Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/mmu/mmu.c
26488 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright 2016-2022 HabanaLabs, Ltd.
5
* All Rights Reserved.
6
*/
7
8
#include <linux/slab.h>
9
#include <linux/pci.h>
10
11
#include "../habanalabs.h"
12
13
#include <trace/events/habanalabs.h>
14
15
/**
16
* hl_mmu_get_funcs() - get MMU functions structure
17
* @hdev: habanalabs device structure.
18
* @pgt_residency: page table residency.
19
* @is_dram_addr: true if we need HMMU functions
20
*
21
* @return appropriate MMU functions structure
22
*/
23
static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
24
bool is_dram_addr)
25
{
26
return &hdev->mmu_func[pgt_residency];
27
}
28
29
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
30
{
31
struct asic_fixed_properties *prop = &hdev->asic_prop;
32
33
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
34
prop->dmmu.start_addr,
35
prop->dmmu.end_addr);
36
}
37
38
/**
39
* hl_mmu_init() - initialize the MMU module.
40
* @hdev: habanalabs device structure.
41
*
42
* Return: 0 for success, non-zero for failure.
43
*/
44
int hl_mmu_init(struct hl_device *hdev)
45
{
46
int rc = -EOPNOTSUPP;
47
48
if (hdev->mmu_disable)
49
return 0;
50
51
mutex_init(&hdev->mmu_lock);
52
53
if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
54
rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
55
if (rc)
56
return rc;
57
}
58
59
if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
60
rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
61
if (rc)
62
goto fini_dr_mmu;
63
}
64
65
return 0;
66
67
fini_dr_mmu:
68
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
69
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
70
71
return rc;
72
}
73
74
/**
75
* hl_mmu_fini() - release the MMU module.
76
* @hdev: habanalabs device structure.
77
*
78
* This function does the following:
79
* - Disable MMU in H/W.
80
* - Free the pgt_infos pool.
81
*
82
* All contexts should be freed before calling this function.
83
*/
84
void hl_mmu_fini(struct hl_device *hdev)
85
{
86
if (hdev->mmu_disable)
87
return;
88
89
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
90
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
91
92
if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
93
hdev->mmu_func[MMU_HR_PGT].fini(hdev);
94
95
mutex_destroy(&hdev->mmu_lock);
96
}
97
98
/**
99
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
100
* @ctx: pointer to the context structure to initialize.
101
*
102
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
103
* page tables hops related to this context.
104
* Return: 0 on success, non-zero otherwise.
105
*/
106
int hl_mmu_ctx_init(struct hl_ctx *ctx)
107
{
108
struct hl_device *hdev = ctx->hdev;
109
int rc = -EOPNOTSUPP;
110
111
if (hdev->mmu_disable)
112
return 0;
113
114
if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
115
rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
116
if (rc)
117
return rc;
118
}
119
120
if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
121
rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
122
if (rc)
123
goto fini_dr_ctx;
124
}
125
126
return 0;
127
128
fini_dr_ctx:
129
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
130
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
131
132
return rc;
133
}
134
135
/*
136
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
137
*
138
* @ctx: pointer to the context structure
139
*
140
* This function does the following:
141
* - Free any pgts which were not freed yet
142
* - Free the mutex
143
* - Free DRAM default page mapping hops
144
*/
145
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
146
{
147
struct hl_device *hdev = ctx->hdev;
148
149
if (hdev->mmu_disable)
150
return;
151
152
if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
153
hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
154
155
if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
156
hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
157
}
158
159
/*
160
* hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
161
*
162
* @hdev: pointer to device data.
163
* @mmu_prop: MMU properties.
164
* @page_size: page size
165
* @real_page_size: set here the actual page size to use for the operation
166
* @is_dram_addr: true if DRAM address, otherwise false.
167
*
168
* @return 0 on success, otherwise non 0 error code
169
*
170
* note that this is general implementation that can fit most MMU arch. but as this is used as an
171
* MMU function:
172
* 1. it shall not be called directly- only from mmu_func structure instance
173
* 2. each MMU may modify the implementation internally
174
*/
175
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
176
u32 page_size, u32 *real_page_size, bool is_dram_addr)
177
{
178
/*
179
* The H/W handles mapping of specific page sizes. Hence if the page
180
* size is bigger, we break it to sub-pages and map them separately.
