Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/ivpu/ivpu_mmu.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2020-2024 Intel Corporation
4
*/
5
6
#include <linux/circ_buf.h>
7
#include <linux/highmem.h>
8
9
#include "ivpu_drv.h"
10
#include "ivpu_hw.h"
11
#include "ivpu_hw_reg_io.h"
12
#include "ivpu_mmu.h"
13
#include "ivpu_mmu_context.h"
14
#include "ivpu_pm.h"
15
16
#define IVPU_MMU_REG_IDR0 0x00200000u
17
#define IVPU_MMU_REG_IDR1 0x00200004u
18
#define IVPU_MMU_REG_IDR3 0x0020000cu
19
#define IVPU_MMU_REG_IDR5 0x00200014u
20
#define IVPU_MMU_REG_CR0 0x00200020u
21
#define IVPU_MMU_REG_CR0ACK 0x00200024u
22
#define IVPU_MMU_REG_CR0ACK_VAL_MASK GENMASK(31, 0)
23
#define IVPU_MMU_REG_CR0_ATSCHK_MASK BIT(4)
24
#define IVPU_MMU_REG_CR0_CMDQEN_MASK BIT(3)
25
#define IVPU_MMU_REG_CR0_EVTQEN_MASK BIT(2)
26
#define IVPU_MMU_REG_CR0_PRIQEN_MASK BIT(1)
27
#define IVPU_MMU_REG_CR0_SMMUEN_MASK BIT(0)
28
29
#define IVPU_MMU_REG_CR1 0x00200028u
30
#define IVPU_MMU_REG_CR2 0x0020002cu
31
#define IVPU_MMU_REG_IRQ_CTRL 0x00200050u
32
#define IVPU_MMU_REG_IRQ_CTRLACK 0x00200054u
33
#define IVPU_MMU_REG_IRQ_CTRLACK_VAL_MASK GENMASK(31, 0)
34
35
#define IVPU_MMU_REG_GERROR 0x00200060u
36
#define IVPU_MMU_REG_GERROR_CMDQ_MASK BIT_MASK(0)
37
#define IVPU_MMU_REG_GERROR_EVTQ_ABT_MASK BIT_MASK(2)
38
#define IVPU_MMU_REG_GERROR_PRIQ_ABT_MASK BIT_MASK(3)
39
#define IVPU_MMU_REG_GERROR_MSI_CMDQ_ABT_MASK BIT_MASK(4)
40
#define IVPU_MMU_REG_GERROR_MSI_EVTQ_ABT_MASK BIT_MASK(5)
41
#define IVPU_MMU_REG_GERROR_MSI_PRIQ_ABT_MASK BIT_MASK(6)
42
#define IVPU_MMU_REG_GERROR_MSI_ABT_MASK BIT_MASK(7)
43
44
#define IVPU_MMU_REG_GERRORN 0x00200064u
45
46
#define IVPU_MMU_REG_STRTAB_BASE 0x00200080u
47
#define IVPU_MMU_REG_STRTAB_BASE_CFG 0x00200088u
48
#define IVPU_MMU_REG_CMDQ_BASE 0x00200090u
49
#define IVPU_MMU_REG_CMDQ_PROD 0x00200098u
50
#define IVPU_MMU_REG_CMDQ_CONS 0x0020009cu
51
#define IVPU_MMU_REG_CMDQ_CONS_VAL_MASK GENMASK(23, 0)
52
#define IVPU_MMU_REG_CMDQ_CONS_ERR_MASK GENMASK(30, 24)
53
#define IVPU_MMU_REG_EVTQ_BASE 0x002000a0u
54
#define IVPU_MMU_REG_EVTQ_PROD 0x002000a8u
55
#define IVPU_MMU_REG_EVTQ_CONS 0x002000acu
56
#define IVPU_MMU_REG_EVTQ_PROD_SEC (0x002000a8u + SZ_64K)
57
#define IVPU_MMU_REG_EVTQ_CONS_SEC (0x002000acu + SZ_64K)
58
59
#define IVPU_MMU_IDR0_REF 0x080f3e0f
60
#define IVPU_MMU_IDR0_REF_SIMICS 0x080f3e1f
61
#define IVPU_MMU_IDR1_REF 0x0e739d18
62
#define IVPU_MMU_IDR3_REF 0x0000003c
63
#define IVPU_MMU_IDR5_REF 0x00040070
64
#define IVPU_MMU_IDR5_REF_SIMICS 0x00000075
65
#define IVPU_MMU_IDR5_REF_FPGA 0x00800075
66
67
#define IVPU_MMU_CDTAB_ENT_SIZE 64
68
#define IVPU_MMU_CDTAB_ENT_COUNT_LOG2 8 /* 256 entries */
69
#define IVPU_MMU_CDTAB_ENT_COUNT ((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
70
71
#define IVPU_MMU_STREAM_ID0 0
72
#define IVPU_MMU_STREAM_ID3 3
73
74
#define IVPU_MMU_STRTAB_ENT_SIZE 64
75
#define IVPU_MMU_STRTAB_ENT_COUNT 4
76
#define IVPU_MMU_STRTAB_CFG_LOG2SIZE 2
77
#define IVPU_MMU_STRTAB_CFG IVPU_MMU_STRTAB_CFG_LOG2SIZE
78
79
#define IVPU_MMU_Q_COUNT_LOG2 4 /* 16 entries */
80
#define IVPU_MMU_Q_COUNT ((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
81
#define IVPU_MMU_Q_WRAP_MASK GENMASK(IVPU_MMU_Q_COUNT_LOG2, 0)
82
#define IVPU_MMU_Q_IDX_MASK (IVPU_MMU_Q_COUNT - 1)
83
#define IVPU_MMU_Q_IDX(val) ((val) & IVPU_MMU_Q_IDX_MASK)
84
#define IVPU_MMU_Q_WRP(val) ((val) & IVPU_MMU_Q_COUNT)
85
86
#define IVPU_MMU_CMDQ_CMD_SIZE 16
87
#define IVPU_MMU_CMDQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
88
89
#define IVPU_MMU_EVTQ_CMD_SIZE 32
90
#define IVPU_MMU_EVTQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
91
92
#define IVPU_MMU_CMD_OPCODE GENMASK(7, 0)
93
94
#define IVPU_MMU_CMD_SYNC_0_CS GENMASK(13, 12)
95
#define IVPU_MMU_CMD_SYNC_0_MSH GENMASK(23, 22)
96
#define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
97
#define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
98
#define IVPU_MMU_CMD_SYNC_0_MSI_DATA GENMASK(63, 32)
99
100
#define IVPU_MMU_CMD_CFGI_0_SSEC BIT(10)
101
#define IVPU_MMU_CMD_CFGI_0_SSV BIT(11)
102
#define IVPU_MMU_CMD_CFGI_0_SSID GENMASK(31, 12)
103
