] - mmap offset value
47
*
48
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
49
* defines are w.r.t to PAGE_SIZE
50
*/
51
#define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
52
#define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
53
#define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
54
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
55
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
56
57
#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
58
#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
59
60
#define HL_PENDING_RESET_PER_SEC 10
61
#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
62
#define HL_PENDING_RESET_LONG_SEC 60
63
/*
64
* In device fini, wait 10 minutes for user processes to be terminated after we kill them.
65
* This is needed to prevent situation of clearing resources while user processes are still alive.
66
*/
67
#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
68
69
#define HL_HARD_RESET_MAX_TIMEOUT 120
70
#define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
71
72
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
73
74
#define HL_HEARTBEAT_PER_USEC 10000000 /* 10 s */
75
76
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
77
78
#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
79
#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
80
#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
81
#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
82
83
#define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
84
#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
85
86
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
87
88
#define HL_INVALID_QUEUE UINT_MAX
89
90
#define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
91
#define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
92
93
#define HL_STATE_DUMP_HIST_LEN 5
94
95
/* Default value for device reset trigger , an invalid value */
96
#define HL_RESET_TRIGGER_DEFAULT 0xFF
97
98
#define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
99
#define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
100
101
/* Memory */
102
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
103
104
/* MMU */
105
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
106
107
#define TIMESTAMP_FREE_NODES_NUM 512
108
109
/**
110
* enum hl_mmu_page_table_location - mmu page table location
111
* @MMU_DR_PGT: page-table is located on device DRAM.
112
* @MMU_HR_PGT: page-table is located on host memory.
113
* @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
114
*/
115
enum hl_mmu_page_table_location {
116
MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
117
MMU_HR_PGT, /* host resident MMU PGT */
118
MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
119
};
120
121
/*
122
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
123
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
124
*/
125
#define HL_RSVD_SOBS 2
126
#define HL_RSVD_MONS 1
127
128
/*
129
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
130
*/
131
#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
132
133
#define HL_MAX_SOB_VAL (1 << 15)
134
135
#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
136
#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
137
138
#define HL_PCI_NUM_BARS 6
139
140
/* Completion queue entry relates to completed job */
141
#define HL_COMPLETION_MODE_JOB 0
142
/* Completion queue entry relates to completed command submission */
143
#define HL_COMPLETION_MODE_CS 1
144
145
#define HL_MAX_DCORES 8
146
147
/* DMA alloc/free wrappers */
148
#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
149
hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
150
151
#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
152
hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
153
154
#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
155
hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
156
157
#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
158
hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
159
160
#define hl_dma_map_sgtable(hdev, sgt, dir) \
161
hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__)
162
#define hl_dma_unmap_sgtable(hdev, sgt, dir) \
163
hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__)
164
165
/*
166
* Reset Flags
167
*
168
* - HL_DRV_RESET_HARD
169
* If set do hard reset to all engines. If not set reset just
170
* compute/DMA engines.
171
*
172
* - HL_DRV_RESET_FROM_RESET_THR
173
* Set if the caller is the hard-reset thread
174
*
175
* - HL_DRV_RESET_HEARTBEAT
176
* Set if reset is due to heartbeat
177
*
178
* - HL_DRV_RESET_TDR
179
* Set if reset is due to TDR
180
*
181
* - HL_DRV_RESET_DEV_RELEASE
182
* Set if reset is due to device release
183
*
184
* - HL_DRV_RESET_BYPASS_REQ_TO_FW
185
* F/W will perform the reset. No need to ask it to reset the device. This is relevant
186
* only when running with secured f/w
187
*
188
* - HL_DRV_RESET_FW_FATAL_ERR
189
* Set if reset is due to a fatal error from FW
190
*
191
* - HL_DRV_RESET_DELAY
192
* Set if a delay should be added before the reset
193
*
194
* - HL_DRV_RESET_FROM_WD_THR
195
* Set if the caller is the device release watchdog thread
196
*/
197
198
#define HL_DRV_RESET_HARD (1 << 0)
199
#define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
200
#define HL_DRV_RESET_HEARTBEAT (1 << 2)
201
#define HL_DRV_RESET_TDR (1 << 3)
202
#define HL_DRV_RESET_DEV_RELEASE (1 << 4)
203
#define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
204
#define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
205
#define HL_DRV_RESET_DELAY (1 << 7)
206
#define HL_DRV_RESET_FROM_WD_THR (1 << 8)
207
208
/*
209
* Security
210
*/
211
212
#define HL_PB_SHARED 1
213
#define HL_PB_NA 0
214
#define HL_PB_SINGLE_INSTANCE 1
215
#define HL_BLOCK_SIZE 0x1000
216
#define HL_BLOCK_GLBL_ERR_MASK 0xF40
217
#define HL_BLOCK_GLBL_ERR_ADDR 0xF44
218
#define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
219
#define HL_BLOCK_GLBL_SEC_OFFS 0xF80
220
#define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
221
#define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
222
#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
223
224
enum hl_protection_levels {
225
SECURED_LVL,
226
PRIVILEGED_LVL,
227
NON_SECURED_LVL
228
};
229
230
/**
231
* struct iterate_module_ctx - HW module iterator
232
* @fn: function to apply to each HW module instance
233
* @data: optional internal data to the function iterator
234
* @rc: return code for optional use of iterator/iterator-caller
235
*/
236
struct iterate_module_ctx {
237
/*
238
* callback for the HW module iterator
239
* @hdev: pointer to the habanalabs device structure
240
* @block: block (ASIC specific definition can be dcore/hdcore)
241
* @inst: HW module instance within the block
242
* @offset: current HW module instance offset from the 1-st HW module instance
243
* in the 1-st block
244
* @ctx: the iterator context.
245
*/
246
void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
247
struct iterate_module_ctx *ctx);
248
void *data;
249
int rc;
250
};
251
252
struct hl_block_glbl_sec {
253
u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
254
};
255
256
#define HL_MAX_SOBS_PER_MONITOR 8
257
258
/**
259
* struct hl_gen_wait_properties - properties for generating a wait CB
260
* @data: command buffer
261
* @q_idx: queue id is used to extract fence register address
262
* @size: offset in command buffer
263
* @sob_base: SOB base to use in this wait CB
264
* @sob_val: SOB value to wait for
265
* @mon_id: monitor to use in this wait CB
266
* @sob_mask: each bit represents a SOB offset from sob_base to be used
267
*/
268
struct hl_gen_wait_properties {
269
void *data;
270
u32 q_idx;
271
u32 size;
272
u16 sob_base;
273
u16 sob_val;
274
u16 mon_id;
275
u8 sob_mask;
276
};
277
278
/**
279
* struct pgt_info - MMU hop page info.
280
* @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
281
* actual pgts for host resident MMU).
282
* @phys_addr: physical address of the pgt.
283
* @virt_addr: host virtual address of the pgt (see above device/host resident).
284
* @shadow_addr: shadow hop in the host for device resident MMU.
285
* @ctx: pointer to the owner ctx.
286
* @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
287
* allocated HOPs (all HOPs but HOP0)
288
*
289
* The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
290
* pgts will be stored on host memory) or on host memory (in which case no shadow is required).
291
*
292
* When a new level (hop) is needed during mapping this structure will be used to describe
293
* the newly allocated hop as well as to track number of PTEs in it.
294
* During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
295
* freed with its pgt_info structure.
296
*/
297
struct pgt_info {
298
struct hlist_node node;
299
u64 phys_addr;
300
u64 virt_addr;
301
u64 shadow_addr;
302
struct hl_ctx *ctx;
303
int num_of_ptes;
304
};
305
306
/**
307
* enum hl_pci_match_mode - pci match mode per region
308
* @PCI_ADDRESS_MATCH_MODE: address match mode
309
* @PCI_BAR_MATCH_MODE: bar match mode
310
*/
311
enum hl_pci_match_mode {
312
PCI_ADDRESS_MATCH_MODE,
313
PCI_BAR_MATCH_MODE
314
};
315
316
/**
317
* enum hl_fw_component - F/W components to read version through registers.
318
* @FW_COMP_BOOT_FIT: boot fit.
319
* @FW_COMP_PREBOOT: preboot.
320
* @FW_COMP_LINUX: linux.
321
*/
322
enum hl_fw_component {
323
FW_COMP_BOOT_FIT,
324
FW_COMP_PREBOOT,
325
FW_COMP_LINUX,
326
};
327
328
/**
329
* enum hl_fw_types - F/W types present in the system
330
* @FW_TYPE_NONE: no FW component indication
331
* @FW_TYPE_LINUX: Linux image for device CPU
332
* @FW_TYPE_BOOT_CPU: Boot image for device CPU
333
* @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
334
* (preboot, ppboot etc...)
335
* @FW_TYPE_ALL_TYPES: Mask for all types
336
*/
337
enum hl_fw_types {
338
FW_TYPE_NONE = 0x0,
339
FW_TYPE_LINUX = 0x1,
340
FW_TYPE_BOOT_CPU = 0x2,
341
FW_TYPE_PREBOOT_CPU = 0x4,
342
FW_TYPE_ALL_TYPES =
343
(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
344
};
345
346
/**
347
* enum hl_queue_type - Supported QUEUE types.
348
* @QUEUE_TYPE_NA: queue is not available.
349
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
350
* host.
351
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
352
* memories and/or operates the compute engines.
353
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
354
* @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
355
* notifications are sent by H/W.
356
*/
357
enum hl_queue_type {
358
QUEUE_TYPE_NA,
359
QUEUE_TYPE_EXT,
360
QUEUE_TYPE_INT,
361
QUEUE_TYPE_CPU,
362
QUEUE_TYPE_HW
363
};
364
365
enum hl_cs_type {
366
CS_TYPE_DEFAULT,
367
CS_TYPE_SIGNAL,
368
CS_TYPE_WAIT,
369
CS_TYPE_COLLECTIVE_WAIT,
370
CS_RESERVE_SIGNALS,
371
CS_UNRESERVE_SIGNALS,
372
CS_TYPE_ENGINE_CORE,
373
CS_TYPE_ENGINES,
374
CS_TYPE_FLUSH_PCI_HBW_WRITES,
375
};
376
377
/*
378
* struct hl_inbound_pci_region - inbound region descriptor
379
* @mode: pci match mode for this region
380
* @addr: region target address
381
* @size: region size in bytes
382
* @offset_in_bar: offset within bar (address match mode)
383
* @bar: bar id
384
*/
385
struct hl_inbound_pci_region {
386
enum hl_pci_match_mode mode;
387
u64 addr;
388
u64 size;
389
u64 offset_in_bar;
390
u8 bar;
391
};
392
393
/*
394
* struct hl_outbound_pci_region - outbound region descriptor
395
* @addr: region target address
396
* @size: region size in bytes
397
*/
398
struct hl_outbound_pci_region {
399
u64 addr;
400
u64 size;
401
};
402
403
/*
404
* enum queue_cb_alloc_flags - Indicates queue support for CBs that
405
* allocated by Kernel or by User
406
* @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
407
* @CB_ALLOC_USER: support only CBs that allocated by User
408
*/
409
enum queue_cb_alloc_flags {
410
CB_ALLOC_KERNEL = 0x1,
411
CB_ALLOC_USER = 0x2
412
};
413
414
/*
415
* struct hl_hw_sob - H/W SOB info.
416
* @hdev: habanalabs device structure.
417
* @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
418
* @sob_id: id of this SOB.
419
* @sob_addr: the sob offset from the base address.
420
* @q_idx: the H/W queue that uses this SOB.
421
* @need_reset: reset indication set when switching to the other sob.
422
*/
423
struct hl_hw_sob {
424
struct hl_device *hdev;
425
struct kref kref;
426
u32 sob_id;
427
u32 sob_addr;
428
u32 q_idx;
429
bool need_reset;
430
};
431
432
enum hl_collective_mode {
433
HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
434
HL_COLLECTIVE_MASTER = 0x1,
435
HL_COLLECTIVE_SLAVE = 0x2
436
};
437
438
/**
439
* struct hw_queue_properties - queue information.
440
* @type: queue type.
441
* @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
442
* that allocated by the Kernel driver and therefore,
443
* a CB handle can be provided for jobs on this queue.
444
* Otherwise, a CB address must be provided.
445
* @collective_mode: collective mode of current queue
446
* @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM.
447
* @driver_only: true if only the driver is allowed to send a job to this queue,
448
* false otherwise.
449
* @binned: True if the queue is binned out and should not be used
450
* @supports_sync_stream: True if queue supports sync stream
451
* @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
452
*/
453
struct hw_queue_properties {
454
enum hl_queue_type type;
455
enum queue_cb_alloc_flags cb_alloc_flags;
456
enum hl_collective_mode collective_mode;
457
u64 q_dram_bd_address;
458
u8 driver_only;
459
u8 binned;
460
u8 supports_sync_stream;
461
u8 dram_bd;
462
};
463
464
/**
465
* enum vm_type - virtual memory mapping request information.
466
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
467
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
468
*/
469
enum vm_type {
470
VM_TYPE_USERPTR = 0x1,
471
VM_TYPE_PHYS_PACK = 0x2
472
};
473
474
/**
475
* enum mmu_op_flags - mmu operation relevant information.
476
* @MMU_OP_USERPTR: operation on user memory (host resident).
477
* @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
478
* @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
479
* @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
480
*/
481
enum mmu_op_flags {
482
MMU_OP_USERPTR = 0x1,
483
MMU_OP_PHYS_PACK = 0x2,
484
MMU_OP_CLEAR_MEMCACHE = 0x4,
485
MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
486
};
487
488
489
/**
490
* enum hl_device_hw_state - H/W device state. use this to understand whether
491
* to do reset before hw_init or not
492
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
493
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
494
* hw_init
495
*/
496
enum hl_device_hw_state {
497
HL_DEVICE_HW_STATE_CLEAN = 0,
498
HL_DEVICE_HW_STATE_DIRTY
499
};
500
501
#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
502
503
/**
504
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
505
* @start_addr: virtual start address of the memory region.
506
* @end_addr: virtual end address of the memory region.
507
* @hop_shifts: array holds HOPs shifts.
508
* @hop_masks: array holds HOPs masks.
509
* @last_mask: mask to get the bit indicating this is the last hop.
510
* @pgt_size: size for page tables.
511
* @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
512
* supporting multiple page size).
513
* @page_size: default page size used to allocate memory.
514
* @num_hops: The amount of hops supported by the translation table.
515
* @hop_table_size: HOP table size.
516
* @hop0_tables_total_size: total size for all HOP0 tables.
517
* @host_resident: Should the MMU page table reside in host memory or in the
518
* device DRAM.
519
*/
520
struct hl_mmu_properties {
521
u64 start_addr;
522
u64 end_addr;
523
u64 hop_shifts[MMU_HOP_MAX];
524
u64 hop_masks[MMU_HOP_MAX];
525
u64 last_mask;
526
u64 pgt_size;
527
u64 supported_pages_mask;
528
u32 page_size;
529
u32 num_hops;
530
u32 hop_table_size;
531
u32 hop0_tables_total_size;
532
u8 host_resident;
533
};
534
535
/**
536
* struct hl_hints_range - hint addresses reserved va range.
537
* @start_addr: start address of the va range.
538
* @end_addr: end address of the va range.
539
*/
540
struct hl_hints_range {
541
u64 start_addr;
542
u64 end_addr;
543
};
544
545
/**
546
* struct asic_fixed_properties - ASIC specific immutable properties.
547
* @hw_queues_props: H/W queues properties.
548
* @special_blocks: points to an array containing special blocks info.
549
* @skip_special_blocks_cfg: special blocks skip configs.
550
* @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
551
* available sensors.
552
* @uboot_ver: F/W U-boot version.
553
* @preboot_ver: F/W Preboot version.
554
* @dmmu: DRAM MMU address translation properties.
555
* @pmmu: PCI (host) MMU address translation properties.
556
* @pmmu_huge: PCI (host) MMU address translation properties for memory
557
* allocated with huge pages.
558
* @hints_dram_reserved_va_range: dram hint addresses reserved range.
559
* @hints_host_reserved_va_range: host hint addresses reserved range.
560
* @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range.
561
* @sram_base_address: SRAM physical start address.
562
* @sram_end_address: SRAM physical end address.
563
* @sram_user_base_address - SRAM physical start address for user access.
564
* @dram_base_address: DRAM physical start address.
565
* @dram_end_address: DRAM physical end address.
566
* @dram_user_base_address: DRAM physical start address for user access.
567
* @dram_size: DRAM total size.
568
* @dram_pci_bar_size: size of PCI bar towards DRAM.
569
* @max_power_default: max power of the device after reset.
570
* @dc_power_default: power consumed by the device in mode idle.
571
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
572
* fault.
573
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
574
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
575
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
576
* @mmu_dram_default_page_addr: DRAM default page physical address.
577
* @tpc_enabled_mask: which TPCs are enabled.
578
* @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
579
* @dram_enabled_mask: which DRAMs are enabled.
580
* @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
581
* @dram_hints_align_mask: dram va hint addresses alignment mask which is used
582
* for hints validity check.
583
* @cfg_base_address: config space base address.
584
* @mmu_cache_mng_addr: address of the MMU cache.
585
* @mmu_cache_mng_size: size of the MMU cache.
586
* @device_dma_offset_for_host_access: the offset to add to host DMA addresses
587
* to enable the device to access them.
588
* @host_base_address: host physical start address for host DMA from device
589
* @host_end_address: host physical end address for host DMA from device
590
* @max_freq_value: current max clk frequency.
591
* @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
592
* in order to raise events toward FW.
593
* @clk_pll_index: clock PLL index that specify which PLL determines the clock
594
* we display to the user
595
* @mmu_pgt_size: MMU page tables total size.
596
* @mmu_pte_size: PTE size in MMU page tables.
597
* @dram_page_size: The DRAM physical page size.
598
* @cfg_size: configuration space size on SRAM.
599
* @sram_size: total size of SRAM.
600
* @max_asid: maximum number of open contexts (ASIDs).
601
* @num_of_events: number of possible internal H/W IRQs.
602
* @psoc_pci_pll_nr: PCI PLL NR value.
603
* @psoc_pci_pll_nf: PCI PLL NF value.
604
* @psoc_pci_pll_od: PCI PLL OD value.
605
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
606
* @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
607
* @high_pll: high PLL frequency used by the device.
608
* @cb_pool_cb_cnt: number of CBs in the CB pool.
609
* @cb_pool_cb_size: size of each CB in the CB pool.
610
* @decoder_enabled_mask: which decoders are enabled.
611
* @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
612
* @rotator_enabled_mask: which rotators are enabled.
613
* @edma_enabled_mask: which EDMAs are enabled.
614
* @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
615
* binned (at most one binned DMA).
616
* @max_pending_cs: maximum of concurrent pending command submissions
617
* @max_queues: maximum amount of queues in the system
618
* @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
619
* capabilities reported by FW, bit description
620
* can be found in CPU_BOOT_DEV_STS0
621
* @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
622
* capabilities reported by FW, bit description
623
* can be found in CPU_BOOT_DEV_STS1
624
* @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
625
* status reported by FW, bit description can be
626
* found in CPU_BOOT_DEV_STS0
627
* @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
628
* status reported by FW, bit description can be
629
* found in CPU_BOOT_DEV_STS1
630
* @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
631
* status reported by FW, bit description can be
632
* found in CPU_BOOT_DEV_STS0
633
* @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
634
* status reported by FW, bit description can be
635
* found in CPU_BOOT_DEV_STS1
636
* @max_dec: maximum number of decoders
637
* @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
638
* 1- enabled, 0- isolated.
