Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/memory.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright 2016-2022 HabanaLabs, Ltd.
5
* All Rights Reserved.
6
*/
7
8
#include <uapi/drm/habanalabs_accel.h>
9
#include "habanalabs.h"
10
#include "../include/hw_ip/mmu/mmu_general.h"
11
12
#include <linux/uaccess.h>
13
#include <linux/slab.h>
14
#include <linux/vmalloc.h>
15
#include <linux/pci-p2pdma.h>
16
17
MODULE_IMPORT_NS("DMA_BUF");
18
19
#define HL_MMU_DEBUG 0
20
21
/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22
#define DRAM_POOL_PAGE_SIZE SZ_8M
23
24
#define MEM_HANDLE_INVALID ULONG_MAX
25
26
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27
struct hl_mem_in *args, u64 *handle);
28
29
static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30
{
31
struct asic_fixed_properties *prop = &hdev->asic_prop;
32
u64 psize;
33
34
/*
35
* for ASIC that supports setting the allocation page size by user we will address
36
* user's choice only if it is not 0 (as 0 means taking the default page size)
37
*/
38
if (prop->supports_user_set_page_size && args->alloc.page_size) {
39
psize = args->alloc.page_size;
40
41
if (!is_power_of_2(psize)) {
42
dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43
return -EINVAL;
44
}
45
} else {
46
psize = prop->device_mem_alloc_default_page_size;
47
}
48
49
*page_size = psize;
50
51
return 0;
52
}
53
54
/*
55
* The va ranges in context object contain a list with the available chunks of
56
* device virtual memory.
57
* There is one range for host allocations and one for DRAM allocations.
58
*
59
* On initialization each range contains one chunk of all of its available
60
* virtual range which is a half of the total device virtual range.
61
*
62
* On each mapping of physical pages, a suitable virtual range chunk (with a
63
* minimum size) is selected from the list. If the chunk size equals the
64
* requested size, the chunk is returned. Otherwise, the chunk is split into
65
* two chunks - one to return as result and a remainder to stay in the list.
66
*
67
* On each Unmapping of a virtual address, the relevant virtual chunk is
68
* returned to the list. The chunk is added to the list and if its edges match
69
* the edges of the adjacent chunks (means a contiguous chunk can be created),
70
* the chunks are merged.
71
*
72
* On finish, the list is checked to have only one chunk of all the relevant
73
* virtual range (which is a half of the device total virtual range).
74
* If not (means not all mappings were unmapped), a warning is printed.
75
*/
76
77
/*
78
* alloc_device_memory() - allocate device memory.
79
* @ctx: pointer to the context structure.
80
* @args: host parameters containing the requested size.
81
* @ret_handle: result handle.
82
*
83
* This function does the following:
84
* - Allocate the requested size rounded up to 'dram_page_size' pages.
85
* - Return unique handle for later map/unmap/free.
86
*/
87
static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88
u32 *ret_handle)
89
{
90
struct hl_device *hdev = ctx->hdev;
91
struct hl_vm *vm = &hdev->vm;
92
struct hl_vm_phys_pg_pack *phys_pg_pack;
93
u64 paddr = 0, total_size, num_pgs, i;
94
u32 num_curr_pgs, page_size;
95
bool contiguous;
96
int handle, rc;
97
98
num_curr_pgs = 0;
99
100
rc = set_alloc_page_size(hdev, args, &page_size);
101
if (rc)
102
return rc;
103
104
num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105
total_size = num_pgs * page_size;
106
107
if (!total_size) {
108
dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109
return -EINVAL;
110
}
111
112
contiguous = args->flags & HL_MEM_CONTIGUOUS;
113
114
if (contiguous) {
115
if (is_power_of_2(page_size))
116
paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117
total_size, NULL, page_size);
118
else
119
paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120
if (!paddr) {
121
dev_err(hdev->dev,
122
"Cannot allocate %llu contiguous pages with total size of %llu\n",
123
num_pgs, total_size);
124
return -ENOMEM;
125
}
126
}
127
128
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129
if (!phys_pg_pack) {
130
rc = -ENOMEM;
131
goto pages_pack_err;
132
}
133
134
phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135
phys_pg_pack->asid = ctx->asid;
136
phys_pg_pack->npages = num_pgs;
137
phys_pg_pack->page_size = page_size;
138
phys_pg_pack->total_size = total_size;
139
phys_pg_pack->flags = args->flags;
140
phys_pg_pack->contiguous = contiguous;
141
142
phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143
if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144
rc = -ENOMEM;
145
goto pages_arr_err;
146
}
147
148
if (phys_pg_pack->contiguous) {
149
for (i = 0 ; i < num_pgs ; i++)
150
phys_pg_pack->pages[i] = paddr + i * page_size;
151
} else {
152
for (i = 0 ; i < num_pgs ; i++) {
153
if (is_power_of_2(page_size))
154
phys_pg_pack->pages[i] =
155
(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156
page_size, NULL,
157
page_size);
158
else
159
phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160
page_size);
161
162
if (!phys_pg_pack->pages[i]) {
163
dev_err(hdev->dev,
164
"Cannot allocate device memory (out of memory)\n");
165
rc = -ENOMEM;
166
goto page_err;
167
}
168
169
num_curr_pgs++;
170
}
171
}
172
173
spin_lock(&vm->idr_lock);
174
handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175
GFP_ATOMIC);
176
spin_unlock(&vm->idr_lock);
177
178
if (handle < 0) {
179
dev_err(hdev->dev, "Failed to get handle for page\n");
180
rc = -EFAULT;
181
goto idr_err;
182
}
183
184
for (i = 0 ; i < num_pgs ; i++)
185
kref_get(&vm->dram_pg_pool_refcount);
186
187
phys_pg_pack->handle = handle;
188
189
atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190
atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191
192
*ret_handle = handle;
193
194
return 0;
195
196
idr_err:
197
page_err:
198
if (!phys_pg_pack->contiguous)
199
for (i = 0 ; i < num_curr_pgs ; i++)
200
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201
page_size);
202
203
kvfree(phys_pg_pack->pages);
204
pages_arr_err:
205
kfree(phys_pg_pack);
206
pages_pack_err:
207
if (contiguous)
208
gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209
210
return rc;
211
}
212
213
/**
214
* dma_map_host_va() - DMA mapping of the given host virtual address.
215
* @hdev: habanalabs device structure.
216
* @addr: the host virtual address of the memory area.
217
* @size: the size of the memory area.
218
* @p_userptr: pointer to result userptr structure.
219
*
220
* This function does the following:
221
* - Allocate userptr structure.
222
* - Pin the given host memory using the userptr structure.
223
* - Perform DMA mapping to have the DMA addresses of the pages.
224
*/
225
static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226
struct hl_userptr **p_userptr)
227
{
228
struct hl_userptr *userptr;
229
int rc;
230
231
userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232
if (!userptr) {
233
rc = -ENOMEM;
234
goto userptr_err;
235
}
236
237
rc = hl_pin_host_memory(hdev, addr, size, userptr);
238
if (rc)
239
goto pin_err;
240
241
userptr->dma_mapped = true;
242
userptr->dir = DMA_BIDIRECTIONAL;
243
userptr->vm_type = VM_TYPE_USERPTR;
244
245
*p_userptr = userptr;
246
247
rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248
if (rc) {
249
dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250
goto dma_map_err;
251
}
252
253
return 0;
254
255
dma_map_err:
256
hl_unpin_host_memory(hdev, userptr);
257
pin_err:
258
kfree(userptr);
259
userptr_err:
260
261
return rc;
262
}
263
264
/**
265
* dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266
* @hdev: habanalabs device structure.
267
* @userptr: userptr to free.
268
*
269
* This function does the following:
270
* - Unpins the physical pages.
271
* - Frees the userptr structure.
272
*/
273
static void dma_unmap_host_va(struct hl_device *hdev,
274
struct hl_userptr *userptr)
275
{
276
hl_unpin_host_memory(hdev, userptr);
277
kfree(userptr);
278
}
279
280
/**
281
* dram_pg_pool_do_release() - free DRAM pages pool
282
* @ref: pointer to reference object.
283
*
284
* This function does the following:
285
* - Frees the idr structure of physical pages handles.
286
* - Frees the generic pool of DRAM physical pages.
287
*/
288
static void dram_pg_pool_do_release(struct kref *ref)
289
{
290
struct hl_vm *vm = container_of(ref, struct hl_vm,
291
dram_pg_pool_refcount);
292
293
/*
294
* free the idr here as only here we know for sure that there are no
295
* allocated physical pages and hence there are no handles in use
296
*/
297
idr_destroy(&vm->phys_pg_pack_handles);
298
gen_pool_destroy(vm->dram_pg_pool);
299
}
300
301
/**
302
* free_phys_pg_pack() - free physical page pack.
303
* @hdev: habanalabs device structure.
304
* @phys_pg_pack: physical page pack to free.
305
*
306
* This function does the following:
307
* - For DRAM memory only
308
* - iterate over the pack, free each physical block structure by
309
* returning it to the general pool.
310
* - Free the hl_vm_phys_pg_pack structure.
311
*/
312
static void free_phys_pg_pack(struct hl_device *hdev,
313
struct hl_vm_phys_pg_pack *phys_pg_pack)
314
{
315
struct hl_vm *vm = &hdev->vm;
316
u64 i;
317
318
if (phys_pg_pack->created_from_userptr)
319
goto end;
320
321
if (phys_pg_pack->contiguous) {
322
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323
phys_pg_pack->total_size);
324
325
for (i = 0; i < phys_pg_pack->npages ; i++)
326
kref_put(&vm->dram_pg_pool_refcount,
327
dram_pg_pool_do_release);
328
} else {
329
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330
gen_pool_free(vm->dram_pg_pool,
331
phys_pg_pack->pages[i],
332
phys_pg_pack->page_size);
333
kref_put(&vm->dram_pg_pool_refcount,
334
dram_pg_pool_do_release);
335
}
336
}
337
338
end:
339
kvfree(phys_pg_pack->pages);
340
kfree(phys_pg_pack);
341
342
return;
343
}
344
345
/**
346
* free_device_memory() - free device memory.
347
* @ctx: pointer to the context structure.
348
* @args: host parameters containing the requested size.
349
*
350
* This function does the following:
351
* - Free the device memory related to the given handle.
352
*/
353
static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354
{
355
struct hl_device *hdev = ctx->hdev;
356
struct hl_vm *vm = &hdev->vm;
357
struct hl_vm_phys_pg_pack *phys_pg_pack;
358
u32 handle = args->free.handle;
359
360
spin_lock(&vm->idr_lock);
361
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362
if (!phys_pg_pack) {
363
spin_unlock(&vm->idr_lock);
364
dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365
return -EINVAL;
366
}
367
368
if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369
spin_unlock(&vm->idr_lock);
370
dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371
return -EINVAL;
372
}
373
374
/* must remove from idr before the freeing of the physical pages as the refcount of the pool
375
* is also the trigger of the idr destroy
376
*/
377
idr_remove(&vm->phys_pg_pack_handles, handle);
378
spin_unlock(&vm->idr_lock);
379
380
atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381
atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382
383
free_phys_pg_pack(hdev, phys_pg_pack);
384
385
return 0;
386
}
387
388
/**
389
* clear_va_list_locked() - free virtual addresses list.
390
* @hdev: habanalabs device structure.