181
*/
182
if ((page_size % mmu_prop->page_size) == 0) {
183
*real_page_size = mmu_prop->page_size;
184
return 0;
185
}
186
187
dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
188
page_size, mmu_prop->page_size >> 10);
189
190
return -EFAULT;
191
}
192
193
static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
194
bool is_dram_addr)
195
{
196
struct asic_fixed_properties *prop = &hdev->asic_prop;
197
198
if (is_dram_addr)
199
return &prop->dmmu;
200
else if ((page_size % prop->pmmu_huge.page_size) == 0)
201
return &prop->pmmu_huge;
202
203
return &prop->pmmu;
204
}
205
206
/*
207
* hl_mmu_unmap_page - unmaps a virtual addr
208
*
209
* @ctx: pointer to the context structure
210
* @virt_addr: virt addr to map from
211
* @page_size: size of the page to unmap
212
* @flush_pte: whether to do a PCI flush
213
*
214
* This function does the following:
215
* - Check that the virt addr is mapped
216
* - Unmap the virt addr and frees pgts if possible
217
* - Returns 0 on success, -EINVAL if the given addr is not mapped
218
*
219
* Because this function changes the page tables in the device and because it
220
* changes the MMU hash, it must be protected by a lock.
221
* However, because it maps only a single page, the lock should be implemented
222
* in a higher level in order to protect the entire mapping of the memory area
223
*
224
* For optimization reasons PCI flush may be requested once after unmapping of
225
* large area.
226
*/
227
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
228
{
229
struct hl_device *hdev = ctx->hdev;
230
struct hl_mmu_properties *mmu_prop;
231
struct hl_mmu_funcs *mmu_funcs;
232
int i, pgt_residency, rc = 0;
233
u32 real_page_size, npages;
234
u64 real_virt_addr;
235
bool is_dram_addr;
236
237
if (hdev->mmu_disable)
238
return 0;
239
240
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
241
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
242
243
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
244
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
245
246
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
247
is_dram_addr);
248
if (rc)
249
return rc;
250
251
npages = page_size / real_page_size;
252
real_virt_addr = virt_addr;
253
254
for (i = 0 ; i < npages ; i++) {
255
rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
256
if (rc)
257
break;
258
259
real_virt_addr += real_page_size;
260
}
261
262
if (flush_pte)
263
mmu_funcs->flush(ctx);
264
265
if (trace_habanalabs_mmu_unmap_enabled() && !rc)
266
trace_habanalabs_mmu_unmap(&hdev->pdev->dev, virt_addr, 0, page_size, flush_pte);
267
268
return rc;
269
}
270
271
/*
272
* hl_mmu_map_page - maps a virtual addr to physical addr
273
*
274
* @ctx: pointer to the context structure
275
* @virt_addr: virt addr to map from
276
* @phys_addr: phys addr to map to
277
* @page_size: physical page size
278
* @flush_pte: whether to do a PCI flush
279
*
280
* This function does the following:
281
* - Check that the virt addr is not mapped
282
* - Allocate pgts as necessary in order to map the virt addr to the phys
283
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
284
*
285
* Because this function changes the page tables in the device and because it
286
* changes the MMU hash, it must be protected by a lock.
287
* However, because it maps only a single page, the lock should be implemented
288
* in a higher level in order to protect the entire mapping of the memory area
289
*
290
* For optimization reasons PCI flush may be requested once after mapping of
291
* large area.
292
*/
293
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
294
bool flush_pte)
295
{
296
int i, rc, pgt_residency, mapped_cnt = 0;
297
struct hl_device *hdev = ctx->hdev;
298
struct hl_mmu_properties *mmu_prop;
299
u64 real_virt_addr, real_phys_addr;
300
struct hl_mmu_funcs *mmu_funcs;
301
u32 real_page_size, npages;
302
bool is_dram_addr;
303
304
305
if (hdev->mmu_disable)
306
return 0;
307
308
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
309
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
310
311
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
312
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
313
314
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
315
is_dram_addr);
316
if (rc)
317
return rc;
318
319
/*
320
* Verify that the phys and virt addresses are aligned with the
321
* MMU page size (in dram this means checking the address and MMU
322
* after scrambling)
323
*/
324
if ((is_dram_addr &&
325
((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
326
(mmu_prop->page_size - 1)) ||
327
(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
328
(mmu_prop->page_size - 1)))) ||
329
(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
330
(virt_addr & (real_page_size - 1)))))
331
dev_crit(hdev->dev,
332
"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
333
phys_addr, virt_addr, real_page_size);
334
335
npages = page_size / real_page_size;
336
real_virt_addr = virt_addr;
337
real_phys_addr = phys_addr;
338
339
for (i = 0 ; i < npages ; i++) {
340
rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
341
is_dram_addr);
342
if (rc)
343
goto err;
344
345
real_virt_addr += real_page_size;
346
real_phys_addr += real_page_size;
347
mapped_cnt++;
348
}
349
350
if (flush_pte)
351