#define IVPU_MMU_CMD_CFGI_0_SID GENMASK(63, 32)
104
#define IVPU_MMU_CMD_CFGI_1_RANGE GENMASK(4, 0)
105
106
#define IVPU_MMU_CMD_TLBI_0_ASID GENMASK(63, 48)
107
#define IVPU_MMU_CMD_TLBI_0_VMID GENMASK(47, 32)
108
109
#define CMD_PREFETCH_CFG 0x1
110
#define CMD_CFGI_STE 0x3
111
#define CMD_CFGI_ALL 0x4
112
#define CMD_CFGI_CD 0x5
113
#define CMD_CFGI_CD_ALL 0x6
114
#define CMD_TLBI_NH_ASID 0x11
115
#define CMD_TLBI_EL2_ALL 0x20
116
#define CMD_TLBI_NSNH_ALL 0x30
117
#define CMD_SYNC 0x46
118
119
#define IVPU_MMU_EVT_F_UUT 0x01
120
#define IVPU_MMU_EVT_C_BAD_STREAMID 0x02
121
#define IVPU_MMU_EVT_F_STE_FETCH 0x03
122
#define IVPU_MMU_EVT_C_BAD_STE 0x04
123
#define IVPU_MMU_EVT_F_BAD_ATS_TREQ 0x05
124
#define IVPU_MMU_EVT_F_STREAM_DISABLED 0x06
125
#define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN 0x07
126
#define IVPU_MMU_EVT_C_BAD_SUBSTREAMID 0x08
127
#define IVPU_MMU_EVT_F_CD_FETCH 0x09
128
#define IVPU_MMU_EVT_C_BAD_CD 0x0a
129
#define IVPU_MMU_EVT_F_WALK_EABT 0x0b
130
#define IVPU_MMU_EVT_F_TRANSLATION 0x10
131
#define IVPU_MMU_EVT_F_ADDR_SIZE 0x11
132
#define IVPU_MMU_EVT_F_ACCESS 0x12
133
#define IVPU_MMU_EVT_F_PERMISSION 0x13
134
#define IVPU_MMU_EVT_F_TLB_CONFLICT 0x20
135
#define IVPU_MMU_EVT_F_CFG_CONFLICT 0x21
136
#define IVPU_MMU_EVT_E_PAGE_REQUEST 0x24
137
#define IVPU_MMU_EVT_F_VMS_FETCH 0x25
138
139
#define IVPU_MMU_EVT_OP_MASK GENMASK_ULL(7, 0)
140
#define IVPU_MMU_EVT_SSID_MASK GENMASK_ULL(31, 12)
141
142
#define IVPU_MMU_Q_BASE_RWA BIT(62)
143
#define IVPU_MMU_Q_BASE_ADDR_MASK GENMASK_ULL(51, 5)
144
#define IVPU_MMU_STRTAB_BASE_RA BIT(62)
145
#define IVPU_MMU_STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6)
146
147
#define IVPU_MMU_IRQ_EVTQ_EN BIT(2)
148
#define IVPU_MMU_IRQ_GERROR_EN BIT(0)
149
150
#define IVPU_MMU_CR1_TABLE_SH GENMASK(11, 10)
151
#define IVPU_MMU_CR1_TABLE_OC GENMASK(9, 8)
152
#define IVPU_MMU_CR1_TABLE_IC GENMASK(7, 6)
153
#define IVPU_MMU_CR1_QUEUE_SH GENMASK(5, 4)
154
#define IVPU_MMU_CR1_QUEUE_OC GENMASK(3, 2)
155
#define IVPU_MMU_CR1_QUEUE_IC GENMASK(1, 0)
156
#define IVPU_MMU_CACHE_NC 0
157
#define IVPU_MMU_CACHE_WB 1
158
#define IVPU_MMU_CACHE_WT 2
159
#define IVPU_MMU_SH_NSH 0
160
#define IVPU_MMU_SH_OSH 2
161
#define IVPU_MMU_SH_ISH 3
162
163
#define IVPU_MMU_CMDQ_OP GENMASK_ULL(7, 0)
164
165
#define IVPU_MMU_CD_0_TCR_T0SZ GENMASK_ULL(5, 0)
166
#define IVPU_MMU_CD_0_TCR_TG0 GENMASK_ULL(7, 6)
167
#define IVPU_MMU_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8)
168
#define IVPU_MMU_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10)
169
#define IVPU_MMU_CD_0_TCR_SH0 GENMASK_ULL(13, 12)
170
#define IVPU_MMU_CD_0_TCR_EPD0 BIT_ULL(14)
171
#define IVPU_MMU_CD_0_TCR_EPD1 BIT_ULL(30)
172
#define IVPU_MMU_CD_0_ENDI BIT(15)
173
#define IVPU_MMU_CD_0_V BIT(31)
174
#define IVPU_MMU_CD_0_TCR_IPS GENMASK_ULL(34, 32)
175
#define IVPU_MMU_CD_0_TCR_TBI0 BIT_ULL(38)
176
#define IVPU_MMU_CD_0_AA64 BIT(41)
177
#define IVPU_MMU_CD_0_S BIT(44)
178
#define IVPU_MMU_CD_0_R BIT(45)
179
#define IVPU_MMU_CD_0_A BIT(46)
180
#define IVPU_MMU_CD_0_ASET BIT(47)
181
#define IVPU_MMU_CD_0_ASID GENMASK_ULL(63, 48)
182
183
#define IVPU_MMU_T0SZ_48BIT 16
184
#define IVPU_MMU_T0SZ_38BIT 26
185
186
#define IVPU_MMU_IPS_48BIT 5
187
#define IVPU_MMU_IPS_44BIT 4
188
#define IVPU_MMU_IPS_42BIT 3
189
#define IVPU_MMU_IPS_40BIT 2
190
#define IVPU_MMU_IPS_36BIT 1
191
#define IVPU_MMU_IPS_32BIT 0
192
193
#define IVPU_MMU_CD_1_TTB0_MASK GENMASK_ULL(51, 4)
194
195
#define IVPU_MMU_STE_0_S1CDMAX GENMASK_ULL(63, 59)
196
#define IVPU_MMU_STE_0_S1FMT GENMASK_ULL(5, 4)
197
#define IVPU_MMU_STE_0_S1FMT_LINEAR 0
198
#define IVPU_MMU_STE_DWORDS 8
199
#define IVPU_MMU_STE_0_CFG_S1_TRANS 5
200
#define IVPU_MMU_STE_0_CFG GENMASK_ULL(3, 1)
201
#define IVPU_MMU_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6)
202
#define IVPU_MMU_STE_0_V BIT(0)
203
204
#define IVPU_MMU_STE_1_STRW_NSEL1 0ul
205
#define IVPU_MMU_STE_1_CONT GENMASK_ULL(16, 13)
206
#define IVPU_MMU_STE_1_STRW GENMASK_ULL(31, 30)
207
#define IVPU_MMU_STE_1_PRIVCFG GENMASK_ULL(49, 48)
208
#define IVPU_MMU_STE_1_PRIVCFG_UNPRIV 2ul
209
#define IVPU_MMU_STE_1_INSTCFG GENMASK_ULL(51, 50)