639
* @faulty_dram_cluster_map: mask of faulty DRAM cluster.
640
* 1- faulty cluster, 0- good cluster.
641
* @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
642
* 1- enabled, 0- isolated.
643
* @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
644
* which the property supports_user_set_page_size is true
645
* (i.e. the DRAM supports multiple page sizes), otherwise
646
* it will shall be equal to dram_page_size.
647
* @num_engine_cores: number of engine cpu cores.
648
* @max_num_of_engines: maximum number of all engines in the ASIC.
649
* @num_of_special_blocks: special_blocks array size.
650
* @glbl_err_max_cause_num: global err max cause number.
651
* @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
652
* not supported.
653
* @reserved_fw_mem_size: size of dram memory reserved for FW.
654
* @fw_event_queue_size: queue size for events from CPU-CP.
655
* A value of 0 means using the default HL_EQ_SIZE_IN_BYTES value.
656
* @collective_first_sob: first sync object available for collective use
657
* @collective_first_mon: first monitor available for collective use
658
* @sync_stream_first_sob: first sync object available for sync stream use
659
* @sync_stream_first_mon: first monitor available for sync stream use
660
* @first_available_user_sob: first sob available for the user
661
* @first_available_user_mon: first monitor available for the user
662
* @first_available_user_interrupt: first available interrupt reserved for the user
663
* @first_available_cq: first available CQ for the user.
664
* @user_interrupt_count: number of user interrupts.
665
* @user_dec_intr_count: number of decoder interrupts exposed to user.
666
* @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
667
* @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
668
* @cache_line_size: device cache line size.
669
* @server_type: Server type that the ASIC is currently installed in.
670
* The value is according to enum hl_server_type in uapi file.
671
* @completion_queues_count: number of completion queues.
672
* @completion_mode: 0 - job based completion, 1 - cs based completion
673
* @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
674
* in Master/Slave mode
675
* @fw_security_enabled: true if security measures are enabled in firmware,
676
* false otherwise
677
* @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
678
* BOOT_DEV_STS0
679
* @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
680
* BOOT_DEV_STS1
681
* @dram_supports_virtual_memory: is there an MMU towards the DRAM
682
* @hard_reset_done_by_fw: true if firmware is handling hard reset flow
683
* @num_functional_hbms: number of functional HBMs in each DCORE.
684
* @hints_range_reservation: device support hint addresses range reservation.
685
* @iatu_done_by_fw: true if iATU configuration is being done by FW.
686
* @dynamic_fw_load: is dynamic FW load is supported.
687
* @gic_interrupts_enable: true if FW is not blocking GIC controller,
688
* false otherwise.
689
* @use_get_power_for_reset_history: To support backward compatibility for Goya
690
* and Gaudi
691
* @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
692
* @allow_inference_soft_reset: true if the ASIC supports soft reset that is
693
* initiated by user or TDR. This is only true
694
* in inference ASICs, as there is no real-world
695
* use-case of doing soft-reset in training (due
696
* to the fact that training runs on multiple
697
* devices)
698
* @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
699
* @set_max_power_on_device_init: true if need to set max power in F/W on device init.
700
* @supports_user_set_page_size: true if user can set the allocation page size.
701
* @dma_mask: the dma mask to be set for this device.
702
* @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
703
* @supports_engine_modes: true if changing engines/engine_cores modes is supported.
704
* @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw.
705
*/
706
struct asic_fixed_properties {
707
struct hw_queue_properties *hw_queues_props;
708
struct hl_special_block_info *special_blocks;
709
struct hl_skip_blocks_cfg skip_special_blocks_cfg;
710
struct cpucp_info cpucp_info;
711
char uboot_ver[VERSION_MAX_LEN];
712
char preboot_ver[VERSION_MAX_LEN];
713
struct hl_mmu_properties dmmu;
714
struct hl_mmu_properties pmmu;
715
struct hl_mmu_properties pmmu_huge;
716
struct hl_hints_range hints_dram_reserved_va_range;
717
struct hl_hints_range hints_host_reserved_va_range;
718
struct hl_hints_range hints_host_hpage_reserved_va_range;
719
u64 sram_base_address;
720
u64 sram_end_address;
721
u64 sram_user_base_address;
722
u64 dram_base_address;
723
u64 dram_end_address;
724
u64 dram_user_base_address;
725
u64 dram_size;
726
u64 dram_pci_bar_size;
727
u64 max_power_default;
728
u64 dc_power_default;
729
u64 dram_size_for_default_page_mapping;
730
u64 pcie_dbi_base_address;
731
u64 pcie_aux_dbi_reg_addr;
732
u64 mmu_pgt_addr;
733
u64 mmu_dram_default_page_addr;
734
u64 tpc_enabled_mask;
735
u64 tpc_binning_mask;
736
u64 dram_enabled_mask;
737
u64 dram_binning_mask;
738
u64 dram_hints_align_mask;
739
u64 cfg_base_address;
740
u64 mmu_cache_mng_addr;
741
u64 mmu_cache_mng_size;
742
u64 device_dma_offset_for_host_access;
743
u64 host_base_address;
744
u64 host_end_address;
745
u64 max_freq_value;
746
u64 engine_core_interrupt_reg_addr;
747
u32 clk_pll_index;
748
u32 mmu_pgt_size;
749
u32 mmu_pte_size;
750
u32 dram_page_size;
751
u32 cfg_size;
752
u32 sram_size;
753
u32 max_asid;
754
u32 num_of_events;
755
u32 psoc_pci_pll_nr;
756
u32 psoc_pci_pll_nf;
757
u32 psoc_pci_pll_od;
758
u32 psoc_pci_pll_div_factor;
759
u32 psoc_timestamp_frequency;
760
u32 high_pll;
761
u32 cb_pool_cb_cnt;
762
u32 cb_pool_cb_size;
763
u32 decoder_enabled_mask;
764
u32 decoder_binning_mask;
765
u32 rotator_enabled_mask;
766
u32 edma_enabled_mask;
767
u32 edma_binning_mask;
768
u32 max_pending_cs;
769
u32 max_queues;
770
u32 fw_preboot_cpu_boot_dev_sts0;
771
u32 fw_preboot_cpu_boot_dev_sts1;
772
u32 fw_bootfit_cpu_boot_dev_sts0;
773
u32 fw_bootfit_cpu_boot_dev_sts1;
774
u32 fw_app_cpu_boot_dev_sts0;
775
u32 fw_app_cpu_boot_dev_sts1;
776
u32 max_dec;
777
u32 hmmu_hif_enabled_mask;
778
u32 faulty_dram_cluster_map;
779
u32 xbar_edge_enabled_mask;
780
u32 device_mem_alloc_default_page_size;
781
u32 num_engine_cores;
782
u32 max_num_of_engines;
783
u32 num_of_special_blocks;
784
u32 glbl_err_max_cause_num;
785
u32 hbw_flush_reg;
786
u32 reserved_fw_mem_size;
787
u32 fw_event_queue_size;
788
u16 collective_first_sob;
789
u16 collective_first_mon;
790
u16 sync_stream_first_sob;
791
u16 sync_stream_first_mon;
792
u16 first_available_user_sob[HL_MAX_DCORES];
793
u16 first_available_user_mon[HL_MAX_DCORES];
794
u16 first_available_user_interrupt;
795
u16 first_available_cq[HL_MAX_DCORES];
796
u16 user_interrupt_count;
797
u16 user_dec_intr_count;
798
u16 tpc_interrupt_id;
799
u16 eq_interrupt_id;
800
u16 cache_line_size;
801
u16 server_type;
802
u8 completion_queues_count;
803
u8 completion_mode;
804
u8 mme_master_slave_mode;
805
u8 fw_security_enabled;
806
u8 fw_cpu_boot_dev_sts0_valid;
807
u8 fw_cpu_boot_dev_sts1_valid;
808
u8 dram_supports_virtual_memory;
809
u8 hard_reset_done_by_fw;
810
u8 num_functional_hbms;
811
u8 hints_range_reservation;
812
u8 iatu_done_by_fw;
813
u8 dynamic_fw_load;
814
u8 gic_interrupts_enable;
815
u8 use_get_power_for_reset_history;
816
u8 supports_compute_reset;
817
u8 allow_inference_soft_reset;
818
u8 configurable_stop_on_err;
819
u8 set_max_power_on_device_init;
820
u8 supports_user_set_page_size;
821
u8 dma_mask;
822
u8 supports_advanced_cpucp_rc;
823
u8 supports_engine_modes;
824
u8 support_dynamic_resereved_fw_size;
825
};
826
827
/**
828
* struct hl_fence - software synchronization primitive
829
* @completion: fence is implemented using completion
830
* @refcount: refcount for this fence
831
* @cs_sequence: sequence of the corresponding command submission
832
* @stream_master_qid_map: streams masters QID bitmap to represent all streams
833
* masters QIDs that multi cs is waiting on
834
* @error: mark this fence with error
835
* @timestamp: timestamp upon completion
836
* @mcs_handling_done: indicates that corresponding command submission has
837
* finished msc handling, this does not mean it was part
838
* of the mcs
839
*/
840
struct hl_fence {
841
struct completion completion;
842
struct kref refcount;
843
u64 cs_sequence;
844
u32 stream_master_qid_map;
845
int error;
846
ktime_t timestamp;
847
u8 mcs_handling_done;
848
};
849
850
/**
851
* struct hl_cs_compl - command submission completion object.
852
* @base_fence: hl fence object.
853
* @lock: spinlock to protect fence.
854
* @hdev: habanalabs device structure.
855
* @hw_sob: the H/W SOB used in this signal/wait CS.
856
* @encaps_sig_hdl: encaps signals handler.
857
* @cs_seq: command submission sequence number.
858
* @type: type of the CS - signal/wait.
859
* @sob_val: the SOB value that is used in this signal/wait CS.
860
* @sob_group: the SOB group that is used in this collective wait CS.
861
* @encaps_signals: indication whether it's a completion object of cs with
862
* encaps signals or not.
863
*/
864
struct hl_cs_compl {
865
struct hl_fence base_fence;
866
spinlock_t lock;
867
struct hl_device *hdev;
868
struct hl_hw_sob *hw_sob;
869
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
870
u64 cs_seq;
871
enum hl_cs_type type;
872
u16 sob_val;
873
u16 sob_group;
874
bool encaps_signals;
875
};
876
877
/*
878
* Command Buffers
879
*/
880
881
/**
882
* struct hl_ts_buff - describes a timestamp buffer.
883
* @kernel_buff_address: Holds the internal buffer's kernel virtual address.
884
* @user_buff_address: Holds the user buffer's kernel virtual address.
885
* @kernel_buff_size: Holds the internal kernel buffer size.
886
*/
887
struct hl_ts_buff {
888
void *kernel_buff_address;
889
void *user_buff_address;
890
u32 kernel_buff_size;
891
};
892
893
struct hl_mmap_mem_buf;
894
895
/**
896
* struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
897
* @dev: back pointer to the owning device
898
* @lock: protects handles
899
* @handles: an idr holding all active handles to the memory buffers in the system.
900
*/
901
struct hl_mem_mgr {
902
struct device *dev;
903
spinlock_t lock;
904
struct idr handles;
905
};
906
907
/**
908
* struct hl_mem_mgr_fini_stats - describes statistics returned during memory manager teardown.
909
* @n_busy_cb: the amount of CB handles that could not be removed
910
* @n_busy_ts: the amount of TS handles that could not be removed
911
* @n_busy_other: the amount of any other type of handles that could not be removed
912
*/
913
struct hl_mem_mgr_fini_stats {
914
u32 n_busy_cb;
915
u32 n_busy_ts;
916
u32 n_busy_other;
917
};
918
919
/**
920
* struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
921
* @topic: string identifier used for logging
922
* @mem_id: memory type identifier, embedded in the handle and used to identify
923
* the memory type by handle.
924
* @alloc: callback executed on buffer allocation, shall allocate the memory,
925
* set it under buffer private, and set mappable size.
926
* @mmap: callback executed on mmap, must map the buffer to vma
927
* @release: callback executed on release, must free the resources used by the buffer
928
*/
929
struct hl_mmap_mem_buf_behavior {
930
const char *topic;
931
u64 mem_id;
932
933
int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
934
int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
935
void (*release)(struct hl_mmap_mem_buf *buf);
936
};
937
938
/**
939
* struct hl_mmap_mem_buf - describes a single unified memory buffer
940
* @behavior: buffer behavior
941
* @mmg: back pointer to the unified memory manager
942
* @refcount: reference counter for buffer users
943
* @private: pointer to buffer behavior private data
944
* @mmap: atomic boolean indicating whether or not the buffer is mapped right now
945
* @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
946
* may change at runtime.
947
* @mappable_size: the original mappable size of the buffer, does not change after
948
* the allocation.
949
* @handle: the buffer id in mmg handles store
950
*/
951
struct hl_mmap_mem_buf {
952
struct hl_mmap_mem_buf_behavior *behavior;
953
struct hl_mem_mgr *mmg;
954
struct kref refcount;
955
void *private;
956
atomic_t mmap;
957
u64 real_mapped_size;
958
u64 mappable_size;
959
u64 handle;
960
};
961
962
/**
963
* struct hl_cb - describes a Command Buffer.
964
* @hdev: pointer to device this CB belongs to.
965
* @ctx: pointer to the CB owner's context.
966
* @buf: back pointer to the parent mappable memory buffer
967
* @debugfs_list: node in debugfs list of command buffers.
968
* @pool_list: node in pool list of command buffers.
969
* @kernel_address: Holds the CB's kernel virtual address.
970
* @virtual_addr: Holds the CB's virtual address.
971
* @bus_address: Holds the CB's DMA address.
972
* @size: holds the CB's size.
973
* @roundup_size: holds the cb size after roundup to page size.
974
* @cs_cnt: holds number of CS that this CB participates in.
975
* @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
976
* @is_pool: true if CB was acquired from the pool, false otherwise.
977
* @is_internal: internally allocated
978
* @is_mmu_mapped: true if the CB is mapped to the device's MMU.
979
*/
980
struct hl_cb {
981
struct hl_device *hdev;
982
struct hl_ctx *ctx;
983
struct hl_mmap_mem_buf *buf;
984
struct list_head debugfs_list;
985
struct list_head pool_list;
986
void *kernel_address;
987
u64 virtual_addr;
988
dma_addr_t bus_address;
989
u32 size;
990
u32 roundup_size;
991
atomic_t cs_cnt;
992
atomic_t is_handle_destroyed;
993
u8 is_pool;
994
u8 is_internal;
995
u8 is_mmu_mapped;
996
};
997
998
999
/*
1000
* QUEUES
1001
*/
1002
1003
struct hl_cs_job;
1004
1005
/* Queue length of external and HW queues */
1006
#define HL_QUEUE_LENGTH 4096
1007
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
1008
1009
#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
1010
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
1011
#endif
1012
1013
/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
1014
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
1015
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
1016
1017
/* Must be power of 2 */
1018
#define HL_EQ_LENGTH 64
1019
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
1020
1021
/* Host <-> CPU-CP shared memory size */
1022
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
1023
1024
/**
1025
* struct hl_sync_stream_properties -
1026
* describes a H/W queue sync stream properties
1027
* @hw_sob: array of the used H/W SOBs by this H/W queue.
1028
* @next_sob_val: the next value to use for the currently used SOB.
1029
* @base_sob_id: the base SOB id of the SOBs used by this queue.
1030
* @base_mon_id: the base MON id of the MONs used by this queue.
1031
* @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1032
* in order to sync with all slave queues.
1033
* @collective_slave_mon_id: the MON id used by this slave queue in order to
1034
* sync with its master queue.
1035
* @collective_sob_id: current SOB id used by this collective slave queue
1036
* to signal its collective master queue upon completion.
1037
* @curr_sob_offset: the id offset to the currently used SOB from the
1038
* HL_RSVD_SOBS that are being used by this queue.
1039
*/
1040
struct hl_sync_stream_properties {
1041
struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1042
u16 next_sob_val;
1043
u16 base_sob_id;
1044
u16 base_mon_id;
1045
u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1046
u16 collective_slave_mon_id;
1047
u16 collective_sob_id;
1048
u8 curr_sob_offset;
1049
};
1050
1051
/**
1052
* struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1053
* handlers manager
1054
* @lock: protects handles.
1055
* @handles: an idr to hold all encapsulated signals handles.
1056
*/
1057
struct hl_encaps_signals_mgr {
1058
spinlock_t lock;
1059
struct idr handles;
1060
};
1061
1062
/**
1063
* struct hl_hw_queue - describes a H/W transport queue.
1064
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1065
* @sync_stream_prop: sync stream queue properties
1066
* @queue_type: type of queue.
1067
* @collective_mode: collective mode of current queue
1068
* @kernel_address: holds the queue's kernel virtual address.
1069
* @bus_address: holds the queue's DMA address.
1070
* @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in
1071
* queue properites.
1072
* @pi: holds the queue's pi value.
1073
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1074
* @hw_queue_id: the id of the H/W queue.
1075
* @cq_id: the id for the corresponding CQ for this H/W queue.
1076
* @msi_vec: the IRQ number of the H/W queue.
1077
* @int_queue_len: length of internal queue (number of entries).
1078
* @valid: is the queue valid (we have array of 32 queues, not all of them
1079
* exist).
1080
* @supports_sync_stream: True if queue supports sync stream
1081
* @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
1082
*/
1083
struct hl_hw_queue {
1084
struct hl_cs_job **shadow_queue;
1085
struct hl_sync_stream_properties sync_stream_prop;
1086
enum hl_queue_type queue_type;
1087
enum hl_collective_mode collective_mode;
1088
void *kernel_address;
1089
dma_addr_t bus_address;
1090
u64 pq_dram_address;
1091
u32 pi;
1092
atomic_t ci;
1093
u32 hw_queue_id;
1094
u32 cq_id;
1095
u32 msi_vec;
1096
u16 int_queue_len;
1097
u8 valid;
1098
u8 supports_sync_stream;
1099
u8 dram_bd;
1100
};
1101
1102
/**
1103
* struct hl_cq - describes a completion queue
1104
* @hdev: pointer to the device structure
1105
* @kernel_address: holds the queue's kernel virtual address
1106
* @bus_address: holds the queue's DMA address
1107
* @cq_idx: completion queue index in array
1108
* @hw_queue_id: the id of the matching H/W queue
1109
* @ci: ci inside the queue
1110
* @pi: pi inside the queue
1111
* @free_slots_cnt: counter of free slots in queue
1112
*/
1113
struct hl_cq {
1114
struct hl_device *hdev;
1115
void *kernel_address;
1116
dma_addr_t bus_address;
1117
u32 cq_idx;
1118
u32 hw_queue_id;
1119
u32 ci;
1120
u32 pi;
1121
atomic_t free_slots_cnt;
1122
};
1123
1124
enum hl_user_interrupt_type {
1125
HL_USR_INTERRUPT_CQ = 0,
1126
HL_USR_INTERRUPT_DECODER,
1127
HL_USR_INTERRUPT_TPC,
1128
HL_USR_INTERRUPT_UNEXPECTED
1129
};
1130
1131
/**
1132
* struct hl_ts_free_jobs - holds user interrupt ts free nodes related data
1133
* @free_nodes_pool: pool of nodes to be used for free timestamp jobs
1134
* @free_nodes_length: number of nodes in free_nodes_pool
1135
* @next_avail_free_node_idx: index of the next free node in the pool
1136
*
1137
* the free nodes pool must be protected by the user interrupt lock
1138
* to avoid race between different interrupts which are using the same
1139
* ts buffer with different offsets.
