Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/qaic/qaic_control.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4
/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6
#include <asm/byteorder.h>
7
#include <linux/completion.h>
8
#include <linux/crc32.h>
9
#include <linux/delay.h>
10
#include <linux/dma-mapping.h>
11
#include <linux/kref.h>
12
#include <linux/list.h>
13
#include <linux/mhi.h>
14
#include <linux/mm.h>
15
#include <linux/moduleparam.h>
16
#include <linux/mutex.h>
17
#include <linux/overflow.h>
18
#include <linux/pci.h>
19
#include <linux/scatterlist.h>
20
#include <linux/types.h>
21
#include <linux/uaccess.h>
22
#include <linux/workqueue.h>
23
#include <linux/wait.h>
24
#include <drm/drm_device.h>
25
#include <drm/drm_file.h>
26
#include <uapi/drm/qaic_accel.h>
27
28
#include "qaic.h"
29
30
#define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */
31
#define QAIC_DBC_Q_GAP SZ_256
32
#define QAIC_DBC_Q_BUF_ALIGN SZ_4K
33
#define QAIC_MANAGE_EXT_MSG_LENGTH SZ_64K /* Max DMA message length */
34
#define QAIC_WRAPPER_MAX_SIZE SZ_4K
35
#define QAIC_MHI_RETRY_WAIT_MS 100
36
#define QAIC_MHI_RETRY_MAX 20
37
38
static unsigned int control_resp_timeout_s = 60; /* 60 sec default */
39
module_param(control_resp_timeout_s, uint, 0600);
40
MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM");
41
42
struct manage_msg {
43
u32 len;
44
u32 count;
45
u8 data[];
46
};
47
48
/*
49
* wire encoding structures for the manage protocol.
50
* All fields are little endian on the wire
51
*/
52
struct wire_msg_hdr {
53
__le32 crc32; /* crc of everything following this field in the message */
54
__le32 magic_number;
55
__le32 sequence_number;
56
__le32 len; /* length of this message */
57
__le32 count; /* number of transactions in this message */
58
__le32 handle; /* unique id to track the resources consumed */
59
__le32 partition_id; /* partition id for the request (signed) */
60
__le32 padding; /* must be 0 */
61
} __packed;
62
63
struct wire_msg {
64
struct wire_msg_hdr hdr;
65
u8 data[];
66
} __packed;
67
68
struct wire_trans_hdr {
69
__le32 type;
70
__le32 len;
71
} __packed;
72
73
/* Each message sent from driver to device are organized in a list of wrapper_msg */
74
struct wrapper_msg {
75
struct list_head list;
76
struct kref ref_count;
77
u32 len; /* length of data to transfer */
78
struct wrapper_list *head;
79
union {
80
struct wire_msg msg;
81
struct wire_trans_hdr trans;
82
};
83
};
84
85
struct wrapper_list {
86
struct list_head list;
87
spinlock_t lock; /* Protects the list state during additions and removals */
88
};
89
90
struct wire_trans_passthrough {
91
struct wire_trans_hdr hdr;
92
u8 data[];
93
} __packed;
94
95
struct wire_addr_size_pair {
96
__le64 addr;
97
__le64 size;
98
} __packed;
99
100
struct wire_trans_dma_xfer {
101
struct wire_trans_hdr hdr;
102
__le32 tag;
103
__le32 count;
104
__le32 dma_chunk_id;
105
__le32 padding;
106
struct wire_addr_size_pair data[];
107
} __packed;
108
109
/* Initiated by device to continue the DMA xfer of a large piece of data */
110
struct wire_trans_dma_xfer_cont {
111
struct wire_trans_hdr hdr;
112
__le32 dma_chunk_id;
113
__le32 padding;
114
__le64 xferred_size;
115
} __packed;
116
117
struct wire_trans_activate_to_dev {
118
struct wire_trans_hdr hdr;
119
__le64 req_q_addr;
120
__le64 rsp_q_addr;
121
__le32 req_q_size;
122
__le32 rsp_q_size;
123
__le32 buf_len;
124
__le32 options; /* unused, but BIT(16) has meaning to the device */
125
} __packed;
126
127
struct wire_trans_activate_from_dev {
128
struct wire_trans_hdr hdr;
129
__le32 status;
130
__le32 dbc_id;
131
__le64 options; /* unused */
132
} __packed;
133
134
struct wire_trans_deactivate_from_dev {
135
struct wire_trans_hdr hdr;
136
__le32 status;
137
__le32 dbc_id;
138
} __packed;
139
140
struct wire_trans_terminate_to_dev {
141
struct wire_trans_hdr hdr;
142
__le32 handle;
143
__le32 padding;
144
} __packed;
145
146
struct wire_trans_terminate_from_dev {
147
struct wire_trans_hdr hdr;
148
__le32 status;
149
__le32 padding;
150
} __packed;
151
152
struct wire_trans_status_to_dev {
153
struct wire_trans_hdr hdr;
154
} __packed;
155
156
struct wire_trans_status_from_dev {
157
struct wire_trans_hdr hdr;
158
__le16 major;
159
__le16 minor;
160
__le32 status;
161
__le64 status_flags;
162
} __packed;
163
164
struct wire_trans_validate_part_to_dev {
165
struct wire_trans_hdr hdr;
166
__le32 part_id;
167
__le32 padding;
168
} __packed;
169
170
struct wire_trans_validate_part_from_dev {
171
struct wire_trans_hdr hdr;
172
__le32 status;
173
__le32 padding;
174
} __packed;
175
176
struct xfer_queue_elem {
177
/*
178
* Node in list of ongoing transfer request on control channel.