mmu_funcs->flush(ctx);
352
353
trace_habanalabs_mmu_map(&hdev->pdev->dev, virt_addr, phys_addr, page_size, flush_pte);
354
355
return 0;
356
357
err:
358
real_virt_addr = virt_addr;
359
for (i = 0 ; i < mapped_cnt ; i++) {
360
if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
361
dev_warn_ratelimited(hdev->dev,
362
"failed to unmap va: 0x%llx\n", real_virt_addr);
363
364
real_virt_addr += real_page_size;
365
}
366
367
mmu_funcs->flush(ctx);
368
369
return rc;
370
}
371
372
/*
373
* hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
374
* for mapping contiguous physical memory
375
*
376
* @ctx: pointer to the context structure
377
* @virt_addr: virt addr to map from
378
* @phys_addr: phys addr to map to
379
* @size: size to map
380
*
381
*/
382
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
383
u64 phys_addr, u32 size)
384
{
385
struct hl_device *hdev = ctx->hdev;
386
struct asic_fixed_properties *prop = &hdev->asic_prop;
387
u64 curr_va, curr_pa;
388
u32 page_size;
389
bool flush_pte;
390
int rc = 0, off;
391
392
if (hl_mem_area_inside_range(virt_addr, size,
393
prop->dmmu.start_addr, prop->dmmu.end_addr))
394
page_size = prop->dmmu.page_size;
395
else if (hl_mem_area_inside_range(virt_addr, size,
396
prop->pmmu.start_addr, prop->pmmu.end_addr))
397
page_size = prop->pmmu.page_size;
398
else if (hl_mem_area_inside_range(virt_addr, size,
399
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
400
page_size = prop->pmmu_huge.page_size;
401
else
402
return -EINVAL;
403
404
for (off = 0 ; off < size ; off += page_size) {
405
curr_va = virt_addr + off;
406
curr_pa = phys_addr + off;
407
flush_pte = (off + page_size) >= size;
408
rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
409
flush_pte);
410
if (rc) {
411
dev_err(hdev->dev,
412
"Map failed for va 0x%llx to pa 0x%llx\n",
413
curr_va, curr_pa);
414
/* last mapping failed so don't try to unmap it - reduce off by page_size */
415
off -= page_size;
416
goto unmap;
417
}
418
}
419
420
return rc;
421
422
unmap:
423
for (; off >= 0 ; off -= page_size) {
424
curr_va = virt_addr + off;
425
flush_pte = (off - (s32) page_size) < 0;
426
if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
427
dev_warn_ratelimited(hdev->dev,
428
"failed to unmap va 0x%llx\n", curr_va);
429
}
430
431
return rc;
432
}
433
434
/*
435
* hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
436
* for unmapping contiguous physical memory
437
*
438
* @ctx: pointer to the context structure
439
* @virt_addr: virt addr to unmap
440
* @size: size to unmap
441
*
442
*/
443
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
444
{
445
struct hl_device *hdev = ctx->hdev;
446
struct asic_fixed_properties *prop = &hdev->asic_prop;
447
u64 curr_va;
448
u32 page_size;
449
bool flush_pte;
450
int rc = 0, off;
451
452
if (hl_mem_area_inside_range(virt_addr, size,
453
prop->dmmu.start_addr, prop->dmmu.end_addr))
454
page_size = prop->dmmu.page_size;
455
else if (hl_mem_area_inside_range(virt_addr, size,
456
prop->pmmu.start_addr, prop->pmmu.end_addr))
457
page_size = prop->pmmu.page_size;
458
else if (hl_mem_area_inside_range(virt_addr, size,
459
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
460
page_size = prop->pmmu_huge.page_size;
461
else
462
return -EINVAL;
463
464
for (off = 0 ; off < size ; off += page_size) {
465
curr_va = virt_addr + off;
466
flush_pte = (off + page_size) >= size;
467
rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
468
if (rc)
469
dev_warn_ratelimited(hdev->dev,
470
"Unmap failed for va 0x%llx\n", curr_va);
471
}
472
473
return rc;
474
}
475
476
static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
477
struct hl_mmu_hop_info *hops,
478
u64 *phys_addr)
479
{
480
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
481
u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
482
struct hl_mmu_properties *mmu_prop;
483
484
/* last hop holds the phys address and flags */
485
if (hops->unscrambled_paddr)
486
tmp_phys_addr = hops->unscrambled_paddr;
487
else
488
tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
489
490
if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
491
mmu_prop = &prop->pmmu_huge;
492
else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
493
mmu_prop = &prop->pmmu;
494
else /* HL_VA_RANGE_TYPE_DRAM */
495
mmu_prop = &prop->dmmu;
496
497
if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
498
!is_power_of_2(prop->dram_page_size)) {
499
u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
500
page_id, page_start;
501
u32 page_off;
502
503
/*
504
* Bit arithmetic cannot be used for non power of two page
505
* sizes. In addition, since bit arithmetic is not used,
506
* we cannot ignore dram base. All that shall be considered.
507
*/
508
509
dram_page_size = prop->dram_page_size;
510
dram_base = prop->dram_base_address;
511
abs_phys_addr = tmp_phys_addr - dram_base;
512
abs_virt_addr = virt_addr - dram_base;
513
page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
514
page_start = page_id * dram_page_size;
515
div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
516
517
*phys_addr = page_start + page_off + dram_base;
518
} else {
519
/*
520
* find the correct hop shift field in hl_mmu_properties
521
* structure in order to determine the right masks
522
* for the page offset.