210
#define IVPU_MMU_STE_1_INSTCFG_DATA 2ul
211
#define IVPU_MMU_STE_1_MEV BIT(19)
212
#define IVPU_MMU_STE_1_S1STALLD BIT(27)
213
#define IVPU_MMU_STE_1_S1C_CACHE_NC 0ul
214
#define IVPU_MMU_STE_1_S1C_CACHE_WBRA 1ul
215
#define IVPU_MMU_STE_1_S1C_CACHE_WT 2ul
216
#define IVPU_MMU_STE_1_S1C_CACHE_WB 3ul
217
#define IVPU_MMU_STE_1_S1CIR GENMASK_ULL(3, 2)
218
#define IVPU_MMU_STE_1_S1COR GENMASK_ULL(5, 4)
219
#define IVPU_MMU_STE_1_S1CSH GENMASK_ULL(7, 6)
220
#define IVPU_MMU_STE_1_S1DSS GENMASK_ULL(1, 0)
221
#define IVPU_MMU_STE_1_S1DSS_TERMINATE 0x0
222
223
#define IVPU_MMU_REG_TIMEOUT_US (10 * USEC_PER_MSEC)
224
#define IVPU_MMU_QUEUE_TIMEOUT_US (100 * USEC_PER_MSEC)
225
226
#define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(IVPU_MMU_REG_GERROR, CMDQ)) | \
227
(REG_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT)) | \
228
(REG_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT)) | \
229
(REG_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT)) | \
230
(REG_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT)) | \
231
(REG_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT)) | \
232
(REG_FLD(IVPU_MMU_REG_GERROR, MSI_ABT)))
233
234
#define IVPU_MMU_CERROR_NONE 0x0
235
#define IVPU_MMU_CERROR_ILL 0x1
236
#define IVPU_MMU_CERROR_ABT 0x2
237
#define IVPU_MMU_CERROR_ATC_INV_SYNC 0x3
238
239
static const char *ivpu_mmu_event_to_str(u32 cmd)
240
{
241
switch (cmd) {
242
case IVPU_MMU_EVT_F_UUT:
243
return "Unsupported Upstream Transaction";
244
case IVPU_MMU_EVT_C_BAD_STREAMID:
245
return "Transaction StreamID out of range";
246
case IVPU_MMU_EVT_F_STE_FETCH:
247
return "Fetch of STE caused external abort";
248
case IVPU_MMU_EVT_C_BAD_STE:
249
return "Used STE invalid";
250
case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
251
return "Address Request disallowed for a StreamID";
252
case IVPU_MMU_EVT_F_STREAM_DISABLED:
253
return "Transaction marks non-substream disabled";
254
case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
255
return "MMU bypass is disallowed for this StreamID";
256
case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
257
return "Invalid StreamID";
258
case IVPU_MMU_EVT_F_CD_FETCH:
259
return "Fetch of CD caused external abort";
260
case IVPU_MMU_EVT_C_BAD_CD:
261
return "Fetched CD invalid";
262
case IVPU_MMU_EVT_F_WALK_EABT:
263
return " An external abort occurred fetching a TLB";
264
case IVPU_MMU_EVT_F_TRANSLATION:
265
return "Translation fault";
266
case IVPU_MMU_EVT_F_ADDR_SIZE:
267
return " Output address caused address size fault";
268
case IVPU_MMU_EVT_F_ACCESS:
269
return "Access flag fault";
270
case IVPU_MMU_EVT_F_PERMISSION:
271
return "Permission fault occurred on page access";
272
case IVPU_MMU_EVT_F_TLB_CONFLICT:
273
return "A TLB conflict";
274
case IVPU_MMU_EVT_F_CFG_CONFLICT:
275
return "A configuration cache conflict";
276
case IVPU_MMU_EVT_E_PAGE_REQUEST:
277
return "Page request hint from a client device";
278
case IVPU_MMU_EVT_F_VMS_FETCH:
279
return "Fetch of VMS caused external abort";
280
default:
281
return "Unknown event";
282
}
283
}
284
285
static const char *ivpu_mmu_cmdq_err_to_str(u32 err)
286
{
287
switch (err) {
288
case IVPU_MMU_CERROR_NONE:
289
return "No error";
290
case IVPU_MMU_CERROR_ILL:
291
return "Illegal command";
292
case IVPU_MMU_CERROR_ABT:
293
return "External abort on command queue read";
294
case IVPU_MMU_CERROR_ATC_INV_SYNC:
295
return "Sync failed to complete ATS invalidation";
296
default:
297
return "Unknown error";
298
}
299
}
300
301
static void ivpu_mmu_config_check(struct ivpu_device *vdev)
302
{
303
u32 val_ref;
304
u32 val;
305
306
if (ivpu_is_simics(vdev))
307
val_ref = IVPU_MMU_IDR0_REF_SIMICS;
308
else
309
val_ref = IVPU_MMU_IDR0_REF;
310
311
val = REGV_RD32(IVPU_MMU_REG_IDR0);
312
if (val != val_ref)
313
ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
314
315
val = REGV_RD32(IVPU_MMU_REG_IDR1);
316
if (val != IVPU_MMU_IDR1_REF)
317
ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
318
319
val = REGV_RD32(IVPU_MMU_REG_IDR3);
320
if (val != IVPU_MMU_IDR3_REF)
321
ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
322
