Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/irq.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright 2016-2022 HabanaLabs, Ltd.
5
* All Rights Reserved.
6
*/
7
8
#include "habanalabs.h"
9
10
#include <linux/slab.h>
11
12
/**
13
* struct hl_eqe_work - This structure is used to schedule work of EQ
14
* entry and cpucp_reset event
15
*
16
* @eq_work: workqueue object to run when EQ entry is received
17
* @hdev: pointer to device structure
18
* @eq_entry: copy of the EQ entry
19
*/
20
struct hl_eqe_work {
21
struct work_struct eq_work;
22
struct hl_device *hdev;
23
struct hl_eq_entry eq_entry;
24
};
25
26
/**
27
* hl_cq_inc_ptr - increment ci or pi of cq
28
*
29
* @ptr: the current ci or pi value of the completion queue
30
*
31
* Increment ptr by 1. If it reaches the number of completion queue
32
* entries, set it to 0
33
*/
34
inline u32 hl_cq_inc_ptr(u32 ptr)
35
{
36
ptr++;
37
if (unlikely(ptr == HL_CQ_LENGTH))
38
ptr = 0;
39
return ptr;
40
}
41
42
/**
43
* hl_eq_inc_ptr - increment ci of eq
44
*
45
* @ptr: the current ci value of the event queue
46
*
47
* Increment ptr by 1. If it reaches the number of event queue
48
* entries, set it to 0
49
*/
50
static inline u32 hl_eq_inc_ptr(u32 ptr)
51
{
52
ptr++;
53
if (unlikely(ptr == HL_EQ_LENGTH))
54
ptr = 0;
55
return ptr;
56
}
57
58
static void irq_handle_eqe(struct work_struct *work)
59
{
60
struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61
eq_work);
62
struct hl_device *hdev = eqe_work->hdev;
63
64
hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65
66
kfree(eqe_work);
67
}
68
69
/**
70
* job_finish - queue job finish work
71
*
72
* @hdev: pointer to device structure
73
* @cs_seq: command submission sequence
74
* @cq: completion queue
75
* @timestamp: interrupt timestamp
76
*
77
*/
78
static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
79
{
80
struct hl_hw_queue *queue;
81
struct hl_cs_job *job;
82
83
queue = &hdev->kernel_queues[cq->hw_queue_id];
84
job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
85
job->timestamp = timestamp;
86
queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
87
88
atomic_inc(&queue->ci);
89
}
90
91
/**
92
* cs_finish - queue all cs jobs finish work
93
*
94
* @hdev: pointer to device structure
95
* @cs_seq: command submission sequence
96
* @timestamp: interrupt timestamp
97
*
98
*/
99
static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
100
{
101
struct asic_fixed_properties *prop = &hdev->asic_prop;
102
struct hl_hw_queue *queue;
103
struct hl_cs *cs;
104
struct hl_cs_job *job;
105
106
cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
107
if (!cs) {
108
dev_warn(hdev->dev,
109
"No pointer to CS in shadow array at index %d\n",
110
cs_seq);
111
return;
112
}
113
114
list_for_each_entry(job, &cs->job_list, cs_node) {
115
queue = &hdev->kernel_queues[job->hw_queue_id];
116
atomic_inc(&queue->ci);
117
}
118
119
cs->completion_timestamp = timestamp;
120
queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
121
}
122
123
/**
124
* hl_irq_handler_cq - irq handler for completion queue
125
*
126
* @irq: irq number
127
* @arg: pointer to completion queue structure
128
*
129
*/
130
irqreturn_t hl_irq_handler_cq(int irq, void *arg)
131
{
132
struct hl_cq *cq = arg;
133
struct hl_device *hdev = cq->hdev;
134
bool shadow_index_valid, entry_ready;
135
u16 shadow_index;
136
struct hl_cq_entry *cq_entry, *cq_base;
137
ktime_t timestamp = ktime_get();
138
139
if (hdev->disabled) {
140
dev_dbg(hdev->dev,
141
"Device disabled but received IRQ %d for CQ %d\n",
142
irq, cq->hw_queue_id);
143
return IRQ_HANDLED;
144
}
145
146
cq_base = cq->kernel_address;
147
148
while (1) {
149
cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
150
151
entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
152
le32_to_cpu(cq_entry->data));
153
if (!entry_ready)
154
break;
155
156
/* Make sure we read CQ entry contents after we've
157
* checked the ownership bit.