391
* @va_list: list of virtual addresses to free.
392
*
393
* This function does the following:
394
* - Iterate over the list and free each virtual addresses block.
395
*
396
* This function should be called only when va_list lock is taken.
397
*/
398
static void clear_va_list_locked(struct hl_device *hdev,
399
struct list_head *va_list)
400
{
401
struct hl_vm_va_block *va_block, *tmp;
402
403
list_for_each_entry_safe(va_block, tmp, va_list, node) {
404
list_del(&va_block->node);
405
kfree(va_block);
406
}
407
}
408
409
/**
410
* print_va_list_locked() - print virtual addresses list.
411
* @hdev: habanalabs device structure.
412
* @va_list: list of virtual addresses to print.
413
*
414
* This function does the following:
415
* - Iterate over the list and print each virtual addresses block.
416
*
417
* This function should be called only when va_list lock is taken.
418
*/
419
static void print_va_list_locked(struct hl_device *hdev,
420
struct list_head *va_list)
421
{
422
#if HL_MMU_DEBUG
423
struct hl_vm_va_block *va_block;
424
425
dev_dbg(hdev->dev, "print va list:\n");
426
427
list_for_each_entry(va_block, va_list, node)
428
dev_dbg(hdev->dev,
429
"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430
va_block->start, va_block->end, va_block->size);
431
#endif
432
}
433
434
/**
435
* merge_va_blocks_locked() - merge a virtual block if possible.
436
* @hdev: pointer to the habanalabs device structure.
437
* @va_list: pointer to the virtual addresses block list.
438
* @va_block: virtual block to merge with adjacent blocks.
439
*
440
* This function does the following:
441
* - Merge the given blocks with the adjacent blocks if their virtual ranges
442
* create a contiguous virtual range.
443
*
444
* This Function should be called only when va_list lock is taken.
445
*/
446
static void merge_va_blocks_locked(struct hl_device *hdev,
447
struct list_head *va_list, struct hl_vm_va_block *va_block)
448
{
449
struct hl_vm_va_block *prev, *next;
450
451
prev = list_prev_entry(va_block, node);
452
if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453
prev->end = va_block->end;
454
prev->size = prev->end - prev->start + 1;
455
list_del(&va_block->node);
456
kfree(va_block);
457
va_block = prev;
458
}
459
460
next = list_next_entry(va_block, node);
461
if (&next->node != va_list && va_block->end + 1 == next->start) {
462
next->start = va_block->start;
463
next->size = next->end - next->start + 1;
464
list_del(&va_block->node);
465
kfree(va_block);
466
}
467
}
468
469
/**
470
* add_va_block_locked() - add a virtual block to the virtual addresses list.
471
* @hdev: pointer to the habanalabs device structure.
472
* @va_list: pointer to the virtual addresses block list.
473
* @start: start virtual address.
474
* @end: end virtual address.
475
*
476
* This function does the following:
477
* - Add the given block to the virtual blocks list and merge with other blocks
478
* if a contiguous virtual block can be created.
479
*
480
* This Function should be called only when va_list lock is taken.
481
*/
482
static int add_va_block_locked(struct hl_device *hdev,
483
struct list_head *va_list, u64 start, u64 end)
484
{
485
struct hl_vm_va_block *va_block, *res = NULL;
486
u64 size = end - start + 1;
487
488
print_va_list_locked(hdev, va_list);
489
490
list_for_each_entry(va_block, va_list, node) {
491
/* TODO: remove upon matureness */
492
if (hl_mem_area_crosses_range(start, size, va_block->start,
493
va_block->end)) {
494
dev_err(hdev->dev,
495
"block crossing ranges at start 0x%llx, end 0x%llx\n",
496
va_block->start, va_block->end);
497
return -EINVAL;
498
}
499
500
if (va_block->end < start)
501
res = va_block;
502
}
503
504
va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505
if (!va_block)
506
return -ENOMEM;
507
508
va_block->start = start;
509
va_block->end = end;
510
va_block->size = size;
511
512
if (!res)
513
list_add(&va_block->node, va_list);
514
else
515
list_add(&va_block->node, &res->node);
516
517
merge_va_blocks_locked(hdev, va_list, va_block);
518
519
print_va_list_locked(hdev, va_list);
520
521
return 0;
522
}
523
524
/**
525
* add_va_block() - wrapper for add_va_block_locked.
526
* @hdev: pointer to the habanalabs device structure.
527
* @va_range: pointer to the virtual addresses range object.
528
* @start: start virtual address.
529
* @end: end virtual address.
530
*
531
* This function does the following:
532
* - Takes the list lock and calls add_va_block_locked.
533
*/
534
static inline int add_va_block(struct hl_device *hdev,
535
struct hl_va_range *va_range, u64 start, u64 end)
536
{
537
int rc;
538
539
mutex_lock(&va_range->lock);
540
rc = add_va_block_locked(hdev, &va_range->list, start, end);
541
mutex_unlock(&va_range->lock);
542
543
return rc;
544
}
545
546
/**
547
* is_hint_crossing_range() - check if hint address crossing specified reserved.
548
* @range_type: virtual space range type.
549
* @start_addr: start virtual address.
550
* @size: block size.
551
* @prop: asic properties structure to retrieve reserved ranges from.
552
*/
553
static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554
u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555
bool range_cross;
556
557
if (range_type == HL_VA_RANGE_TYPE_DRAM)
558
range_cross =
559
hl_mem_area_crosses_range(start_addr, size,
560
prop->hints_dram_reserved_va_range.start_addr,
561
prop->hints_dram_reserved_va_range.end_addr);
562
else if (range_type == HL_VA_RANGE_TYPE_HOST)
563
range_cross =
564
hl_mem_area_crosses_range(start_addr, size,
565
prop->hints_host_reserved_va_range.start_addr,
566
prop->hints_host_reserved_va_range.end_addr);
567
else
568
range_cross =
569
hl_mem_area_crosses_range(start_addr, size,
570
prop->hints_host_hpage_reserved_va_range.start_addr,
571
prop->hints_host_hpage_reserved_va_range.end_addr);
572
573
return range_cross;
574
}
575
576
/**
577
* get_va_block() - get a virtual block for the given size and alignment.
578
*
579
* @hdev: pointer to the habanalabs device structure.
580
* @va_range: pointer to the virtual addresses range.
581
* @size: requested block size.
582
* @hint_addr: hint for requested address by the user.
583
* @va_block_align: required alignment of the virtual block start address.
584
* @range_type: va range type (host, dram)
585
* @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586
*
587
* This function does the following:
588
* - Iterate on the virtual block list to find a suitable virtual block for the
589
* given size, hint address and alignment.
590
* - Reserve the requested block and update the list.
591
* - Return the start address of the virtual block.
592
*/
593
static u64 get_va_block(struct hl_device *hdev,
594
struct hl_va_range *va_range,
595
u64 size, u64 hint_addr, u32 va_block_align,
596
enum hl_va_range_type range_type,
597
u32 flags)
598
{
599
struct hl_vm_va_block *va_block, *new_va_block = NULL;
600
struct asic_fixed_properties *prop = &hdev->asic_prop;
601
u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602
align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603
dram_hint_mask = prop->dram_hints_align_mask;
604
bool add_prev = false;
605
bool is_align_pow_2 = is_power_of_2(va_range->page_size);
606
bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607
bool force_hint = flags & HL_MEM_FORCE_HINT;
608
int rc;
609
610
if (is_align_pow_2)
611
align_mask = ~((u64)va_block_align - 1);
612
else
613
/*
614
* with non-power-of-2 range we work only with page granularity
615
* and the start address is page aligned,
616
* so no need for alignment checking.
617
*/
618
size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619
va_range->page_size;
620
621
tmp_hint_addr = hint_addr & ~dram_hint_mask;
622
623
/* Check if we need to ignore hint address */
624
if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625
(!is_align_pow_2 && is_hint_dram_addr &&
626
do_div(tmp_hint_addr, va_range->page_size))) {
627
628
if (force_hint) {
629
/* Hint must be respected, so here we just fail */
630
dev_err(hdev->dev,
631
"Hint address 0x%llx is not page aligned - cannot be respected\n",
632
hint_addr);
633
return 0;
634
}
635
636
dev_dbg(hdev->dev,
637
"Hint address 0x%llx will be ignored because it is not aligned\n",
638
hint_addr);
639
hint_addr = 0;
640
}
641
642
mutex_lock(&va_range->lock);
643
644
print_va_list_locked(hdev, &va_range->list);
645
646
list_for_each_entry(va_block, &va_range->list, node) {
647
/* Calc the first possible aligned addr */
648
valid_start = va_block->start;
649
650
if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651
valid_start &= align_mask;
652
valid_start += va_block_align;
653
if (valid_start > va_block->end)
654
continue;
655
}
656
657
valid_size = va_block->end - valid_start + 1;
658
if (valid_size < size)
659
continue;
660
661
/*
662
* In case hint address is 0, and hints_range_reservation
663
* property enabled, then avoid allocating va blocks from the
664
* range reserved for hint addresses
665
*/
666
if (prop->hints_range_reservation && !hint_addr)
667
if (is_hint_crossing_range(range_type, valid_start,
668
size, prop))
669
continue;
670
671
/* Pick the minimal length block which has the required size */
672
if (!new_va_block || (valid_size < reserved_valid_size)) {
673
new_va_block = va_block;
674
reserved_valid_start = valid_start;
675
reserved_valid_size = valid_size;
676
}
677
678
if (hint_addr && hint_addr >= valid_start &&
679
(hint_addr + size) <= va_block->end) {
680
new_va_block = va_block;
681
reserved_valid_start = hint_addr;
682
reserved_valid_size = valid_size;
683
break;
684
}
685
}
686
687
if (!new_va_block) {
688
dev_err(hdev->dev, "no available va block for size %llu\n",
689
size);
690
goto out;
691
}
692
693
if (force_hint && reserved_valid_start != hint_addr) {
694
/* Hint address must be respected. If we are here - this means
695
* we could not respect it.
696
*/
697
dev_err(hdev->dev,
698
"Hint address 0x%llx could not be respected\n",
699
hint_addr);
700
reserved_valid_start = 0;
701
goto out;
702
}
703
704
/*
705
* Check if there is some leftover range due to reserving the new
706
* va block, then return it to the main virtual addresses list.
707
*/
708
if (reserved_valid_start > new_va_block->start) {
709
prev_start = new_va_block->start;
710
prev_end = reserved_valid_start - 1;
711
712
new_va_block->start = reserved_valid_start;
713
new_va_block->size = reserved_valid_size;
714
715
add_prev = true;
716
}
717
718
if (new_va_block->size > size) {
719
new_va_block->start += size;
720
new_va_block->size = new_va_block->end - new_va_block->start + 1;
721
} else {
722
list_del(&new_va_block->node);
723
kfree(new_va_block);
724
}
725
726
if (add_prev) {
727
rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728
if (rc) {
729
reserved_valid_start = 0;
730
goto out;
731
}
732
}
733
734
print_va_list_locked(hdev, &va_range->list);
735
out:
736
mutex_unlock(&va_range->lock);
737
738
return reserved_valid_start;
739
}
740
741
/*
742
* hl_reserve_va_block() - reserve a virtual block of a given size.
743
* @hdev: pointer to the habanalabs device structure.
744
* @ctx: current context
745
* @type: virtual addresses range type.
746
* @size: requested block size.