323
if (ivpu_is_simics(vdev))
324
val_ref = IVPU_MMU_IDR5_REF_SIMICS;
325
else if (ivpu_is_fpga(vdev))
326
val_ref = IVPU_MMU_IDR5_REF_FPGA;
327
else
328
val_ref = IVPU_MMU_IDR5_REF;
329
330
val = REGV_RD32(IVPU_MMU_REG_IDR5);
331
if (val != val_ref)
332
ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
333
}
334
335
static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
336
{
337
struct ivpu_mmu_info *mmu = vdev->mmu;
338
struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
339
size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
340
341
cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
342
if (!cdtab->base)
343
return -ENOMEM;
344
345
ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
346
347
return 0;
348
}
349
350
static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
351
{
352
struct ivpu_mmu_info *mmu = vdev->mmu;
353
struct ivpu_mmu_strtab *strtab = &mmu->strtab;
354
size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
355
356
strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
357
if (!strtab->base)
358
return -ENOMEM;
359
360
strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
361
strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
362
strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
363
364
ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
365
&strtab->dma, &strtab->dma_q, size);
366
367
return 0;
368
}
369
370
static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
371
{
372
struct ivpu_mmu_info *mmu = vdev->mmu;
373
struct ivpu_mmu_queue *q = &mmu->cmdq;
374
375
q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
376
if (!q->base)
377
return -ENOMEM;
378
379
q->dma_q = IVPU_MMU_Q_BASE_RWA;
380
q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
381
q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
382
383
ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
384
&q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
385
386
return 0;
387
}
388
389
static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
390
{
391
struct ivpu_mmu_info *mmu = vdev->mmu;
392
struct ivpu_mmu_queue *q = &mmu->evtq;
393
394
q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
395
if (!q->base)
396
return -ENOMEM;
397
398
q->dma_q = IVPU_MMU_Q_BASE_RWA;
399
q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
400
q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
401
402
ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
403
&q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
404
405
return 0;
406
}
407
408
static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
409
{
410
int ret;
411
412
ret = ivpu_mmu_cdtab_alloc(vdev);
413
if (ret) {
414
ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
415
return ret;
416
}
417
418
ret = ivpu_mmu_strtab_alloc(vdev);
419
if (ret) {
420
ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
421
return ret;
422
}
423
424
ret = ivpu_mmu_cmdq_alloc(vdev);
425
if (ret) {
426
ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
427
return ret;
428
}
429
430
ret = ivpu_mmu_evtq_alloc(vdev);
431
if (ret)
432
ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
433
434
return ret;
435
}
436
437
static int ivpu_mmu_reg_write_cr0(struct ivpu_device *vdev, u32 val)
438
{
439
REGV_WR32(IVPU_MMU_REG_CR0, val);
440
441
return REGV_POLL_FLD(IVPU_MMU_REG_CR0ACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
442
}
443
444
static int ivpu_mmu_reg_write_irq_ctrl(struct ivpu_device *vdev, u32 val)
445
{
446
REGV_WR32(IVPU_MMU_REG_IRQ_CTRL, val);
447
448
return REGV_POLL_FLD(IVPU_MMU_REG_IRQ_CTRLACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
449
}
450
451
static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
452
{
453
u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
454
int ret;
455
456
ret = ivpu_mmu_reg_write_irq_ctrl(vdev, 0);
457
if (ret)
458
return ret;
459
460
return ivpu_mmu_reg_write_irq_ctrl(vdev, irq_ctrl);
461
}
462
463
static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
464
{
465
struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
466
int ret;
467
468
ret = REGV_POLL_FLD(IVPU_MMU_REG_CMDQ_CONS, VAL, cmdq->prod,