179
* Maintained by root device struct.
180
*/
181
struct list_head list;
182
/* Sequence number of this transfer request */
183
u32 seq_num;
184
/* This is used to wait on until completion of transfer request */
185
struct completion xfer_done;
186
/* Received data from device */
187
void *buf;
188
};
189
190
struct dma_xfer {
191
/* Node in list of DMA transfers which is used for cleanup */
192
struct list_head list;
193
/* SG table of memory used for DMA */
194
struct sg_table *sgt;
195
/* Array pages used for DMA */
196
struct page **page_list;
197
/* Number of pages used for DMA */
198
unsigned long nr_pages;
199
};
200
201
struct ioctl_resources {
202
/* List of all DMA transfers which is used later for cleanup */
203
struct list_head dma_xfers;
204
/* Base address of request queue which belongs to a DBC */
205
void *buf;
206
/*
207
* Base bus address of request queue which belongs to a DBC. Response
208
* queue base bus address can be calculated by adding size of request
209
* queue to base bus address of request queue.
210
*/
211
dma_addr_t dma_addr;
212
/* Total size of request queue and response queue in byte */
213
u32 total_size;
214
/* Total number of elements that can be queued in each of request and response queue */
215
u32 nelem;
216
/* Base address of response queue which belongs to a DBC */
217
void *rsp_q_base;
218
/* Status of the NNC message received */
219
u32 status;
220
/* DBC id of the DBC received from device */
221
u32 dbc_id;
222
/*
223
* DMA transfer request messages can be big in size and it may not be
224
* possible to send them in one shot. In such cases the messages are
225
* broken into chunks, this field stores ID of such chunks.
226
*/
227
u32 dma_chunk_id;
228
/* Total number of bytes transferred for a DMA xfer request */
229
u64 xferred_dma_size;
230
/* Header of transaction message received from user. Used during DMA xfer request. */
231
void *trans_hdr;
232
};
233
234
struct resp_work {
235
struct work_struct work;
236
struct qaic_device *qdev;
237
void *buf;
238
};
239
240
/*
241
* Since we're working with little endian messages, its useful to be able to
242
* increment without filling a whole line with conversions back and forth just
243
* to add one(1) to a message count.
244
*/
245
static __le32 incr_le32(__le32 val)
246
{
247
return cpu_to_le32(le32_to_cpu(val) + 1);
248
}
249
250
static u32 gen_crc(void *msg)
251
{
252
struct wrapper_list *wrappers = msg;
253
struct wrapper_msg *w;
254
u32 crc = ~0;
255
256
list_for_each_entry(w, &wrappers->list, list)
257
crc = crc32(crc, &w->msg, w->len);
258
259
return crc ^ ~0;
260
}
261
262
static u32 gen_crc_stub(void *msg)
263
{
264
return 0;
265
}
266
267
static bool valid_crc(void *msg)
268
{
269
struct wire_msg_hdr *hdr = msg;
270
bool ret;
271
u32 crc;
272
273
/*
274
* The output of this algorithm is always converted to the native
275
* endianness.
276
*/
277
crc = le32_to_cpu(hdr->crc32);
278
hdr->crc32 = 0;
279
ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc;
280
hdr->crc32 = cpu_to_le32(crc);
281
return ret;
282
}
283
284
static bool valid_crc_stub(void *msg)
285
{
286
return true;
287
}
288
289
static void free_wrapper(struct kref *ref)
290
{
291
struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count);
292
293
list_del(&wrapper->list);
294
kfree(wrapper);
295
}
296
297
static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources,
298
struct qaic_user *usr)
299
{
300
u32 dbc_id = resources->dbc_id;
301
302
if (resources->buf) {
303
wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use);
304
qdev->dbc[dbc_id].req_q_base = resources->buf;
305
qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base;
306
qdev->dbc[dbc_id].dma_addr = resources->dma_addr;
307
qdev->dbc[dbc_id].total_size = resources->total_size;
308
qdev->dbc[dbc_id].nelem = resources->nelem;
309
enable_dbc(qdev, dbc_id, usr);
310
qdev->dbc[dbc_id].in_use = true;
311
resources->buf = NULL;
312
}
313
}
314
315
static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources)
316
{
317
if (resources->buf)
318
dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf,
319
resources->dma_addr);
320
resources->buf = NULL;
321
}
322
323
static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources)
324
{
325
struct dma_xfer *xfer;
326
struct dma_xfer *x;
327
int i;
328
329
list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) {
330
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
331
sg_free_table(xfer->sgt);
332
kfree(xfer->sgt);
333
for (i = 0; i < xfer->nr_pages; ++i)
334
put_page(xfer->page_list[i]);
335
kfree(xfer->page_list);
336
list_del(&xfer->list);
337
kfree(xfer);
338
}
339
}
340
341
static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size)
342
{
343
struct wrapper_msg *w = kzalloc(size, GFP_KERNEL);
344
345
if (!w)
346
return NULL;
347
list_add_tail(&w->list, &wrappers->list);
348
kref_init(&w->ref_count);
349
w->head = wrappers;
350
return w;
351
}
352
353
static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
354
u32 *user_len)
355
{
356
struct qaic_manage_trans_passthrough *in_trans = trans;
357
struct wire_trans_passthrough *out_trans;
358
struct wrapper_msg *trans_wrapper;
359
struct wrapper_msg *wrapper;
360
struct wire_msg *msg;
361
u32 msg_hdr_len;
362
363
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