523
*/
524
hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
525
offset_mask = (1ull << hop_shift) - 1;
526
addr_mask = ~(offset_mask);
527
*phys_addr = (tmp_phys_addr & addr_mask) |
528
(virt_addr & offset_mask);
529
}
530
}
531
532
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
533
{
534
struct hl_mmu_hop_info hops;
535
int rc;
536
537
memset(&hops, 0, sizeof(hops));
538
539
rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
540
if (rc)
541
return rc;
542
543
hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
544
545
return 0;
546
}
547
548
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
549
struct hl_mmu_hop_info *hops)
550
{
551
struct hl_device *hdev = ctx->hdev;
552
struct asic_fixed_properties *prop;
553
struct hl_mmu_properties *mmu_prop;
554
struct hl_mmu_funcs *mmu_funcs;
555
int pgt_residency, rc;
556
bool is_dram_addr;
557
558
if (hdev->mmu_disable)
559
return -EOPNOTSUPP;
560
561
prop = &hdev->asic_prop;
562
hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
563
564
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
565
prop->dmmu.start_addr,
566
prop->dmmu.end_addr);
567
568
/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
569
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
570
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
571
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
572
573
mutex_lock(&hdev->mmu_lock);
574
rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
575
mutex_unlock(&hdev->mmu_lock);
576
577
if (rc)
578
return rc;
579
580
/* add page offset to physical address */
581
if (hops->unscrambled_paddr)
582
hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
583
584
return 0;
585
}
586
587
int hl_mmu_if_set_funcs(struct hl_device *hdev)
588
{
589
struct asic_fixed_properties *prop = &hdev->asic_prop;
590
591
if (hdev->mmu_disable)
592
return 0;
593
594
switch (hdev->asic_type) {
595
case ASIC_GOYA:
596
case ASIC_GAUDI:
597
case ASIC_GAUDI_SEC:
598
hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
599
break;
600
case ASIC_GAUDI2:
601
case ASIC_GAUDI2B:
602
case ASIC_GAUDI2C:
603
case ASIC_GAUDI2D:
604
hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
605
if (prop->pmmu.host_resident)
606
hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
607
break;
608
default:
609
dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
610
hdev->asic_type);
611
return -EOPNOTSUPP;
612
}
613
614
return 0;
615
}
616
617
/**
618
* hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
619
* @hdev: pointer to device data.
620
* @addr: The address to scramble.
621
*
622
* Return: The scrambled address.
623
*/
624
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
625
{
626
return addr;
627
}
628
629
/**
630
* hl_mmu_descramble_addr() - The generic mmu address descrambling
631
* routine.
632
* @hdev: pointer to device data.
633
* @addr: The address to descramble.
634
*
635
* Return: The un-scrambled address.
636
*/
637
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
638
{
639
return addr;
640
}
641
642
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
643
{
644
int rc;
645
646
rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
647
if (rc)
648
dev_err_ratelimited(hdev->dev,
649
"%s: %s cache invalidation failed, rc=%d\n",
650
dev_name(&hdev->pdev->dev),
651
flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
652
653
return rc;
654
}
655
656
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
657
u32 flags, u32 asid, u64 va, u64 size)
658
{
659
int rc;
660
661
rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
662
asid, va, size);
663
if (rc)
664
dev_err_ratelimited(hdev->dev,
665
"%s: %s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
666
dev_name(&hdev->pdev->dev), flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU",
667
va, size, rc);
668
669
return rc;
670
}
671
672
static void hl_mmu_prefetch_work_function(struct work_struct *work)
673
{
674
struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
675
struct hl_ctx *ctx = pfw->ctx;
676
struct hl_device *hdev = ctx->hdev;
677
678
if (!hl_device_operational(hdev, NULL))
679
goto put_ctx;
680
681
mutex_lock(&hdev->mmu_lock);
682
683
hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
684
685
mutex_unlock(&hdev->mmu_lock);
686
687
put_ctx:
688
/*
689
* context was taken in the common mmu prefetch function- see comment there about
690
* context handling.
691
*/
692
hl_ctx_put(ctx);
693
kfree(pfw);
694
}
695
696
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
697
{
698
struct hl_prefetch_work *handle_prefetch_work;
699
700
handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
701
if (!handle_prefetch_work)
702
return -ENOMEM;
703
704
INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
705
handle_prefetch_work->ctx = ctx;
706
handle_prefetch_work->va = va;
707
handle_prefetch_work->size = size;
708
handle_prefetch_work->flags = flags;
709
handle_prefetch_work->asid = asid;
710
711
/*
712
* as actual prefetch is done in a WQ we must get the context (and put it
713
* at the end of the work function)
714
*/
715
hl_ctx_get(ctx);
716
queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
717
718
return 0;
719
}
720
721
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
722
{
723
return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
724
}
725
726
/**
727
* hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
728
* @ctx: pointer to the context structure to initialize.