469
IVPU_MMU_QUEUE_TIMEOUT_US);
470
if (ret)
471
return ret;
472
473
cmdq->cons = cmdq->prod;
474
475
return 0;
476
}
477
478
static bool ivpu_mmu_queue_is_full(struct ivpu_mmu_queue *q)
479
{
480
return ((IVPU_MMU_Q_IDX(q->prod) == IVPU_MMU_Q_IDX(q->cons)) &&
481
(IVPU_MMU_Q_WRP(q->prod) != IVPU_MMU_Q_WRP(q->cons)));
482
}
483
484
static bool ivpu_mmu_queue_is_empty(struct ivpu_mmu_queue *q)
485
{
486
return ((IVPU_MMU_Q_IDX(q->prod) == IVPU_MMU_Q_IDX(q->cons)) &&
487
(IVPU_MMU_Q_WRP(q->prod) == IVPU_MMU_Q_WRP(q->cons)));
488
}
489
490
static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
491
{
492
struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
493
u64 *queue_buffer = cmdq->base;
494
int idx = IVPU_MMU_Q_IDX(cmdq->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
495
496
if (ivpu_mmu_queue_is_full(cmdq)) {
497
ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
498
return -EBUSY;
499
}
500
501
queue_buffer[idx] = data0;
502
queue_buffer[idx + 1] = data1;
503
cmdq->prod = (cmdq->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
504
505
ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
506
507
return 0;
508
}
509
510
static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
511
{
512
struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
513
u64 val;
514
int ret;
515
516
val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC);
517
518
ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
519
if (ret)
520
return ret;
521
522
if (!ivpu_is_force_snoop_enabled(vdev))
523
clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
524
REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, q->prod);
525
526
ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
527
if (ret) {
528
u32 err;
529
530
val = REGV_RD32(IVPU_MMU_REG_CMDQ_CONS);
531
err = REG_GET_FLD(IVPU_MMU_REG_CMDQ_CONS, ERR, val);
532
533
ivpu_err(vdev, "Timed out waiting for MMU consumer: %d, error: %s\n", ret,
534
ivpu_mmu_cmdq_err_to_str(err));
535
ivpu_hw_diagnose_failure(vdev);
536
}
537
538
return ret;
539
}
540
541
static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
542
{
543
u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
544
u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
545
546
return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
547
}
548
549
static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
550
{
551
u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
552
FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
553
554
return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
555
}
556
557
static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
558
{
559
u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
560
561
return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
562
}
563
564
static int ivpu_mmu_reset(struct ivpu_device *vdev)
565
{
566
struct ivpu_mmu_info *mmu = vdev->mmu;
567
u32 val;
568
int ret;
569
570
memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
571
if (!ivpu_is_force_snoop_enabled(vdev))
572
clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
573
mmu->cmdq.prod = 0;
574
mmu->cmdq.cons = 0;
575
576
memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
577
mmu->evtq.prod = 0;
578
mmu->evtq.cons = 0;
579
580
ret = ivpu_mmu_reg_write_cr0(vdev, 0);
581
if (ret)
582
return ret;
583
584
val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
585
FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
586
FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
587
FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
588
FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
589
FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
590
REGV_WR32(IVPU_MMU_REG_CR1, val);
591
592
REGV_WR64(IVPU_MMU_REG_STRTAB_BASE, mmu->strtab.dma_q);
593
REGV_WR32(IVPU_MMU_REG_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
594
595
REGV_WR64(IVPU_MMU_REG_CMDQ_BASE, mmu->cmdq.dma_q);
596
REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, 0);
597
REGV_WR32(IVPU_MMU_REG_CMDQ_CONS, 0);
598
599
val = REG_SET_FLD(IVPU_MMU_REG_CR0, CMDQEN, 0);
600
ret = ivpu_mmu_reg_write_cr0(vdev, val);