364
msg = &wrapper->msg;
365
msg_hdr_len = le32_to_cpu(msg->hdr.len);
366
367
if (in_trans->hdr.len % 8 != 0)
368
return -EINVAL;
369
370
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_EXT_MSG_LENGTH)
371
return -ENOSPC;
372
373
trans_wrapper = add_wrapper(wrappers,
374
offsetof(struct wrapper_msg, trans) + in_trans->hdr.len);
375
if (!trans_wrapper)
376
return -ENOMEM;
377
trans_wrapper->len = in_trans->hdr.len;
378
out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans;
379
380
memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr));
381
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
382
msg->hdr.count = incr_le32(msg->hdr.count);
383
*user_len += in_trans->hdr.len;
384
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV);
385
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
386
387
return 0;
388
}
389
390
/* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */
391
static int find_and_map_user_pages(struct qaic_device *qdev,
392
struct qaic_manage_trans_dma_xfer *in_trans,
393
struct ioctl_resources *resources, struct dma_xfer *xfer)
394
{
395
u64 xfer_start_addr, remaining, end, total;
396
unsigned long need_pages;
397
struct page **page_list;
398
unsigned long nr_pages;
399
struct sg_table *sgt;
400
int ret;
401
int i;
402
403
if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr))
404
return -EINVAL;
405
406
if (in_trans->size < resources->xferred_dma_size)
407
return -EINVAL;
408
remaining = in_trans->size - resources->xferred_dma_size;
409
if (remaining == 0)
410
return 0;
411
412
if (check_add_overflow(xfer_start_addr, remaining, &end))
413
return -EINVAL;
414
415
total = remaining + offset_in_page(xfer_start_addr);
416
if (total >= SIZE_MAX)
417
return -EINVAL;
418
419
need_pages = DIV_ROUND_UP(total, PAGE_SIZE);
420
421
nr_pages = need_pages;
422
423
while (1) {
424
page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN);
425
if (!page_list) {
426
nr_pages = nr_pages / 2;
427
if (!nr_pages)
428
return -ENOMEM;
429
} else {
430
break;
431
}
432
}
433
434
ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list);
435
if (ret < 0)
436
goto free_page_list;
437
if (ret != nr_pages) {
438
nr_pages = ret;
439
ret = -EFAULT;
440
goto put_pages;
441
}
442
443
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
444
if (!sgt) {
445
ret = -ENOMEM;
446
goto put_pages;
447
}
448
449
ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages,
450
offset_in_page(xfer_start_addr),
451
remaining, GFP_KERNEL);
452
if (ret) {
453
ret = -ENOMEM;
454
goto free_sgt;
455
}
456
457
ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0);
458
if (ret)
459
goto free_table;
460
461
xfer->sgt = sgt;
462
xfer->page_list = page_list;
463
xfer->nr_pages = nr_pages;
464
465
return need_pages > nr_pages ? 1 : 0;
466
467
free_table:
468
sg_free_table(sgt);
469
free_sgt:
470
kfree(sgt);
471
put_pages:
472
for (i = 0; i < nr_pages; ++i)
473
put_page(page_list[i]);
474
free_page_list:
475
kfree(page_list);
476
return ret;
477
}
478
479
/* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */
480
static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers,
481
struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size,
482
struct wire_trans_dma_xfer **out_trans)
483
{
484
struct wrapper_msg *trans_wrapper;
485
struct sg_table *sgt = xfer->sgt;
486
struct wire_addr_size_pair *asp;
487
struct scatterlist *sg;
488
struct wrapper_msg *w;
489
unsigned int dma_len;
490
u64 dma_chunk_len;
491
void *boundary;
492
int nents_dma;
493
int nents;
494
int i;
495
496
nents = sgt->nents;
497
nents_dma = nents;
498
*size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans);
499
for_each_sgtable_dma_sg(sgt, sg, i) {
500
*size -= sizeof(*asp);
501
/* Save 1K for possible follow-up transactions. */
502
if (*size < SZ_1K) {
503
nents_dma = i;
504
break;
505
}
506
}
507
508
trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
509
if (!trans_wrapper)
510
return -ENOMEM;
511
*out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans;
512
513
asp = (*out_trans)->data;
514
boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE;
515
*size = 0;
516
517
dma_len = 0;
518
w = trans_wrapper;
519
dma_chunk_len = 0;
520
for_each_sg(sgt->sgl, sg, nents_dma, i) {
521
asp->size = cpu_to_le64(dma_len);
522
dma_chunk_len += dma_len;
523
if (dma_len) {
524
asp++;
525
if ((void *)asp + sizeof(*asp) > boundary) {
526
w->len = (void *)asp - (void *)&w->msg;
527
*size += w->len;
528
w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
529
if (!w)
530
return -ENOMEM;
531
boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE;
532
asp = (struct wire_addr_size_pair *)&w->msg;
533
}
534
}
535
asp->addr = cpu_to_le64(sg_dma_address(sg));
536
dma_len = sg_dma_len(sg);
537
}
538
/* finalize the last segment */
539
asp->size = cpu_to_le64(dma_len);
540
w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg;
541
*size += w->len;
542
dma_chunk_len += dma_len;
543
resources->xferred_dma_size += dma_chunk_len;
544
545
return nents_dma < nents ? 1 : 0;
546
}
547
548
static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer)
549
{
550
int i;
551
552
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
553
sg_free_table(xfer->sgt);
554
kfree(xfer->sgt);
555
for (i = 0; i < xfer->nr_pages; ++i)
556
put_page(xfer->page_list[i]);
557
kfree(xfer->page_list);