747
* @alignment: required alignment in bytes of the virtual block start address,
748
* 0 means no alignment.
749
*
750
* This function does the following:
751
* - Iterate on the virtual block list to find a suitable virtual block for the
752
* given size and alignment.
753
* - Reserve the requested block and update the list.
754
* - Return the start address of the virtual block.
755
*/
756
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757
enum hl_va_range_type type, u64 size, u32 alignment)
758
{
759
return get_va_block(hdev, ctx->va_range[type], size, 0,
760
max(alignment, ctx->va_range[type]->page_size),
761
type, 0);
762
}
763
764
/**
765
* hl_get_va_range_type() - get va_range type for the given address and size.
766
* @ctx: context to fetch va_range from.
767
* @address: the start address of the area we want to validate.
768
* @size: the size in bytes of the area we want to validate.
769
* @type: returned va_range type.
770
*
771
* Return: true if the area is inside a valid range, false otherwise.
772
*/
773
static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774
enum hl_va_range_type *type)
775
{
776
int i;
777
778
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779
if (hl_mem_area_inside_range(address, size,
780
ctx->va_range[i]->start_addr,
781
ctx->va_range[i]->end_addr)) {
782
*type = i;
783
return 0;
784
}
785
}
786
787
return -EINVAL;
788
}
789
790
/**
791
* hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792
* @hdev: pointer to the habanalabs device structure
793
* @ctx: pointer to the context structure.
794
* @start_addr: start virtual address.
795
* @size: number of bytes to unreserve.
796
*
797
* This function does the following:
798
* - Takes the list lock and calls add_va_block_locked.
799
*/
800
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801
u64 start_addr, u64 size)
802
{
803
enum hl_va_range_type type;
804
int rc;
805
806
rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807
if (rc) {
808
dev_err(hdev->dev,
809
"cannot find va_range for va %#llx size %llu",
810
start_addr, size);
811
return rc;
812
}
813
814
rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815
start_addr + size - 1);
816
if (rc)
817
dev_warn(hdev->dev,
818
"add va block failed for vaddr: 0x%llx\n", start_addr);
819
820
return rc;
821
}
822
823
/**
824
* init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825
* memory
826
* @ctx: pointer to the context structure.
827
* @userptr: userptr to initialize from.
828
* @pphys_pg_pack: result pointer.
829
* @force_regular_page: tell the function to ignore huge page optimization,
830
* even if possible. Needed for cases where the device VA
831
* is allocated before we know the composition of the
832
* physical pages
833
*
834
* This function does the following:
835
* - Create a physical page pack from the physical pages related to the given
836
* virtual block.
837
*/
838
static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
839
struct hl_userptr *userptr,
840
struct hl_vm_phys_pg_pack **pphys_pg_pack,
841
bool force_regular_page)
842
{
843
u32 npages, page_size = PAGE_SIZE,
844
huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
845
u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
846
struct hl_vm_phys_pg_pack *phys_pg_pack;
847
bool first = true, is_huge_page_opt;
848
u64 page_mask, total_npages;
849
struct scatterlist *sg;
850
dma_addr_t dma_addr;
851
int rc, i, j;
852
853
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
854
if (!phys_pg_pack)
855
return -ENOMEM;
856
857
phys_pg_pack->vm_type = userptr->vm_type;
858
phys_pg_pack->created_from_userptr = true;
859
phys_pg_pack->asid = ctx->asid;
860
atomic_set(&phys_pg_pack->mapping_cnt, 1);
861
862
is_huge_page_opt = (force_regular_page ? false : true);
863
864
/* Only if all dma_addrs are aligned to 2MB and their
865
* sizes is at least 2MB, we can use huge page mapping.
866
* We limit the 2MB optimization to this condition,
867
* since later on we acquire the related VA range as one
868
* consecutive block.
869
*/
870
total_npages = 0;
871
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
872
npages = hl_get_sg_info(sg, &dma_addr);
873
874
total_npages += npages;
875
876
if ((npages % pgs_in_huge_page) ||
877
(dma_addr & (huge_page_size - 1)))
878
is_huge_page_opt = false;
879
}
880
881
if (is_huge_page_opt) {
882
page_size = huge_page_size;
883
do_div(total_npages, pgs_in_huge_page);
884
}
885
886
page_mask = ~(((u64) page_size) - 1);
887
888
phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
889
GFP_KERNEL);
890
if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
891
rc = -ENOMEM;
892
goto page_pack_arr_mem_err;
893
}
894
895
phys_pg_pack->npages = total_npages;
896
phys_pg_pack->page_size = page_size;
897
phys_pg_pack->total_size = total_npages * page_size;
898
899
j = 0;
900
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
901
npages = hl_get_sg_info(sg, &dma_addr);
902
903
/* align down to physical page size and save the offset */
904
if (first) {
905
first = false;
906
phys_pg_pack->offset = dma_addr & (page_size - 1);
907
dma_addr &= page_mask;
908
}
909
910
while (npages) {
911
phys_pg_pack->pages[j++] = dma_addr;
912
dma_addr += page_size;
913
914
if (is_huge_page_opt)
915
npages -= pgs_in_huge_page;
916
else
917
npages--;
918
}
919
}
920
921
*pphys_pg_pack = phys_pg_pack;
922
923
return 0;
924
925
page_pack_arr_mem_err:
926
kfree(phys_pg_pack);
927
928
return rc;
929
}
930
931
/**
932
* map_phys_pg_pack() - maps the physical page pack..
933
* @ctx: pointer to the context structure.
934
* @vaddr: start address of the virtual area to map from.
935
* @phys_pg_pack: the pack of physical pages to map to.
936
*
937
* This function does the following:
938
* - Maps each chunk of virtual memory to matching physical chunk.
939
* - Stores number of successful mappings in the given argument.
940
* - Returns 0 on success, error code otherwise.
941
*/
942
static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
943
struct hl_vm_phys_pg_pack *phys_pg_pack)
944
{
945
struct hl_device *hdev = ctx->hdev;
946
u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
947
u32 page_size = phys_pg_pack->page_size;
948
int rc = 0;
949
bool is_host_addr;
950
951
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
952
paddr = phys_pg_pack->pages[i];
953
954
rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
955
(i + 1) == phys_pg_pack->npages);
956
if (rc) {
957
dev_err(hdev->dev,
958
"map failed (%d) for handle %u, npages: %llu, mapped: %llu\n",
959
rc, phys_pg_pack->handle, phys_pg_pack->npages,
960
mapped_pg_cnt);
961
goto err;
962
}
963
964
mapped_pg_cnt++;
965
next_vaddr += page_size;
966
}
967
968
return 0;
969
970
err:
971
is_host_addr = !hl_is_dram_va(hdev, vaddr);
972
973
next_vaddr = vaddr;
974
for (i = 0 ; i < mapped_pg_cnt ; i++) {
975
if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
976
(i + 1) == mapped_pg_cnt))
977
dev_warn_ratelimited(hdev->dev,
978
"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
979
phys_pg_pack->handle, next_vaddr,
980
phys_pg_pack->pages[i], page_size);
981
982
next_vaddr += page_size;
983
984
/*
985
* unmapping on Palladium can be really long, so avoid a CPU
986
* soft lockup bug by sleeping a little between unmapping pages
987
*
988
* In addition, on host num of pages could be huge,
989
* because page size could be 4KB, so when unmapping host
990
* pages sleep every 32K pages to avoid soft lockup
991
*/
992
if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
993
usleep_range(50, 200);
994
}
995
996
return rc;
997
}
998
999
/**
1000
* unmap_phys_pg_pack() - unmaps the physical page pack.
1001
* @ctx: pointer to the context structure.
1002
* @vaddr: start address of the virtual area to unmap.
1003
* @phys_pg_pack: the pack of physical pages to unmap.
1004
*/
1005
static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1006
struct hl_vm_phys_pg_pack *phys_pg_pack)
1007
{
1008
struct hl_device *hdev = ctx->hdev;
1009
u64 next_vaddr, i;
1010
bool is_host_addr;
1011
u32 page_size;
1012
1013
is_host_addr = !hl_is_dram_va(hdev, vaddr);
1014
page_size = phys_pg_pack->page_size;
1015
next_vaddr = vaddr;
1016
1017
for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1018
if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1019
(i + 1) == phys_pg_pack->npages))
1020
dev_warn_ratelimited(hdev->dev,
1021
"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1022
1023
/*
1024
* unmapping on Palladium can be really long, so avoid a CPU
1025
* soft lockup bug by sleeping a little between unmapping pages
1026
*
1027
* In addition, on host num of pages could be huge,
1028
* because page size could be 4KB, so when unmapping host
1029
* pages sleep every 32K pages to avoid soft lockup
1030
*/
1031
if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1032
usleep_range(50, 200);
1033
}
1034
}
1035
1036
/**
1037
* map_device_va() - map the given memory.
1038
* @ctx: pointer to the context structure.
1039
* @args: host parameters with handle/host virtual address.
1040
* @device_addr: pointer to result device virtual address.
1041
*
1042
* This function does the following:
1043
* - If given a physical device memory handle, map to a device virtual block
1044
* and return the start address of this block.
1045
* - If given a host virtual address and size, find the related physical pages,
1046
* map a device virtual block to this pages and return the start address of
1047
* this block.