1140
*/
1141
struct hl_ts_free_jobs {
1142
struct timestamp_reg_free_node *free_nodes_pool;
1143
u32 free_nodes_length;
1144
u32 next_avail_free_node_idx;
1145
};
1146
1147
/**
1148
* struct hl_user_interrupt - holds user interrupt information
1149
* @hdev: pointer to the device structure
1150
* @ts_free_jobs_data: timestamp free jobs related data
1151
* @type: user interrupt type
1152
* @wait_list_head: head to the list of user threads pending on this interrupt
1153
* @ts_list_head: head to the list of timestamp records
1154
* @wait_list_lock: protects wait_list_head
1155
* @ts_list_lock: protects ts_list_head
1156
* @timestamp: last timestamp taken upon interrupt
1157
* @interrupt_id: msix interrupt id
1158
*/
1159
struct hl_user_interrupt {
1160
struct hl_device *hdev;
1161
struct hl_ts_free_jobs ts_free_jobs_data;
1162
enum hl_user_interrupt_type type;
1163
struct list_head wait_list_head;
1164
struct list_head ts_list_head;
1165
spinlock_t wait_list_lock;
1166
spinlock_t ts_list_lock;
1167
ktime_t timestamp;
1168
u32 interrupt_id;
1169
};
1170
1171
/**
1172
* struct timestamp_reg_free_node - holds the timestamp registration free objects node
1173
* @free_objects_node: node in the list free_obj_jobs
1174
* @cq_cb: pointer to cq command buffer to be freed
1175
* @buf: pointer to timestamp buffer to be freed
1176
* @in_use: indicates whether the node still in use in workqueue thread.
1177
* @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler
1178
*/
1179
struct timestamp_reg_free_node {
1180
struct list_head free_objects_node;
1181
struct hl_cb *cq_cb;
1182
struct hl_mmap_mem_buf *buf;
1183
atomic_t in_use;
1184
u8 dynamic_alloc;
1185
};
1186
1187
/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1188
* the job will be to pass over the free_obj_jobs list and put refcount to objects
1189
* in each node of the list
1190
* @free_obj: workqueue object to free timestamp registration node objects
1191
* @hdev: pointer to the device structure
1192
* @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1193
* @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the
1194
* interrupt handler.
1195
*/
1196
struct timestamp_reg_work_obj {
1197
struct work_struct free_obj;
1198
struct hl_device *hdev;
1199
struct list_head *free_obj_head;
1200
struct list_head *dynamic_alloc_free_obj_head;
1201
};
1202
1203
/* struct timestamp_reg_info - holds the timestamp registration related data.
1204
* @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1205
* relevant only when doing timestamps records registration.
1206
* @cq_cb: pointer to CQ counter CB.
1207
* @interrupt: interrupt that the node hanged on it's wait list.
1208
* @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1209
* relevant only when doing timestamps records
1210
* registration.
1211
* @in_use: indicates if the node already in use. relevant only when doing
1212
* timestamps records registration, since in this case the driver
1213
* will have it's own buffer which serve as a records pool instead of
1214
* allocating records dynamically.
1215
*/
1216
struct timestamp_reg_info {
1217
struct hl_mmap_mem_buf *buf;
1218
struct hl_cb *cq_cb;
1219
struct hl_user_interrupt *interrupt;
1220
u64 *timestamp_kernel_addr;
1221
bool in_use;
1222
};
1223
1224
/**
1225
* struct hl_user_pending_interrupt - holds a context to a user thread
1226
* pending on an interrupt
1227
* @ts_reg_info: holds the timestamps registration nodes info
1228
* @list_node: node in the list of user threads pending on an interrupt or timestamp
1229
* @fence: hl fence object for interrupt completion
1230
* @cq_target_value: CQ target value
1231
* @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1232
* handler for target value comparison
1233
*/
1234
struct hl_user_pending_interrupt {
1235
struct timestamp_reg_info ts_reg_info;
1236
struct list_head list_node;
1237
struct hl_fence fence;
1238
u64 cq_target_value;
1239
u64 *cq_kernel_addr;
1240
};
1241
1242
/**
1243
* struct hl_eq - describes the event queue (single one per device)
1244
* @hdev: pointer to the device structure
1245
* @kernel_address: holds the queue's kernel virtual address
1246
* @bus_address: holds the queue's DMA address
1247
* @size: the event queue size
1248
* @ci: ci inside the queue
1249
* @prev_eqe_index: the index of the previous event queue entry. The index of
1250
* the current entry's index must be +1 of the previous one.
1251
* @check_eqe_index: do we need to check the index of the current entry vs. the
1252
* previous one. This is for backward compatibility with older
1253
* firmwares
1254
*/
1255
struct hl_eq {
1256
struct hl_device *hdev;
1257
void *kernel_address;
1258
dma_addr_t bus_address;
1259
u32 size;
1260
u32 ci;
1261
u32 prev_eqe_index;
1262
bool check_eqe_index;
1263
};
1264
1265
/**
1266
* struct hl_dec - describes a decoder sw instance.
1267
* @hdev: pointer to the device structure.
1268
* @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1269
* @core_id: ID of the decoder.
1270
* @base_addr: base address of the decoder.
1271
*/
1272
struct hl_dec {
1273
struct hl_device *hdev;
1274
struct work_struct abnrm_intr_work;
1275
u32 core_id;
1276
u32 base_addr;
1277
};
1278
1279
/**
1280
* enum hl_asic_type - supported ASIC types.
1281
* @ASIC_INVALID: Invalid ASIC type.
1282
* @ASIC_GOYA: Goya device (HL-1000).
1283
* @ASIC_GAUDI: Gaudi device (HL-2000).
1284
* @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1285
* @ASIC_GAUDI2: Gaudi2 device.
1286
* @ASIC_GAUDI2B: Gaudi2B device.
1287
* @ASIC_GAUDI2C: Gaudi2C device.
1288
* @ASIC_GAUDI2D: Gaudi2D device.
1289
*/
1290
enum hl_asic_type {
1291
ASIC_INVALID,
1292
1293
ASIC_GOYA,
1294
ASIC_GAUDI,
1295
ASIC_GAUDI_SEC,
1296
ASIC_GAUDI2,
1297
ASIC_GAUDI2B,
1298
ASIC_GAUDI2C,
1299
ASIC_GAUDI2D,
1300
};
1301
1302
struct hl_cs_parser;
1303
1304
/**
1305
* enum hl_pm_mng_profile - power management profile.
1306
* @PM_AUTO: internal clock is set by the Linux driver.
1307
* @PM_MANUAL: internal clock is set by the user.
1308
* @PM_LAST: last power management type.
1309
*/
1310
enum hl_pm_mng_profile {
1311
PM_AUTO = 1,
1312
PM_MANUAL,
1313
PM_LAST
1314
};
1315
1316
/**
1317
* enum hl_pll_frequency - PLL frequency.
1318
* @PLL_HIGH: high frequency.
1319
* @PLL_LOW: low frequency.
1320
* @PLL_LAST: last frequency values that were configured by the user.
1321
*/
1322
enum hl_pll_frequency {
1323
PLL_HIGH = 1,
1324
PLL_LOW,
1325
PLL_LAST
1326
};
1327
1328
#define PLL_REF_CLK 50
1329
1330
enum div_select_defs {
1331
DIV_SEL_REF_CLK = 0,
1332
DIV_SEL_PLL_CLK = 1,
1333
DIV_SEL_DIVIDED_REF = 2,
1334
DIV_SEL_DIVIDED_PLL = 3,
1335
};
1336
1337
enum debugfs_access_type {
1338
DEBUGFS_READ8,
1339
DEBUGFS_WRITE8,
1340
DEBUGFS_READ32,
1341
DEBUGFS_WRITE32,
1342
DEBUGFS_READ64,
1343
DEBUGFS_WRITE64,
1344
};
1345
1346
enum pci_region {
1347
PCI_REGION_CFG,
1348
PCI_REGION_SRAM,
1349
PCI_REGION_DRAM,
1350
PCI_REGION_SP_SRAM,
1351
PCI_REGION_NUMBER,
1352
};
1353
1354
/**
1355
* struct pci_mem_region - describe memory region in a PCI bar
1356
* @region_base: region base address
1357
* @region_size: region size
1358
* @bar_size: size of the BAR
1359
* @offset_in_bar: region offset into the bar
1360
* @bar_id: bar ID of the region
1361
* @used: if used 1, otherwise 0
1362
*/
1363
struct pci_mem_region {
1364
u64 region_base;
1365
u64 region_size;
1366
u64 bar_size;
1367
u64 offset_in_bar;
1368
u8 bar_id;
1369
u8 used;
1370
};
1371
1372
/**
1373
* struct static_fw_load_mgr - static FW load manager
1374
* @preboot_version_max_off: max offset to preboot version
1375
* @boot_fit_version_max_off: max offset to boot fit version
1376
* @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1377
* @cpu_cmd_status_to_host_reg: register address for CPU command status response
1378
* @cpu_boot_status_reg: boot status register
1379
* @cpu_boot_dev_status0_reg: boot device status register 0
1380
* @cpu_boot_dev_status1_reg: boot device status register 1
1381
* @boot_err0_reg: boot error register 0
1382
* @boot_err1_reg: boot error register 1
1383
* @preboot_version_offset_reg: SRAM offset to preboot version register
1384
* @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1385
* @sram_offset_mask: mask for getting offset into the SRAM
1386
* @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1387
*/
1388
struct static_fw_load_mgr {
1389
u64 preboot_version_max_off;
1390
u64 boot_fit_version_max_off;
1391
u32 kmd_msg_to_cpu_reg;
1392
u32 cpu_cmd_status_to_host_reg;
1393
u32 cpu_boot_status_reg;
1394
u32 cpu_boot_dev_status0_reg;
1395
u32 cpu_boot_dev_status1_reg;
1396
u32 boot_err0_reg;
1397
u32 boot_err1_reg;
1398
u32 preboot_version_offset_reg;
1399
u32 boot_fit_version_offset_reg;
1400
u32 sram_offset_mask;
1401
u32 cpu_reset_wait_msec;
1402
};
1403
1404
/**
1405
* struct fw_response - FW response to LKD command
1406
* @ram_offset: descriptor offset into the RAM
1407
* @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1408
* @status: command status
1409
*/
1410
struct fw_response {
1411
u32 ram_offset;
1412
u8 ram_type;
1413
u8 status;
1414
};
1415
1416
/**
1417
* struct dynamic_fw_load_mgr - dynamic FW load manager
1418
* @response: FW to LKD response
1419
* @comm_desc: the communication descriptor with FW
1420
* @image_region: region to copy the FW image to
1421
* @fw_image_size: size of FW image to load
1422
* @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1423
* @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1424
*/
1425
struct dynamic_fw_load_mgr {
1426
struct fw_response response;
1427
struct lkd_fw_comms_desc comm_desc;
1428
struct pci_mem_region *image_region;
1429
size_t fw_image_size;
1430
u32 wait_for_bl_timeout;
1431
bool fw_desc_valid;
1432
};
1433
1434
/**
1435
* struct pre_fw_load_props - needed properties for pre-FW load
1436
* @cpu_boot_status_reg: cpu_boot_status register address
1437
* @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1438
* @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1439
* @boot_err0_reg: boot_err0 register address
1440
* @boot_err1_reg: boot_err1 register address
1441
* @wait_for_preboot_timeout: timeout to poll for preboot ready
1442
* @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know
1443
* preboot needs longer time.
1444
*/
1445
struct pre_fw_load_props {
1446
u32 cpu_boot_status_reg;
1447
u32 sts_boot_dev_sts0_reg;
1448
u32 sts_boot_dev_sts1_reg;
1449
u32 boot_err0_reg;
1450
u32 boot_err1_reg;
1451
u32 wait_for_preboot_timeout;
1452
u32 wait_for_preboot_extended_timeout;
1453
};
1454
1455
/**
1456
* struct fw_image_props - properties of FW image
1457
* @image_name: name of the image
1458
* @src_off: offset in src FW to copy from
1459
* @copy_size: amount of bytes to copy (0 to copy the whole binary)
1460
*/
1461
struct fw_image_props {
1462
char *image_name;
1463
u32 src_off;
1464
u32 copy_size;
1465
};
1466
1467
/**
1468
* struct fw_load_mgr - manager FW loading process
1469
* @dynamic_loader: specific structure for dynamic load
1470
* @static_loader: specific structure for static load
1471
* @pre_fw_load_props: parameter for pre FW load
1472
* @boot_fit_img: boot fit image properties
1473
* @linux_img: linux image properties
1474
* @cpu_timeout: CPU response timeout in usec
1475
* @boot_fit_timeout: Boot fit load timeout in usec
1476
* @skip_bmc: should BMC be skipped
1477
* @sram_bar_id: SRAM bar ID
1478
* @dram_bar_id: DRAM bar ID
1479
* @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1480
* component. values are set according to enum hl_fw_types.
1481
*/
1482
struct fw_load_mgr {
1483
union {
1484
struct dynamic_fw_load_mgr dynamic_loader;
1485
struct static_fw_load_mgr static_loader;
1486
};
1487
struct pre_fw_load_props pre_fw_load;
1488
struct fw_image_props boot_fit_img;
1489
struct fw_image_props linux_img;
1490
u32 cpu_timeout;
1491
u32 boot_fit_timeout;
1492
u8 skip_bmc;
1493
u8 sram_bar_id;
1494
u8 dram_bar_id;
1495
u8 fw_comp_loaded;
1496
};
1497
1498
struct hl_cs;
1499
1500
/**
1501
* struct engines_data - asic engines data
1502
* @buf: buffer for engines data in ascii
1503
* @actual_size: actual size of data that was written by the driver to the allocated buffer
1504
* @allocated_buf_size: total size of allocated buffer
1505
*/
1506
struct engines_data {
1507
char *buf;
1508
int actual_size;
1509
u32 allocated_buf_size;
1510
};
1511
1512
/**
1513
* struct hl_asic_funcs - ASIC specific functions that are can be called from
1514
* common code.
1515
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1516
* @early_fini: tears down what was done in early_init.
1517
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
1518
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1519
* @sw_init: sets up driver state, does not configure H/W.
1520
* @sw_fini: tears down driver state, does not configure H/W.
1521
* @hw_init: sets up the H/W state.
1522
* @hw_fini: tears down the H/W state.
1523
* @halt_engines: halt engines, needed for reset sequence. This also disables
1524
* interrupts from the device. Should be called before
1525
* hw_fini and before CS rollback.
1526
* @suspend: handles IP specific H/W or SW changes for suspend.
1527
* @resume: handles IP specific H/W or SW changes for resume.
1528
* @mmap: maps a memory.
1529
* @ring_doorbell: increment PI on a given QMAN.
1530
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1531
* function because the PQs are located in different memory areas
1532
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1533
* writing the PQE must match the destination memory area
1534
* properties.
1535
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1536
* dma_alloc_coherent(). This is ASIC function because
1537
* its implementation is not trivial when the driver
1538
* is loaded in simulation mode (not upstreamed).
1539
* @asic_dma_free_coherent: Free coherent DMA memory by calling
1540
* dma_free_coherent(). This is ASIC function because
1541
* its implementation is not trivial when the driver
1542
* is loaded in simulation mode (not upstreamed).
1543
* @scrub_device_mem: Scrub the entire SRAM and DRAM.
1544
* @scrub_device_dram: Scrub the dram memory of the device.
1545
* @get_int_queue_base: get the internal queue base address.
1546
* @test_queues: run simple test on all queues for sanity check.
1547
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1548
* size of allocation is HL_DMA_POOL_BLK_SIZE.
1549
* @asic_dma_pool_free: free small DMA allocation from pool.
1550
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1551
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1552
* @dma_unmap_sgtable: DMA unmap scatter-gather table.
1553
* @dma_map_sgtable: DMA map scatter-gather table.
1554
* @cs_parser: parse Command Submission.
1555
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1556
* @update_eq_ci: update event queue CI.
1557
* @context_switch: called upon ASID context switch.
1558
* @restore_phase_topology: clear all SOBs amd MONs.
1559
* @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1560
* internal memory via DMA engine.
1561
* @add_device_attr: add ASIC specific device attributes.
1562
* @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1563
* @get_events_stat: retrieve event queue entries histogram.
1564
* @read_pte: read MMU page table entry from DRAM.
1565
* @write_pte: write MMU page table entry to DRAM.
1566
* @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1567
* (L1 only) or hard (L0 & L1) flush.
1568
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1569
* @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1570
* @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1571
* @debug_coresight: perform certain actions on Coresight for debugging.
1572
* @is_device_idle: return true if device is idle, false otherwise.
1573
* @compute_reset_late_init: perform certain actions needed after a compute reset
1574
* @hw_queues_lock: acquire H/W queues lock.
1575
* @hw_queues_unlock: release H/W queues lock.
1576
* @get_pci_id: retrieve PCI ID.
1577
* @get_eeprom_data: retrieve EEPROM data from F/W.
1578
* @get_monitor_dump: retrieve monitor registers dump from F/W.
1579
* @send_cpu_message: send message to F/W. If the message is timedout, the
1580
* driver will eventually reset the device. The timeout can
1581
* be determined by the calling function or it can be 0 and
1582
* then the timeout is the default timeout for the specific
1583
* ASIC
1584
* @get_hw_state: retrieve the H/W state
1585
* @pci_bars_map: Map PCI BARs.
1586
* @init_iatu: Initialize the iATU unit inside the PCI controller.
1587
* @rreg: Read a register. Needed for simulator support.
1588
* @wreg: Write a register. Needed for simulator support.
1589
* @halt_coresight: stop the ETF and ETR traces.
1590
* @ctx_init: context dependent initialization.
1591
* @ctx_fini: context dependent cleanup.
1592
* @pre_schedule_cs: Perform pre-CS-scheduling operations.
1593
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1594
* @load_firmware_to_device: load the firmware to the device's memory
1595
* @load_boot_fit_to_device: load boot fit to device's memory
1596
* @get_signal_cb_size: Get signal CB size.
1597
* @get_wait_cb_size: Get wait CB size.
1598
* @gen_signal_cb: Generate a signal CB.
1599
* @gen_wait_cb: Generate a wait CB.
1600
* @reset_sob: Reset a SOB.
1601
* @reset_sob_group: Reset SOB group
1602
* @get_device_time: Get the device time.