558
}
559
560
static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
561
u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr)
562
{
563
struct qaic_manage_trans_dma_xfer *in_trans = trans;
564
struct wire_trans_dma_xfer *out_trans;
565
struct wrapper_msg *wrapper;
566
struct dma_xfer *xfer;
567
struct wire_msg *msg;
568
bool need_cont_dma;
569
u32 msg_hdr_len;
570
u32 size;
571
int ret;
572
573
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
574
msg = &wrapper->msg;
575
msg_hdr_len = le32_to_cpu(msg->hdr.len);
576
577
/* There should be enough space to hold at least one ASP entry. */
578
if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) >
579
QAIC_MANAGE_EXT_MSG_LENGTH)
580
return -ENOMEM;
581
582
xfer = kmalloc(sizeof(*xfer), GFP_KERNEL);
583
if (!xfer)
584
return -ENOMEM;
585
586
ret = find_and_map_user_pages(qdev, in_trans, resources, xfer);
587
if (ret < 0)
588
goto free_xfer;
589
590
need_cont_dma = (bool)ret;
591
592
ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans);
593
if (ret < 0)
594
goto cleanup_xfer;
595
596
need_cont_dma = need_cont_dma || (bool)ret;
597
598
msg->hdr.len = cpu_to_le32(msg_hdr_len + size);
599
msg->hdr.count = incr_le32(msg->hdr.count);
600
601
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
602
out_trans->hdr.len = cpu_to_le32(size);
603
out_trans->tag = cpu_to_le32(in_trans->tag);
604
out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) /
605
sizeof(struct wire_addr_size_pair));
606
607
*user_len += in_trans->hdr.len;
608
609
if (resources->dma_chunk_id) {
610
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
611
} else if (need_cont_dma) {
612
while (resources->dma_chunk_id == 0)
613
resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id);
614
615
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
616
}
617
resources->trans_hdr = trans;
618
619
list_add(&xfer->list, &resources->dma_xfers);
620
return 0;
621
622
cleanup_xfer:
623
cleanup_xfer(qdev, xfer);
624
free_xfer:
625
kfree(xfer);
626
return ret;
627
}
628
629
static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
630
u32 *user_len, struct ioctl_resources *resources)
631
{
632
struct qaic_manage_trans_activate_to_dev *in_trans = trans;
633
struct wire_trans_activate_to_dev *out_trans;
634
struct wrapper_msg *trans_wrapper;
635
struct wrapper_msg *wrapper;
636
struct wire_msg *msg;
637
dma_addr_t dma_addr;
638
u32 msg_hdr_len;
639
void *buf;
640
u32 nelem;
641
u32 size;
642
int ret;
643
644
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
645
msg = &wrapper->msg;
646
msg_hdr_len = le32_to_cpu(msg->hdr.len);
647
648
if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_MAX_MSG_LENGTH)
649
return -ENOSPC;
650
651
if (!in_trans->queue_size)
652
return -EINVAL;
653
654
if (in_trans->pad)
655
return -EINVAL;
656
657
nelem = in_trans->queue_size;
658
size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem;
659
if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size())
660
return -EINVAL;
661
662
if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size)
663
return -EINVAL;
664
665
size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN);
666
667
buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL);
668
if (!buf)
669
return -ENOMEM;
670
671
trans_wrapper = add_wrapper(wrappers,
672
offsetof(struct wrapper_msg, trans) + sizeof(*out_trans));
673
if (!trans_wrapper) {
674
ret = -ENOMEM;
675
goto free_dma;
676
}
677
trans_wrapper->len = sizeof(*out_trans);
678
out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans;
679
680
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV);
681
out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans));
682
out_trans->buf_len = cpu_to_le32(size);
683
out_trans->req_q_addr = cpu_to_le64(dma_addr);
684
out_trans->req_q_size = cpu_to_le32(nelem);
685
out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size());
686
out_trans->rsp_q_size = cpu_to_le32(nelem);
687
out_trans->options = cpu_to_le32(in_trans->options);
688
689
*user_len += in_trans->hdr.len;
690
msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans));
691
msg->hdr.count = incr_le32(msg->hdr.count);
692
693
resources->buf = buf;
694
resources->dma_addr = dma_addr;
695
resources->total_size = size;
696
resources->nelem = nelem;
697
resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size();
698
return 0;
699
700
free_dma:
701
dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr);
702
return ret;
703
}
704
705
static int encode_deactivate(struct qaic_device *qdev, void *trans,
706
u32 *user_len, struct qaic_user *usr)
707
{
708
struct qaic_manage_trans_deactivate *in_trans = trans;
709
710
if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad)
711
return -EINVAL;
712
713
*user_len += in_trans->hdr.len;
714
715
return disable_dbc(qdev, in_trans->dbc_id, usr);
716
}
717
718
static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
719
u32 *user_len)
720
{
721
struct qaic_manage_trans_status_to_dev *in_trans = trans;
722
struct wire_trans_status_to_dev *out_trans;
723
struct wrapper_msg *trans_wrapper;
724
struct wrapper_msg *wrapper;
725
struct wire_msg *msg;
726
u32 msg_hdr_len;
727
728
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
729
msg = &wrapper->msg;
730
msg_hdr_len = le32_to_cpu(msg->hdr.len);
731
732