1048
*/
1049
static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1050
{
1051
struct hl_vm_phys_pg_pack *phys_pg_pack;
1052
enum hl_va_range_type va_range_type = 0;
1053
struct hl_device *hdev = ctx->hdev;
1054
struct hl_userptr *userptr = NULL;
1055
u32 handle = 0, va_block_align;
1056
struct hl_vm_hash_node *hnode;
1057
struct hl_vm *vm = &hdev->vm;
1058
struct hl_va_range *va_range;
1059
bool is_userptr, do_prefetch;
1060
u64 ret_vaddr, hint_addr;
1061
enum vm_type *vm_type;
1062
int rc;
1063
1064
/* set map flags */
1065
is_userptr = args->flags & HL_MEM_USERPTR;
1066
do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1067
1068
/* Assume failure */
1069
*device_addr = 0;
1070
1071
if (is_userptr) {
1072
u64 addr = args->map_host.host_virt_addr,
1073
size = args->map_host.mem_size;
1074
u32 page_size = hdev->asic_prop.pmmu.page_size,
1075
huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1076
1077
rc = dma_map_host_va(hdev, addr, size, &userptr);
1078
if (rc)
1079
return rc;
1080
1081
rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082
&phys_pg_pack, false);
1083
if (rc) {
1084
dev_err(hdev->dev,
1085
"unable to init page pack for vaddr 0x%llx\n",
1086
addr);
1087
goto init_page_pack_err;
1088
}
1089
1090
vm_type = (enum vm_type *) userptr;
1091
hint_addr = args->map_host.hint_addr;
1092
handle = phys_pg_pack->handle;
1093
1094
/* get required alignment */
1095
if (phys_pg_pack->page_size == page_size) {
1096
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097
va_range_type = HL_VA_RANGE_TYPE_HOST;
1098
/*
1099
* huge page alignment may be needed in case of regular
1100
* page mapping, depending on the host VA alignment
1101
*/
1102
if (addr & (huge_page_size - 1))
1103
va_block_align = page_size;
1104
else
1105
va_block_align = huge_page_size;
1106
} else {
1107
/*
1108
* huge page alignment is needed in case of huge page
1109
* mapping
1110
*/
1111
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112
va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113
va_block_align = huge_page_size;
1114
}
1115
} else {
1116
handle = lower_32_bits(args->map_device.handle);
1117
1118
spin_lock(&vm->idr_lock);
1119
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1120
if (!phys_pg_pack) {
1121
spin_unlock(&vm->idr_lock);
1122
dev_err(hdev->dev,
1123
"no match for handle %u\n", handle);
1124
return -EINVAL;
1125
}
1126
1127
/* increment now to avoid freeing device memory while mapping */
1128
atomic_inc(&phys_pg_pack->mapping_cnt);
1129
1130
spin_unlock(&vm->idr_lock);
1131
1132
vm_type = (enum vm_type *) phys_pg_pack;
1133
1134
hint_addr = args->map_device.hint_addr;
1135
1136
/* DRAM VA alignment is the same as the MMU page size */
1137
va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138
va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139
va_block_align = hdev->asic_prop.dmmu.page_size;
1140
}
1141
1142
/*
1143
* relevant for mapping device physical memory only, as host memory is
1144
* implicitly shared
1145
*/
1146
if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147
phys_pg_pack->asid != ctx->asid) {
1148
dev_err(hdev->dev,
1149
"Failed to map memory, handle %u is not shared\n",
1150
handle);
1151
rc = -EPERM;
1152
goto shared_err;
1153
}
1154
1155
hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1156
if (!hnode) {
1157
rc = -ENOMEM;
1158
goto hnode_err;
1159
}
1160
1161
if (hint_addr && phys_pg_pack->offset) {
1162
if (args->flags & HL_MEM_FORCE_HINT) {
1163
/* Fail if hint must be respected but it can't be */
1164
dev_err(hdev->dev,
1165
"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166
hint_addr, phys_pg_pack->offset);
1167
rc = -EINVAL;
1168
goto va_block_err;
1169
}
1170
dev_dbg(hdev->dev,
1171
"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172
hint_addr, phys_pg_pack->offset);
1173
}
1174
1175
ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1176
hint_addr, va_block_align,
1177
va_range_type, args->flags);
1178
if (!ret_vaddr) {
1179
dev_err(hdev->dev, "no available va block for handle %u\n",
1180
handle);
1181
rc = -ENOMEM;
1182
goto va_block_err;
1183
}
1184
1185
mutex_lock(&hdev->mmu_lock);
1186
1187
rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1188
if (rc) {
1189
dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n",
1190
rc, handle);
1191
mutex_unlock(&hdev->mmu_lock);
1192
goto map_err;
1193
}
1194
1195
rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196
ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197
mutex_unlock(&hdev->mmu_lock);
1198
if (rc)
1199
goto map_err;
1200
1201
/*
1202
* prefetch is done upon user's request. it is performed in WQ as and so can
1203
* be outside the MMU lock. the operation itself is already protected by the mmu lock
1204
*/
1205
if (do_prefetch) {
1206
rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1207
phys_pg_pack->total_size);
1208
if (rc)
1209
goto map_err;
1210
}
1211
1212
ret_vaddr += phys_pg_pack->offset;
1213
1214
hnode->ptr = vm_type;
1215
hnode->vaddr = ret_vaddr;
1216
hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217
1218
mutex_lock(&ctx->mem_hash_lock);
1219
hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220
mutex_unlock(&ctx->mem_hash_lock);
1221
1222
*device_addr = ret_vaddr;
1223
1224
if (is_userptr)
1225
free_phys_pg_pack(hdev, phys_pg_pack);
1226
1227
return rc;
1228
1229
map_err:
1230
if (add_va_block(hdev, va_range, ret_vaddr,
1231
ret_vaddr + phys_pg_pack->total_size - 1))
1232
dev_warn(hdev->dev,
1233
"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234
handle, ret_vaddr);
1235
1236
va_block_err:
1237
kfree(hnode);
1238
hnode_err:
1239
shared_err:
1240
atomic_dec(&phys_pg_pack->mapping_cnt);
1241
if (is_userptr)
1242
free_phys_pg_pack(hdev, phys_pg_pack);
1243
init_page_pack_err:
1244
if (is_userptr)
1245
dma_unmap_host_va(hdev, userptr);
1246
1247
return rc;
1248
}
1249
1250
/* Should be called while the context's mem_hash_lock is taken */
1251
static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252
{
1253
struct hl_vm_hash_node *hnode;
1254
1255
hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256
if (vaddr == hnode->vaddr)
1257
return hnode;
1258
1259
return NULL;
1260
}
1261
1262
/**
1263
* unmap_device_va() - unmap the given device virtual address.
1264
* @ctx: pointer to the context structure.
1265
* @args: host parameters with device virtual address to unmap.
1266
* @ctx_free: true if in context free flow, false otherwise.
1267
*
1268
* This function does the following:
1269
* - unmap the physical pages related to the given virtual address.
1270
* - return the device virtual block to the virtual block list.
1271
*/
1272
static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273
bool ctx_free)
1274
{
1275
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276
u64 vaddr = args->unmap.device_virt_addr;
1277
struct asic_fixed_properties *prop;
1278
struct hl_device *hdev = ctx->hdev;
1279
struct hl_userptr *userptr = NULL;
1280
struct hl_vm_hash_node *hnode;
1281
struct hl_va_range *va_range;
1282
enum vm_type *vm_type;
1283
bool is_userptr;
1284
int rc = 0;
1285
1286
prop = &hdev->asic_prop;
1287
1288
/* protect from double entrance */
1289
mutex_lock(&ctx->mem_hash_lock);
1290
hnode = get_vm_hash_node_locked(ctx, vaddr);
1291
if (!hnode) {
1292
mutex_unlock(&ctx->mem_hash_lock);
1293
dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294
return -EINVAL;
1295
}
1296
1297
if (hnode->export_cnt) {
1298
mutex_unlock(&ctx->mem_hash_lock);
1299
dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300
return -EINVAL;
1301
}
1302
1303
hash_del(&hnode->node);
1304
mutex_unlock(&ctx->mem_hash_lock);
1305
1306
vm_type = hnode->ptr;
1307
1308
if (*vm_type == VM_TYPE_USERPTR) {
1309
is_userptr = true;
1310
userptr = hnode->ptr;
1311
1312
rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1313
false);
1314
if (rc) {
1315
dev_err(hdev->dev,
1316
"unable to init page pack for vaddr 0x%llx\n",
1317
vaddr);
1318
goto vm_type_err;
1319
}
1320
1321
if (phys_pg_pack->page_size ==
1322
hdev->asic_prop.pmmu.page_size)
1323
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324
else
1325
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326
} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327
is_userptr = false;
1328
va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329
phys_pg_pack = hnode->ptr;
1330
} else {
1331
dev_warn(hdev->dev,
1332
"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333
vaddr);
1334
rc = -EFAULT;
1335
goto vm_type_err;
1336
}
1337
1338
if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1339
dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340
rc = -EINVAL;
1341
goto mapping_cnt_err;
1342
}
1343
1344
if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1345
vaddr = prop->dram_base_address +
1346
DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347
phys_pg_pack->page_size) *
1348
phys_pg_pack->page_size;
1349
else
1350
vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351
1352
mutex_lock(&hdev->mmu_lock);
1353
1354
unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355
1356
/*
1357
* During context free this function is called in a loop to clean all
1358
* the context mappings. Hence the cache invalidation can be called once
1359
* at the loop end rather than for each iteration
1360
*/
1361
if (!ctx_free)
1362
rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1363
phys_pg_pack->total_size);
1364
1365
mutex_unlock(&hdev->mmu_lock);
1366
1367
/*
1368
* If the context is closing we don't need to check for the MMU cache
1369
* invalidation return code and update the VA free list as in this flow
1370
* we invalidate the MMU cache outside of this unmap function and the VA
1371
* free list will be freed anyway.
1372
*/
1373
if (!ctx_free) {
1374
int tmp_rc;
1375
1376
tmp_rc = add_va_block(hdev, va_range, vaddr,
1377
vaddr + phys_pg_pack->total_size - 1);
1378
if (tmp_rc) {
1379
dev_warn(hdev->dev,
1380
"add va block failed for vaddr: 0x%llx\n",
1381
vaddr);
1382
if (!rc)
1383
rc = tmp_rc;
1384
}
1385
}
1386
1387
atomic_dec(&phys_pg_pack->mapping_cnt);
1388
kfree(hnode);
1389
1390
if (is_userptr) {
1391
free_phys_pg_pack(hdev, phys_pg_pack);
1392
dma_unmap_host_va(hdev, userptr);
1393
}
1394
1395
return rc;
1396
1397
mapping_cnt_err:
1398
if (is_userptr)
1399
free_phys_pg_pack(hdev, phys_pg_pack);
1400
vm_type_err:
1401
mutex_lock(&ctx->mem_hash_lock);
1402
hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403
mutex_unlock(&ctx->mem_hash_lock);
1404
1405
return rc;
1406
}
1407
1408
static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409
{
1410
u32 block_id;
1411
int rc;
1412
1413
*handle = 0;
1414
if (size)
1415
*size = 0;
1416
1417
rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418
if (rc)
1419
return rc;
1420
1421
*handle = block_id | HL_MMAP_TYPE_BLOCK;
1422
*handle <<= PAGE_SHIFT;
1423
1424
return 0;
1425
}
1426
1427
static void hw_block_vm_close(struct vm_area_struct *vma)
1428
{
1429
struct hl_vm_hw_block_list_node *lnode =
1430
(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431
struct hl_ctx *ctx = lnode->ctx;
1432
long new_mmap_size;
1433
1434
new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435
if (new_mmap_size > 0) {
1436
lnode->mapped_size = new_mmap_size;
1437
return;
1438
}
1439
1440
mutex_lock(&ctx->hw_block_list_lock);
1441
list_del(&lnode->node);
1442
mutex_unlock(&ctx->hw_block_list_lock);
1443
hl_ctx_put(ctx);
1444
kfree(lnode);
1445
vma->vm_private_data = NULL;
1446
}
1447
1448
static const struct vm_operations_struct hw_block_vm_ops = {
1449
.close = hw_block_vm_close
1450
};
1451
1452
/**
1453
* hl_hw_block_mmap() - mmap a hw block to user.