601
if (ret)
602
return ret;
603
604
ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
605
if (ret)
606
return ret;
607
608
ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
609
if (ret)
610
return ret;
611
612
ret = ivpu_mmu_cmdq_sync(vdev);
613
if (ret)
614
return ret;
615
616
REGV_WR64(IVPU_MMU_REG_EVTQ_BASE, mmu->evtq.dma_q);
617
REGV_WR32(IVPU_MMU_REG_EVTQ_PROD_SEC, 0);
618
REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, 0);
619
620
val = REG_SET_FLD(IVPU_MMU_REG_CR0, EVTQEN, val);
621
ret = ivpu_mmu_reg_write_cr0(vdev, val);
622
if (ret)
623
return ret;
624
625
val = REG_SET_FLD(IVPU_MMU_REG_CR0, ATSCHK, val);
626
ret = ivpu_mmu_reg_write_cr0(vdev, val);
627
if (ret)
628
return ret;
629
630
ret = ivpu_mmu_irqs_setup(vdev);
631
if (ret)
632
return ret;
633
634
val = REG_SET_FLD(IVPU_MMU_REG_CR0, SMMUEN, val);
635
return ivpu_mmu_reg_write_cr0(vdev, val);
636
}
637
638
static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
639
{
640
struct ivpu_mmu_info *mmu = vdev->mmu;
641
struct ivpu_mmu_strtab *strtab = &mmu->strtab;
642
struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
643
u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
644
u64 str[2];
645
646
str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
647
FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
648
FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
649
IVPU_MMU_STE_0_V |
650
(cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
651
652
str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
653
FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
654
FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
655
FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
656
FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
657
FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
658
FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
659
FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
660
IVPU_MMU_STE_1_MEV |
661
IVPU_MMU_STE_1_S1STALLD;
662
663
WRITE_ONCE(entry[1], str[1]);
664
WRITE_ONCE(entry[0], str[0]);
665
666
if (!ivpu_is_force_snoop_enabled(vdev))
667
clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
668
669
ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
670
}
671
672
static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
673
{
674
ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
675
ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
676
677
return 0;
678
}
679
680
int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
681
{
682
struct ivpu_mmu_info *mmu = vdev->mmu;
683
int ret = 0;
684
685
mutex_lock(&mmu->lock);
686
if (!mmu->on)
687
goto unlock;
688
689
ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
690
if (ret)
691
goto unlock;
692
693
ret = ivpu_mmu_cmdq_sync(vdev);
694
unlock:
695
mutex_unlock(&mmu->lock);
696
return ret;
697
}
698
699
static int ivpu_mmu_cdtab_entry_set(struct ivpu_device *vdev, u32 ssid, u64 cd_dma, bool valid)
700
{
701
struct ivpu_mmu_info *mmu = vdev->mmu;
702
struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
703
u64 *entry;
704
u64 cd[4];
705
int ret = 0;
706
707
if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
708
return -EINVAL;
709
710
entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
711
drm_WARN_ON(&vdev->drm, (entry[0] & IVPU_MMU_CD_0_V) == valid);
712
713
cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
714
FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
715
FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
716
FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
717
FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
718
FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
719
FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
720
IVPU_MMU_CD_0_TCR_EPD1 |
721
IVPU_MMU_CD_0_AA64 |
722
IVPU_MMU_CD_0_R |
723
IVPU_MMU_CD_0_ASET;
724
cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
725
cd[2] = 0;
726
cd[3] = 0x0000000000007444;
727
728
/* For global and reserved contexts generate memory fault on VPU */
729
if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID || ssid == IVPU_RESERVED_CONTEXT_MMU_SSID)