729
* @mmu_prop: MMU properties.
730
* @hop_idx: HOP index.
731
* @hop_addr: HOP address.
732
* @virt_addr: virtual address for the translation.
733
*
734
* @return the matching PTE value on success, otherwise U64_MAX.
735
*/
736
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
737
u8 hop_idx, u64 hop_addr, u64 virt_addr)
738
{
739
u64 mask, shift;
740
741
if (hop_idx >= mmu_prop->num_hops) {
742
dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
743
return U64_MAX;
744
}
745
746
shift = mmu_prop->hop_shifts[hop_idx];
747
mask = mmu_prop->hop_masks[hop_idx];
748
749
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
750
}
751
752
static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
753
struct gen_pool_chunk *chunk,
754
void *data)
755
{
756
struct hl_device *hdev = data;
757
758
hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
759
(void *)chunk->start_addr, chunk->phys_addr);
760
}
761
762
void hl_mmu_hr_flush(struct hl_ctx *ctx)
763
{
764
/* a flush operation requires memory barrier */
765
mb();
766
}
767
768
/**
769
* hl_mmu_hr_pool_destroy() - destroy genpool
770
* @hdev: habanalabs device structure.
771
* @hr_priv: MMU HR private data.
772
* @hop_table_size: HOP table size.
773
*
774
* This function does the following:
775
* - free entries allocated for shadow HOP0
776
* - free pool chunks
777
* - free pool
778
*/
779
static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
780
u32 hop_table_size)
781
{
782
struct asic_fixed_properties *prop = &hdev->asic_prop;
783
struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
784
struct pgt_info *hop0_pgt;
785
int asid;
786
787
if (ZERO_OR_NULL_PTR(*pool))
788
return;
789
790
/* Free the Fixed allocation of HOPs0 */
791
if (hr_priv->mmu_asid_hop0) {
792
for (asid = 0 ; asid < prop->max_asid ; asid++) {
793
hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
794
if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
795
continue;
796
797
gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
798
}
799
}
800
801
gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
802
gen_pool_destroy(*pool);
803
804
/* Make sure that if we arrive here again without init was called we
805
* won't cause kernel panic. This can happen for example if we fail
806
* during hard reset code at certain points
807
*/
808
*pool = NULL;
809
}
810
811
/**
812
* hl_mmu_hr_init() - initialize the MMU module.
813
* @hdev: habanalabs device structure.
814
* @hr_priv: MMU HR private data.
815
* @hop_table_size: HOP table size.
816
* @pgt_size: memory size allocated for the page table
817
*
818
* @return 0 on success otherwise non-zero error code
819
*
820
* This function does the following:
821
* - Create a pool of pages for pgt_infos.
822
* - Create a shadow table for pgt
823
*/
824
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
825
u64 pgt_size)
826
{
827
struct asic_fixed_properties *prop = &hdev->asic_prop;
828
size_t pool_chunk_size = SZ_4M;
829
struct pgt_info *hop0_pgt;
830
dma_addr_t dma_addr;
831
u64 virt_addr;
832
int i, rc;
833
834
/*
835
* we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
836
* PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
837
* This way we can call "DMA alloc align" according to dma_alloc granularity and supply
838
* allocations with higher-order alignment restrictions
839
*/
840
hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
841
if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
842
dev_err(hdev->dev, "Failed to create hr page pool\n");
843
return -ENOMEM;
844
}
845
846
hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
847
if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
848
dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
849
rc = -ENOMEM;
850
goto destroy_mmu_pgt_pool;
851
}
852
853
for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
854
virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
855
&dma_addr,
856
GFP_KERNEL | __GFP_ZERO);
857
if (ZERO_OR_NULL_PTR(virt_addr)) {
858
dev_err(hdev->dev,
859
"Failed to allocate memory for host-resident page pool\n");
860
rc = -ENOMEM;
861
goto destroy_mmu_pgt_pool;
862
}
863
864
rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
865
pool_chunk_size, -1);
866
if (rc) {
867
dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
868
goto destroy_mmu_pgt_pool;
869
}
870
}
871
872
for (i = 0 ; i < prop->max_asid ; i++) {
873
hop0_pgt = &hr_priv->mmu_asid_hop0[i];
874
hop0_pgt->virt_addr = (uintptr_t)
875
gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
876
hop_table_size,
877
(dma_addr_t *) &hop0_pgt->phys_addr,
878
hop_table_size);
879
if (!hop0_pgt->virt_addr) {
880
dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
881
rc = -ENOMEM;
882
goto destroy_mmu_pgt_pool;
883
}
884
}
885
886
/* MMU H/W init will be done in device hw_init() */
887
888
return 0;
889
890
destroy_mmu_pgt_pool:
891
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
892
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
893
kvfree(hr_priv->mmu_asid_hop0);
894
895
return rc;
896
}
897
898
/**
899
* hl_mmu_hr_fini() - release the MMU module.