158
*/
159
dma_rmb();
160
161
shadow_index_valid =
162
!!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
163
le32_to_cpu(cq_entry->data));
164
165
shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
166
le32_to_cpu(cq_entry->data));
167
168
/*
169
* CQ interrupt handler has 2 modes of operation:
170
* 1. Interrupt per CS completion: (Single CQ for all queues)
171
* CQ entry represents a completed CS
172
*
173
* 2. Interrupt per CS job completion in queue: (CQ per queue)
174
* CQ entry represents a completed job in a certain queue
175
*/
176
if (shadow_index_valid && !hdev->disabled) {
177
if (hdev->asic_prop.completion_mode ==
178
HL_COMPLETION_MODE_CS)
179
cs_finish(hdev, shadow_index, timestamp);
180
else
181
job_finish(hdev, shadow_index, cq, timestamp);
182
}
183
184
/* Clear CQ entry ready bit */
185
cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
186
~CQ_ENTRY_READY_MASK);
187
188
cq->ci = hl_cq_inc_ptr(cq->ci);
189
190
/* Increment free slots */
191
atomic_inc(&cq->free_slots_cnt);
192
}
193
194
return IRQ_HANDLED;
195
}
196
197
/*
198
* hl_ts_free_objects - handler of the free objects workqueue.
199
* This function should put refcount to objects that the registration node
200
* took refcount to them.
201
* @work: workqueue object pointer
202
*/
203
static void hl_ts_free_objects(struct work_struct *work)
204
{
205
struct timestamp_reg_work_obj *job =
206
container_of(work, struct timestamp_reg_work_obj, free_obj);
207
struct list_head *dynamic_alloc_free_list_head = job->dynamic_alloc_free_obj_head;
208
struct timestamp_reg_free_node *free_obj, *temp_free_obj;
209
struct list_head *free_list_head = job->free_obj_head;
210
211
struct hl_device *hdev = job->hdev;
212
213
list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
214
dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
215
free_obj->buf,
216
free_obj->cq_cb);
217
218
hl_mmap_mem_buf_put(free_obj->buf);
219
hl_cb_put(free_obj->cq_cb);
220
atomic_set(&free_obj->in_use, 0);
221
}
222
223
kfree(free_list_head);
224
225
if (dynamic_alloc_free_list_head) {
226
list_for_each_entry_safe(free_obj, temp_free_obj, dynamic_alloc_free_list_head,
227
free_objects_node) {
228
dev_dbg(hdev->dev,
229
"Dynamic_Alloc list: About to put refcount to buf (%p) cq_cb(%p)\n",
230
free_obj->buf,
231
free_obj->cq_cb);
232
233
hl_mmap_mem_buf_put(free_obj->buf);
234
hl_cb_put(free_obj->cq_cb);
235
list_del(&free_obj->free_objects_node);
236
kfree(free_obj);
237
}
238
239
kfree(dynamic_alloc_free_list_head);
240
}
241
242
kfree(job);
243
}
244
245
/*
246
* This function called with spin_lock of wait_list_lock taken
247
* This function will set timestamp and delete the registration node from the
248
* wait_list_lock.
249
* and since we're protected with spin_lock here, so we cannot just put the refcount
250
* for the objects here, since the release function may be called and it's also a long
251
* logic (which might sleep also) that cannot be handled in irq context.
252
* so here we'll be filling a list with nodes of "put" jobs and then will send this
253
* list to a dedicated workqueue to do the actual put.
254
*/
255
static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
256
struct list_head **free_list,
257
struct list_head **dynamic_alloc_list,
258
struct hl_user_interrupt *intr)
259
{
260
struct hl_ts_free_jobs *ts_free_jobs_data;
261
struct timestamp_reg_free_node *free_node;
262
u32 free_node_index;
263
u64 timestamp;
264
265
ts_free_jobs_data = &intr->ts_free_jobs_data;
266
free_node_index = ts_free_jobs_data->next_avail_free_node_idx;
267
268
if (!(*free_list)) {
269
/* Alloc/Init the timestamp registration free objects list */
270
*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
271
if (!(*free_list))
272
return -ENOMEM;
273
274
INIT_LIST_HEAD(*free_list);
275
}
276
277
free_node = &ts_free_jobs_data->free_nodes_pool[free_node_index];
278
if (atomic_cmpxchg(&free_node->in_use, 0, 1)) {
279
dev_dbg(hdev->dev,
280
"Timestamp free node pool is full, buff: %p, record: %p, irq: %u\n",
281
pend->ts_reg_info.buf,
282
pend,
283
intr->interrupt_id);
284
285
if (!(*dynamic_alloc_list)) {
286
*dynamic_alloc_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
287
if (!(*dynamic_alloc_list))
288
return -ENOMEM;
289
290
INIT_LIST_HEAD(*dynamic_alloc_list);
291
}
292
293
free_node = kmalloc(sizeof(struct timestamp_reg_free_node), GFP_ATOMIC);
294
if (!free_node)
295
return -ENOMEM;
296
297
free_node->dynamic_alloc = 1;
298
}
299
300
timestamp = ktime_to_ns(intr->timestamp);
301
302
*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
303
304
dev_dbg(hdev->dev, "Irq handle: Timestamp record (%p) ts cb address (%p), interrupt_id: %u\n",
305
pend, pend->ts_reg_info.timestamp_kernel_addr, intr->interrupt_id);
306
307
list_del(&pend->list_node);
308
309
/* Putting the refcount for ts_buff and cq_cb objects will be handled
310
* in workqueue context, just add job to free_list.