730
cd[0] |= IVPU_MMU_CD_0_A;
731
732
if (valid)
733
cd[0] |= IVPU_MMU_CD_0_V;
734
735
WRITE_ONCE(entry[1], cd[1]);
736
WRITE_ONCE(entry[2], cd[2]);
737
WRITE_ONCE(entry[3], cd[3]);
738
WRITE_ONCE(entry[0], cd[0]);
739
740
if (!ivpu_is_force_snoop_enabled(vdev))
741
clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
742
743
ivpu_dbg(vdev, MMU, "CDTAB set %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
744
valid ? "valid" : "invalid", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
745
746
mutex_lock(&mmu->lock);
747
if (!mmu->on)
748
goto unlock;
749
750
ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
751
if (ret)
752
goto err_invalidate;
753
754
ret = ivpu_mmu_cmdq_sync(vdev);
755
if (ret)
756
goto err_invalidate;
757
unlock:
758
mutex_unlock(&mmu->lock);
759
return 0;
760
761
err_invalidate:
762
WRITE_ONCE(entry[0], 0);
763
mutex_unlock(&mmu->lock);
764
return ret;
765
}
766
767
int ivpu_mmu_init(struct ivpu_device *vdev)
768
{
769
struct ivpu_mmu_info *mmu = vdev->mmu;
770
int ret;
771
772
ivpu_dbg(vdev, MMU, "Init..\n");
773
774
ivpu_mmu_config_check(vdev);
775
776
ret = drmm_mutex_init(&vdev->drm, &mmu->lock);
777
if (ret)
778
return ret;
779
780
ret = ivpu_mmu_structs_alloc(vdev);
781
if (ret)
782
return ret;
783
784
ret = ivpu_mmu_strtab_init(vdev);
785
if (ret) {
786
ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
787
return ret;
788
}
789
790
ret = ivpu_mmu_enable(vdev);
791
if (ret) {
792
ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
793
return ret;
794
}
795
796
ivpu_dbg(vdev, MMU, "Init done\n");
797
798
return 0;
799
}
800
801
int ivpu_mmu_enable(struct ivpu_device *vdev)
802
{
803
struct ivpu_mmu_info *mmu = vdev->mmu;
804
int ret;
805
806
mutex_lock(&mmu->lock);
807
808
mmu->on = true;
809
810
ret = ivpu_mmu_reset(vdev);
811
if (ret) {
812
ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
813
goto err;
814
}
815
816
ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
817
if (ret)
818
goto err;
819
820
ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
821
if (ret)
822
goto err;
823
824
ret = ivpu_mmu_cmdq_sync(vdev);
825
if (ret)
826
goto err;
827
828
mutex_unlock(&mmu->lock);
829
830
return 0;
831
err:
832
mmu->on = false;
833
mutex_unlock(&mmu->lock);
834
return ret;
835
}
836
837
void ivpu_mmu_disable(struct ivpu_device *vdev)
838
{
839
struct ivpu_mmu_info *mmu = vdev->mmu;
840
841
mutex_lock(&mmu->lock);
842
mmu->on = false;
843
mutex_unlock(&mmu->lock);
844
}
845
846
static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
847
{
848
u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
849
u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
850
u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
851
u64 in_addr = ((u64)event[5]) << 32 | event[4];
852
u32 sid = event[1];
853
854
ivpu_err_ratelimited(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
855
op, ivpu_mmu_event_to_str(op), ssid, sid,
856
event[2], event[3], in_addr, fetch_addr);
857
}
858
859
static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
860
{
861
struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
862
u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
863
u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
864
865
evtq->prod = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
866
if (ivpu_mmu_queue_is_empty(evtq))
867
return NULL;
868
869
evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
870
return evt;
871
}
872
873
static int ivpu_mmu_evtq_set(struct ivpu_device *vdev, bool enable)
874
{
875
u32 val = REGV_RD32(IVPU_MMU_REG_CR0);
876
877
if (enable)
878
val = REG_SET_FLD(IVPU_MMU_REG_CR0, EVTQEN, val);
879
else
880
val = REG_CLR_FLD(IVPU_MMU_REG_CR0, EVTQEN, val);
881
REGV_WR32(IVPU_MMU_REG_CR0, val);
882
883
return REGV_POLL_FLD(IVPU_MMU_REG_CR0ACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
884
}
885
886
static int ivpu_mmu_evtq_enable(struct ivpu_device *vdev)
887
{
888
return ivpu_mmu_evtq_set(vdev, true);
889
}
890
891
static int ivpu_mmu_evtq_disable(struct ivpu_device *vdev)
892
{
893
return ivpu_mmu_evtq_set(vdev, false);
894
}
895
896