1603
* @pb_print_security_errors: print security errors according block and cause
1604
* @collective_wait_init_cs: Generate collective master/slave packets
1605
* and place them in the relevant cs jobs
1606
* @collective_wait_create_jobs: allocate collective wait cs jobs
1607
* @get_dec_base_addr: get the base address of a given decoder.
1608
* @scramble_addr: Routine to scramble the address prior of mapping it
1609
* in the MMU.
1610
* @descramble_addr: Routine to de-scramble the address prior of
1611
* showing it to users.
1612
* @ack_protection_bits_errors: ack and dump all security violations
1613
* @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1614
* also returns the size of the block if caller supplies
1615
* a valid pointer for it
1616
* @hw_block_mmap: mmap a HW block with a given id.
1617
* @enable_events_from_fw: send interrupt to firmware to notify them the
1618
* driver is ready to receive asynchronous events. This
1619
* function should be called during the first init and
1620
* after every hard-reset of the device
1621
* @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1622
* @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1623
* @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1624
* generic f/w compatible PLL Indexes
1625
* @init_firmware_preload_params: initialize pre FW-load parameters.
1626
* @init_firmware_loader: initialize data for FW loader.
1627
* @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1628
* @state_dump_init: initialize constants required for state dump
1629
* @get_sob_addr: get SOB base address offset.
1630
* @set_pci_memory_regions: setting properties of PCI memory regions
1631
* @get_stream_master_qid_arr: get pointer to stream masters QID array
1632
* @check_if_razwi_happened: check if there was a razwi due to RR violation.
1633
* @access_dev_mem: access device memory
1634
* @set_dram_bar_base: set the base of the DRAM BAR
1635
* @set_engine_cores: set a config command to engine cores
1636
* @set_engines: set a config command to user engines
1637
* @send_device_activity: indication to FW about device availability
1638
* @set_dram_properties: set DRAM related properties.
1639
* @set_binning_masks: set binning/enable masks for all relevant components.
1640
*/
1641
struct hl_asic_funcs {
1642
int (*early_init)(struct hl_device *hdev);
1643
int (*early_fini)(struct hl_device *hdev);
1644
int (*late_init)(struct hl_device *hdev);
1645
void (*late_fini)(struct hl_device *hdev);
1646
int (*sw_init)(struct hl_device *hdev);
1647
int (*sw_fini)(struct hl_device *hdev);
1648
int (*hw_init)(struct hl_device *hdev);
1649
int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1650
void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1651
int (*suspend)(struct hl_device *hdev);
1652
int (*resume)(struct hl_device *hdev);
1653
int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1654
void *cpu_addr, dma_addr_t dma_addr, size_t size);
1655
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1656
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1657
struct hl_bd *bd);
1658
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1659
dma_addr_t *dma_handle, gfp_t flag);
1660
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1661
void *cpu_addr, dma_addr_t dma_handle);
1662
int (*scrub_device_mem)(struct hl_device *hdev);
1663
int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1664
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1665
dma_addr_t *dma_handle, u16 *queue_len);
1666
int (*test_queues)(struct hl_device *hdev);
1667
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1668
gfp_t mem_flags, dma_addr_t *dma_handle);
1669
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1670
dma_addr_t dma_addr);
1671
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1672
size_t size, dma_addr_t *dma_handle);
1673
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1674
size_t size, void *vaddr);
1675
void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1676
enum dma_data_direction dir);
1677
int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1678
enum dma_data_direction dir);
1679
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1680
void (*add_end_of_cb_packets)(struct hl_device *hdev,
1681
void *kernel_address, u32 len,
1682
u32 original_len,
1683
u64 cq_addr, u32 cq_val, u32 msix_num,
1684
bool eb);
1685
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1686
int (*context_switch)(struct hl_device *hdev, u32 asid);
1687
void (*restore_phase_topology)(struct hl_device *hdev);
1688
int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1689
void *blob_addr);
1690
void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1691
struct attribute_group *dev_vrm_attr_grp);
1692
void (*handle_eqe)(struct hl_device *hdev,
1693
struct hl_eq_entry *eq_entry);
1694
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1695
u32 *size);
1696
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1697
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1698
int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1699
u32 flags);
1700
int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1701
u32 flags, u32 asid, u64 va, u64 size);
1702
int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1703
int (*send_heartbeat)(struct hl_device *hdev);
1704
int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1705
bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1706
struct engines_data *e);
1707
int (*compute_reset_late_init)(struct hl_device *hdev);
1708
void (*hw_queues_lock)(struct hl_device *hdev);
1709
void (*hw_queues_unlock)(struct hl_device *hdev);
1710
u32 (*get_pci_id)(struct hl_device *hdev);
1711
int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1712
int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1713
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1714
u16 len, u32 timeout, u64 *result);
1715
int (*pci_bars_map)(struct hl_device *hdev);
1716
int (*init_iatu)(struct hl_device *hdev);
1717
u32 (*rreg)(struct hl_device *hdev, u32 reg);
1718
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1719
void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1720
int (*ctx_init)(struct hl_ctx *ctx);
1721
void (*ctx_fini)(struct hl_ctx *ctx);
1722
int (*pre_schedule_cs)(struct hl_cs *cs);
1723
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1724
int (*load_firmware_to_device)(struct hl_device *hdev);
1725
int (*load_boot_fit_to_device)(struct hl_device *hdev);
1726
u32 (*get_signal_cb_size)(struct hl_device *hdev);
1727
u32 (*get_wait_cb_size)(struct hl_device *hdev);
1728
u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1729
u32 size, bool eb);
1730
u32 (*gen_wait_cb)(struct hl_device *hdev,
1731
struct hl_gen_wait_properties *prop);
1732
void (*reset_sob)(struct hl_device *hdev, void *data);
1733
void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1734
u64 (*get_device_time)(struct hl_device *hdev);
1735
void (*pb_print_security_errors)(struct hl_device *hdev,
1736
u32 block_addr, u32 cause, u32 offended_addr);
1737
int (*collective_wait_init_cs)(struct hl_cs *cs);
1738
int (*collective_wait_create_jobs)(struct hl_device *hdev,
1739
struct hl_ctx *ctx, struct hl_cs *cs,
1740
u32 wait_queue_id, u32 collective_engine_id,
1741
u32 encaps_signal_offset);
1742
u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1743
u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1744
u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1745
void (*ack_protection_bits_errors)(struct hl_device *hdev);
1746
int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1747
u32 *block_size, u32 *block_id);
1748
int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1749
u32 block_id, u32 block_size);
1750
void (*enable_events_from_fw)(struct hl_device *hdev);
1751
int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1752
void (*get_msi_info)(__le32 *table);
1753
int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1754
void (*init_firmware_preload_params)(struct hl_device *hdev);
1755
void (*init_firmware_loader)(struct hl_device *hdev);
1756
void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1757
void (*state_dump_init)(struct hl_device *hdev);
1758
u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1759
void (*set_pci_memory_regions)(struct hl_device *hdev);
1760
u32* (*get_stream_master_qid_arr)(void);
1761
void (*check_if_razwi_happened)(struct hl_device *hdev);
1762
int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1763
u32 page_size, u32 *real_page_size, bool is_dram_addr);
1764
int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1765
u64 addr, u64 *val, enum debugfs_access_type acc_type);
1766
u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1767
int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1768
u32 num_cores, u32 core_command);
1769
int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1770
u32 num_engines, u32 engine_command);
1771
int (*send_device_activity)(struct hl_device *hdev, bool open);
1772
int (*set_dram_properties)(struct hl_device *hdev);
1773
int (*set_binning_masks)(struct hl_device *hdev);
1774
};
1775
1776
1777
/*
1778
* CONTEXTS
1779
*/
1780
1781
#define HL_KERNEL_ASID_ID 0
1782
1783
/**
1784
* enum hl_va_range_type - virtual address range type.
1785
* @HL_VA_RANGE_TYPE_HOST: range type of host pages
1786
* @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1787
* @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1788
*/
1789
enum hl_va_range_type {
1790
HL_VA_RANGE_TYPE_HOST,
1791
HL_VA_RANGE_TYPE_HOST_HUGE,
1792
HL_VA_RANGE_TYPE_DRAM,
1793
HL_VA_RANGE_TYPE_MAX
1794
};
1795
1796
/**
1797
* struct hl_va_range - virtual addresses range.
1798
* @lock: protects the virtual addresses list.
1799
* @list: list of virtual addresses blocks available for mappings.
1800
* @start_addr: range start address.
1801
* @end_addr: range end address.
1802
* @page_size: page size of this va range.
1803
*/
1804
struct hl_va_range {
1805
struct mutex lock;
1806
struct list_head list;
1807
u64 start_addr;
1808
u64 end_addr;
1809
u32 page_size;
1810
};
1811
1812
/**
1813
* struct hl_cs_counters_atomic - command submission counters
1814
* @out_of_mem_drop_cnt: dropped due to memory allocation issue
1815
* @parsing_drop_cnt: dropped due to error in packet parsing
1816
* @queue_full_drop_cnt: dropped due to queue full
1817
* @device_in_reset_drop_cnt: dropped due to device in reset
1818
* @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1819
* @validation_drop_cnt: dropped due to error in validation
1820
*/
1821
struct hl_cs_counters_atomic {
1822
atomic64_t out_of_mem_drop_cnt;
1823
atomic64_t parsing_drop_cnt;
1824
atomic64_t queue_full_drop_cnt;
1825
atomic64_t device_in_reset_drop_cnt;
1826
atomic64_t max_cs_in_flight_drop_cnt;
1827
atomic64_t validation_drop_cnt;
1828
};
1829
1830
/**
1831
* struct hl_dmabuf_priv - a dma-buf private object.
1832
* @dmabuf: pointer to dma-buf object.
1833
* @ctx: pointer to the dma-buf owner's context.
1834
* @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1835
* where virtual memory is supported.
1836
* @memhash_hnode: pointer to the memhash node. this object holds the export count.
1837
* @offset: the offset into the buffer from which the memory is exported.
1838
* Relevant only if virtual memory is supported and phys_pg_pack is being used.
1839
* device_phys_addr: physical address of the device's memory. Relevant only
1840
* if phys_pg_pack is NULL (dma-buf was exported from address).
1841
* The total size can be taken from the dmabuf object.
1842
*/
1843
struct hl_dmabuf_priv {
1844
struct dma_buf *dmabuf;
1845
struct hl_ctx *ctx;
1846
struct hl_vm_phys_pg_pack *phys_pg_pack;
1847
struct hl_vm_hash_node *memhash_hnode;
1848
u64 offset;
1849
u64 device_phys_addr;
1850
};
1851
1852
#define HL_CS_OUTCOME_HISTORY_LEN 256
1853
1854
/**
1855
* struct hl_cs_outcome - represents a single completed CS outcome
1856
* @list_link: link to either container's used list or free list
1857
* @map_link: list to the container hash map
1858
* @ts: completion ts
1859
* @seq: the original cs sequence
1860
* @error: error code cs completed with, if any
1861
*/
1862
struct hl_cs_outcome {
1863
struct list_head list_link;
1864
struct hlist_node map_link;
1865
ktime_t ts;
1866
u64 seq;
1867
int error;
1868
};
1869
1870
/**
1871
* struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1872
* @outcome_map: index of completed CS searchable by sequence number
1873
* @used_list: list of outcome objects currently in use
1874
* @free_list: list of outcome objects currently not in use
1875
* @nodes_pool: a static pool of pre-allocated outcome objects
1876
* @db_lock: any operation on the store must take this lock
1877
*/
1878
struct hl_cs_outcome_store {
1879
DECLARE_HASHTABLE(outcome_map, 8);
1880
struct list_head used_list;
1881
struct list_head free_list;
1882
struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1883
spinlock_t db_lock;
1884
};
1885
1886
/**
1887
* struct hl_ctx - user/kernel context.
1888
* @mem_hash: holds mapping from virtual address to virtual memory area
1889
* descriptor (hl_vm_phys_pg_list or hl_userptr).
1890
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1891
* @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1892
* MMU-hop-page physical address to its host-resident
1893
* pgt_info structure.
1894
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1895
* @hdev: pointer to the device structure.
1896
* @refcount: reference counter for the context. Context is released only when
1897
* this hits 0. It is incremented on CS and CS_WAIT.
1898
* @cs_pending: array of hl fence objects representing pending CS.
1899
* @outcome_store: storage data structure used to remember outcomes of completed
1900
* command submissions for a long time after CS id wraparound.
1901
* @va_range: holds available virtual addresses for host and dram mappings.
1902
* @mem_hash_lock: protects the mem_hash.
1903
* @hw_block_list_lock: protects the HW block memory list.
1904
* @ts_reg_lock: timestamp registration ioctls lock.
1905
* @debugfs_list: node in debugfs list of contexts.
1906
* @hw_block_mem_list: list of HW block virtual mapped addresses.
1907
* @cs_counters: context command submission counters.
1908
* @cb_va_pool: device VA pool for command buffers which are mapped to the
1909
* device's MMU.
1910
* @sig_mgr: encaps signals handle manager.
1911
* @cb_va_pool_base: the base address for the device VA pool
1912
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1913
* to user so user could inquire about CS. It is used as
1914
* index to cs_pending array.
1915
* @dram_default_hops: array that holds all hops addresses needed for default
1916
* DRAM mapping.
1917
* @cs_lock: spinlock to protect cs_sequence.
1918
* @dram_phys_mem: amount of used physical DRAM memory by this context.
1919
* @thread_ctx_switch_token: token to prevent multiple threads of the same
1920
* context from running the context switch phase.
1921
* Only a single thread should run it.
1922
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1923
* the context switch phase from moving to their
1924
* execution phase before the context switch phase
1925
* has finished.
1926
* @asid: context's unique address space ID in the device's MMU.
1927
* @handle: context's opaque handle for user
1928
*/
1929
struct hl_ctx {
1930
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1931
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1932
DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1933
struct hl_fpriv *hpriv;
1934
struct hl_device *hdev;
1935
struct kref refcount;
1936
struct hl_fence **cs_pending;
1937
struct hl_cs_outcome_store outcome_store;
1938
struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1939
struct mutex mem_hash_lock;
1940
struct mutex hw_block_list_lock;
1941
struct mutex ts_reg_lock;
1942
struct list_head debugfs_list;
1943
struct list_head hw_block_mem_list;
1944
struct hl_cs_counters_atomic cs_counters;
1945
struct gen_pool *cb_va_pool;
1946
struct hl_encaps_signals_mgr sig_mgr;
1947
u64 cb_va_pool_base;
1948
u64 cs_sequence;
1949
u64 *dram_default_hops;
1950
spinlock_t cs_lock;
1951
atomic64_t dram_phys_mem;
1952
atomic_t thread_ctx_switch_token;
1953
u32 thread_ctx_switch_wait_token;
1954
u32 asid;
1955
u32 handle;
1956
};
1957
1958
/**
1959
* struct hl_ctx_mgr - for handling multiple contexts.
1960
* @lock: protects ctx_handles.
1961
* @handles: idr to hold all ctx handles.
1962
*/
1963
struct hl_ctx_mgr {
1964
struct mutex lock;
1965
struct idr handles;
1966
};
1967
1968
1969
/*
1970
* COMMAND SUBMISSIONS
1971
*/
1972
1973
/**
1974
* struct hl_userptr - memory mapping chunk information
1975
* @vm_type: type of the VM.
1976
* @job_node: linked-list node for hanging the object on the Job's list.
1977
* @pages: pointer to struct page array
1978
* @npages: size of @pages array
1979
* @sgt: pointer to the scatter-gather table that holds the pages.
1980
* @dir: for DMA unmapping, the direction must be supplied, so save it.
1981
* @debugfs_list: node in debugfs list of command submissions.
1982
* @pid: the pid of the user process owning the memory
1983
* @addr: user-space virtual address of the start of the memory area.
1984
* @size: size of the memory area to pin & map.
1985
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1986
*/
1987
struct hl_userptr {
1988
enum vm_type vm_type; /* must be first */
1989
struct list_head job_node;
1990
struct page **pages;
1991
unsigned int npages;
1992
struct sg_table *sgt;
1993
enum dma_data_direction dir;
1994
struct list_head debugfs_list;
1995
pid_t pid;
1996
u64 addr;
1997
u64 size;
1998
u8 dma_mapped;
1999
};
2000
2001
/**
2002
* struct hl_cs - command submission.
2003
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
2004
* @ctx: the context this CS belongs to.
2005
* @job_list: list of the CS's jobs in the various queues.
2006
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
2007
* @refcount: reference counter for usage of the CS.
2008
* @fence: pointer to the fence object of this CS.
2009
* @signal_fence: pointer to the fence object of the signal CS (used by wait
2010
* CS only).
2011
* @finish_work: workqueue object to run when CS is completed by H/W.
2012
* @work_tdr: delayed work node for TDR.
2013
* @mirror_node : node in device mirror list of command submissions.
2014
* @staged_cs_node: node in the staged cs list.
2015
* @debugfs_list: node in debugfs list of command submissions.
2016
* @encaps_sig_hdl: holds the encaps signals handle.
2017
* @sequence: the sequence number of this CS.
2018
* @staged_sequence: the sequence of the staged submission this CS is part of,
2019
* relevant only if staged_cs is set.
2020
* @timeout_jiffies: cs timeout in jiffies.
2021
* @submission_time_jiffies: submission time of the cs
2022
* @type: CS_TYPE_*.
2023
* @jobs_cnt: counter of submitted jobs on all queues.
2024
* @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
2025
* @completion_timestamp: timestamp of the last completed cs job.
2026
* @sob_addr_offset: sob offset from the configuration base address.
2027
* @initial_sob_count: count of completed signals in SOB before current submission of signal or
2028
* cs with encaps signals.
2029
* @submitted: true if CS was submitted to H/W.
2030
* @completed: true if CS was completed by device.
2031
* @timedout : true if CS was timedout.
2032
* @tdr_active: true if TDR was activated for this CS (to prevent
2033
* double TDR activation).
2034
* @aborted: true if CS was aborted due to some device error.
2035
* @timestamp: true if a timestamp must be captured upon completion.
2036
* @staged_last: true if this is the last staged CS and needs completion.
2037
* @staged_first: true if this is the first staged CS and we need to receive
2038
* timeout for this CS.
2039
* @staged_cs: true if this CS is part of a staged submission.
2040
* @skip_reset_on_timeout: true if we shall not reset the device in case
2041
* timeout occurs (debug scenario).
2042
* @encaps_signals: true if this CS has encaps reserved signals.
2043
*/
2044
struct hl_cs {
2045
u16 *jobs_in_queue_cnt;
2046
struct hl_ctx *ctx;
2047
struct list_head job_list;
2048
spinlock_t job_lock;
2049
struct kref refcount;
2050
struct hl_fence *fence;
2051
struct hl_fence *signal_fence;
2052
struct work_struct finish_work;
2053
struct delayed_work work_tdr;
2054
struct list_head mirror_node;
2055
struct list_head staged_cs_node;
2056
struct list_head debugfs_list;
2057
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2058
ktime_t completion_timestamp;
2059
u64 sequence;
2060
u64 staged_sequence;
2061
u64 timeout_jiffies;
2062
u64 submission_time_jiffies;
2063
enum hl_cs_type type;
2064
u32 jobs_cnt;
2065
u32 encaps_sig_hdl_id;
2066
u32 sob_addr_offset;
2067
u16 initial_sob_count;
2068
u8 submitted;
2069
u8 completed;
2070
u8 timedout;
2071
u8 tdr_active;
2072
u8 aborted;
2073
u8 timestamp;
2074
u8 staged_last;
2075
u8 staged_first;
2076
u8 staged_cs;
2077
u8 skip_reset_on_timeout;
2078
u8 encaps_signals;
2079
};
2080
2081
/**
2082
* struct hl_cs_job - command submission job.