900
* @hdev: habanalabs device structure.
901
* @hr_priv: MMU host resident private info.
902
* @hop_table_size: HOP table size
903
*
904
* This function does the following:
905
* - Disable MMU in H/W.
906
* - Free the pgt_infos pool.
907
*
908
* All contexts should be freed before calling this function.
909
*/
910
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
911
{
912
/* MMU H/W fini was already done in device hw_fini() */
913
914
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
915
916
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
917
kvfree(hr_priv->mmu_asid_hop0);
918
919
/* Make sure that if we arrive here again without init was
920
* called we won't cause kernel panic. This can happen for
921
* example if we fail during hard reset code at certain points
922
*/
923
hr_priv->mmu_asid_hop0 = NULL;
924
}
925
}
926
927
/**
928
* hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
929
* @pgt_info: page table info structure.
930
* @hr_priv: MMU HR private data.
931
* @hop_table_size: HOP table size.
932
*/
933
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
934
u32 hop_table_size)
935
{
936
gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
937
hash_del(&pgt_info->node);
938
kfree(pgt_info);
939
}
940
941
/**
942
* hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
943
* @ctx: pointer to the context structure
944
* @pgt: pgt_info for the HOP hosting the PTE
945
* @phys_pte_addr: phys address of the PTE
946
* @hop_table_size: HOP table size
947
*
948
* @return PTE virtual address
949
*
950
* The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
951
* by adding the PTE offset.
952
*/
953
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
954
u64 phys_pte_addr, u32 hop_table_size)
955
{
956
u64 page_mask = (hop_table_size - 1);
957
u64 pte_offset = phys_pte_addr & page_mask;
958
959
return pgt->virt_addr + pte_offset;
960
}
961
962
/**
963
* hl_mmu_hr_write_pte() - write HR PTE
964
* @ctx: pointer to the context structure
965
* @pgt_info: HOP's page table info structure
966
* @phys_pte_addr: phys PTE address
967
* @val: raw PTE data
968
* @hop_table_size: HOP table size
969
*/
970
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
971
u64 val, u32 hop_table_size)
972
{
973
/*
974
* The value to write is the phys address of the next hop +
975
* flags at the 12 LSBs.
976
*/
977
u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
978
979
*((u64 *) (uintptr_t) virt_addr) = val;
980
}
981
982
/**
983
* hl_mmu_hr_clear_pte() - clear HR PTE
984
* @ctx: pointer to the context structure
985
* @pgt_info: HOP's page table info structure
986
* @phys_pte_addr: phys PTE address
987
* @hop_table_size: HOP table size
988
*/
989
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
990
u32 hop_table_size)
991
{
992
/* no need to transform the value to physical address */
993
hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
994
}
995
996
/**
997
* hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
998
* @ctx: pointer to the context structure
999
* @pgt_info: HOP's page table info structure
1000
* @hr_priv: HR MMU private info
1001
* @hop_table_size: HOP table size
1002
*
1003
* @return number of PTEs still in the HOP
1004
*/
1005
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
1006
struct hl_mmu_hr_priv *hr_priv,
1007
u32 hop_table_size)
1008
{
1009
int num_of_ptes_left;
1010
1011
pgt_info->num_of_ptes--;
1012
1013
/*
1014
* Need to save the number of ptes left because free_hop might free
1015
* the pgt_info
1016
*/
1017
num_of_ptes_left = pgt_info->num_of_ptes;
1018
if (!num_of_ptes_left)
1019
hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1020
1021
return num_of_ptes_left;
1022
}
1023
1024
/**
1025
* hl_mmu_hr_get_pte() - increase PGT PTE count
1026
* @ctx: pointer to the context structure
1027
* @hr_func: host resident functions
1028
* @phys_hop_addr: HOP phys address
1029
*/
1030
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1031
{
1032
hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1033
}
1034
1035
/**
1036
* hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1037
* @ctx: pointer to the context structure.
1038
* @hr_func: host resident functions.
1039
* @curr_pte: current PTE value.
1040
*
1041
* @return pgt_info structure on success, otherwise NULL.
1042
*/
1043
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1044
struct hl_hr_mmu_funcs *hr_func,
1045
u64 curr_pte)
1046
{
1047
u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1048
1049
if (next_hop_phys_addr == ULLONG_MAX)
1050
return NULL;
1051
1052
return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1053
}
1054
1055
/**
1056
* hl_mmu_hr_alloc_hop() - allocate HOP
1057
* @ctx: pointer to the context structure.
1058
* @hr_priv: host resident private info structure.
1059
* @hr_func: host resident functions.
1060
* @mmu_prop: MMU properties.