1454
* @hpriv: pointer to the private data of the fd
1455
* @vma: pointer to vm_area_struct of the process
1456
*
1457
* Driver increments context reference for every HW block mapped in order
1458
* to prevent user from closing FD without unmapping first
1459
*/
1460
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461
{
1462
struct hl_vm_hw_block_list_node *lnode;
1463
struct hl_device *hdev = hpriv->hdev;
1464
struct hl_ctx *ctx = hpriv->ctx;
1465
u32 block_id, block_size;
1466
int rc;
1467
1468
/* We use the page offset to hold the block id and thus we need to clear
1469
* it before doing the mmap itself
1470
*/
1471
block_id = vma->vm_pgoff;
1472
vma->vm_pgoff = 0;
1473
1474
/* Driver only allows mapping of a complete HW block */
1475
block_size = vma->vm_end - vma->vm_start;
1476
1477
if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478
dev_err(hdev->dev,
1479
"user pointer is invalid - 0x%lx\n",
1480
vma->vm_start);
1481
1482
return -EINVAL;
1483
}
1484
1485
lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1486
if (!lnode)
1487
return -ENOMEM;
1488
1489
rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490
if (rc) {
1491
kfree(lnode);
1492
return rc;
1493
}
1494
1495
hl_ctx_get(ctx);
1496
1497
lnode->ctx = ctx;
1498
lnode->vaddr = vma->vm_start;
1499
lnode->block_size = block_size;
1500
lnode->mapped_size = lnode->block_size;
1501
lnode->id = block_id;
1502
1503
vma->vm_private_data = lnode;
1504
vma->vm_ops = &hw_block_vm_ops;
1505
1506
mutex_lock(&ctx->hw_block_list_lock);
1507
list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1508
mutex_unlock(&ctx->hw_block_list_lock);
1509
1510
vma->vm_pgoff = block_id;
1511
1512
return 0;
1513
}
1514
1515
static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516
struct device *dev, enum dma_data_direction dir)
1517
{
1518
dma_addr_t addr;
1519
int rc;
1520
1521
addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1522
DMA_ATTR_SKIP_CPU_SYNC);
1523
rc = dma_mapping_error(dev, addr);
1524
if (rc)
1525
return rc;
1526
1527
sg_set_page(sg, NULL, chunk_size, 0);
1528
sg_dma_address(sg) = addr;
1529
sg_dma_len(sg) = chunk_size;
1530
1531
return 0;
1532
}
1533
1534
static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535
u64 page_size, u64 exported_size, u64 offset,
1536
struct device *dev, enum dma_data_direction dir)
1537
{
1538
u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page,
1539
left_size_in_dma_seg, device_address, bar_address, start_page;
1540
struct asic_fixed_properties *prop = &hdev->asic_prop;
1541
struct scatterlist *sg;
1542
unsigned int nents, i;
1543
struct sg_table *sgt;
1544
bool next_sg_entry;
1545
int rc;
1546
1547
/* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */
1548
dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE);
1549
if (dma_max_seg_size < PAGE_SIZE) {
1550
dev_err_ratelimited(hdev->dev,
1551
"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1552
dma_max_seg_size);
1553
return ERR_PTR(-EINVAL);
1554
}
1555
1556
sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1557
if (!sgt)
1558
return ERR_PTR(-ENOMEM);
1559
1560
/* Use the offset to move to the actual first page that is exported */
1561
for (start_page = 0 ; start_page < npages ; ++start_page) {
1562
if (offset < page_size)
1563
break;
1564
1565
/* The offset value was validated so there can't be an underflow */
1566
offset -= page_size;
1567
}
1568
1569
/* Calculate the required number of entries for the SG table */
1570
curr_page = start_page;
1571
nents = 1;
1572
left_size_to_export = exported_size;
1573
left_size_in_page = page_size - offset;
1574
left_size_in_dma_seg = dma_max_seg_size;
1575
next_sg_entry = false;
1576
1577
while (true) {
1578
size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1579
left_size_to_export -= size;
1580
left_size_in_page -= size;
1581
left_size_in_dma_seg -= size;
1582
1583
if (!left_size_to_export)
1584
break;
1585
1586
if (!left_size_in_page) {
1587
/* left_size_to_export is not zero so there must be another page */
1588
if (pages[curr_page] + page_size != pages[curr_page + 1])
1589
next_sg_entry = true;
1590
1591
++curr_page;
1592
left_size_in_page = page_size;
1593
}
1594
1595
if (!left_size_in_dma_seg) {
1596
next_sg_entry = true;
1597
left_size_in_dma_seg = dma_max_seg_size;
1598
}
1599
1600
if (next_sg_entry) {
1601
++nents;
1602
next_sg_entry = false;
1603
}
1604
}
1605
1606
rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1607
if (rc)
1608
goto err_free_sgt;
1609
1610
/* Prepare the SG table entries */
1611
curr_page = start_page;
1612
device_address = pages[curr_page] + offset;
1613
left_size_to_export = exported_size;
1614
left_size_in_page = page_size - offset;
1615
left_size_in_dma_seg = dma_max_seg_size;
1616
next_sg_entry = false;
1617
1618
for_each_sgtable_dma_sg(sgt, sg, i) {
1619
bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address);
1620
chunk_size = 0;
1621
1622
for ( ; curr_page < npages ; ++curr_page) {
1623
size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1624
chunk_size += size;
1625
left_size_to_export -= size;
1626
left_size_in_page -= size;
1627
left_size_in_dma_seg -= size;
1628
1629
if (!left_size_to_export)
1630
break;
1631
1632
if (!left_size_in_page) {
1633
/* left_size_to_export is not zero so there must be another page */
1634
if (pages[curr_page] + page_size != pages[curr_page + 1]) {
1635
device_address = pages[curr_page + 1];
1636
next_sg_entry = true;
1637
}
1638
1639
left_size_in_page = page_size;
1640
}
1641
1642
if (!left_size_in_dma_seg) {
1643
/*
1644
* Skip setting a new device address if already moving to a page
1645
* which is not contiguous with the current page.
1646
*/
1647
if (!next_sg_entry) {
1648
device_address += chunk_size;
1649
next_sg_entry = true;
1650
}
1651
1652
left_size_in_dma_seg = dma_max_seg_size;
1653
}
1654
1655
if (next_sg_entry) {
1656
next_sg_entry = false;
1657
break;
1658
}
1659
}
1660
1661
rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1662
if (rc)
1663
goto err_unmap;
1664
}
1665
1666
/* There should be nothing left to export exactly after looping over all SG elements */
1667
if (left_size_to_export) {
1668
dev_err(hdev->dev,
1669
"left size to export %#llx after initializing %u SG elements\n",
1670
left_size_to_export, sgt->nents);
1671
rc = -ENOMEM;
1672
goto err_unmap;
1673
}
1674
1675
/*
1676
* Because we are not going to include a CPU list, we want to have some chance that other
1677
* users will detect this when going over SG table, by setting the orig_nents to 0 and using
1678
* only nents (length of DMA list).
1679
*/
1680
sgt->orig_nents = 0;
1681
1682
dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n",
1683
nents, dev_name(dev));
1684
for_each_sgtable_dma_sg(sgt, sg, i)
1685
dev_dbg(hdev->dev,
1686
"SG entry %d: address %#llx, length %#x\n",
1687
i, sg_dma_address(sg), sg_dma_len(sg));
1688
1689
return sgt;
1690
1691
err_unmap:
1692
for_each_sgtable_dma_sg(sgt, sg, i) {
1693
if (!sg_dma_len(sg))
1694
continue;
1695
1696
dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir,
1697
DMA_ATTR_SKIP_CPU_SYNC);
1698
}
1699
1700
sg_free_table(sgt);
1701
1702
err_free_sgt:
1703
kfree(sgt);
1704
return ERR_PTR(rc);
1705
}
1706
1707
static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1708
struct dma_buf_attachment *attachment)
1709
{
1710
struct hl_dmabuf_priv *hl_dmabuf;
1711
struct hl_device *hdev;
1712
int rc;
1713
1714
hl_dmabuf = dmabuf->priv;
1715
hdev = hl_dmabuf->ctx->hdev;
1716
1717
rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1718
1719
if (rc < 0)
1720
attachment->peer2peer = false;
1721
return 0;
1722
}
1723
1724
static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1725
enum dma_data_direction dir)
1726
{
1727
u64 *pages, npages, page_size, exported_size, offset;
1728
struct dma_buf *dma_buf = attachment->dmabuf;
1729
struct hl_vm_phys_pg_pack *phys_pg_pack;
1730
struct hl_dmabuf_priv *hl_dmabuf;
1731
struct hl_device *hdev;
1732
struct sg_table *sgt;
1733
1734
hl_dmabuf = dma_buf->priv;
1735
hdev = hl_dmabuf->ctx->hdev;
1736
1737
if (!attachment->peer2peer) {
1738
dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1739
return ERR_PTR(-EPERM);
1740
}
1741
1742
exported_size = hl_dmabuf->dmabuf->size;
1743
offset = hl_dmabuf->offset;
1744
phys_pg_pack = hl_dmabuf->phys_pg_pack;
1745
1746
if (phys_pg_pack) {
1747
pages = phys_pg_pack->pages;
1748
npages = phys_pg_pack->npages;
1749
page_size = phys_pg_pack->page_size;
1750
} else {
1751
pages = &hl_dmabuf->device_phys_addr;
1752
npages = 1;
1753
page_size = hl_dmabuf->dmabuf->size;
1754
}
1755
1756
sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset,
1757
attachment->dev, dir);
1758
if (IS_ERR(sgt))
1759
dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1760
1761
return sgt;
1762
}
1763
1764
static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1765
struct sg_table *sgt,
1766
enum dma_data_direction dir)
1767
{
1768
struct scatterlist *sg;
1769
int i;
1770
1771
/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1772
* only in the 'device' domain (after all, it maps a PCI bar address which points to the
1773
* device memory).
1774
*
1775
* Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1776
* a sync of the memory to the CPU's cache, as it never resided inside that cache.
1777
*/
1778
for_each_sgtable_dma_sg(sgt, sg, i)
1779
dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1780
sg_dma_len(sg), dir,
1781
DMA_ATTR_SKIP_CPU_SYNC);
1782
1783
/* Need to restore orig_nents because sg_free_table use that field */
1784
sgt->orig_nents = sgt->nents;
1785
sg_free_table(sgt);
1786
kfree(sgt);
1787
}
1788
1789
static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1790
{
1791
struct hl_device *hdev = ctx->hdev;
1792
struct hl_vm_hash_node *hnode;
1793
1794
/* get the memory handle */
1795
mutex_lock(&ctx->mem_hash_lock);
1796
hnode = get_vm_hash_node_locked(ctx, addr);
1797
if (!hnode) {
1798
mutex_unlock(&ctx->mem_hash_lock);
1799
dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1800
return ERR_PTR(-EINVAL);
1801
}
1802
1803
if (upper_32_bits(hnode->handle)) {
1804
mutex_unlock(&ctx->mem_hash_lock);
1805
dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1806
hnode->handle, addr);
1807
return ERR_PTR(-EINVAL);
1808
}
1809
1810
/*
1811
* node found, increase export count so this memory cannot be unmapped
1812
* and the hash node cannot be deleted.
1813
*/
1814
hnode->export_cnt++;
1815
mutex_unlock(&ctx->mem_hash_lock);
1816
1817
return hnode;
1818
}
1819
1820
static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1821
{
1822
mutex_lock(&ctx->mem_hash_lock);
1823
hnode->export_cnt--;
1824
mutex_unlock(&ctx->mem_hash_lock);
1825
}
1826
1827
static void hl_release_dmabuf(struct dma_buf *dmabuf)
1828
{
1829
struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1830
struct hl_ctx *ctx;
1831
1832
ctx = hl_dmabuf->ctx;
1833
1834
if (hl_dmabuf->memhash_hnode)
1835
memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1836
1837
atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1838
hl_ctx_put(ctx);
1839
1840
/* Paired with get_file() in export_dmabuf() */
1841
fput(ctx->hpriv->file_priv->filp);
1842
1843
kfree(hl_dmabuf);
1844
}
1845
1846
static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1847
.attach = hl_dmabuf_attach,
1848
.map_dma_buf = hl_map_dmabuf,
1849
.unmap_dma_buf = hl_unmap_dmabuf,
1850
.release = hl_release_dmabuf,
1851
};
1852
1853
static int export_dmabuf(struct hl_ctx *ctx,
1854
struct hl_dmabuf_priv *hl_dmabuf,
1855
u64 total_size, int flags, int *dmabuf_fd)
1856
{
1857
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1858
struct hl_device *hdev = ctx->hdev;
1859
CLASS(get_unused_fd, fd)(flags);
1860
1861
if (fd < 0) {
1862
dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1863
return fd;
1864
}
1865
1866
exp_info.ops = &habanalabs_dmabuf_ops;
1867
exp_info.size = total_size;
1868
exp_info.flags = flags;
1869
exp_info.priv = hl_dmabuf;
1870
1871
hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1872
if (IS_ERR(hl_dmabuf->dmabuf)) {
1873
dev_err(hdev->dev, "failed to export dma-buf\n");
1874
return PTR_ERR(hl_dmabuf->dmabuf);
1875
}
1876
1877
hl_dmabuf->ctx = ctx;
1878
hl_ctx_get(hl_dmabuf->ctx);
1879
atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1880
1881
/* Get compute device file to enforce release order, such that all exported dma-buf will be
1882
* released first and only then the compute device.