2083
* @cs_node: the node to hang on the CS jobs list.
2084
* @cs: the CS this job belongs to.
2085
* @user_cb: the CB we got from the user.
2086
* @patched_cb: in case of patching, this is internal CB which is submitted on
2087
* the queue instead of the CB we got from the IOCTL.
2088
* @finish_work: workqueue object to run when job is completed.
2089
* @userptr_list: linked-list of userptr mappings that belong to this job and
2090
* wait for completion.
2091
* @debugfs_list: node in debugfs list of command submission jobs.
2092
* @refcount: reference counter for usage of the CS job.
2093
* @queue_type: the type of the H/W queue this job is submitted to.
2094
* @timestamp: timestamp upon job completion
2095
* @id: the id of this job inside a CS.
2096
* @hw_queue_id: the id of the H/W queue this job is submitted to.
2097
* @user_cb_size: the actual size of the CB we got from the user.
2098
* @job_cb_size: the actual size of the CB that we put on the queue.
2099
* @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2100
* to wait on part of the reserved signals.
2101
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2102
* handle to a kernel-allocated CB object, false
2103
* otherwise (SRAM/DRAM/host address).
2104
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2105
* info is needed later, when adding the 2xMSG_PROT at the
2106
* end of the JOB, to know which barriers to put in the
2107
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2108
* have streams so the engine can't be busy by another
2109
* stream.
2110
*/
2111
struct hl_cs_job {
2112
struct list_head cs_node;
2113
struct hl_cs *cs;
2114
struct hl_cb *user_cb;
2115
struct hl_cb *patched_cb;
2116
struct work_struct finish_work;
2117
struct list_head userptr_list;
2118
struct list_head debugfs_list;
2119
struct kref refcount;
2120
enum hl_queue_type queue_type;
2121
ktime_t timestamp;
2122
u32 id;
2123
u32 hw_queue_id;
2124
u32 user_cb_size;
2125
u32 job_cb_size;
2126
u32 encaps_sig_wait_offset;
2127
u8 is_kernel_allocated_cb;
2128
u8 contains_dma_pkt;
2129
};
2130
2131
/**
2132
* struct hl_cs_parser - command submission parser properties.
2133
* @user_cb: the CB we got from the user.
2134
* @patched_cb: in case of patching, this is internal CB which is submitted on
2135
* the queue instead of the CB we got from the IOCTL.
2136
* @job_userptr_list: linked-list of userptr mappings that belong to the related
2137
* job and wait for completion.
2138
* @cs_sequence: the sequence number of the related CS.
2139
* @queue_type: the type of the H/W queue this job is submitted to.
2140
* @ctx_id: the ID of the context the related CS belongs to.
2141
* @hw_queue_id: the id of the H/W queue this job is submitted to.
2142
* @user_cb_size: the actual size of the CB we got from the user.
2143
* @patched_cb_size: the size of the CB after parsing.
2144
* @job_id: the id of the related job inside the related CS.
2145
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2146
* handle to a kernel-allocated CB object, false
2147
* otherwise (SRAM/DRAM/host address).
2148
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2149
* info is needed later, when adding the 2xMSG_PROT at the
2150
* end of the JOB, to know which barriers to put in the
2151
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2152
* have streams so the engine can't be busy by another
2153
* stream.
2154
* @completion: true if we need completion for this CS.
2155
*/
2156
struct hl_cs_parser {
2157
struct hl_cb *user_cb;
2158
struct hl_cb *patched_cb;
2159
struct list_head *job_userptr_list;
2160
u64 cs_sequence;
2161
enum hl_queue_type queue_type;
2162
u32 ctx_id;
2163
u32 hw_queue_id;
2164
u32 user_cb_size;
2165
u32 patched_cb_size;
2166
u8 job_id;
2167
u8 is_kernel_allocated_cb;
2168
u8 contains_dma_pkt;
2169
u8 completion;
2170
};
2171
2172
/*
2173
* MEMORY STRUCTURE
2174
*/
2175
2176
/**
2177
* struct hl_vm_hash_node - hash element from virtual address to virtual
2178
* memory area descriptor (hl_vm_phys_pg_list or
2179
* hl_userptr).
2180
* @node: node to hang on the hash table in context object.
2181
* @vaddr: key virtual address.
2182
* @handle: memory handle for device memory allocation.
2183
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2184
* @export_cnt: number of exports from within the VA block.
2185
*/
2186
struct hl_vm_hash_node {
2187
struct hlist_node node;
2188
u64 vaddr;
2189
u64 handle;
2190
void *ptr;
2191
int export_cnt;
2192
};
2193
2194
/**
2195
* struct hl_vm_hw_block_list_node - list element from user virtual address to
2196
* HW block id.
2197
* @node: node to hang on the list in context object.
2198
* @ctx: the context this node belongs to.
2199
* @vaddr: virtual address of the HW block.
2200
* @block_size: size of the block.
2201
* @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2202
* @id: HW block id (handle).
2203
*/
2204
struct hl_vm_hw_block_list_node {
2205
struct list_head node;
2206
struct hl_ctx *ctx;
2207
unsigned long vaddr;
2208
u32 block_size;
2209
u32 mapped_size;
2210
u32 id;
2211
};
2212
2213
/**
2214
* struct hl_vm_phys_pg_pack - physical page pack.
2215
* @vm_type: describes the type of the virtual area descriptor.
2216
* @pages: the physical page array.
2217
* @npages: num physical pages in the pack.
2218
* @total_size: total size of all the pages in this list.
2219
* @node: used to attach to deletion list that is used when all the allocations are cleared
2220
* at the teardown of the context.
2221
* @mapping_cnt: number of shared mappings.
2222
* @asid: the context related to this list.
2223
* @page_size: size of each page in the pack.
2224
* @flags: HL_MEM_* flags related to this list.
2225
* @handle: the provided handle related to this list.
2226
* @offset: offset from the first page.
2227
* @contiguous: is contiguous physical memory.
2228
* @created_from_userptr: is product of host virtual address.
2229
*/
2230
struct hl_vm_phys_pg_pack {
2231
enum vm_type vm_type; /* must be first */
2232
u64 *pages;
2233
u64 npages;
2234
u64 total_size;
2235
struct list_head node;
2236
atomic_t mapping_cnt;
2237
u32 asid;
2238
u32 page_size;
2239
u32 flags;
2240
u32 handle;
2241
u32 offset;
2242
u8 contiguous;
2243
u8 created_from_userptr;
2244
};
2245
2246
/**
2247
* struct hl_vm_va_block - virtual range block information.
2248
* @node: node to hang on the virtual range list in context object.
2249
* @start: virtual range start address.
2250
* @end: virtual range end address.
2251
* @size: virtual range size.
2252
*/
2253
struct hl_vm_va_block {
2254
struct list_head node;
2255
u64 start;
2256
u64 end;
2257
u64 size;
2258
};
2259
2260
/**
2261
* struct hl_vm - virtual memory manager for MMU.
2262
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
2263
* @dram_pg_pool_refcount: reference counter for the pool usage.
2264
* @idr_lock: protects the phys_pg_list_handles.
2265
* @phys_pg_pack_handles: idr to hold all device allocations handles.
2266
* @init_done: whether initialization was done. We need this because VM
2267
* initialization might be skipped during device initialization.
2268
*/
2269
struct hl_vm {
2270
struct gen_pool *dram_pg_pool;
2271
struct kref dram_pg_pool_refcount;
2272
spinlock_t idr_lock;
2273
struct idr phys_pg_pack_handles;
2274
u8 init_done;
2275
};
2276
2277
2278
/*
2279
* DEBUG, PROFILING STRUCTURE
2280
*/
2281
2282
/**
2283
* struct hl_debug_params - Coresight debug parameters.
2284
* @input: pointer to component specific input parameters.
2285
* @output: pointer to component specific output parameters.
2286
* @output_size: size of output buffer.
2287
* @reg_idx: relevant register ID.
2288
* @op: component operation to execute.
2289
* @enable: true if to enable component debugging, false otherwise.
2290
*/
2291
struct hl_debug_params {
2292
void *input;
2293
void *output;
2294
u32 output_size;
2295
u32 reg_idx;
2296
u32 op;
2297
bool enable;
2298
};
2299
2300
/**
2301
* struct hl_notifier_event - holds the notifier data structure
2302
* @eventfd: the event file descriptor to raise the notifications
2303
* @lock: mutex lock to protect the notifier data flows
2304
* @events_mask: indicates the bitmap events
2305
*/
2306
struct hl_notifier_event {
2307
struct eventfd_ctx *eventfd;
2308
struct mutex lock;
2309
u64 events_mask;
2310
};
2311
2312
/*
2313
* FILE PRIVATE STRUCTURE
2314
*/
2315
2316
/**
2317
* struct hl_fpriv - process information stored in FD private data.
2318
* @hdev: habanalabs device structure.
2319
* @file_priv: pointer to the DRM file private data structure.
2320
* @taskpid: current process ID.
2321
* @ctx: current executing context. TODO: remove for multiple ctx per process
2322
* @ctx_mgr: context manager to handle multiple context for this FD.
2323
* @mem_mgr: manager descriptor for memory exportable via mmap
2324
* @notifier_event: notifier eventfd towards user process
2325
* @debugfs_list: list of relevant ASIC debugfs.
2326
* @dev_node: node in the device list of file private data
2327
* @refcount: number of related contexts.
2328
* @restore_phase_mutex: lock for context switch and restore phase.
2329
* @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2330
* ctx per process.
2331
*/
2332
struct hl_fpriv {
2333
struct hl_device *hdev;
2334
struct drm_file *file_priv;
2335
struct pid *taskpid;
2336
struct hl_ctx *ctx;
2337
struct hl_ctx_mgr ctx_mgr;
2338
struct hl_mem_mgr mem_mgr;
2339
struct hl_notifier_event notifier_event;
2340
struct list_head debugfs_list;
2341
struct list_head dev_node;
2342
struct kref refcount;
2343
struct mutex restore_phase_mutex;
2344
struct mutex ctx_lock;
2345
};
2346
2347
2348
/*
2349
* DebugFS
2350
*/
2351
2352
/**
2353
* struct hl_info_list - debugfs file ops.
2354
* @name: file name.
2355
* @show: function to output information.
2356
* @write: function to write to the file.
2357
*/
2358
struct hl_info_list {
2359
const char *name;
2360
int (*show)(struct seq_file *s, void *data);
2361
ssize_t (*write)(struct file *file, const char __user *buf,
2362
size_t count, loff_t *f_pos);
2363
};
2364
2365
/**
2366
* struct hl_debugfs_entry - debugfs dentry wrapper.
2367
* @info_ent: dentry related ops.
2368
* @dev_entry: ASIC specific debugfs manager.
2369
*/
2370
struct hl_debugfs_entry {
2371
const struct hl_info_list *info_ent;
2372
struct hl_dbg_device_entry *dev_entry;
2373
};
2374
2375
/**
2376
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
2377
* @root: root dentry.
2378
* @hdev: habanalabs device structure.
2379
* @entry_arr: array of available hl_debugfs_entry.
2380
* @file_list: list of available debugfs files.
2381
* @file_mutex: protects file_list.
2382
* @cb_list: list of available CBs.
2383
* @cb_spinlock: protects cb_list.
2384
* @cs_list: list of available CSs.
2385
* @cs_spinlock: protects cs_list.
2386
* @cs_job_list: list of available CB jobs.
2387
* @cs_job_spinlock: protects cs_job_list.
2388
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2389
* @userptr_spinlock: protects userptr_list.
2390
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
2391
* @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2392
* @data_dma_blob_desc: data DMA descriptor of blob.
2393
* @mon_dump_blob_desc: monitor dump descriptor of blob.
2394
* @state_dump: data of the system states in case of a bad cs.
2395
* @state_dump_sem: protects state_dump.
2396
* @addr: next address to read/write from/to in read/write32.
2397
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
2398
* @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2399
* @userptr_lookup: the target user ptr to look up for on demand.
2400
* @mmu_asid: ASID to use while translating in mmu_show.
2401
* @state_dump_head: index of the latest state dump
2402
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2403
* @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2404
* @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2405
* @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2406
*/
2407
struct hl_dbg_device_entry {
2408
struct dentry *root;
2409
struct hl_device *hdev;
2410
struct hl_debugfs_entry *entry_arr;
2411
struct list_head file_list;
2412
struct mutex file_mutex;
2413
struct list_head cb_list;
2414
spinlock_t cb_spinlock;
2415
struct list_head cs_list;
2416
spinlock_t cs_spinlock;
2417
struct list_head cs_job_list;
2418
spinlock_t cs_job_spinlock;
2419
struct list_head userptr_list;
2420
spinlock_t userptr_spinlock;
2421
struct list_head ctx_mem_hash_list;
2422
struct mutex ctx_mem_hash_mutex;
2423
struct debugfs_blob_wrapper data_dma_blob_desc;
2424
struct debugfs_blob_wrapper mon_dump_blob_desc;
2425
char *state_dump[HL_STATE_DUMP_HIST_LEN];
2426
struct rw_semaphore state_dump_sem;
2427
u64 addr;
2428
u64 mmu_addr;
2429
u64 mmu_cap_mask;
2430
u64 userptr_lookup;
2431
u32 mmu_asid;
2432
u32 state_dump_head;
2433
u8 i2c_bus;
2434
u8 i2c_addr;
2435
u8 i2c_reg;
2436
u8 i2c_len;
2437
};
2438
2439
/**
2440
* struct hl_hw_obj_name_entry - single hw object name, member of
2441
* hl_state_dump_specs
2442
* @node: link to the containing hash table
2443
* @name: hw object name
2444
* @id: object identifier
2445
*/
2446
struct hl_hw_obj_name_entry {
2447
struct hlist_node node;
2448
const char *name;
2449
u32 id;
2450
};
2451
2452
enum hl_state_dump_specs_props {
2453
SP_SYNC_OBJ_BASE_ADDR,
2454
SP_NEXT_SYNC_OBJ_ADDR,
2455
SP_SYNC_OBJ_AMOUNT,
2456
SP_MON_OBJ_WR_ADDR_LOW,
2457
SP_MON_OBJ_WR_ADDR_HIGH,
2458
SP_MON_OBJ_WR_DATA,
2459
SP_MON_OBJ_ARM_DATA,
2460
SP_MON_OBJ_STATUS,
2461
SP_MONITORS_AMOUNT,
2462
SP_TPC0_CMDQ,
2463
SP_TPC0_CFG_SO,
2464
SP_NEXT_TPC,
2465
SP_MME_CMDQ,
2466
SP_MME_CFG_SO,
2467
SP_NEXT_MME,
2468
SP_DMA_CMDQ,
2469
SP_DMA_CFG_SO,
2470
SP_DMA_QUEUES_OFFSET,
2471
SP_NUM_OF_MME_ENGINES,
2472
SP_SUB_MME_ENG_NUM,
2473
SP_NUM_OF_DMA_ENGINES,
2474
SP_NUM_OF_TPC_ENGINES,
2475
SP_ENGINE_NUM_OF_QUEUES,
2476
SP_ENGINE_NUM_OF_STREAMS,
2477
SP_ENGINE_NUM_OF_FENCES,
2478
SP_FENCE0_CNT_OFFSET,
2479
SP_FENCE0_RDATA_OFFSET,
2480
SP_CP_STS_OFFSET,
2481
SP_NUM_CORES,
2482
2483
SP_MAX
2484
};
2485
2486
enum hl_sync_engine_type {
2487
ENGINE_TPC,
2488
ENGINE_DMA,
2489
ENGINE_MME,
2490
};
2491
2492
/**
2493
* struct hl_mon_state_dump - represents a state dump of a single monitor
2494
* @id: monitor id
2495
* @wr_addr_low: address monitor will write to, low bits
2496
* @wr_addr_high: address monitor will write to, high bits
2497
* @wr_data: data monitor will write
2498
* @arm_data: register value containing monitor configuration
2499
* @status: monitor status
2500
*/
2501
struct hl_mon_state_dump {
2502
u32 id;
2503
u32 wr_addr_low;
2504
u32 wr_addr_high;
2505
u32 wr_data;
2506
u32 arm_data;
2507
u32 status;
2508
};
2509
2510
/**
2511
* struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2512
* @engine_type: type of the engine
2513
* @engine_id: id of the engine
2514
* @sync_id: id of the sync object
2515
*/
2516
struct hl_sync_to_engine_map_entry {
2517
struct hlist_node node;
2518
enum hl_sync_engine_type engine_type;
2519
u32 engine_id;
2520
u32 sync_id;
2521
};
2522
2523
/**
2524
* struct hl_sync_to_engine_map - maps sync object id to associated engine id
2525
* @tb: hash table containing the mapping, each element is of type
2526
* struct hl_sync_to_engine_map_entry
2527
*/
2528
struct hl_sync_to_engine_map {
2529
DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2530
};
2531
2532
/**
2533
* struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2534
* @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2535
* @print_single_monitor: format monitor data as string
2536
* @monitor_valid: return true if given monitor dump is valid
2537
* @print_fences_single_engine: format fences data as string
2538
*/
2539
struct hl_state_dump_specs_funcs {
2540
int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2541
struct hl_sync_to_engine_map *map);
2542
int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2543
struct hl_device *hdev,
2544
struct hl_mon_state_dump *mon);
2545
int (*monitor_valid)(struct hl_mon_state_dump *mon);
2546
int (*print_fences_single_engine)(struct hl_device *hdev,
2547
u64 base_offset,
2548
u64 status_base_offset,
2549
enum hl_sync_engine_type engine_type,
2550
u32 engine_id, char **buf,
2551
size_t *size, size_t *offset);
2552
};
2553
2554
/**
2555
* struct hl_state_dump_specs - defines ASIC known hw objects names
2556
* @so_id_to_str_tb: sync objects names index table
2557
* @monitor_id_to_str_tb: monitors names index table
2558
* @funcs: virtual functions used for state dump
2559
* @sync_namager_names: readable names for sync manager if available (ex: N_E)
2560
* @props: pointer to a per asic const props array required for state dump
2561
*/
2562
struct hl_state_dump_specs {
2563
DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2564
DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2565
struct hl_state_dump_specs_funcs funcs;
2566
const char * const *sync_namager_names;
2567
s64 *props;
2568
};
2569
2570
2571
/*
2572
* DEVICES
2573
*/
2574
2575
#define HL_STR_MAX 64
2576
2577
#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2578
2579
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2580
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2581
*/
2582
#define HL_MAX_MINORS 256
2583
2584
/*
2585
* Registers read & write functions.