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_MAX_MSG_LENGTH)
733
return -ENOSPC;
734
735
trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper));
736
if (!trans_wrapper)
737
return -ENOMEM;
738
739
trans_wrapper->len = sizeof(*out_trans);
740
out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans;
741
742
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV);
743
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
744
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
745
msg->hdr.count = incr_le32(msg->hdr.count);
746
*user_len += in_trans->hdr.len;
747
748
return 0;
749
}
750
751
static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
752
struct wrapper_list *wrappers, struct ioctl_resources *resources,
753
struct qaic_user *usr)
754
{
755
struct qaic_manage_trans_hdr *trans_hdr;
756
struct wrapper_msg *wrapper;
757
struct wire_msg *msg;
758
u32 user_len = 0;
759
int ret;
760
int i;
761
762
if (!user_msg->count ||
763
user_msg->len < sizeof(*trans_hdr)) {
764
ret = -EINVAL;
765
goto out;
766
}
767
768
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
769
msg = &wrapper->msg;
770
771
msg->hdr.len = cpu_to_le32(sizeof(msg->hdr));
772
773
if (resources->dma_chunk_id) {
774
ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr);
775
msg->hdr.count = cpu_to_le32(1);
776
goto out;
777
}
778
779
for (i = 0; i < user_msg->count; ++i) {
780
if (user_len > user_msg->len - sizeof(*trans_hdr)) {
781
ret = -EINVAL;
782
break;
783
}
784
trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len);
785
if (trans_hdr->len < sizeof(trans_hdr) ||
786
size_add(user_len, trans_hdr->len) > user_msg->len) {
787
ret = -EINVAL;
788
break;
789
}
790
791
switch (trans_hdr->type) {
792
case QAIC_TRANS_PASSTHROUGH_FROM_USR:
793
ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len);
794
break;
795
case QAIC_TRANS_DMA_XFER_FROM_USR:
796
ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr);
797
break;
798
case QAIC_TRANS_ACTIVATE_FROM_USR:
799
ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources);
800
break;
801
case QAIC_TRANS_DEACTIVATE_FROM_USR:
802
ret = encode_deactivate(qdev, trans_hdr, &user_len, usr);
803
break;
804
case QAIC_TRANS_STATUS_FROM_USR:
805
ret = encode_status(qdev, trans_hdr, wrappers, &user_len);
806
break;
807
default:
808
ret = -EINVAL;
809
break;
810
}
811
812
if (ret)
813
break;
814
}
815
816
if (user_len != user_msg->len)
817
ret = -EINVAL;
818
out:
819
if (ret) {
820
free_dma_xfers(qdev, resources);
821
free_dbc_buf(qdev, resources);
822
return ret;
823
}
824
825
return 0;
826
}
827
828
static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
829
u32 *msg_len)
830
{
831
struct qaic_manage_trans_passthrough *out_trans;
832
struct wire_trans_passthrough *in_trans = trans;
833
u32 len;
834
835
out_trans = (void *)user_msg->data + user_msg->len;
836
837
len = le32_to_cpu(in_trans->hdr.len);
838
if (len % 8 != 0)
839
return -EINVAL;
840
841
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
842
return -ENOSPC;
843
844
memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr));
845
user_msg->len += len;
846
*msg_len += len;
847
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
848
out_trans->hdr.len = len;
849
850
return 0;
851
}
852
853
static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
854
u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr)
855
{
856
struct qaic_manage_trans_activate_from_dev *out_trans;
857
struct wire_trans_activate_from_dev *in_trans = trans;
858
u32 len;
859
860
out_trans = (void *)user_msg->data + user_msg->len;
861
862
len = le32_to_cpu(in_trans->hdr.len);
863
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
864
return -ENOSPC;
865
866
user_msg->len += len;
867
*msg_len += len;
868
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
869
out_trans->hdr.len = len;
870
out_trans->status = le32_to_cpu(in_trans->status);
871
out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id);
872
out_trans->options = le64_to_cpu(in_trans->options);
873
874
if (!resources->buf)
875
/* how did we get an activate response without a request? */
876
return -EINVAL;
877
878
if (out_trans->dbc_id >= qdev->num_dbc)
879
/*
880
* The device assigned an invalid resource, which should never
881
* happen. Return an error so the user can try to recover.
882
*/
883
return -ENODEV;
884
885
if (out_trans->status)
886
/*
887
* Allocating resources failed on device side. This is not an
888
* expected behaviour, user is expected to handle this situation.
889
*/
890
return -ECANCELED;
891
892
resources->status = out_trans->status;
893
resources->dbc_id = out_trans->dbc_id;
894
save_dbc_buf(qdev, resources, usr);
895
896
return 0;
897
}
898
899
static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len,
900
struct qaic_user *usr)
901
{
902
struct wire_trans_deactivate_from_dev *in_trans = trans;
903
u32 dbc_id = le32_to_cpu(in_trans->dbc_id);
904
u32 status = le32_to_cpu(in_trans->status);
905
906
if (dbc_id >= qdev->num_dbc)
907
/*
908
* The device assigned an invalid resource, which should never
909
* happen. Inject an error so the user can try to recover.
910
*/
911
return -ENODEV;
912
913
if (status) {
914
/*
915
* Releasing resources failed on the device side, which puts
916
* us in a bind since they may still be in use, so enable the
917
* dbc. User is expected to retry deactivation.