1883
* Paired with fput() in hl_release_dmabuf().
1884
*/
1885
get_file(ctx->hpriv->file_priv->filp);
1886
1887
*dmabuf_fd = fd;
1888
fd_install(take_fd(fd), hl_dmabuf->dmabuf->file);
1889
1890
return 0;
1891
}
1892
1893
static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset)
1894
{
1895
if (!PAGE_ALIGNED(addr)) {
1896
dev_dbg(hdev->dev,
1897
"exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n",
1898
addr, PAGE_SIZE);
1899
return -EINVAL;
1900
}
1901
1902
if (!size || !PAGE_ALIGNED(size)) {
1903
dev_dbg(hdev->dev,
1904
"exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n",
1905
size, PAGE_SIZE);
1906
return -EINVAL;
1907
}
1908
1909
if (!PAGE_ALIGNED(offset)) {
1910
dev_dbg(hdev->dev,
1911
"exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n",
1912
offset, PAGE_SIZE);
1913
return -EINVAL;
1914
}
1915
1916
return 0;
1917
}
1918
1919
static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1920
{
1921
struct asic_fixed_properties *prop = &hdev->asic_prop;
1922
u64 bar_address;
1923
int rc;
1924
1925
rc = validate_export_params_common(hdev, device_addr, size, 0);
1926
if (rc)
1927
return rc;
1928
1929
if (device_addr < prop->dram_user_base_address ||
1930
(device_addr + size) > prop->dram_end_address ||
1931
(device_addr + size) < device_addr) {
1932
dev_dbg(hdev->dev,
1933
"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1934
device_addr, size);
1935
return -EINVAL;
1936
}
1937
1938
bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1939
1940
if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1941
(bar_address + size) < bar_address) {
1942
dev_dbg(hdev->dev,
1943
"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1944
device_addr, size);
1945
return -EINVAL;
1946
}
1947
1948
return 0;
1949
}
1950
1951
static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1952
struct hl_vm_phys_pg_pack *phys_pg_pack)
1953
{
1954
struct asic_fixed_properties *prop = &hdev->asic_prop;
1955
u64 bar_address;
1956
int i, rc;
1957
1958
rc = validate_export_params_common(hdev, device_addr, size, offset);
1959
if (rc)
1960
return rc;
1961
1962
if ((offset + size) > phys_pg_pack->total_size) {
1963
dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1964
offset, size, phys_pg_pack->total_size);
1965
return -EINVAL;
1966
}
1967
1968
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1969
bar_address = hdev->dram_pci_bar_start +
1970
(phys_pg_pack->pages[i] - prop->dram_base_address);
1971
1972
if ((bar_address + phys_pg_pack->page_size) >
1973
(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1974
(bar_address + phys_pg_pack->page_size) < bar_address) {
1975
dev_dbg(hdev->dev,
1976
"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1977
phys_pg_pack->pages[i], phys_pg_pack->page_size);
1978
return -EINVAL;
1979
}
1980
}
1981
1982
return 0;
1983
}
1984
1985
static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1986
struct hl_vm_hash_node *hnode)
1987
{
1988
struct hl_vm_phys_pg_pack *phys_pg_pack;
1989
struct hl_vm *vm = &hdev->vm;
1990
1991
spin_lock(&vm->idr_lock);
1992
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1993
if (!phys_pg_pack) {
1994
spin_unlock(&vm->idr_lock);
1995
dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
1996
return ERR_PTR(-EINVAL);
1997
}
1998
1999
spin_unlock(&vm->idr_lock);
2000
2001
if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
2002
dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
2003
return ERR_PTR(-EINVAL);
2004
}
2005
2006
return phys_pg_pack;
2007
}
2008
2009
/**
2010
* export_dmabuf_from_addr() - export a dma-buf object for the given memory
2011
* address and size.
2012
* @ctx: pointer to the context structure.
2013
* @addr: device address.
2014
* @size: size of device memory to export.
2015
* @offset: the offset into the buffer from which to start exporting
2016
* @flags: DMA-BUF file/FD flags.
2017
* @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2018
*
2019
* Create and export a dma-buf object for an existing memory allocation inside
2020
* the device memory, and return a FD which is associated with the dma-buf
2021
* object.
2022
*
2023
* Return: 0 on success, non-zero for failure.
2024
*/
2025
static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2026
int flags, int *dmabuf_fd)
2027
{
2028
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2029
struct hl_vm_hash_node *hnode = NULL;
2030
struct asic_fixed_properties *prop;
2031
struct hl_dmabuf_priv *hl_dmabuf;
2032
struct hl_device *hdev;
2033
int rc;
2034
2035
hdev = ctx->hdev;
2036
prop = &hdev->asic_prop;
2037
2038
/* offset must be 0 in devices without virtual memory support */
2039
if (!prop->dram_supports_virtual_memory && offset) {
2040
dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2041
return -EINVAL;
2042
}
2043
2044
hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2045
if (!hl_dmabuf)
2046
return -ENOMEM;
2047
2048
if (prop->dram_supports_virtual_memory) {
2049
hnode = memhash_node_export_get(ctx, addr);
2050
if (IS_ERR(hnode)) {
2051
rc = PTR_ERR(hnode);
2052
goto err_free_dmabuf_wrapper;
2053
}
2054
phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2055
if (IS_ERR(phys_pg_pack)) {
2056
rc = PTR_ERR(phys_pg_pack);
2057
goto dec_memhash_export_cnt;
2058
}
2059
rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack);
2060
if (rc)
2061
goto dec_memhash_export_cnt;
2062
2063
hl_dmabuf->phys_pg_pack = phys_pg_pack;
2064
hl_dmabuf->memhash_hnode = hnode;
2065
hl_dmabuf->offset = offset;
2066
} else {
2067
rc = validate_export_params_no_mmu(hdev, addr, size);
2068
if (rc)
2069
goto err_free_dmabuf_wrapper;
2070
2071
hl_dmabuf->device_phys_addr = addr;
2072
}
2073
2074
rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2075
if (rc)
2076
goto dec_memhash_export_cnt;
2077
2078
return 0;
2079
2080
dec_memhash_export_cnt:
2081
if (prop->dram_supports_virtual_memory)
2082
memhash_node_export_put(ctx, hnode);
2083
err_free_dmabuf_wrapper:
2084
kfree(hl_dmabuf);
2085
return rc;
2086
}
2087
2088
static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2089
{
2090
struct hl_ts_buff *ts_buff = buf->private;
2091
2092
vfree(ts_buff->kernel_buff_address);
2093
vfree(ts_buff->user_buff_address);
2094
kfree(ts_buff);
2095
}
2096
2097
static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2098
{
2099
struct hl_ts_buff *ts_buff = buf->private;
2100
2101
vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2102
return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2103
}
2104
2105
static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2106
{
2107
struct hl_ts_buff *ts_buff = NULL;
2108
u32 num_elements;
2109
size_t size;
2110
void *p;
2111
2112
num_elements = *(u32 *)args;
2113
2114
ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2115
if (!ts_buff)
2116
return -ENOMEM;
2117
2118
/* Allocate the user buffer */
2119
size = num_elements * sizeof(u64);
2120
p = vmalloc_user(size);
2121
if (!p)
2122
goto free_mem;
2123
2124
ts_buff->user_buff_address = p;
2125
buf->mappable_size = size;
2126
2127
/* Allocate the internal kernel buffer */
2128
size = num_elements * sizeof(struct hl_user_pending_interrupt);
2129
p = vzalloc(size);
2130
if (!p)
2131
goto free_user_buff;
2132
2133
ts_buff->kernel_buff_address = p;
2134
ts_buff->kernel_buff_size = size;
2135
2136
buf->private = ts_buff;
2137
2138
return 0;
2139
2140
free_user_buff:
2141
vfree(ts_buff->user_buff_address);
2142
free_mem:
2143
kfree(ts_buff);
2144
return -ENOMEM;
2145
}
2146
2147
static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2148
.topic = "TS",
2149
.mem_id = HL_MMAP_TYPE_TS_BUFF,
2150
.mmap = hl_ts_mmap,
2151
.alloc = hl_ts_alloc_buf,
2152
.release = ts_buff_release,
2153
};
2154
2155
/**
2156
* allocate_timestamps_buffers() - allocate timestamps buffers
2157
* This function will allocate ts buffer that will later on be mapped to the user
2158
* in order to be able to read the timestamp.
2159
* in addition it'll allocate an extra buffer for registration management.
2160
* since we cannot fail during registration for out-of-memory situation, so
2161
* we'll prepare a pool which will be used as user interrupt nodes and instead
2162
* of dynamically allocating nodes while registration we'll pick the node from
2163
* this pool. in addition it'll add node to the mapping hash which will be used
2164
* to map user ts buffer to the internal kernel ts buffer.
2165
* @hpriv: pointer to the private data of the fd
2166
* @args: ioctl input
2167
* @handle: user timestamp buffer handle as an output
2168
*/
2169
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2170
{
2171
struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2172
struct hl_mmap_mem_buf *buf;
2173
2174
if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2175
dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2176
args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2177
return -EINVAL;
2178
}
2179
2180
buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2181
if (!buf)
2182
return -ENOMEM;
2183
2184
*handle = buf->handle;
2185
2186
return 0;
2187
}
2188
2189
int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2190
{
2191
struct hl_fpriv *hpriv = file_priv->driver_priv;
2192
enum hl_device_status status;
2193
union hl_mem_args *args = data;
2194
struct hl_device *hdev = hpriv->hdev;
2195
struct hl_ctx *ctx = hpriv->ctx;
2196
u64 block_handle, device_addr = 0;
2197
u32 handle = 0, block_size;
2198
int rc, dmabuf_fd = -EBADF;
2199
2200
if (!hl_device_operational(hdev, &status)) {
2201
dev_dbg_ratelimited(hdev->dev,
2202
"Device is %s. Can't execute MEMORY IOCTL\n",
2203
hdev->status[status]);
2204
return -EBUSY;
2205
}
2206
2207
switch (args->in.op) {
2208
case HL_MEM_OP_ALLOC:
2209
if (args->in.alloc.mem_size == 0) {
2210
dev_err(hdev->dev,
2211
"alloc size must be larger than 0\n");
2212
rc = -EINVAL;
2213
goto out;
2214
}
2215
2216
/* If DRAM does not support virtual memory the driver won't
2217
* handle the allocation/freeing of that memory. However, for
2218
* system administration/monitoring purposes, the driver will
2219
* keep track of the amount of DRAM memory that is allocated
2220
* and freed by the user. Because this code totally relies on
2221
* the user's input, the driver can't ensure the validity
2222
* of this accounting.