2586
*/
2587
2588
u32 hl_rreg(struct hl_device *hdev, u32 reg);
2589
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2590
2591
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2592
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2593
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2594
hdev->asic_funcs->rreg(hdev, (reg)))
2595
2596
#define WREG32_P(reg, val, mask) \
2597
do { \
2598
u32 tmp_ = RREG32(reg); \
2599
tmp_ &= (mask); \
2600
tmp_ |= ((val) & ~(mask)); \
2601
WREG32(reg, tmp_); \
2602
} while (0)
2603
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2604
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2605
2606
#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2607
2608
#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2609
2610
#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2611
2612
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2613
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2614
#define WREG32_FIELD(reg, offset, field, val) \
2615
WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2616
~REG_FIELD_MASK(reg, field)) | \
2617
(val) << REG_FIELD_SHIFT(reg, field))
2618
2619
/* Timeout should be longer when working with simulator but cap the
2620
* increased timeout to some maximum
2621
*/
2622
#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2623
({ \
2624
ktime_t __timeout; \
2625
u32 __elbi_read; \
2626
int __rc = 0; \
2627
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2628
might_sleep_if(sleep_us); \
2629
for (;;) { \
2630
if (elbi) { \
2631
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2632
if (__rc) \
2633
break; \
2634
(val) = __elbi_read; \
2635
} else {\
2636
(val) = RREG32(lower_32_bits(addr)); \
2637
} \
2638
if (cond) \
2639
break; \
2640
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2641
if (elbi) { \
2642
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2643
if (__rc) \
2644
break; \
2645
(val) = __elbi_read; \
2646
} else {\
2647
(val) = RREG32(lower_32_bits(addr)); \
2648
} \
2649
break; \
2650
} \
2651
if (sleep_us) \
2652
usleep_range((sleep_us >> 2) + 1, sleep_us); \
2653
} \
2654
__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2655
})
2656
2657
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2658
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2659
2660
#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2661
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2662
2663
/*
2664
* poll array of register addresses.
2665
* condition is satisfied if all registers values match the expected value.
2666
* once some register in the array satisfies the condition it will not be polled again,
2667
* this is done both for efficiency and due to some registers are "clear on read".
2668
* TODO: use read from PCI bar in other places in the code (SW-91406)
2669
*/
2670
#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2671
timeout_us, elbi) \
2672
({ \
2673
ktime_t __timeout; \
2674
u64 __elem_bitmask; \
2675
u32 __read_val; \
2676
u8 __arr_idx; \
2677
int __rc = 0; \
2678
\
2679
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2680
might_sleep_if(sleep_us); \
2681
if (arr_size >= 64) \
2682
__rc = -EINVAL; \
2683
else \
2684
__elem_bitmask = BIT_ULL(arr_size) - 1; \
2685
for (;;) { \
2686
if (__rc) \
2687
break; \
2688
for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2689
if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2690
continue; \
2691
if (elbi) { \
2692
__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2693
if (__rc) \
2694
break; \
2695
} else { \
2696
__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2697
} \
2698
if (__read_val == (expected_val)) \
2699
__elem_bitmask &= ~BIT_ULL(__arr_idx); \
2700
} \
2701
if (__rc || (__elem_bitmask == 0)) \
2702
break; \
2703
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2704
break; \
2705
if (sleep_us) \
2706
usleep_range((sleep_us >> 2) + 1, sleep_us); \
2707
} \
2708
__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2709
})
2710
2711
#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2712
timeout_us) \
2713
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2714
timeout_us, false)
2715
2716
#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2717
timeout_us) \
2718
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2719
timeout_us, true)
2720
2721
/*
2722
* address in this macro points always to a memory location in the
2723
* host's (server's) memory. That location is updated asynchronously
2724
* either by the direct access of the device or by another core.
2725
*
2726
* To work both in LE and BE architectures, we need to distinguish between the
2727
* two states (device or another core updates the memory location). Therefore,
2728
* if mem_written_by_device is true, the host memory being polled will be
2729
* updated directly by the device. If false, the host memory being polled will
2730
* be updated by host CPU. Required so host knows whether or not the memory
2731
* might need to be byte-swapped before returning value to caller.
2732
*
2733
* On the first 4 polling iterations the macro goes to sleep for short period of
2734
* time that gradually increases and reaches sleep_us on the fifth iteration.
2735
*/
2736
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2737
mem_written_by_device) \
2738
({ \
2739
u64 __sleep_step_us; \
2740
ktime_t __timeout; \
2741
u8 __step = 8; \
2742
\
2743
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2744
might_sleep_if(sleep_us); \
2745
for (;;) { \
2746
/* Verify we read updates done by other cores or by device */ \
2747
mb(); \
2748
(val) = *((u32 *)(addr)); \
2749
if (mem_written_by_device) \
2750
(val) = le32_to_cpu(*(__le32 *) &(val)); \
2751
if (cond) \
2752
break; \
2753
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2754
(val) = *((u32 *)(addr)); \
2755
if (mem_written_by_device) \
2756
(val) = le32_to_cpu(*(__le32 *) &(val)); \
2757
break; \
2758
} \
2759
__sleep_step_us = sleep_us >> __step; \
2760
if (__sleep_step_us) \
2761
usleep_range((__sleep_step_us >> 2) + 1, __sleep_step_us); \
2762
__step >>= 1; \
2763
} \
2764
(cond) ? 0 : -ETIMEDOUT; \
2765
})
2766
2767
#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2768
({ \
2769
struct user_mapped_block *p = blk; \
2770
\
2771
p->address = base; \
2772
p->size = sz; \
2773
})
2774
2775
#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2776
({ \
2777
usr_intr.hdev = hdev; \
2778
usr_intr.interrupt_id = intr_id; \
2779
usr_intr.type = intr_type; \
2780
INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2781
spin_lock_init(&usr_intr.wait_list_lock); \
2782
INIT_LIST_HEAD(&usr_intr.ts_list_head); \
2783
spin_lock_init(&usr_intr.ts_list_lock); \
2784
})
2785
2786
struct hwmon_chip_info;
2787
2788
/**
2789
* struct hl_device_reset_work - reset work wrapper.
2790
* @reset_work: reset work to be done.
2791
* @hdev: habanalabs device structure.
2792
* @flags: reset flags.
2793
*/
2794
struct hl_device_reset_work {
2795
struct delayed_work reset_work;
2796
struct hl_device *hdev;
2797
u32 flags;
2798
};
2799
2800
/**
2801
* struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2802
* page-table internal information.
2803
* @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2804
* allocating hops.
2805
* @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2806
*/
2807
struct hl_mmu_hr_priv {
2808
struct gen_pool *mmu_pgt_pool;
2809
struct pgt_info *mmu_asid_hop0;
2810
};
2811
2812
/**
2813
* struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2814
* page-table internal information.
2815
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2816
* @mmu_shadow_hop0: shadow array of hop0 tables.
2817
*/
2818
struct hl_mmu_dr_priv {
2819
struct gen_pool *mmu_pgt_pool;
2820
void *mmu_shadow_hop0;
2821
};
2822
2823
/**
2824
* struct hl_mmu_priv - used for holding per-device mmu internal information.
2825
* @dr: information on the device-resident MMU, when exists.
2826
* @hr: information on the host-resident MMU, when exists.
2827
*/
2828
struct hl_mmu_priv {
2829
struct hl_mmu_dr_priv dr;
2830
struct hl_mmu_hr_priv hr;
2831
};
2832
2833
/**
2834
* struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2835
* that was created in order to translate a virtual address to a
2836
* physical one.
2837
* @hop_addr: The address of the hop.
2838
* @hop_pte_addr: The address of the hop entry.
2839
* @hop_pte_val: The value in the hop entry.
2840
*/
2841
struct hl_mmu_per_hop_info {
2842
u64 hop_addr;
2843
u64 hop_pte_addr;
2844
u64 hop_pte_val;
2845
};
2846
2847
/**
2848
* struct hl_mmu_hop_info - A structure describing the TLB hops and their
2849
* hop-entries that were created in order to translate a virtual address to a
2850
* physical one.
2851
* @scrambled_vaddr: The value of the virtual address after scrambling. This
2852
* address replaces the original virtual-address when mapped
2853
* in the MMU tables.
2854
* @unscrambled_paddr: The un-scrambled physical address.
2855
* @hop_info: Array holding the per-hop information used for the translation.
2856
* @used_hops: The number of hops used for the translation.
2857
* @range_type: virtual address range type.
2858
*/
2859
struct hl_mmu_hop_info {
2860
u64 scrambled_vaddr;
2861
u64 unscrambled_paddr;
2862
struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2863
u32 used_hops;
2864
enum hl_va_range_type range_type;
2865
};
2866
2867
/**
2868
* struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2869
* @get_hop0_pgt_info: get page table info structure for HOP0.
2870
* @get_pgt_info: get page table info structure for HOP other than HOP0.
2871
* @add_pgt_info: add page table info structure to hash.
2872
* @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2873
*/
2874
struct hl_hr_mmu_funcs {
2875
struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2876
struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2877
void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2878
int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2879
struct hl_mmu_hop_info *hops,
2880
u64 virt_addr, bool *is_huge);
2881
};
2882
2883
/**
2884
* struct hl_mmu_funcs - Device related MMU functions.
2885
* @init: initialize the MMU module.
2886
* @fini: release the MMU module.
2887
* @ctx_init: Initialize a context for using the MMU module.
2888
* @ctx_fini: disable a ctx from using the mmu module.
2889
* @map: maps a virtual address to physical address for a context.
2890
* @unmap: unmap a virtual address of a context.
2891
* @flush: flush all writes from all cores to reach device MMU.
2892
* @swap_out: marks all mapping of the given context as swapped out.
2893
* @swap_in: marks all mapping of the given context as swapped in.
2894
* @get_tlb_info: returns the list of hops and hop-entries used that were
2895
* created in order to translate the giver virtual address to a
2896
* physical one.
2897
* @hr_funcs: functions specific to host resident MMU.
2898
*/
2899
struct hl_mmu_funcs {
2900
int (*init)(struct hl_device *hdev);
2901
void (*fini)(struct hl_device *hdev);
2902
int (*ctx_init)(struct hl_ctx *ctx);
2903
void (*ctx_fini)(struct hl_ctx *ctx);
2904
int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2905
bool is_dram_addr);
2906
int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2907
void (*flush)(struct hl_ctx *ctx);
2908
void (*swap_out)(struct hl_ctx *ctx);
2909
void (*swap_in)(struct hl_ctx *ctx);
2910
int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2911
struct hl_hr_mmu_funcs hr_funcs;
2912
};
2913
2914
/**
2915
* struct hl_prefetch_work - prefetch work structure handler
2916
* @prefetch_work: actual work struct.
2917
* @ctx: compute context.
2918
* @va: virtual address to pre-fetch.
2919
* @size: pre-fetch size.
2920
* @flags: operation flags.
2921
* @asid: ASID for maintenance operation.
2922
*/
2923
struct hl_prefetch_work {
2924
struct work_struct prefetch_work;
2925
struct hl_ctx *ctx;
2926
u64 va;
2927
u64 size;
2928
u32 flags;
2929
u32 asid;
2930
};
2931
2932
/*
2933
* number of user contexts allowed to call wait_for_multi_cs ioctl in
2934
* parallel
2935
*/
2936
#define MULTI_CS_MAX_USER_CTX 2
2937
2938
/**
2939
* struct multi_cs_completion - multi CS wait completion.
2940
* @completion: completion of any of the CS in the list
2941
* @lock: spinlock for the completion structure
2942
* @timestamp: timestamp for the multi-CS completion
2943
* @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2944
* is waiting
2945
* @used: 1 if in use, otherwise 0
2946
*/
2947
struct multi_cs_completion {
2948
struct completion completion;
2949
spinlock_t lock;
2950
s64 timestamp;
2951
u32 stream_master_qid_map;
2952
u8 used;
2953
};
2954
2955
/**
2956
* struct multi_cs_data - internal data for multi CS call
2957
* @ctx: pointer to the context structure
2958
* @fence_arr: array of fences of all CSs
2959
* @seq_arr: array of CS sequence numbers
2960
* @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2961
* @timestamp: timestamp of first completed CS
2962
* @wait_status: wait for CS status
2963
* @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2964
* @arr_len: fence_arr and seq_arr array length
2965
* @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2966
* @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2967
*/
2968
struct multi_cs_data {
2969
struct hl_ctx *ctx;
2970
struct hl_fence **fence_arr;
2971
u64 *seq_arr;
2972
s64 timeout_jiffies;
2973
s64 timestamp;
2974
long wait_status;
2975
u32 completion_bitmap;
2976
u8 arr_len;
2977
u8 gone_cs;
2978
u8 update_ts;
2979
};
2980
2981
/**
2982
* struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2983
* @start: timestamp taken when 'start' event is received in driver
2984
* @end: timestamp taken when 'end' event is received in driver
2985
*/
2986
struct hl_clk_throttle_timestamp {
2987
ktime_t start;
2988
ktime_t end;
2989
};
2990
2991
/**
2992
* struct hl_clk_throttle - keeps current/last clock throttling timestamps
2993
* @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2994
* index 1 refers to THERMAL
2995
* @lock: protects this structure as it can be accessed from both event queue
2996
* context and info_ioctl context
2997
* @current_reason: bitmask represents the current clk throttling reasons
2998
* @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2999
*/
3000
struct hl_clk_throttle {
3001
struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
3002
struct mutex lock;
3003
u32 current_reason;
3004
u32 aggregated_reason;
3005
};
3006
3007
/**
3008
* struct user_mapped_block - describes a hw block allowed to be mmapped by user
3009
* @address: physical HW block address
3010
* @size: allowed size for mmap
3011
*/
3012
struct user_mapped_block {
3013
u32 address;
3014
u32 size;
3015
};
3016
3017
/**
3018
* struct cs_timeout_info - info of last CS timeout occurred.
3019
* @timestamp: CS timeout timestamp.
3020
* @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
3021
* so the first (root cause) CS timeout will not be overwritten.
3022
* @seq: CS timeout sequence number.
3023
*/
3024
struct cs_timeout_info {
3025
ktime_t timestamp;
3026
atomic_t write_enable;
3027
u64 seq;
3028
};
3029
3030
#define MAX_QMAN_STREAMS_INFO 4
3031
#define OPCODE_INFO_MAX_ADDR_SIZE 8
3032
/**
3033
* struct undefined_opcode_info - info about last undefined opcode error
3034
* @timestamp: timestamp of the undefined opcode error
3035
* @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
3036
* entries. In case all streams array entries are
3037
* filled with values, it means the execution was in Lower-CP.
3038
* @cq_addr: the address of the current handled command buffer
3039
* @cq_size: the size of the current handled command buffer
3040
* @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
3041
* should be equal to 1 in case of undefined opcode
3042
* in Upper-CP (specific stream) and equal to 4 in case
3043
* of undefined opcode in Lower-CP.
3044
* @engine_id: engine-id that the error occurred on
3045
* @stream_id: the stream id the error occurred on. In case the stream equals to
3046
* MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
3047
* @write_enable: if set, writing to undefined opcode parameters in the structure
3048
* is enable so the first (root cause) undefined opcode will not be
3049
* overwritten.
3050
*/
3051
struct undefined_opcode_info {
3052
ktime_t timestamp;
3053
u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
3054
u64 cq_addr;
3055
u32 cq_size;
3056
u32 cb_addr_streams_len;
3057
u32 engine_id;
3058
u32 stream_id;
3059
bool write_enable;
3060
};
3061
3062
/**
3063
* struct page_fault_info - page fault information.
3064
* @page_fault: holds information collected during a page fault.
3065
* @user_mappings: buffer containing user mappings.
3066
* @num_of_user_mappings: number of user mappings.
3067
* @page_fault_detected: if set as 1, then a page-fault was discovered for the
3068
* first time after the driver has finished booting-up.
3069
* Since we're looking for the page-fault's root cause,
3070
* we don't care of the others that might follow it-
3071
* so once changed to 1, it will remain that way.
3072
* @page_fault_info_available: indicates that a page fault info is now available.
3073
*/
3074
struct page_fault_info {
3075
struct hl_page_fault_info page_fault;
3076
struct hl_user_mapping *user_mappings;
3077
u64 num_of_user_mappings;
3078
atomic_t page_fault_detected;
3079
bool page_fault_info_available;
3080
};
3081
3082
/**
3083
* struct razwi_info - RAZWI information.
3084
* @razwi: holds information collected during a RAZWI
3085
* @razwi_detected: if set as 1, then a RAZWI was discovered for the
3086
* first time after the driver has finished booting-up.
3087
* Since we're looking for the RAZWI's root cause,
3088
* we don't care of the others that might follow it-
3089
* so once changed to 1, it will remain that way.
3090
* @razwi_info_available: indicates that a RAZWI info is now available.
3091
*/
3092
struct razwi_info {
3093
struct hl_info_razwi_event razwi;
3094
atomic_t razwi_detected;
3095
bool razwi_info_available;
3096
};
3097
3098
/**
3099
* struct hw_err_info - HW error information.
3100
* @event: holds information on the event.
3101
* @event_detected: if set as 1, then a HW event was discovered for the
3102
* first time after the driver has finished booting-up.
3103
* currently we assume that only fatal events (that require hard-reset) are
3104
* reported so we don't care of the others that might follow it.
3105
* so once changed to 1, it will remain that way.
3106
* TODO: support multiple events.
3107
* @event_info_available: indicates that a HW event info is now available.
3108
*/
3109
struct hw_err_info {
3110
struct hl_info_hw_err_event event;
3111
atomic_t event_detected;
3112
bool event_info_available;
3113
};
3114
3115
/**
3116
* struct fw_err_info - FW error information.
3117
* @event: holds information on the event.
3118
* @event_detected: if set as 1, then a FW event was discovered for the
3119
* first time after the driver has finished booting-up.
3120
* currently we assume that only fatal events (that require hard-reset) are
3121
* reported so we don't care of the others that might follow it.
3122
* so once changed to 1, it will remain that way.
3123
* TODO: support multiple events.
3124
* @event_info_available: indicates that a HW event info is now available.
3125
*/
3126
struct fw_err_info {
3127
struct hl_info_fw_err_event event;
3128
atomic_t event_detected;
3129
bool event_info_available;
3130
};
3131
3132
/**
3133
* struct engine_err_info - engine error information.
3134
* @event: holds information on the event.
3135
* @event_detected: if set as 1, then an engine event was discovered for the
3136
* first time after the driver has finished booting-up.
3137
* @event_info_available: indicates that an engine event info is now available.
3138
*/
3139
struct engine_err_info {
3140
struct hl_info_engine_err_event event;
3141
atomic_t event_detected;
3142
bool event_info_available;
3143
};
3144
3145
3146
/**
3147
* struct hl_error_info - holds information collected during an error.
3148
* @cs_timeout: CS timeout error information.
3149
* @razwi_info: RAZWI information.
3150
* @undef_opcode: undefined opcode information.
3151
* @page_fault_info: page fault information.
3152
* @hw_err: (fatal) hardware error information.
3153
* @fw_err: firmware error information.
3154
* @engine_err: engine error information.