311
*/
312
free_node->buf = pend->ts_reg_info.buf;
313
free_node->cq_cb = pend->ts_reg_info.cq_cb;
314
315
if (free_node->dynamic_alloc) {
316
list_add(&free_node->free_objects_node, *dynamic_alloc_list);
317
} else {
318
ts_free_jobs_data->next_avail_free_node_idx =
319
(++free_node_index) % ts_free_jobs_data->free_nodes_length;
320
list_add(&free_node->free_objects_node, *free_list);
321
}
322
323
/* Mark TS record as free */
324
pend->ts_reg_info.in_use = false;
325
326
return 0;
327
}
328
329
static void handle_user_interrupt_ts_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
330
{
331
struct list_head *ts_reg_free_list_head = NULL, *dynamic_alloc_list_head = NULL;
332
struct hl_user_pending_interrupt *pend, *temp_pend;
333
struct timestamp_reg_work_obj *job;
334
bool reg_node_handle_fail = false;
335
unsigned long flags;
336
int rc;
337
338
/* For registration nodes:
339
* As part of handling the registration nodes, we should put refcount to
340
* some objects. the problem is that we cannot do that under spinlock
341
* or in irq handler context at all (since release functions are long and
342
* might sleep), so we will need to handle that part in workqueue context.
343
* To avoid handling kmalloc failure which compels us rolling back actions
344
* and move nodes hanged on the free list back to the interrupt ts list
345
* we always alloc the job of the WQ at the beginning.
346
*/
347
job = kmalloc(sizeof(*job), GFP_ATOMIC);
348
if (!job)
349
return;
350
351
spin_lock_irqsave(&intr->ts_list_lock, flags);
352
list_for_each_entry_safe(pend, temp_pend, &intr->ts_list_head, list_node) {
353
if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
354
!pend->cq_kernel_addr) {
355
if (!reg_node_handle_fail) {
356
rc = handle_registration_node(hdev, pend,
357
&ts_reg_free_list_head,
358
&dynamic_alloc_list_head, intr);
359
if (rc)
360
reg_node_handle_fail = true;
361
}
362
}
363
}
364
spin_unlock_irqrestore(&intr->ts_list_lock, flags);
365
366
if (ts_reg_free_list_head) {
367
INIT_WORK(&job->free_obj, hl_ts_free_objects);
368
job->free_obj_head = ts_reg_free_list_head;
369
job->dynamic_alloc_free_obj_head = dynamic_alloc_list_head;
370
job->hdev = hdev;
371
queue_work(hdev->ts_free_obj_wq, &job->free_obj);
372
} else {
373
kfree(job);
374
}
375
}
376
377
static void handle_user_interrupt_wait_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
378
{
379
struct hl_user_pending_interrupt *pend, *temp_pend;
380
unsigned long flags;
381
382
spin_lock_irqsave(&intr->wait_list_lock, flags);
383
list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, list_node) {
384
if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
385
!pend->cq_kernel_addr) {
386
/* Handle wait target value node */
387
pend->fence.timestamp = intr->timestamp;
388
complete_all(&pend->fence.completion);
389
}
390
}
391
spin_unlock_irqrestore(&intr->wait_list_lock, flags);
392
}
393
394
static void handle_tpc_interrupt(struct hl_device *hdev)
395
{
396
u64 event_mask;
397
u32 flags;
398
399
event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT |
400
HL_NOTIFIER_EVENT_USER_ENGINE_ERR |
401
HL_NOTIFIER_EVENT_DEVICE_RESET;
402
403
flags = HL_DRV_RESET_DELAY;
404
405
dev_err_ratelimited(hdev->dev, "Received TPC assert\n");
406
hl_device_cond_reset(hdev, flags, event_mask);
407
}
408
409
static void handle_unexpected_user_interrupt(struct hl_device *hdev)
410
{
411
dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n");
412
}
413
414
/**
415
* hl_irq_user_interrupt_handler - irq handler for user interrupts.