918
*/
919
enable_dbc(qdev, dbc_id, usr);
920
return -ECANCELED;
921
}
922
923
release_dbc(qdev, dbc_id);
924
*msg_len += sizeof(*in_trans);
925
926
return 0;
927
}
928
929
static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
930
u32 *user_len, struct wire_msg *msg)
931
{
932
struct qaic_manage_trans_status_from_dev *out_trans;
933
struct wire_trans_status_from_dev *in_trans = trans;
934
u32 len;
935
936
out_trans = (void *)user_msg->data + user_msg->len;
937
938
len = le32_to_cpu(in_trans->hdr.len);
939
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
940
return -ENOSPC;
941
942
out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV;
943
out_trans->hdr.len = len;
944
out_trans->major = le16_to_cpu(in_trans->major);
945
out_trans->minor = le16_to_cpu(in_trans->minor);
946
out_trans->status_flags = le64_to_cpu(in_trans->status_flags);
947
out_trans->status = le32_to_cpu(in_trans->status);
948
*user_len += le32_to_cpu(in_trans->hdr.len);
949
user_msg->len += len;
950
951
if (out_trans->status)
952
return -ECANCELED;
953
if (out_trans->status_flags & BIT(0) && !valid_crc(msg))
954
return -EPIPE;
955
956
return 0;
957
}
958
959
static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
960
struct wire_msg *msg, struct ioctl_resources *resources,
961
struct qaic_user *usr)
962
{
963
u32 msg_hdr_len = le32_to_cpu(msg->hdr.len);
964
struct wire_trans_hdr *trans_hdr;
965
u32 msg_len = 0;
966
int ret;
967
int i;
968
969
if (msg_hdr_len < sizeof(*trans_hdr) ||
970
msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH)
971
return -EINVAL;
972
973
user_msg->len = 0;
974
user_msg->count = le32_to_cpu(msg->hdr.count);
975
976
for (i = 0; i < user_msg->count; ++i) {
977
u32 hdr_len;
978
979
if (msg_len > msg_hdr_len - sizeof(*trans_hdr))
980
return -EINVAL;
981
982
trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len);
983
hdr_len = le32_to_cpu(trans_hdr->len);
984
if (hdr_len < sizeof(*trans_hdr) ||
985
size_add(msg_len, hdr_len) > msg_hdr_len)
986
return -EINVAL;
987
988
switch (le32_to_cpu(trans_hdr->type)) {
989
case QAIC_TRANS_PASSTHROUGH_FROM_DEV:
990
ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len);
991
break;
992
case QAIC_TRANS_ACTIVATE_FROM_DEV:
993
ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr);
994
break;
995
case QAIC_TRANS_DEACTIVATE_FROM_DEV:
996
ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr);
997
break;
998
case QAIC_TRANS_STATUS_FROM_DEV:
999
ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg);
1000
break;
1001
default:
1002
return -EINVAL;
1003
}
1004
1005
if (ret)
1006
return ret;
1007
}
1008
1009
if (msg_len != (msg_hdr_len - sizeof(msg->hdr)))
1010
return -EINVAL;
1011
1012
return 0;
1013
}
1014
1015
static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num,
1016
bool ignore_signal)
1017
{
1018
struct xfer_queue_elem elem;
1019
struct wire_msg *out_buf;
1020
struct wrapper_msg *w;
1021
long ret = -EAGAIN;
1022
int xfer_count = 0;
1023
int retry_count;
1024
1025
/* Allow QAIC_BOOT state since we need to check control protocol version */
1026
if (qdev->dev_state == QAIC_OFFLINE) {
1027
mutex_unlock(&qdev->cntl_mutex);
1028
return ERR_PTR(-ENODEV);
1029
}
1030
1031
/* Attempt to avoid a partial commit of a message */
1032
list_for_each_entry(w, &wrappers->list, list)
1033
xfer_count++;
1034
1035
for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) {
1036
if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) {
1037
ret = 0;
1038
break;
1039
}
1040
msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS);
1041
if (signal_pending(current))
1042
break;
1043
}
1044
1045
if (ret) {
1046
mutex_unlock(&qdev->cntl_mutex);
1047
return ERR_PTR(ret);
1048
}
1049
1050
elem.seq_num = seq_num;
1051
elem.buf = NULL;
1052
init_completion(&elem.xfer_done);
1053
if (likely(!qdev->cntl_lost_buf)) {
1054
/*
1055
* The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH.
1056
* The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH.
1057
*/
1058
out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL);
1059
if (!out_buf) {
1060
mutex_unlock(&qdev->cntl_mutex);
1061
return ERR_PTR(-ENOMEM);
1062
}
1063
1064
ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf,
1065
QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT);
1066
if (ret) {
1067
mutex_unlock(&qdev->cntl_mutex);
1068
return ERR_PTR(ret);
1069
}
1070
} else {
1071
/*
1072
* we lost a buffer because we queued a recv buf, but then
1073
* queuing the corresponding tx buf failed. To try to avoid
1074
* a memory leak, lets reclaim it and use it for this
1075
* transaction.