3155
*/
3156
struct hl_error_info {
3157
struct cs_timeout_info cs_timeout;
3158
struct razwi_info razwi_info;
3159
struct undefined_opcode_info undef_opcode;
3160
struct page_fault_info page_fault_info;
3161
struct hw_err_info hw_err;
3162
struct fw_err_info fw_err;
3163
struct engine_err_info engine_err;
3164
};
3165
3166
/**
3167
* struct hl_reset_info - holds current device reset information.
3168
* @lock: lock to protect critical reset flows.
3169
* @compute_reset_cnt: number of compute resets since the driver was loaded.
3170
* @hard_reset_cnt: number of hard resets since the driver was loaded.
3171
* @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3172
* here we hold the hard reset flags.
3173
* @in_reset: is device in reset flow.
3174
* @in_compute_reset: Device is currently in reset but not in hard-reset.
3175
* @needs_reset: true if reset_on_lockup is false and device should be reset
3176
* due to lockup.
3177
* @hard_reset_pending: is there a hard reset work pending.
3178
* @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3179
* triggered, and cleared after it is shared with preboot.
3180
* @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3181
* with a new value on next reset
3182
* @reset_trigger_repeated: set if device reset is triggered more than once with
3183
* same cause.
3184
* @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3185
* complete instead.
3186
* @watchdog_active: true if a device release watchdog work is scheduled.
3187
*/
3188
struct hl_reset_info {
3189
spinlock_t lock;
3190
u32 compute_reset_cnt;
3191
u32 hard_reset_cnt;
3192
u32 hard_reset_schedule_flags;
3193
u8 in_reset;
3194
u8 in_compute_reset;
3195
u8 needs_reset;
3196
u8 hard_reset_pending;
3197
u8 curr_reset_cause;
3198
u8 prev_reset_trigger;
3199
u8 reset_trigger_repeated;
3200
u8 skip_reset_on_timeout;
3201
u8 watchdog_active;
3202
};
3203
3204
/**
3205
* struct eq_heartbeat_debug_info - stores debug info to be used upon heartbeat failure.
3206
* @last_pq_heartbeat_ts: timestamp of the last test packet that was sent to FW.
3207
* This packet is the trigger in FW to send the EQ heartbeat event.
3208
* @last_eq_heartbeat_ts: timestamp of the last EQ heartbeat event that was received from FW.
3209
* @heartbeat_event_counter: number of heartbeat events received.
3210
* @cpu_queue_id: used to read the queue pi/ci
3211
*/
3212
struct eq_heartbeat_debug_info {
3213
time64_t last_pq_heartbeat_ts;
3214
time64_t last_eq_heartbeat_ts;
3215
u32 heartbeat_event_counter;
3216
u32 cpu_queue_id;
3217
};
3218
3219
/**
3220
* struct hl_device - habanalabs device structure.
3221
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
3222
* @pcie_bar_phys: array of available PCIe bars physical addresses.
3223
* (required only for PCI address match mode)
3224
* @pcie_bar: array of available PCIe bars virtual addresses.
3225
* @rmmio: configuration area address on SRAM.
3226
* @drm: related DRM device.
3227
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
3228
* @dev: related kernel basic device structure.
3229
* @dev_ctrl: related kernel device structure for the control device
3230
* @work_heartbeat: delayed work for CPU-CP is-alive check.
3231
* @device_reset_work: delayed work which performs hard reset
3232
* @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3233
* device upon certain error cases.
3234
* @asic_name: ASIC specific name.
3235
* @asic_type: ASIC specific type.
3236
* @completion_queue: array of hl_cq.
3237
* @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3238
* interrupt, driver will monitor the list of fences
3239
* registered to this interrupt.
3240
* @tpc_interrupt: single TPC interrupt for all TPCs.
3241
* @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3242
* @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3243
* upon any user CQ interrupt, driver will monitor the
3244
* list of fences registered to this common structure.
3245
* @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3246
* @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3247
* outstanding command submissions.
3248
* @cq_wq: work queues of completion queues for executing work in process
3249
* context.
3250
* @eq_wq: work queue of event queue for executing work in process context.
3251
* @cs_cmplt_wq: work queue of CS completions for executing work in process
3252
* context.
3253
* @ts_free_obj_wq: work queue for timestamp registration objects release.
3254
* @prefetch_wq: work queue for MMU pre-fetch operations.
3255
* @reset_wq: work queue for device reset procedure.
3256
* @kernel_ctx: Kernel driver context structure.
3257
* @kernel_queues: array of hl_hw_queue.
3258
* @cs_mirror_list: CS mirror list for TDR.
3259
* @cs_mirror_lock: protects cs_mirror_list.
3260
* @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3261
* @event_queue: event queue for IRQ from CPU-CP.
3262
* @dma_pool: DMA pool for small allocations.
3263
* @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3264
* @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3265
* @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3266
* @asid_bitmap: holds used/available ASIDs.
3267
* @asid_mutex: protects asid_bitmap.
3268
* @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3269
* @debug_lock: protects critical section of setting debug mode for device
3270
* @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3271
* page tables are per context, the invalidation h/w is per MMU.
3272
* Therefore, we can't allow multiple contexts (we only have two,
3273
* user and kernel) to access the invalidation h/w at the same time.
3274
* In addition, any change to the PGT, modifying the MMU hash or
3275
* walking the PGT requires talking this lock.
3276
* @asic_prop: ASIC specific immutable properties.
3277
* @asic_funcs: ASIC specific functions.
3278
* @asic_specific: ASIC specific information to use only from ASIC files.
3279
* @vm: virtual memory manager for MMU.
3280
* @hwmon_dev: H/W monitor device.
3281
* @hl_chip_info: ASIC's sensors information.
3282
* @device_status_description: device status description.
3283
* @hl_debugfs: device's debugfs manager.
3284
* @cb_pool: list of pre allocated CBs.
3285
* @cb_pool_lock: protects the CB pool.
3286
* @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3287
* @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3288
* @internal_cb_pool: internal command buffer memory pool.
3289
* @internal_cb_va_base: internal cb pool mmu virtual address base
3290
* @fpriv_list: list of file private data structures. Each structure is created
3291
* when a user opens the device
3292
* @fpriv_ctrl_list: list of file private data structures. Each structure is created
3293
* when a user opens the control device
3294
* @fpriv_list_lock: protects the fpriv_list
3295
* @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3296
* @aggregated_cs_counters: aggregated cs counters among all contexts
3297
* @mmu_priv: device-specific MMU data.
3298
* @mmu_func: device-related MMU functions.
3299
* @dec: list of decoder sw instance
3300
* @fw_loader: FW loader manager.
3301
* @pci_mem_region: array of memory regions in the PCI
3302
* @state_dump_specs: constants and dictionaries needed to dump system state.
3303
* @multi_cs_completion: array of multi-CS completion.
3304
* @clk_throttling: holds information about current/previous clock throttling events
3305
* @captured_err_info: holds information about errors.
3306
* @reset_info: holds current device reset information.
3307
* @heartbeat_debug_info: counters used to debug heartbeat failures.
3308
* @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling.
3309
* @stream_master_qid_arr: pointer to array with QIDs of master streams.
3310
* @fw_inner_major_ver: the major of current loaded preboot inner version.
3311
* @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3312
* @fw_sw_major_ver: the major of current loaded preboot SW version.
3313
* @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3314
* @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3315
* @dram_used_mem: current DRAM memory consumption.
3316
* @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3317
* @timeout_jiffies: device CS timeout value.
3318
* @max_power: the max power of the device, as configured by the sysadmin. This
3319
* value is saved so in case of hard-reset, the driver will restore
3320
* this value and update the F/W after the re-initialization
3321
* @boot_error_status_mask: contains a mask of the device boot error status.
3322
* Each bit represents a different error, according to
3323
* the defines in hl_boot_if.h. If the bit is cleared,
3324
* the error will be ignored by the driver during
3325
* device initialization. Mainly used to debug and
3326
* workaround firmware bugs
3327
* @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3328
* @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3329
* @last_successful_open_jif: timestamp (jiffies) of the last successful
3330
* device open.
3331
* @last_open_session_duration_jif: duration (jiffies) of the last device open
3332
* session.
3333
* @open_counter: number of successful device open operations.
3334
* @fw_poll_interval_usec: FW status poll interval in usec.
3335
* used for CPU boot status
3336
* @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3337
* used for COMMs protocols cmds(COMMS_STS_*)
3338
* @dram_binning: contains mask of drams that is received from the f/w which indicates which
3339
* drams are binned-out
3340
* @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3341
* tpc engines are binned-out
3342
* @dmabuf_export_cnt: number of dma-buf exporting.
3343
* @card_type: Various ASICs have several card types. This indicates the card
3344
* type of the current device.
3345
* @major: habanalabs kernel driver major.
3346
* @high_pll: high PLL profile frequency.
3347
* @decoder_binning: contains mask of decoder engines that is received from the f/w which
3348
* indicates which decoder engines are binned-out
3349
* @edma_binning: contains mask of edma engines that is received from the f/w which
3350
* indicates which edma engines are binned-out
3351
* @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3352
* @rotator_binning: contains mask of rotators engines that is received from the f/w
3353
* which indicates which rotator engines are binned-out(Gaudi3 and above).
3354
* @id: device minor.
3355
* @cdev_idx: char device index.
3356
* @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3357
* addresses.
3358
* @is_in_dram_scrub: true if dram scrub operation is on going.
3359
* @disabled: is device disabled.
3360
* @late_init_done: is late init stage was done during initialization.
3361
* @hwmon_initialized: is H/W monitor sensors was initialized.
3362
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3363
* otherwise.
3364
* @dram_default_page_mapping: is DRAM default page mapping enabled.
3365
* @memory_scrub: true to perform device memory scrub in various locations,
3366
* such as context-switch, context close, page free, etc.
3367
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3368
* huge pages.
3369
* @init_done: is the initialization of the device done.
3370
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3371
* @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3372
* can be used. This indication is needed because in some ASICs we need to do
3373
* specific operations to enable that infrastructure.
3374
* @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3375
* @stop_on_err: true if engines should stop on error.
3376
* @supports_sync_stream: is sync stream supported.
3377
* @sync_stream_queue_idx: helper index for sync stream queues initialization.
3378
* @collective_mon_idx: helper index for collective initialization
3379
* @supports_coresight: is CoreSight supported.
3380
* @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3381
* @process_kill_trial_cnt: number of trials reset thread tried killing
3382
* user processes
3383
* @device_fini_pending: true if device_fini was called and might be
3384
* waiting for the reset thread to finish
3385
* @supports_staged_submission: true if staged submissions are supported
3386
* @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3387
* halted. We can't halt it again because the COMMS
3388
* protocol will throw an error. Relevant only for
3389
* cases where Linux was not loaded to device CPU
3390
* @supports_wait_for_multi_cs: true if wait for multi CS is supported
3391
* @is_compute_ctx_active: Whether there is an active compute context executing.
3392
* @compute_ctx_in_release: true if the current compute context is being released.
3393
* @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3394
* @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3395
* device.
3396
* @supports_ctx_switch: true if a ctx switch is required upon first submission.
3397
* @support_preboot_binning: true if we support read binning info from preboot.
3398
* @eq_heartbeat_received: indication that eq heartbeat event has received from FW.
3399
* @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3400
* @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3401
* stages and sometimes we want to stop at a certain stage. Used only for testing.
3402
* @mmu_disable: Disable the device MMU(s). Used only for testing.
3403
* @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3404
* @pldm: Whether we are running in Palladium environment. Used only for testing.
3405
* @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3406
* the f/w. Used only for testing.
3407
* @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3408
* @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3409
* Used only for testing.
3410
* @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3411
* that the f/w is always alive. Used only for testing.
3412
*/
3413
struct hl_device {
3414
struct pci_dev *pdev;
3415
u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3416
void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3417
void __iomem *rmmio;
3418
struct drm_device drm;
3419
struct cdev cdev_ctrl;
3420
struct device *dev;
3421
struct device *dev_ctrl;
3422
struct delayed_work work_heartbeat;
3423
struct hl_device_reset_work device_reset_work;
3424
struct hl_device_reset_work device_release_watchdog_work;
3425
char asic_name[HL_STR_MAX];
3426
char status[HL_DEV_STS_MAX][HL_STR_MAX];
3427
enum hl_asic_type asic_type;
3428
struct hl_cq *completion_queue;
3429
struct hl_user_interrupt *user_interrupt;
3430
struct hl_user_interrupt tpc_interrupt;
3431
struct hl_user_interrupt unexpected_error_interrupt;
3432
struct hl_user_interrupt common_user_cq_interrupt;
3433
struct hl_user_interrupt common_decoder_interrupt;
3434
struct hl_cs **shadow_cs_queue;
3435
struct workqueue_struct **cq_wq;
3436
struct workqueue_struct *eq_wq;
3437
struct workqueue_struct *cs_cmplt_wq;
3438
struct workqueue_struct *ts_free_obj_wq;
3439
struct workqueue_struct *prefetch_wq;
3440
struct workqueue_struct *reset_wq;
3441
struct hl_ctx *kernel_ctx;
3442
struct hl_hw_queue *kernel_queues;
3443
struct list_head cs_mirror_list;
3444
spinlock_t cs_mirror_lock;
3445
struct hl_mem_mgr kernel_mem_mgr;
3446
struct hl_eq event_queue;
3447
struct dma_pool *dma_pool;
3448
void *cpu_accessible_dma_mem;
3449
dma_addr_t cpu_accessible_dma_address;
3450
struct gen_pool *cpu_accessible_dma_pool;
3451
unsigned long *asid_bitmap;
3452
struct mutex asid_mutex;
3453
struct mutex send_cpu_message_lock;
3454
struct mutex debug_lock;
3455
struct mutex mmu_lock;
3456
struct asic_fixed_properties asic_prop;
3457
const struct hl_asic_funcs *asic_funcs;
3458
void *asic_specific;
3459
struct hl_vm vm;
3460
struct device *hwmon_dev;
3461
struct hwmon_chip_info *hl_chip_info;
3462
3463
struct hl_dbg_device_entry hl_debugfs;
3464
3465
struct list_head cb_pool;
3466
spinlock_t cb_pool_lock;
3467
3468
void *internal_cb_pool_virt_addr;
3469
dma_addr_t internal_cb_pool_dma_addr;
3470
struct gen_pool *internal_cb_pool;
3471
u64 internal_cb_va_base;
3472
3473
struct list_head fpriv_list;
3474
struct list_head fpriv_ctrl_list;
3475
struct mutex fpriv_list_lock;
3476
struct mutex fpriv_ctrl_list_lock;
3477
3478
struct hl_cs_counters_atomic aggregated_cs_counters;
3479
3480
struct hl_mmu_priv mmu_priv;
3481
struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3482
3483
struct hl_dec *dec;
3484
3485
struct fw_load_mgr fw_loader;
3486
3487
struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3488
3489
struct hl_state_dump_specs state_dump_specs;
3490
3491
struct multi_cs_completion multi_cs_completion[
3492
MULTI_CS_MAX_USER_CTX];
3493
struct hl_clk_throttle clk_throttling;
3494
struct hl_error_info captured_err_info;
3495
3496
struct hl_reset_info reset_info;
3497
3498
struct eq_heartbeat_debug_info heartbeat_debug_info;
3499
3500
cpumask_t irq_affinity_mask;
3501
3502
u32 *stream_master_qid_arr;
3503
u32 fw_inner_major_ver;
3504
u32 fw_inner_minor_ver;
3505
u32 fw_sw_major_ver;
3506
u32 fw_sw_minor_ver;
3507
u32 fw_sw_sub_minor_ver;
3508
atomic64_t dram_used_mem;
3509
u64 memory_scrub_val;
3510
u64 timeout_jiffies;
3511
u64 max_power;
3512
u64 boot_error_status_mask;
3513
u64 dram_pci_bar_start;
3514
u64 last_successful_open_jif;
3515
u64 last_open_session_duration_jif;
3516
u64 open_counter;
3517
u64 fw_poll_interval_usec;
3518
ktime_t last_successful_open_ktime;
3519
u64 fw_comms_poll_interval_usec;
3520
u64 dram_binning;
3521
u64 tpc_binning;
3522
atomic_t dmabuf_export_cnt;
3523
enum cpucp_card_types card_type;
3524
u32 major;
3525
u32 high_pll;
3526
u32 decoder_binning;
3527
u32 edma_binning;
3528
u32 device_release_watchdog_timeout_sec;
3529
u32 rotator_binning;
3530
u16 id;
3531
u16 cdev_idx;
3532
u16 cpu_pci_msb_addr;
3533
u8 is_in_dram_scrub;
3534
u8 disabled;
3535
u8 late_init_done;
3536
u8 hwmon_initialized;
3537
u8 reset_on_lockup;
3538
u8 dram_default_page_mapping;
3539
u8 memory_scrub;
3540
u8 pmmu_huge_range;
3541
u8 init_done;
3542
u8 device_cpu_disabled;
3543
u8 in_debug;
3544
u8 cdev_sysfs_debugfs_created;
3545
u8 stop_on_err;
3546
u8 supports_sync_stream;
3547
u8 sync_stream_queue_idx;
3548
u8 collective_mon_idx;
3549
u8 supports_coresight;
3550
u8 supports_cb_mapping;
3551
u8 process_kill_trial_cnt;
3552
u8 device_fini_pending;
3553
u8 supports_staged_submission;
3554
u8 device_cpu_is_halted;
3555
u8 supports_wait_for_multi_cs;
3556
u8 stream_master_qid_arr_size;
3557
u8 is_compute_ctx_active;
3558
u8 compute_ctx_in_release;
3559
u8 supports_mmu_prefetch;
3560
u8 reset_upon_device_release;
3561
u8 supports_ctx_switch;
3562
u8 support_preboot_binning;
3563
u8 eq_heartbeat_received;
3564
3565
/* Parameters for bring-up to be upstreamed */
3566
u64 nic_ports_mask;
3567
u64 fw_components;
3568
u8 mmu_disable;
3569
u8 cpu_queues_enable;
3570
u8 pldm;
3571
u8 hard_reset_on_fw_events;
3572
u8 bmc_enable;
3573
u8 reset_on_preboot_fail;
3574
u8 heartbeat;
3575
};
3576
3577
/* Retrieve PCI device name in case of a PCI device or dev name in simulator */
3578
#define HL_DEV_NAME(hdev) \
3579
((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE")
3580
3581
/**
3582
* struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3583
* @refcount: refcount used to protect removing this id when several
3584
* wait cs are used to wait of the reserved encaps signals.
3585
* @hdev: pointer to habanalabs device structure.
3586
* @hw_sob: pointer to H/W SOB used in the reservation.
3587
* @ctx: pointer to the user's context data structure
3588
* @cs_seq: staged cs sequence which contains encapsulated signals
3589
* @id: idr handler id to be used to fetch the handler info
3590
* @q_idx: stream queue index
3591
* @pre_sob_val: current SOB value before reservation
3592
* @count: signals number
3593
*/
3594
struct hl_cs_encaps_sig_handle {
3595
struct kref refcount;
3596
struct hl_device *hdev;
3597
struct hl_hw_sob *hw_sob;
3598
struct hl_ctx *ctx;
3599
u64 cs_seq;
3600
u32 id;
3601
u32 q_idx;
3602
u32 pre_sob_val;
3603
u32 count;
3604
};
3605
3606
/**
3607
* struct hl_info_fw_err_info - firmware error information structure
3608
* @err_type: The type of error detected (or reported).