416
*
417
* @irq: irq number
418
* @arg: pointer to user interrupt structure
419
*/
420
irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg)
421
{
422
struct hl_user_interrupt *user_int = arg;
423
struct hl_device *hdev = user_int->hdev;
424
425
user_int->timestamp = ktime_get();
426
switch (user_int->type) {
427
case HL_USR_INTERRUPT_CQ:
428
/* First handle user waiters threads */
429
handle_user_interrupt_wait_list(hdev, &hdev->common_user_cq_interrupt);
430
handle_user_interrupt_wait_list(hdev, user_int);
431
432
/* Second handle user timestamp registrations */
433
handle_user_interrupt_ts_list(hdev, &hdev->common_user_cq_interrupt);
434
handle_user_interrupt_ts_list(hdev, user_int);
435
break;
436
case HL_USR_INTERRUPT_DECODER:
437
handle_user_interrupt_wait_list(hdev, &hdev->common_decoder_interrupt);
438
439
/* Handle decoder interrupt registered on this specific irq */
440
handle_user_interrupt_wait_list(hdev, user_int);
441
break;
442
default:
443
break;
444
}
445
446
return IRQ_HANDLED;
447
}
448
449
/**
450
* hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts.
451
* This function is invoked by threaded irq mechanism
452
*
453
* @irq: irq number
454
* @arg: pointer to user interrupt structure
455
*
456
*/
457
irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg)
458
{
459
struct hl_user_interrupt *user_int = arg;
460
struct hl_device *hdev = user_int->hdev;
461
462
user_int->timestamp = ktime_get();
463
switch (user_int->type) {
464
case HL_USR_INTERRUPT_TPC:
465
handle_tpc_interrupt(hdev);
466
break;
467
case HL_USR_INTERRUPT_UNEXPECTED:
468
handle_unexpected_user_interrupt(hdev);
469
break;
470
default:
471
break;
472
}
473
474
return IRQ_HANDLED;
475
}
476
477
irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg)
478
{
479
u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
480
struct hl_device *hdev = arg;
481
482
dev_err(hdev->dev, "EQ error interrupt received\n");
483
484
hl_device_cond_reset(hdev, HL_DRV_RESET_HARD, event_mask);
485
486
return IRQ_HANDLED;
487
}
488
489
/**
490
* hl_irq_handler_eq - irq handler for event queue
491
*
492
* @irq: irq number
493
* @arg: pointer to event queue structure
494
*
495
*/
496
irqreturn_t hl_irq_handler_eq(int irq, void *arg)
497
{
498
struct hl_eq *eq = arg;
499
struct hl_device *hdev = eq->hdev;
500
struct hl_eq_entry *eq_entry;
501
struct hl_eq_entry *eq_base;
502
struct hl_eqe_work *handle_eqe_work;
503
bool entry_ready;
504
u32 cur_eqe, ctl;
505
u16 cur_eqe_index, event_type;
506
507
eq_base = eq->kernel_address;
508
509
while (1) {
510
cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
511
entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
512
513
if (!entry_ready)
514
break;
515
516
cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
517
if ((hdev->event_queue.check_eqe_index) &&
518
(((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) {
519
dev_err(hdev->dev,
520
"EQE %#x in queue is ready but index does not match %d!=%d",
521
cur_eqe,
522
((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
523
cur_eqe_index);
524
break;
525
}
526
527
eq->prev_eqe_index++;
528
529
eq_entry = &eq_base[eq->ci];
530
531
/*
532
* Make sure we read EQ entry contents after we've
533
* checked the ownership bit.
534
*/
535
dma_rmb();
536
537
if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
538
ctl = le32_to_cpu(eq_entry->hdr.ctl);
539
event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
540
dev_warn(hdev->dev,
541
"Device disabled but received an EQ event (%u)\n", event_type);
542
goto skip_irq;
543
}
544
545
handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
546
if (handle_eqe_work) {
547
INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
548
handle_eqe_work->hdev = hdev;
549
550
memcpy(&handle_eqe_work->eq_entry, eq_entry,
551
sizeof(*eq_entry));
552
553
queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
554
}
555
skip_irq:
556
/* Clear EQ entry ready bit */
557
eq_entry->hdr.ctl =
558
cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
559
~EQ_CTL_READY_MASK);
560
561
eq->ci = hl_eq_inc_ptr(eq->ci);
562
563
hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
564
}
565
566
return IRQ_HANDLED;
567
}
568
569
/**
570
* hl_irq_handler_dec_abnrm - Decoder error interrupt handler
571
* @irq: IRQ number
572
* @arg: pointer to decoder structure.