2223
*/
2224
if (!hdev->asic_prop.dram_supports_virtual_memory) {
2225
atomic64_add(args->in.alloc.mem_size,
2226
&ctx->dram_phys_mem);
2227
atomic64_add(args->in.alloc.mem_size,
2228
&hdev->dram_used_mem);
2229
2230
dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2231
rc = 0;
2232
2233
memset(args, 0, sizeof(*args));
2234
args->out.handle = 0;
2235
goto out;
2236
}
2237
2238
rc = alloc_device_memory(ctx, &args->in, &handle);
2239
2240
memset(args, 0, sizeof(*args));
2241
args->out.handle = (__u64) handle;
2242
break;
2243
2244
case HL_MEM_OP_FREE:
2245
/* If DRAM does not support virtual memory the driver won't
2246
* handle the allocation/freeing of that memory. However, for
2247
* system administration/monitoring purposes, the driver will
2248
* keep track of the amount of DRAM memory that is allocated
2249
* and freed by the user. Because this code totally relies on
2250
* the user's input, the driver can't ensure the validity
2251
* of this accounting.
2252
*/
2253
if (!hdev->asic_prop.dram_supports_virtual_memory) {
2254
atomic64_sub(args->in.alloc.mem_size,
2255
&ctx->dram_phys_mem);
2256
atomic64_sub(args->in.alloc.mem_size,
2257
&hdev->dram_used_mem);
2258
2259
dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2260
rc = 0;
2261
2262
goto out;
2263
}
2264
2265
rc = free_device_memory(ctx, &args->in);
2266
break;
2267
2268
case HL_MEM_OP_MAP:
2269
rc = map_device_va(ctx, &args->in, &device_addr);
2270
2271
memset(args, 0, sizeof(*args));
2272
args->out.device_virt_addr = device_addr;
2273
break;
2274
2275
case HL_MEM_OP_UNMAP:
2276
rc = unmap_device_va(ctx, &args->in, false);
2277
break;
2278
2279
case HL_MEM_OP_MAP_BLOCK:
2280
rc = map_block(hdev, args->in.map_block.block_addr,
2281
&block_handle, &block_size);
2282
args->out.block_handle = block_handle;
2283
args->out.block_size = block_size;
2284
break;
2285
2286
case HL_MEM_OP_EXPORT_DMABUF_FD:
2287
rc = export_dmabuf_from_addr(ctx,
2288
args->in.export_dmabuf_fd.addr,
2289
args->in.export_dmabuf_fd.mem_size,
2290
args->in.export_dmabuf_fd.offset,
2291
args->in.flags,
2292
&dmabuf_fd);
2293
memset(args, 0, sizeof(*args));
2294
args->out.fd = dmabuf_fd;
2295
break;
2296
2297
case HL_MEM_OP_TS_ALLOC:
2298
rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2299
break;
2300
default:
2301
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2302
rc = -EINVAL;
2303
break;
2304
}
2305
2306
out:
2307
return rc;
2308
}
2309
2310
static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2311
u32 npages, u64 start, u32 offset,
2312
struct hl_userptr *userptr)
2313
{
2314
int rc;
2315
2316
if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2317
dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2318
return -EFAULT;
2319
}
2320
2321
userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2322
if (!userptr->pages)
2323
return -ENOMEM;
2324
2325
rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2326
userptr->pages);
2327
2328
if (rc != npages) {
2329
dev_err(hdev->dev,
2330
"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2331
rc, addr, size, npages);
2332
if (rc < 0)
2333
goto destroy_pages;
2334
npages = rc;
2335
rc = -EFAULT;
2336
goto put_pages;
2337
}
2338
userptr->npages = npages;
2339
2340
rc = sg_alloc_table_from_pages(userptr->sgt,
2341
userptr->pages,
2342
npages, offset, size, GFP_KERNEL);
2343
if (rc < 0) {
2344
dev_err(hdev->dev, "failed to create SG table from pages\n");
2345
goto put_pages;
2346
}
2347
2348
return 0;
2349
2350
put_pages:
2351
unpin_user_pages(userptr->pages, npages);
2352
destroy_pages:
2353
kvfree(userptr->pages);
2354
return rc;
2355
}
2356
2357
/**
2358
* hl_pin_host_memory() - pins a chunk of host memory.
2359
* @hdev: pointer to the habanalabs device structure.
2360
* @addr: the host virtual address of the memory area.
2361
* @size: the size of the memory area.
2362
* @userptr: pointer to hl_userptr structure.
2363
*
2364
* This function does the following:
2365
* - Pins the physical pages.
2366
* - Create an SG list from those pages.
2367
*/
2368
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2369
struct hl_userptr *userptr)
2370
{
2371
u64 start, end;
2372
u32 npages, offset;
2373
int rc;
2374
2375
if (!size) {
2376
dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2377
return -EINVAL;
2378
}
2379
2380
/*
2381
* If the combination of the address and size requested for this memory
2382
* region causes an integer overflow, return error.
2383
*/
2384
if (((addr + size) < addr) ||
2385
PAGE_ALIGN(addr + size) < (addr + size)) {
2386
dev_err(hdev->dev,
2387
"user pointer 0x%llx + %llu causes integer overflow\n",
2388
addr, size);
2389
return -EINVAL;
2390
}
2391
2392
userptr->pid = current->pid;
2393
userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2394
if (!userptr->sgt)
2395
return -ENOMEM;
2396
2397
start = addr & PAGE_MASK;
2398
offset = addr & ~PAGE_MASK;
2399
end = PAGE_ALIGN(addr + size);
2400
npages = (end - start) >> PAGE_SHIFT;
2401
2402
userptr->size = size;
2403
userptr->addr = addr;
2404
userptr->dma_mapped = false;
2405
INIT_LIST_HEAD(&userptr->job_node);
2406
2407
rc = get_user_memory(hdev, addr, size, npages, start, offset,
2408
userptr);
2409
if (rc) {
2410
dev_err(hdev->dev,
2411
"failed to get user memory for address 0x%llx\n",
2412
addr);
2413
goto free_sgt;
2414
}
2415
2416
hl_debugfs_add_userptr(hdev, userptr);
2417
2418
return 0;
2419
2420
free_sgt:
2421
kfree(userptr->sgt);
2422
return rc;
2423
}
2424
2425
/*
2426
* hl_unpin_host_memory - unpins a chunk of host memory.
2427
* @hdev: pointer to the habanalabs device structure
2428
* @userptr: pointer to hl_userptr structure
2429
*
2430
* This function does the following:
2431
* - Unpins the physical pages related to the host memory
2432
* - Free the SG list
2433
*/
2434
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2435
{
2436
hl_debugfs_remove_userptr(hdev, userptr);
2437
2438
if (userptr->dma_mapped)
2439
hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2440
2441
unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2442
kvfree(userptr->pages);
2443
2444
list_del(&userptr->job_node);
2445
2446
sg_free_table(userptr->sgt);
2447
kfree(userptr->sgt);
2448
}
2449
2450
/**
2451
* hl_userptr_delete_list() - clear userptr list.
2452
* @hdev: pointer to the habanalabs device structure.
2453
* @userptr_list: pointer to the list to clear.
2454
*
2455
* This function does the following:
2456
* - Iterates over the list and unpins the host memory and frees the userptr
2457
* structure.
2458
*/
2459
void hl_userptr_delete_list(struct hl_device *hdev,
2460
struct list_head *userptr_list)
2461
{
2462
struct hl_userptr *userptr, *tmp;
2463
2464
list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2465
hl_unpin_host_memory(hdev, userptr);
2466
kfree(userptr);
2467
}
2468
2469
INIT_LIST_HEAD(userptr_list);
2470
}
2471
2472
/**
2473
* hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2474
* @hdev: pointer to the habanalabs device structure.
2475
* @addr: user address to check.
2476
* @size: user block size to check.
2477
* @userptr_list: pointer to the list to clear.
2478
* @userptr: pointer to userptr to check.
2479
*
2480
* This function does the following:
2481
* - Iterates over the list and checks if the given userptr is in it, means is
2482
* pinned. If so, returns true, otherwise returns false.
2483
*/
2484
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2485
u32 size, struct list_head *userptr_list,
2486
struct hl_userptr **userptr)
2487
{
2488
list_for_each_entry((*userptr), userptr_list, job_node) {
2489
if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2490
return true;
2491
}
2492
2493
return false;
2494
}
2495
2496
/**
2497
* va_range_init() - initialize virtual addresses range.
2498
* @hdev: pointer to the habanalabs device structure.
2499
* @va_ranges: pointer to va_ranges array.
2500
* @range_type: virtual address range type.
2501
* @start: range start address, inclusive.
2502
* @end: range end address, inclusive.
2503
* @page_size: page size for this va_range.
2504
*
2505
* This function does the following:
2506
* - Initializes the virtual addresses list of the given range with the given
2507
* addresses.
2508
*/
2509
static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2510
enum hl_va_range_type range_type, u64 start,
2511
u64 end, u32 page_size)
2512
{
2513
struct hl_va_range *va_range = va_ranges[range_type];
2514
int rc;
2515
2516
INIT_LIST_HEAD(&va_range->list);
2517
2518
/*
2519
* PAGE_SIZE alignment
2520
* it is the caller's responsibility to align the addresses if the
2521
* page size is not a power of 2
2522
*/
2523
2524
if (is_power_of_2(page_size)) {
2525
start = round_up(start, page_size);
2526
2527
/*
2528
* The end of the range is inclusive, hence we need to align it
2529
* to the end of the last full page in the range. For example if
2530
* end = 0x3ff5 with page size 0x1000, we need to align it to
2531
* 0x2fff. The remaining 0xff5 bytes do not form a full page.
2532
*/
2533
end = round_down(end + 1, page_size) - 1;
2534
}
2535
2536
if (start >= end) {
2537
dev_err(hdev->dev, "too small vm range for va list\n");
2538
return -EFAULT;
2539
}
2540
2541
rc = add_va_block(hdev, va_range, start, end);
2542
2543
if (rc) {
2544
dev_err(hdev->dev, "Failed to init host va list\n");
2545
return rc;
2546
}
2547
2548
va_range->start_addr = start;
2549
va_range->end_addr = end;
2550
va_range->page_size = page_size;
2551
2552
return 0;
2553
}
2554
2555
/**
2556
* va_range_fini() - clear a virtual addresses range.
2557
* @hdev: pointer to the habanalabs structure.
2558
* @va_range: pointer to virtual addresses range.
2559
*
2560
* This function does the following:
2561
* - Frees the virtual addresses block list and its lock.
2562
*/
2563
static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2564
{
2565
mutex_lock(&va_range->lock);
2566
clear_va_list_locked(hdev, &va_range->list);
2567
mutex_unlock(&va_range->lock);
2568
2569
mutex_destroy(&va_range->lock);
2570
kfree(va_range);
2571
}
2572
2573
/**
2574
* vm_ctx_init_with_ranges() - initialize virtual memory for context.
2575
* @ctx: pointer to the habanalabs context structure.
2576
* @host_range_start: host virtual addresses range start.