3609
* @event_mask: Pointer to the event mask to be modified with the detected error flag
3610
* (can be NULL)
3611
* @event_id: The id of the event that reported the error
3612
* (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3613
*/
3614
struct hl_info_fw_err_info {
3615
enum hl_info_fw_err_type err_type;
3616
u64 *event_mask;
3617
u16 event_id;
3618
};
3619
3620
/*
3621
* IOCTLs
3622
*/
3623
3624
/**
3625
* typedef hl_ioctl_t - typedef for ioctl function in the driver
3626
* @hpriv: pointer to the FD's private data, which contains state of
3627
* user process
3628
* @data: pointer to the input/output arguments structure of the IOCTL
3629
*
3630
* Return: 0 for success, negative value for error
3631
*/
3632
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3633
3634
/**
3635
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3636
* @cmd: the IOCTL code as created by the kernel macros.
3637
* @func: pointer to the driver's function that should be called for this IOCTL.
3638
*/
3639
struct hl_ioctl_desc {
3640
unsigned int cmd;
3641
hl_ioctl_t *func;
3642
};
3643
3644
/*
3645
* Kernel module functions that can be accessed by entire module
3646
*/
3647
3648
/**
3649
* hl_get_sg_info() - get number of pages and the DMA address from SG list.
3650
* @sg: the SG list.
3651
* @dma_addr: pointer to DMA address to return.
3652
*
3653
* Calculate the number of consecutive pages described by the SG list. Take the
3654
* offset of the address in the first page, add to it the length and round it up
3655
* to the number of needed pages.
3656
*/
3657
static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3658
{
3659
*dma_addr = sg_dma_address(sg);
3660
3661
return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3662
(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3663
}
3664
3665
/**
3666
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3667
* @address: The start address of the area we want to validate.
3668
* @size: The size in bytes of the area we want to validate.
3669
* @range_start_address: The start address of the valid range.
3670
* @range_end_address: The end address of the valid range.
3671
*
3672
* Return: true if the area is inside the valid range, false otherwise.
3673
*/
3674
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3675
u64 range_start_address, u64 range_end_address)
3676
{
3677
u64 end_address = address + size;
3678
3679
if ((address >= range_start_address) &&
3680
(end_address <= range_end_address) &&
3681
(end_address > address))
3682
return true;
3683
3684
return false;
3685
}
3686
3687
static inline struct hl_device *to_hl_device(struct drm_device *ddev)
3688
{
3689
return container_of(ddev, struct hl_device, drm);
3690
}
3691
3692
/**
3693
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3694
* @address: The start address of the area we want to validate.
3695
* @size: The size in bytes of the area we want to validate.
3696
* @range_start_address: The start address of the valid range.
3697
* @range_end_address: The end address of the valid range.
3698
*
3699
* Return: true if the area overlaps part or all of the valid range,
3700
* false otherwise.
3701
*/
3702
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3703
u64 range_start_address, u64 range_end_address)
3704
{
3705
u64 end_address = address + size - 1;
3706
3707
return ((address <= range_end_address) && (range_start_address <= end_address));
3708
}
3709
3710
uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3711
void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3712
void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3713
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3714
gfp_t flag, const char *caller);
3715
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3716
dma_addr_t dma_handle, const char *caller);
3717
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3718
dma_addr_t *dma_handle, const char *caller);
3719
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3720
const char *caller);
3721
int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3722
enum dma_data_direction dir, const char *caller);
3723
void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3724
enum dma_data_direction dir, const char *caller);
3725
int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3726
enum dma_data_direction dir);
3727
void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3728
enum dma_data_direction dir);
3729
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3730
enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3731
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3732
enum debugfs_access_type acc_type);
3733
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3734
u64 addr, u64 *val, enum debugfs_access_type acc_type);
3735
3736
int hl_mmap(struct file *filp, struct vm_area_struct *vma);
3737
3738
int hl_device_open(struct drm_device *drm, struct drm_file *file_priv);
3739
void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv);
3740
3741
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3742
bool hl_device_operational(struct hl_device *hdev,
3743
enum hl_device_status *status);
3744
bool hl_ctrl_device_operational(struct hl_device *hdev,
3745
enum hl_device_status *status);
3746
enum hl_device_status hl_device_status(struct hl_device *hdev);
3747
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3748
int hl_hw_queues_create(struct hl_device *hdev);
3749
void hl_hw_queues_destroy(struct hl_device *hdev);
3750
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3751
u32 cb_size, u64 cb_ptr);
3752
void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3753
u32 ctl, u32 len, u64 ptr);
3754
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3755
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3756
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3757
void hl_hw_queue_update_ci(struct hl_cs *cs);
3758
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3759
3760
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3761
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3762
3763
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3764
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3765
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3766
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3767
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3768
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3769
void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q);
3770
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3771
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3772
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3773
irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg);
3774
irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3775
irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg);
3776
u32 hl_cq_inc_ptr(u32 ptr);
3777
3778
int hl_asid_init(struct hl_device *hdev);
3779
void hl_asid_fini(struct hl_device *hdev);
3780
unsigned long hl_asid_alloc(struct hl_device *hdev);
3781
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3782
3783
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3784
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3785
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3786
void hl_ctx_do_release(struct kref *ref);
3787
void hl_ctx_get(struct hl_ctx *ctx);
3788
int hl_ctx_put(struct hl_ctx *ctx);
3789
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3790
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3791
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3792
struct hl_fence **fence, u32 arr_len);
3793
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3794
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3795
3796
int hl_device_init(struct hl_device *hdev);
3797
void hl_device_fini(struct hl_device *hdev);
3798
int hl_device_suspend(struct hl_device *hdev);
3799
int hl_device_resume(struct hl_device *hdev);
3800
int hl_device_reset(struct hl_device *hdev, u32 flags);
3801
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3802
void hl_hpriv_get(struct hl_fpriv *hpriv);
3803
int hl_hpriv_put(struct hl_fpriv *hpriv);
3804
int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3805
3806
int hl_build_hwmon_channel_info(struct hl_device *hdev,
3807
struct cpucp_sensor *sensors_arr);
3808
3809
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3810
3811
int hl_sysfs_init(struct hl_device *hdev);
3812
void hl_sysfs_fini(struct hl_device *hdev);
3813
3814
int hl_hwmon_init(struct hl_device *hdev);
3815
void hl_hwmon_fini(struct hl_device *hdev);
3816
void hl_hwmon_release_resources(struct hl_device *hdev);
3817
3818
int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3819
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3820
bool map_cb, u64 *handle);
3821
int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3822
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3823
struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3824
void hl_cb_put(struct hl_cb *cb);
3825
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3826
bool internal_cb);
3827
int hl_cb_pool_init(struct hl_device *hdev);
3828
int hl_cb_pool_fini(struct hl_device *hdev);
3829
int hl_cb_va_pool_init(struct hl_ctx *ctx);
3830
void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3831
3832
void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3833
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3834
enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3835
void hl_sob_reset_error(struct kref *ref);
3836
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3837
void hl_fence_put(struct hl_fence *fence);
3838
void hl_fences_put(struct hl_fence **fence, int len);
3839
void hl_fence_get(struct hl_fence *fence);
3840
void cs_get(struct hl_cs *cs);
3841
bool cs_needs_completion(struct hl_cs *cs);
3842
bool cs_needs_timeout(struct hl_cs *cs);
3843
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3844
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3845
void hl_multi_cs_completion_init(struct hl_device *hdev);
3846
u32 hl_get_active_cs_num(struct hl_device *hdev);
3847
3848
void goya_set_asic_funcs(struct hl_device *hdev);
3849
void gaudi_set_asic_funcs(struct hl_device *hdev);
3850
void gaudi2_set_asic_funcs(struct hl_device *hdev);
3851
3852
int hl_vm_ctx_init(struct hl_ctx *ctx);
3853
void hl_vm_ctx_fini(struct hl_ctx *ctx);
3854
3855
int hl_vm_init(struct hl_device *hdev);
3856
void hl_vm_fini(struct hl_device *hdev);
3857
3858
void hl_hw_block_mem_init(struct hl_ctx *ctx);
3859
void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3860
3861
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3862
enum hl_va_range_type type, u64 size, u32 alignment);
3863
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3864
u64 start_addr, u64 size);
3865
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3866
struct hl_userptr *userptr);
3867
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3868
void hl_userptr_delete_list(struct hl_device *hdev,
3869
struct list_head *userptr_list);
3870
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3871
struct list_head *userptr_list,
3872
struct hl_userptr **userptr);
3873
3874
int hl_mmu_init(struct hl_device *hdev);
3875
void hl_mmu_fini(struct hl_device *hdev);
3876
int hl_mmu_ctx_init(struct hl_ctx *ctx);
3877
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3878
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3879
u32 page_size, bool flush_pte);
3880
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3881
u32 page_size, u32 *real_page_size, bool is_dram_addr);
3882
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3883
bool flush_pte);
3884
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3885
u64 phys_addr, u32 size);
3886
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3887
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3888
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3889
u32 flags, u32 asid, u64 va, u64 size);
3890
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3891
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3892
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3893
u8 hop_idx, u64 hop_addr, u64 virt_addr);
3894
void hl_mmu_hr_flush(struct hl_ctx *ctx);
3895
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3896
u64 pgt_size);
3897
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3898
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3899
u32 hop_table_size);
3900
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3901
u32 hop_table_size);
3902
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3903
u64 val, u32 hop_table_size);
3904
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3905
u32 hop_table_size);
3906
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3907
u32 hop_table_size);
3908
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3909
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3910
struct hl_hr_mmu_funcs *hr_func,
3911
u64 curr_pte);
3912
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3913
struct hl_hr_mmu_funcs *hr_func,
3914
struct hl_mmu_properties *mmu_prop);
3915
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3916
struct hl_mmu_hr_priv *hr_priv,
3917
struct hl_hr_mmu_funcs *hr_func,
3918
struct hl_mmu_properties *mmu_prop,
3919
u64 curr_pte, bool *is_new_hop);
3920
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3921
struct hl_hr_mmu_funcs *hr_func);
3922
int hl_mmu_if_set_funcs(struct hl_device *hdev);
3923
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3924
void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3925
void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3926
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3927
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3928
struct hl_mmu_hop_info *hops);
3929
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3930
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3931
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3932
struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr);
3933
void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr);
3934
void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info);
3935
u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx);
3936
u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx);
3937
void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3938
void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3939
void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr);
3940
u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
3941
void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr);
3942
int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr);
3943
u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop);
3944
u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx);
3945
void hl_mmu_dr_flush(struct hl_ctx *ctx);
3946
int hl_mmu_dr_init(struct hl_device *hdev);
3947
void hl_mmu_dr_fini(struct hl_device *hdev);
3948
3949
int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor);
3950
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3951
void __iomem *dst, u32 src_offset, u32 size);
3952
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3953
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3954
u16 len, u32 timeout, u64 *result);
3955
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3956
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3957
size_t irq_arr_size);
3958
int hl_fw_test_cpu_queue(struct hl_device *hdev);
3959
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3960
dma_addr_t *dma_handle);
3961
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3962
void *vaddr);
3963
int hl_fw_send_heartbeat(struct hl_device *hdev);
3964
int hl_fw_cpucp_info_get(struct hl_device *hdev,
3965
u32 sts_boot_dev_sts0_reg,
3966
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3967
u32 boot_err1_reg);
3968
int hl_fw_cpucp_handshake(struct hl_device *hdev,
3969
u32 sts_boot_dev_sts0_reg,
3970
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3971
u32 boot_err1_reg);
3972
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3973
int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3974
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3975
struct hl_info_pci_counters *counters);
3976
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3977
u64 *total_energy);
3978
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3979
enum pll_index *pll_index);
3980
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3981
u16 *pll_freq_arr);
3982
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3983
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3984
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3985
int hl_fw_init_cpu(struct hl_device *hdev);
3986
int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3987
int hl_fw_read_preboot_status(struct hl_device *hdev);
3988
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3989
struct fw_load_mgr *fw_loader,
3990
enum comms_cmd cmd, unsigned int size,
3991
bool wait_ok, u32 timeout);
3992
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3993
struct cpucp_hbm_row_info *info);
3994
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3995
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3996
int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3997
int hl_fw_send_soft_reset(struct hl_device *hdev);
3998
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3999
bool is_wc[3]);
4000
int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
4001
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
4002
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
4003
struct hl_inbound_pci_region *pci_region);
4004
int hl_pci_set_outbound_region(struct hl_device *hdev,
4005
struct hl_outbound_pci_region *pci_region);
4006
enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
4007
int hl_pci_init(struct hl_device *hdev);
4008
void hl_pci_fini(struct hl_device *hdev);
4009
4010
long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
4011
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
4012
int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4013
int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4014
int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4015
int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4016
int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4017
int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4018
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4019
long hl_fw_get_max_power(struct hl_device *hdev);
4020
void hl_fw_set_max_power(struct hl_device *hdev);
4021
int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
4022
u32 nonce);
4023
int hl_fw_get_dev_info_signed(struct hl_device *hdev,
4024
struct cpucp_dev_info_signed *dev_info_signed, u32 nonce);
4025
int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4026
int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4027
int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4028
int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4029
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
4030
void hl_fw_set_pll_profile(struct hl_device *hdev);
4031
void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
4032
void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
4033
int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
4034
dma_addr_t buff, u32 *size);
4035
4036
void hw_sob_get(struct hl_hw_sob *hw_sob);
4037
void hw_sob_put(struct hl_hw_sob *hw_sob);
4038
void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
4039
void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
4040
void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
4041
struct hl_cs *cs, struct hl_cs_job *job,
4042
struct hl_cs_compl *cs_cmpl);
4043
4044
int hl_dec_init(struct hl_device *hdev);
4045
void hl_dec_fini(struct hl_device *hdev);
4046
void hl_dec_ctx_fini(struct hl_ctx *ctx);
4047
4048
void hl_release_pending_user_interrupts(struct hl_device *hdev);
4049
void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
4050
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
4051
struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
4052
4053
int hl_state_dump(struct hl_device *hdev);
4054
const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
4055
const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
4056
struct hl_mon_state_dump *mon);
4057
void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
4058
__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
4059
const char *format, ...);
4060
char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
4061
const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
4062
4063
void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
4064
void hl_mem_mgr_fini(struct hl_mem_mgr *mmg, struct hl_mem_mgr_fini_stats *stats);
4065
void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
4066
int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
4067
void *args);
4068
struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
4069
u64 handle);
4070
int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
4071
int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
4072
struct hl_mmap_mem_buf *
4073
hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
4074
struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
4075
void *args);
4076
__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
4077
void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4078
u8 flags);
4079
void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4080
u8 flags, u64 *event_mask);
4081
void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
4082
void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
4083
u64 *event_mask);
4084
void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
4085
void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
4086
void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count);
4087
void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
4088
void hl_init_cpu_for_irq(struct hl_device *hdev);
4089
void hl_set_irq_affinity(struct hl_device *hdev, int irq);
4090
void hl_eq_heartbeat_event_handle(struct hl_device *hdev);
4091
void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask);
4092
4093
#ifdef CONFIG_DEBUG_FS
4094
4095
int hl_debugfs_device_init(struct hl_device *hdev);
4096
void hl_debugfs_device_fini(struct hl_device *hdev);
4097
void hl_debugfs_add_device(struct hl_device *hdev);
4098
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
4099
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
4100
void hl_debugfs_add_cb(struct hl_cb *cb);
4101
void hl_debugfs_remove_cb(struct hl_cb *cb);
4102
void hl_debugfs_add_cs(struct hl_cs *cs);
4103
void hl_debugfs_remove_cs(struct hl_cs *cs);
4104
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
4105
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
4106
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
4107
void hl_debugfs_remove_userptr(struct hl_device *hdev,
4108
struct hl_userptr *userptr);
4109
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4110
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4111
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
4112
unsigned long length);
4113
4114
#else
4115
4116
static inline int hl_debugfs_device_init(struct hl_device *hdev)
4117
{
4118
return 0;
4119
}
4120
4121
static inline void hl_debugfs_device_fini(struct hl_device *hdev)
4122
{
4123
}
4124
4125
static inline void hl_debugfs_add_device(struct hl_device *hdev)
4126
{
4127
}
4128
4129
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4130
{
4131
}
4132
4133
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4134
{
4135
}
4136
4137
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4138
{
4139
}
4140
4141
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4142
{
4143
}
4144
4145
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4146
{
4147
}
4148
4149
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4150
{
4151
}
4152
4153
static inline void hl_debugfs_add_job(struct hl_device *hdev,
4154
struct hl_cs_job *job)
4155
{
4156
}
4157
4158
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4159
struct hl_cs_job *job)
4160
{
4161
}
4162
4163
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4164
struct hl_userptr *userptr)
4165
{
4166
}
4167
4168
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4169
struct hl_userptr *userptr)
4170
{
4171
}
4172
4173
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4174
struct hl_ctx *ctx)
4175
{
4176
}
4177
4178
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4179
struct hl_ctx *ctx)
4180
{
4181
}
4182
4183
static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4184
char *data, unsigned long length)
4185
{
4186
}
4187
4188
#endif
4189
4190
/* Security */
4191
int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4192
const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4193
int array_size);
4194
int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4195
int mm_array_size, int offset, const u32 pb_blocks[],
4196
struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4197
void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4198
struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4199
int array_size);
4200
void hl_secure_block(struct hl_device *hdev,
4201
struct hl_block_glbl_sec sgs_array[], int array_size);
4202
int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4203
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4204
const u32 pb_blocks[], u32 blocks_array_size,
4205
const u32 *regs_array, u32 regs_array_size, u64 mask);
4206
int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4207
u32 num_instances, u32 instance_offset,
4208
const u32 pb_blocks[], u32 blocks_array_size,
4209
const u32 *regs_array, u32 regs_array_size);
4210
int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4211
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4212
const u32 pb_blocks[], u32 blocks_array_size,
4213
const struct range *regs_range_array, u32 regs_range_array_size,
4214
u64 mask);
4215
int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4216
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4217
const u32 pb_blocks[], u32 blocks_array_size,
4218
const struct range *regs_range_array,
4219
u32 regs_range_array_size);
4220
int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4221
u32 num_instances, u32 instance_offset,
4222
const u32 pb_blocks[], u32 blocks_array_size,
4223
const u32 *regs_array, u32 regs_array_size);
4224
int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4225
u32 num_instances, u32 instance_offset,
4226
const u32 pb_blocks[], u32 blocks_array_size,
4227
const struct range *regs_range_array,
4228
u32 regs_range_array_size);
4229
void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4230
u32 num_instances, u32 instance_offset,
4231
const u32 pb_blocks[], u32 blocks_array_size);
4232
void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4233
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4234
const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4235
void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4236
u32 num_instances, u32 instance_offset,
4237
const u32 pb_blocks[], u32 blocks_array_size);
4238
4239
/* IOCTLs */
4240
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4241
int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4242
int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4243
int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4244
int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4245
int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4246
int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4247
4248
#endif /* HABANALABSP_H_ */
4249
4250