573
*/
574
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
575
{
576
struct hl_dec *dec = arg;
577
578
schedule_work(&dec->abnrm_intr_work);
579
580
return IRQ_HANDLED;
581
}
582
583
/**
584
* hl_cq_init - main initialization function for an cq object
585
*
586
* @hdev: pointer to device structure
587
* @q: pointer to cq structure
588
* @hw_queue_id: The H/W queue ID this completion queue belongs to
589
* HL_INVALID_QUEUE if cq is not attached to any specific queue
590
*
591
* Allocate dma-able memory for the completion queue and initialize fields
592
* Returns 0 on success
593
*/
594
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
595
{
596
void *p;
597
598
p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
599
GFP_KERNEL | __GFP_ZERO);
600
if (!p)
601
return -ENOMEM;
602
603
q->hdev = hdev;
604
q->kernel_address = p;
605
q->hw_queue_id = hw_queue_id;
606
q->ci = 0;
607
q->pi = 0;
608
609
atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
610
611
return 0;
612
}
613
614
/**
615
* hl_cq_fini - destroy completion queue
616
*
617
* @hdev: pointer to device structure
618
* @q: pointer to cq structure
619
*
620
* Free the completion queue memory
621
*/
622
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
623
{
624
hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
625
}
626
627
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
628
{
629
q->ci = 0;
630
q->pi = 0;
631
632
atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
633
634
/*
635
* It's not enough to just reset the PI/CI because the H/W may have
636
* written valid completion entries before it was halted and therefore
637
* we need to clean the actual queues so we won't process old entries
638
* when the device is operational again
639
*/
640
641
memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
642
}
643
644
/**
645
* hl_eq_init - main initialization function for an event queue object
646
*
647
* @hdev: pointer to device structure
648
* @q: pointer to eq structure
649
*
650
* Allocate dma-able memory for the event queue and initialize fields
651
* Returns 0 on success
652
*/
653
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
654
{
655
u32 size = hdev->asic_prop.fw_event_queue_size ? : HL_EQ_SIZE_IN_BYTES;
656
void *p;
657
658
p = hl_cpu_accessible_dma_pool_alloc(hdev, size, &q->bus_address);
659
if (!p)
660
return -ENOMEM;
661
662
q->hdev = hdev;
663
q->kernel_address = p;
664
q->size = size;
665
q->ci = 0;
666
q->prev_eqe_index = 0;
667
668
return 0;
669
}
670
671
/**
672
* hl_eq_fini - destroy event queue
673
*
674
* @hdev: pointer to device structure
675
* @q: pointer to eq structure
676
*
677
* Free the event queue memory
678
*/
679
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
680
{
681
flush_workqueue(hdev->eq_wq);
682
683
hl_cpu_accessible_dma_pool_free(hdev, q->size, q->kernel_address);
684
}
685
686
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
687
{
688
q->ci = 0;
689
q->prev_eqe_index = 0;
690
691
/*
692
* It's not enough to just reset the PI/CI because the H/W may have
693
* written valid completion entries before it was halted and therefore
694
* we need to clean the actual queues so we won't process old entries
695
* when the device is operational again
696
*/
697
698
memset(q->kernel_address, 0, q->size);
699
}
700
701
void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q)
702
{
703
u32 eq_length, eqe_size, ctl, ready, mode, type, index;
704
struct hl_eq_header *hdr;
705
u8 *ptr;
706
int i;
707
708
eq_length = HL_EQ_LENGTH;
709
eqe_size = q->size / HL_EQ_LENGTH;
710
711
dev_info(hdev->dev, "Contents of EQ entries headers:\n");
712
713
for (i = 0, ptr = q->kernel_address ; i < eq_length ; ++i, ptr += eqe_size) {
714
hdr = (struct hl_eq_header *) ptr;
715
ctl = le32_to_cpu(hdr->ctl);
716
ready = FIELD_GET(EQ_CTL_READY_MASK, ctl);
717
mode = FIELD_GET(EQ_CTL_EVENT_MODE_MASK, ctl);
718
type = FIELD_GET(EQ_CTL_EVENT_TYPE_MASK, ctl);
719
index = FIELD_GET(EQ_CTL_INDEX_MASK, ctl);
720
721
dev_info(hdev->dev, "%02u: %#010x [ready: %u, mode %u, type %04u, index %05u]\n",
722
i, ctl, ready, mode, type, index);
723
}
724
}
725
726