2577
* @host_range_end: host virtual addresses range end.
2578
* @host_page_size: host page size.
2579
* @host_huge_range_start: host virtual addresses range start for memory
2580
* allocated with huge pages.
2581
* @host_huge_range_end: host virtual addresses range end for memory allocated
2582
* with huge pages.
2583
* @host_huge_page_size: host huge page size.
2584
* @dram_range_start: dram virtual addresses range start.
2585
* @dram_range_end: dram virtual addresses range end.
2586
* @dram_page_size: dram page size.
2587
*
2588
* This function initializes the following:
2589
* - MMU for context.
2590
* - Virtual address to area descriptor hashtable.
2591
* - Virtual block list of available virtual memory.
2592
*/
2593
static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2594
u64 host_range_start,
2595
u64 host_range_end,
2596
u32 host_page_size,
2597
u64 host_huge_range_start,
2598
u64 host_huge_range_end,
2599
u32 host_huge_page_size,
2600
u64 dram_range_start,
2601
u64 dram_range_end,
2602
u32 dram_page_size)
2603
{
2604
struct hl_device *hdev = ctx->hdev;
2605
int i, rc;
2606
2607
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2608
ctx->va_range[i] =
2609
kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2610
if (!ctx->va_range[i]) {
2611
rc = -ENOMEM;
2612
goto free_va_range;
2613
}
2614
}
2615
2616
rc = hl_mmu_ctx_init(ctx);
2617
if (rc) {
2618
dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2619
goto free_va_range;
2620
}
2621
2622
mutex_init(&ctx->mem_hash_lock);
2623
hash_init(ctx->mem_hash);
2624
2625
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2626
2627
rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2628
host_range_start, host_range_end, host_page_size);
2629
if (rc) {
2630
dev_err(hdev->dev, "failed to init host vm range\n");
2631
goto mmu_ctx_fini;
2632
}
2633
2634
if (hdev->pmmu_huge_range) {
2635
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2636
2637
rc = va_range_init(hdev,
2638
ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2639
host_huge_range_start, host_huge_range_end,
2640
host_huge_page_size);
2641
if (rc) {
2642
dev_err(hdev->dev,
2643
"failed to init host huge vm range\n");
2644
goto clear_host_va_range;
2645
}
2646
} else {
2647
kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2648
ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2649
ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2650
}
2651
2652
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2653
2654
rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2655
dram_range_start, dram_range_end, dram_page_size);
2656
if (rc) {
2657
dev_err(hdev->dev, "failed to init dram vm range\n");
2658
goto clear_host_huge_va_range;
2659
}
2660
2661
hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2662
2663
return 0;
2664
2665
clear_host_huge_va_range:
2666
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2667
2668
if (hdev->pmmu_huge_range) {
2669
mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2670
clear_va_list_locked(hdev,
2671
&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2672
mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2673
}
2674
clear_host_va_range:
2675
if (hdev->pmmu_huge_range)
2676
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2677
mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2678
clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2679
mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2680
mmu_ctx_fini:
2681
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2682
mutex_destroy(&ctx->mem_hash_lock);
2683
hl_mmu_ctx_fini(ctx);
2684
free_va_range:
2685
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2686
kfree(ctx->va_range[i]);
2687
2688
return rc;
2689
}
2690
2691
int hl_vm_ctx_init(struct hl_ctx *ctx)
2692
{
2693
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2694
u64 host_range_start, host_range_end, host_huge_range_start,
2695
host_huge_range_end, dram_range_start, dram_range_end;
2696
u32 host_page_size, host_huge_page_size, dram_page_size;
2697
2698
atomic64_set(&ctx->dram_phys_mem, 0);
2699
2700
/*
2701
* In case of DRAM mapping, the returned address is the physical
2702
* address of the memory related to the given handle.
2703
*/
2704
if (ctx->hdev->mmu_disable)
2705
return 0;
2706
2707
dram_range_start = prop->dmmu.start_addr;
2708
dram_range_end = prop->dmmu.end_addr - 1;
2709
dram_page_size = prop->dram_page_size ?
2710
prop->dram_page_size : prop->dmmu.page_size;
2711
host_range_start = prop->pmmu.start_addr;
2712
host_range_end = prop->pmmu.end_addr - 1;
2713
host_page_size = prop->pmmu.page_size;
2714
host_huge_range_start = prop->pmmu_huge.start_addr;
2715
host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2716
host_huge_page_size = prop->pmmu_huge.page_size;
2717
2718
return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2719
host_page_size, host_huge_range_start,
2720
host_huge_range_end, host_huge_page_size,
2721
dram_range_start, dram_range_end, dram_page_size);
2722
}
2723
2724
/**
2725
* hl_vm_ctx_fini() - virtual memory teardown of context.
2726
* @ctx: pointer to the habanalabs context structure.
2727
*
2728
* This function perform teardown the following:
2729
* - Virtual block list of available virtual memory.
2730
* - Virtual address to area descriptor hashtable.
2731
* - MMU for context.
2732
*
2733
* In addition this function does the following:
2734
* - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2735
* hashtable should be empty as no valid mappings should exist at this
2736
* point.
2737
* - Frees any existing physical page list from the idr which relates to the
2738
* current context asid.
2739
* - This function checks the virtual block list for correctness. At this point
2740
* the list should contain one element which describes the whole virtual
2741
* memory range of the context. Otherwise, a warning is printed.
2742
*/
2743
void hl_vm_ctx_fini(struct hl_ctx *ctx)
2744
{
2745
struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2746
struct hl_device *hdev = ctx->hdev;
2747
struct hl_vm_hash_node *hnode;
2748
struct hl_vm *vm = &hdev->vm;
2749
struct hlist_node *tmp_node;
2750
struct list_head free_list;
2751
struct hl_mem_in args;
2752
int i;
2753
2754
if (hdev->mmu_disable)
2755
return;
2756
2757
hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2758
2759
/*
2760
* Clearly something went wrong on hard reset so no point in printing
2761
* another side effect error
2762
*/
2763
if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2764
dev_dbg(hdev->dev,
2765
"user released device without removing its memory mappings\n");
2766
2767
hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2768
dev_dbg(hdev->dev,
2769
"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2770
hnode->vaddr, ctx->asid);
2771
args.unmap.device_virt_addr = hnode->vaddr;
2772
unmap_device_va(ctx, &args, true);
2773
}
2774
2775
mutex_lock(&hdev->mmu_lock);
2776
2777
/* invalidate the cache once after the unmapping loop */
2778
hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2779
hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2780
2781
mutex_unlock(&hdev->mmu_lock);
2782
2783
INIT_LIST_HEAD(&free_list);
2784
2785
spin_lock(&vm->idr_lock);
2786
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2787
if (phys_pg_list->asid == ctx->asid) {
2788
dev_dbg(hdev->dev,
2789
"page list 0x%px of asid %d is still alive\n",
2790
phys_pg_list, ctx->asid);
2791
2792
atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2793
idr_remove(&vm->phys_pg_pack_handles, i);
2794
list_add(&phys_pg_list->node, &free_list);
2795
}
2796
spin_unlock(&vm->idr_lock);
2797
2798
list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2799
free_phys_pg_pack(hdev, phys_pg_list);
2800
2801
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2802
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2803
2804
if (hdev->pmmu_huge_range)
2805
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2806
2807
mutex_destroy(&ctx->mem_hash_lock);
2808
hl_mmu_ctx_fini(ctx);
2809
2810
/* In this case we need to clear the global accounting of DRAM usage
2811
* because the user notifies us on allocations. If the user is no more,
2812
* all DRAM is available
2813
*/
2814
if (ctx->asid != HL_KERNEL_ASID_ID &&
2815
!hdev->asic_prop.dram_supports_virtual_memory)
2816
atomic64_set(&hdev->dram_used_mem, 0);
2817
}
2818
2819
/**
2820
* hl_vm_init() - initialize virtual memory module.
2821
* @hdev: pointer to the habanalabs device structure.
2822
*
2823
* This function initializes the following:
2824
* - MMU module.
2825
* - DRAM physical pages pool of 2MB.
2826
* - Idr for device memory allocation handles.
2827
*/
2828
int hl_vm_init(struct hl_device *hdev)
2829
{
2830
struct asic_fixed_properties *prop = &hdev->asic_prop;
2831
struct hl_vm *vm = &hdev->vm;
2832
int rc;
2833
2834
if (is_power_of_2(prop->dram_page_size))
2835
vm->dram_pg_pool =
2836
gen_pool_create(__ffs(prop->dram_page_size), -1);
2837
else
2838
vm->dram_pg_pool =
2839
gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2840
2841
if (!vm->dram_pg_pool) {
2842
dev_err(hdev->dev, "Failed to create dram page pool\n");
2843
return -ENOMEM;
2844
}
2845
2846
kref_init(&vm->dram_pg_pool_refcount);
2847
2848
rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2849
prop->dram_end_address - prop->dram_user_base_address,
2850
-1);
2851
2852
if (rc) {
2853
dev_err(hdev->dev,
2854
"Failed to add memory to dram page pool %d\n", rc);
2855
goto pool_add_err;
2856
}
2857
2858
spin_lock_init(&vm->idr_lock);
2859
idr_init(&vm->phys_pg_pack_handles);
2860
2861
atomic64_set(&hdev->dram_used_mem, 0);
2862
2863
vm->init_done = true;
2864
2865
return 0;
2866
2867
pool_add_err:
2868
gen_pool_destroy(vm->dram_pg_pool);
2869
2870
return rc;
2871
}
2872
2873
/**
2874
* hl_vm_fini() - virtual memory module teardown.
2875
* @hdev: pointer to the habanalabs device structure.
2876
*
2877
* This function perform teardown to the following:
2878
* - Idr for device memory allocation handles.
2879
* - DRAM physical pages pool of 2MB.
2880
* - MMU module.
2881
*/
2882
void hl_vm_fini(struct hl_device *hdev)
2883
{
2884
struct hl_vm *vm = &hdev->vm;
2885
2886
if (!vm->init_done)
2887
return;
2888
2889
/*
2890
* At this point all the contexts should be freed and hence no DRAM
2891
* memory should be in use. Hence the DRAM pool should be freed here.
2892
*/
2893
if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2894
dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2895
__func__);
2896
2897
vm->init_done = false;
2898
}
2899
2900
/**
2901
* hl_hw_block_mem_init() - HW block memory initialization.
2902
* @ctx: pointer to the habanalabs context structure.
2903
*
2904
* This function initializes the HW block virtual mapped addresses list and
2905
* it's lock.
2906
*/
2907
void hl_hw_block_mem_init(struct hl_ctx *ctx)
2908
{
2909
mutex_init(&ctx->hw_block_list_lock);
2910
INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2911
}
2912
2913
/**
2914
* hl_hw_block_mem_fini() - HW block memory teardown.
2915
* @ctx: pointer to the habanalabs context structure.
2916
*
2917
* This function clears the HW block virtual mapped addresses list and destroys
2918
* it's lock.
2919
*/
2920
void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2921
{
2922
struct hl_vm_hw_block_list_node *lnode, *tmp;
2923
2924
if (!list_empty(&ctx->hw_block_mem_list))
2925
dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2926
2927
list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2928
list_del(&lnode->node);
2929
kfree(lnode);
2930
}
2931
2932
mutex_destroy(&ctx->hw_block_list_lock);
2933
}
2934
2935