1061
*
1062
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1063
*/
1064
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1065
struct hl_hr_mmu_funcs *hr_func,
1066
struct hl_mmu_properties *mmu_prop)
1067
{
1068
struct hl_device *hdev = ctx->hdev;
1069
struct pgt_info *pgt_info;
1070
dma_addr_t phys_addr;
1071
void *virt_addr;
1072
int i, retry = 1;
1073
1074
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1075
if (!pgt_info)
1076
return NULL;
1077
1078
for (i = 0; i <= retry; i++) {
1079
virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1080
mmu_prop->hop_table_size,
1081
&phys_addr,
1082
mmu_prop->hop_table_size);
1083
if (virt_addr)
1084
break;
1085
1086
/* No memory in pool - get some and try again */
1087
virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1088
GFP_KERNEL | __GFP_ZERO);
1089
if (ZERO_OR_NULL_PTR(virt_addr))
1090
break;
1091
1092
if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1093
phys_addr, SZ_2M, -1)) {
1094
hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1095
virt_addr = NULL;
1096
break;
1097
}
1098
}
1099
1100
if (ZERO_OR_NULL_PTR(virt_addr)) {
1101
dev_err(hdev->dev, "failed to allocate page\n");
1102
goto pool_alloc_err;
1103
}
1104
1105
pgt_info->phys_addr = phys_addr;
1106
pgt_info->shadow_addr = (unsigned long) NULL;
1107
pgt_info->virt_addr = (unsigned long)virt_addr;
1108
pgt_info->ctx = ctx;
1109
pgt_info->num_of_ptes = 0;
1110
hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1111
1112
return pgt_info;
1113
1114
pool_alloc_err:
1115
kfree(pgt_info);
1116
1117
return NULL;
1118
}
1119
1120
/**
1121
* hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1122
* @ctx: pointer to the context structure.
1123
* @hr_priv: host resident private info structure.
1124
* @hr_func: host resident functions.
1125
* @mmu_prop: MMU properties.
1126
* @curr_pte: current PTE value.
1127
* @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1128
*
1129
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1130
*/
1131
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1132
struct hl_mmu_hr_priv *hr_priv,
1133
struct hl_hr_mmu_funcs *hr_func,
1134
struct hl_mmu_properties *mmu_prop,
1135
u64 curr_pte, bool *is_new_hop)
1136
{
1137
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1138
1139
if (hop_addr != ULLONG_MAX)
1140
return hr_func->get_pgt_info(ctx, hop_addr);
1141
1142
*is_new_hop = true;
1143
return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1144
}
1145
1146
/**
1147
* hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1148
* @ctx: pointer to the context structure.
1149
* @virt_addr: the virt address for which to get info.
1150
* @hops: HOPs info structure.
1151
* @hr_func: host resident functions.
1152
*
1153
* @return 0 on success, otherwise non 0 error code..
1154
*/
1155
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1156
struct hl_hr_mmu_funcs *hr_func)
1157
{
1158
/* using 6 HOPs as this is the maximum number of HOPs */
1159
struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1160
struct hl_device *hdev = ctx->hdev;
1161
struct hl_mmu_properties *mmu_prop;
1162
int rc, i, used_hops;
1163
bool is_huge;
1164
1165
rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1166
if (rc)
1167
return rc;
1168
1169
used_hops = mmu_prop->num_hops;
1170
1171
/* huge pages use one less hop */
1172
if (is_huge)
1173
used_hops--;
1174
1175
hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1176
1177
for (i = 0 ; i < used_hops ; i++) {
1178
if (i == 0)
1179
hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1180
else
1181
hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1182
hops->hop_info[i - 1].hop_pte_val);
1183
1184
if (!hops_pgt_info[i])
1185
return -EFAULT;
1186
1187
hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1188
hops->hop_info[i].hop_pte_addr =
1189
hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1190
hops->hop_info[i].hop_addr,
1191
hops->scrambled_vaddr);
1192
hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1193
hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1194
hops->hop_info[i].hop_pte_addr,
1195
mmu_prop->hop_table_size);
1196
1197
if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1198
return -EFAULT;
1199
1200
if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1201
break;
1202
}
1203
1204
/* if passed over all hops then no last hop was found */
1205
if (i == mmu_prop->num_hops)
1206
return -EFAULT;
1207
1208
if (hops->scrambled_vaddr != virt_addr)
1209
hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1210
(hdev, hops->hop_info[i].hop_pte_val);
1211
else
1212
hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1213
1214
hops->used_hops = i + 1;
1215
1216
return 0;
1217
}
1218
1219
struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
1220
{
1221
struct pgt_info *pgt_info = NULL;
1222
1223
hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
1224
(unsigned long) hop_addr)
1225
if (hop_addr == pgt_info->shadow_addr)
1226
break;
1227
1228
return pgt_info;
1229
}
1230
1231
void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr)
1232
{
1233
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1234
1235
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1236
}
1237
1238
void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info)
1239
{
1240
struct hl_device *hdev = ctx->hdev;
1241
1242
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
1243
hdev->asic_prop.dmmu.hop_table_size);
1244
hash_del(&pgt_info->node);
1245
kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
1246
kfree(pgt_info);