void ivpu_mmu_discard_events(struct ivpu_device *vdev)
897
{
898
struct ivpu_mmu_info *mmu = vdev->mmu;
899
900
mutex_lock(&mmu->lock);
901
/*
902
* Disable event queue (stop MMU from updating the producer)
903
* to allow synchronization of consumer and producer indexes
904
*/
905
ivpu_mmu_evtq_disable(vdev);
906
907
vdev->mmu->evtq.cons = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
908
REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, vdev->mmu->evtq.cons);
909
vdev->mmu->evtq.prod = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
910
911
ivpu_mmu_evtq_enable(vdev);
912
913
drm_WARN_ON_ONCE(&vdev->drm, vdev->mmu->evtq.cons != vdev->mmu->evtq.prod);
914
915
mutex_unlock(&mmu->lock);
916
}
917
918
int ivpu_mmu_disable_ssid_events(struct ivpu_device *vdev, u32 ssid)
919
{
920
struct ivpu_mmu_info *mmu = vdev->mmu;
921
struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
922
u64 *entry;
923
u64 val;
924
925
if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
926
return -EINVAL;
927
928
mutex_lock(&mmu->lock);
929
930
entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
931
932
val = READ_ONCE(entry[0]);
933
val &= ~IVPU_MMU_CD_0_R;
934
WRITE_ONCE(entry[0], val);
935
936
if (!ivpu_is_force_snoop_enabled(vdev))
937
clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
938
939
ivpu_mmu_cmdq_write_cfgi_all(vdev);
940
ivpu_mmu_cmdq_sync(vdev);
941
942
mutex_unlock(&mmu->lock);
943
944
return 0;
945
}
946
947
void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
948
{
949
struct ivpu_file_priv *file_priv;
950
u32 *event;
951
u32 ssid;
952
953
ivpu_dbg(vdev, IRQ, "MMU event queue\n");
954
955
while ((event = ivpu_mmu_get_event(vdev))) {
956
ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, *event);
957
if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID ||
958
ssid == IVPU_RESERVED_CONTEXT_MMU_SSID) {
959
ivpu_mmu_dump_event(vdev, event);
960
ivpu_pm_trigger_recovery(vdev, "MMU event");
961
return;
962
}
963
964
file_priv = xa_load(&vdev->context_xa, ssid);
965
if (file_priv) {
966
if (!READ_ONCE(file_priv->has_mmu_faults)) {
967
ivpu_mmu_dump_event(vdev, event);
968
WRITE_ONCE(file_priv->has_mmu_faults, true);
969
}
970
}
971
}
972
973
queue_work(system_wq, &vdev->context_abort_work);
974
}
975
976
void ivpu_mmu_evtq_dump(struct ivpu_device *vdev)
977
{
978
u32 *event;
979
980
while ((event = ivpu_mmu_get_event(vdev)) != NULL)
981
ivpu_mmu_dump_event(vdev, event);
982
}
983
984
void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
985
{
986
u32 gerror_val, gerrorn_val, active;
987
988
ivpu_dbg(vdev, IRQ, "MMU error\n");
989
990
gerror_val = REGV_RD32(IVPU_MMU_REG_GERROR);
991
gerrorn_val = REGV_RD32(IVPU_MMU_REG_GERRORN);
992
993
active = gerror_val ^ gerrorn_val;
994
if (!(active & IVPU_MMU_GERROR_ERR_MASK))
995
return;
996
997
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_ABT, active))
998
ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
999
1000
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT, active))
1001
ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
1002
1003
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT, active))
1004
ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
1005
1006
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT, active))
1007
ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
1008
1009
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT, active))
1010
ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
1011
1012
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT, active))
1013
ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
1014
1015
if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, CMDQ, active))
1016
ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
1017
1018
REGV_WR32(IVPU_MMU_REG_GERRORN, gerror_val);
1019
}
1020
1021
int ivpu_mmu_cd_set(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
1022
{
1023
return ivpu_mmu_cdtab_entry_set(vdev, ssid, pgtable->pgd_dma, true);
1024
}
1025
1026
void ivpu_mmu_cd_clear(struct ivpu_device *vdev, int ssid)
1027
{
1028
ivpu_mmu_cdtab_entry_set(vdev, ssid, 0, false);
1029
}
1030
1031