1076
*/
1077
qdev->cntl_lost_buf = false;
1078
}
1079
1080
list_for_each_entry(w, &wrappers->list, list) {
1081
kref_get(&w->ref_count);
1082
retry_count = 0;
1083
ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len,
1084
list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN);
1085
if (ret) {
1086
qdev->cntl_lost_buf = true;
1087
kref_put(&w->ref_count, free_wrapper);
1088
mutex_unlock(&qdev->cntl_mutex);
1089
return ERR_PTR(ret);
1090
}
1091
}
1092
1093
list_add_tail(&elem.list, &qdev->cntl_xfer_list);
1094
mutex_unlock(&qdev->cntl_mutex);
1095
1096
if (ignore_signal)
1097
ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ);
1098
else
1099
ret = wait_for_completion_interruptible_timeout(&elem.xfer_done,
1100
control_resp_timeout_s * HZ);
1101
/*
1102
* not using _interruptable because we have to cleanup or we'll
1103
* likely cause memory corruption
1104
*/
1105
mutex_lock(&qdev->cntl_mutex);
1106
if (!list_empty(&elem.list))
1107
list_del(&elem.list);
1108
if (!ret && !elem.buf)
1109
ret = -ETIMEDOUT;
1110
else if (ret > 0 && !elem.buf)
1111
ret = -EIO;
1112
mutex_unlock(&qdev->cntl_mutex);
1113
1114
if (ret < 0) {
1115
kfree(elem.buf);
1116
return ERR_PTR(ret);
1117
} else if (!qdev->valid_crc(elem.buf)) {
1118
kfree(elem.buf);
1119
return ERR_PTR(-EPIPE);
1120
}
1121
1122
return elem.buf;
1123
}
1124
1125
/* Add a transaction to abort the outstanding DMA continuation */
1126
static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id)
1127
{
1128
struct wire_trans_dma_xfer *out_trans;
1129
u32 size = sizeof(*out_trans);
1130
struct wrapper_msg *wrapper;
1131
struct wrapper_msg *w;
1132
struct wire_msg *msg;
1133
1134
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
1135
msg = &wrapper->msg;
1136
1137
/* Remove all but the first wrapper which has the msg header */
1138
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1139
if (!list_is_first(&wrapper->list, &wrappers->list))
1140
kref_put(&wrapper->ref_count, free_wrapper);
1141
1142
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1143
1144
if (!wrapper)
1145
return -ENOMEM;
1146
1147
out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans;
1148
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
1149
out_trans->hdr.len = cpu_to_le32(size);
1150
out_trans->tag = cpu_to_le32(0);
1151
out_trans->count = cpu_to_le32(0);
1152
out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id);
1153
1154
msg->hdr.len = cpu_to_le32(size + sizeof(*msg));
1155
msg->hdr.count = cpu_to_le32(1);
1156
wrapper->len = size;
1157
1158
return 0;
1159
}
1160
1161
static struct wrapper_list *alloc_wrapper_list(void)
1162
{
1163
struct wrapper_list *wrappers;
1164
1165
wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL);
1166
if (!wrappers)
1167
return NULL;
1168
INIT_LIST_HEAD(&wrappers->list);
1169
spin_lock_init(&wrappers->lock);
1170
1171
return wrappers;
1172
}
1173
1174
static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr,
1175
struct manage_msg *user_msg, struct ioctl_resources *resources,
1176
struct wire_msg **rsp)
1177
{
1178
struct wrapper_list *wrappers;
1179
struct wrapper_msg *wrapper;
1180
struct wrapper_msg *w;
1181
bool all_done = false;
1182
struct wire_msg *msg;
1183
int ret;
1184
1185
wrappers = alloc_wrapper_list();
1186
if (!wrappers)
1187
return -ENOMEM;
1188
1189
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1190
if (!wrapper) {
1191
kfree(wrappers);
1192
return -ENOMEM;
1193
}
1194
1195
msg = &wrapper->msg;
1196
wrapper->len = sizeof(*msg);
1197
1198
ret = encode_message(qdev, user_msg, wrappers, resources, usr);
1199
if (ret && resources->dma_chunk_id)
1200
ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id);
1201
if (ret)
1202
goto encode_failed;
1203
1204
ret = mutex_lock_interruptible(&qdev->cntl_mutex);
1205
if (ret)
1206
goto lock_failed;
1207
1208
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1209
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1210
1211
if (usr) {
1212
msg->hdr.handle = cpu_to_le32(usr->handle);
1213
msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id);
1214
} else {
1215
msg->hdr.handle = 0;
1216
msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION);
1217
}
1218
1219
msg->hdr.padding = cpu_to_le32(0);
1220
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1221
1222
/* msg_xfer releases the mutex */
1223
*rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false);
1224
if (IS_ERR(*rsp))
1225
ret = PTR_ERR(*rsp);
1226
1227
lock_failed:
1228
free_dma_xfers(qdev, resources);
1229
encode_failed:
1230
spin_lock(&wrappers->lock);
1231
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1232
kref_put(&wrapper->ref_count, free_wrapper);
1233
all_done = list_empty(&wrappers->list);
1234
spin_unlock(&wrappers->lock);
1235
if (all_done)
1236
kfree(wrappers);
1237
1238
return ret;
1239
}
1240
1241
static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg)
1242
{
1243
struct wire_trans_dma_xfer_cont *dma_cont = NULL;
1244
struct ioctl_resources resources;
1245
struct wire_msg *rsp = NULL;
1246
int ret;
1247
1248
memset(&resources, 0, sizeof(struct ioctl_resources));
1249
1250
INIT_LIST_HEAD(&resources.dma_xfers);
1251
1252
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH ||
1253
user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr))
1254
return -EINVAL;
1255
1256
dma_xfer_continue:
1257
ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp);
1258
if (ret)
1259
return ret;
1260
/* dma_cont should be the only transaction if present */
1261
if (le32_to_cpu(rsp->hdr.count) == 1) {
1262
dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data;
1263
if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT)
1264
dma_cont = NULL;
1265
}
1266
if (dma_cont) {
1267
if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id &&
1268
le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) {
1269
kfree(rsp);
1270
goto dma_xfer_continue;
1271
}
1272
1273
ret = -EINVAL;
1274
goto dma_cont_failed;
1275
}
1276
1277
ret = decode_message(qdev, user_msg, rsp, &resources, usr);
1278
1279
dma_cont_failed:
1280
free_dbc_buf(qdev, &resources);
1281
kfree(rsp);
1282
return ret;
1283
}
1284
1285
int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1286
{
1287
struct qaic_manage_msg *user_msg = data;
1288
struct qaic_device *qdev;
1289
struct manage_msg *msg;
1290
struct qaic_user *usr;
1291
u8 __user *user_data;
1292
int qdev_rcu_id;
1293
int usr_rcu_id;
1294
int ret;
1295
1296
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH)
1297
return -EINVAL;
1298
1299
usr = file_priv->driver_priv;
1300
1301
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1302
if (!usr->qddev) {
1303
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1304
return -ENODEV;
1305
}
1306
1307
qdev = usr->qddev->qdev;
1308
1309
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1310
if (qdev->dev_state != QAIC_ONLINE) {
1311
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1312
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1313
return -ENODEV;
1314
}
1315
1316
msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL);
1317
if (!msg) {
1318
ret = -ENOMEM;
1319
goto out;
1320
}
1321
1322
msg->len = user_msg->len;
1323
msg->count = user_msg->count;
1324
1325
user_data = u64_to_user_ptr(user_msg->data);
1326
1327
if (copy_from_user(msg->data, user_data, user_msg->len)) {
1328
ret = -EFAULT;
1329
goto free_msg;
1330
}
1331
1332
ret = qaic_manage(qdev, usr, msg);
1333
1334
/*
1335
* If the qaic_manage() is successful then we copy the message onto
1336
* userspace memory but we have an exception for -ECANCELED.