1247
}
1248
1249
u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx)
1250
{
1251
return ctx->hdev->asic_prop.mmu_pgt_addr +
1252
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1253
}
1254
1255
u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx)
1256
{
1257
return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
1258
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1259
}
1260
1261
u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
1262
{
1263
u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1;
1264
u64 shadow_hop_addr = shadow_addr & (~page_mask);
1265
u64 pte_offset = shadow_addr & page_mask;
1266
u64 phys_hop_addr;
1267
1268
if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx))
1269
phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
1270
else
1271
phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
1272
1273
return phys_hop_addr + pte_offset;
1274
}
1275
1276
void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1277
{
1278
u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val);
1279
1280
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr),
1281
phys_val);
1282
1283
*(u64 *) (uintptr_t) shadow_pte_addr = val;
1284
}
1285
1286
void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1287
{
1288
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
1289
hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val);
1290
*(u64 *) (uintptr_t) shadow_pte_addr = val;
1291
}
1292
1293
void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr)
1294
{
1295
hl_mmu_dr_write_final_pte(ctx, pte_addr, 0);
1296
}
1297
1298
void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr)
1299
{
1300
hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++;
1301
}
1302
1303
int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr)
1304
{
1305
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1306
int num_of_ptes_left;
1307
1308
pgt_info->num_of_ptes--;
1309
1310
/*
1311
* Need to save the number of ptes left because hl_mmu_free_hop might free
1312
* the pgt_info
1313
*/
1314
num_of_ptes_left = pgt_info->num_of_ptes;
1315
if (!num_of_ptes_left)
1316
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1317
1318
return num_of_ptes_left;
1319
}
1320
1321
u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx)
1322
{
1323
struct hl_device *hdev = ctx->hdev;
1324
struct asic_fixed_properties *prop = &hdev->asic_prop;
1325
struct pgt_info *pgt_info;
1326
u64 phys_addr, shadow_addr;
1327
1328
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1329
if (!pgt_info)
1330
return ULLONG_MAX;
1331
1332
phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
1333
prop->dmmu.hop_table_size);
1334
if (!phys_addr) {
1335
dev_err(hdev->dev, "failed to allocate page\n");
1336
goto pool_add_err;
1337
}
1338
1339
shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size,
1340
GFP_KERNEL);
1341
if (!shadow_addr)
1342
goto shadow_err;
1343
1344
pgt_info->phys_addr = phys_addr;
1345
pgt_info->shadow_addr = shadow_addr;
1346
pgt_info->ctx = ctx;
1347
pgt_info->num_of_ptes = 0;
1348
hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
1349
1350
return shadow_addr;
1351
1352
shadow_err:
1353
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool,
1354
phys_addr, prop->dmmu.hop_table_size);
1355
pool_add_err:
1356
kfree(pgt_info);
1357
1358
return ULLONG_MAX;
1359
}
1360
1361
u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop)
1362
{
1363
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1364
1365
if (hop_addr == ULLONG_MAX) {
1366
hop_addr = hl_mmu_dr_alloc_hop(ctx);
1367
*is_new_hop = (hop_addr != ULLONG_MAX);
1368
}
1369
1370
return hop_addr;
1371
}
1372
1373
void hl_mmu_dr_flush(struct hl_ctx *ctx)
1374
{
1375
/* flush all writes from all cores to reach PCI */
1376
mb();
1377
ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx));
1378
}
1379
1380
int hl_mmu_dr_init(struct hl_device *hdev)
1381
{
1382
struct asic_fixed_properties *prop = &hdev->asic_prop;
1383
int rc;
1384
1385
hdev->mmu_priv.dr.mmu_pgt_pool =
1386
gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1);
1387
1388
if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
1389
dev_err(hdev->dev, "Failed to create page gen pool\n");
1390
return -ENOMEM;
1391
}
1392
1393
rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
1394
prop->dmmu.hop0_tables_total_size,
1395
prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size,
1396
-1);
1397
if (rc) {
1398
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
1399
goto err_pool_add;
1400
}
1401
1402
hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid,
1403
prop->dmmu.hop_table_size, GFP_KERNEL);
1404
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
1405
rc = -ENOMEM;
1406
goto err_pool_add;
1407
}
1408
1409
/* MMU H/W init will be done in device hw_init() */
1410
1411
return 0;
1412
1413
err_pool_add:
1414
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1415
1416
return rc;
1417
}
1418
1419
void hl_mmu_dr_fini(struct hl_device *hdev)
1420
{
1421
/* MMU H/W fini was already done in device hw_fini() */
1422
1423
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0))
1424
return;
1425
1426
kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
1427
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1428
1429
/* Make sure that if we arrive here again without init was
1430
* called we won't cause kernel panic. This can happen for
1431
* example if we fail during hard reset code at certain points
1432
*/
1433
hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
1434
}
1435
1436