1337
* For -ECANCELED, it means that device has NACKed the message with a
1338
* status error code which userspace would like to know.
1339
*/
1340
if (ret == -ECANCELED || !ret) {
1341
if (copy_to_user(user_data, msg->data, msg->len)) {
1342
ret = -EFAULT;
1343
} else {
1344
user_msg->len = msg->len;
1345
user_msg->count = msg->count;
1346
}
1347
}
1348
1349
free_msg:
1350
kfree(msg);
1351
out:
1352
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1353
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1354
return ret;
1355
}
1356
1357
int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor)
1358
{
1359
struct qaic_manage_trans_status_from_dev *status_result;
1360
struct qaic_manage_trans_status_to_dev *status_query;
1361
struct manage_msg *user_msg;
1362
int ret;
1363
1364
user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL);
1365
if (!user_msg) {
1366
ret = -ENOMEM;
1367
goto out;
1368
}
1369
user_msg->len = sizeof(*status_query);
1370
user_msg->count = 1;
1371
1372
status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data;
1373
status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR;
1374
status_query->hdr.len = sizeof(status_query->hdr);
1375
1376
ret = qaic_manage(qdev, usr, user_msg);
1377
if (ret)
1378
goto kfree_user_msg;
1379
status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data;
1380
*major = status_result->major;
1381
*minor = status_result->minor;
1382
1383
if (status_result->status_flags & BIT(0)) { /* device is using CRC */
1384
/* By default qdev->gen_crc is programmed to generate CRC */
1385
qdev->valid_crc = valid_crc;
1386
} else {
1387
/* By default qdev->valid_crc is programmed to bypass CRC */
1388
qdev->gen_crc = gen_crc_stub;
1389
}
1390
1391
kfree_user_msg:
1392
kfree(user_msg);
1393
out:
1394
return ret;
1395
}
1396
1397
static void resp_worker(struct work_struct *work)
1398
{
1399
struct resp_work *resp = container_of(work, struct resp_work, work);
1400
struct qaic_device *qdev = resp->qdev;
1401
struct wire_msg *msg = resp->buf;
1402
struct xfer_queue_elem *elem;
1403
struct xfer_queue_elem *i;
1404
bool found = false;
1405
1406
mutex_lock(&qdev->cntl_mutex);
1407
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1408
if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) {
1409
found = true;
1410
list_del_init(&elem->list);
1411
elem->buf = msg;
1412
complete_all(&elem->xfer_done);
1413
break;
1414
}
1415
}
1416
mutex_unlock(&qdev->cntl_mutex);
1417
1418
if (!found)
1419
/* request must have timed out, drop packet */
1420
kfree(msg);
1421
1422
kfree(resp);
1423
}
1424
1425
static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper)
1426
{
1427
bool all_done = false;
1428
1429
spin_lock(&wrappers->lock);
1430
kref_put(&wrapper->ref_count, free_wrapper);
1431
all_done = list_empty(&wrappers->list);
1432
spin_unlock(&wrappers->lock);
1433
1434
if (all_done)
1435
kfree(wrappers);
1436
}
1437
1438
void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1439
{
1440
struct wire_msg *msg = mhi_result->buf_addr;
1441
struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg);
1442
1443
free_wrapper_from_list(wrapper->head, wrapper);
1444
}
1445
1446
void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1447
{
1448
struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev);
1449
struct wire_msg *msg = mhi_result->buf_addr;
1450
struct resp_work *resp;
1451
1452
if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) {
1453
kfree(msg);
1454
return;
1455
}
1456
1457
resp = kmalloc(sizeof(*resp), GFP_ATOMIC);
1458
if (!resp) {
1459
kfree(msg);
1460
return;
1461
}
1462
1463
INIT_WORK(&resp->work, resp_worker);
1464
resp->qdev = qdev;
1465
resp->buf = msg;
1466
queue_work(qdev->cntl_wq, &resp->work);
1467
}
1468
1469
int qaic_control_open(struct qaic_device *qdev)
1470
{
1471
if (!qdev->cntl_ch)
1472
return -ENODEV;
1473
1474
qdev->cntl_lost_buf = false;
1475
/*
1476
* By default qaic should assume that device has CRC enabled.
1477
* Qaic comes to know if device has CRC enabled or disabled during the
1478
* device status transaction, which is the first transaction performed
1479
* on control channel.
1480
*
1481
* So CRC validation of first device status transaction response is
1482
* ignored (by calling valid_crc_stub) and is done later during decoding
1483
* if device has CRC enabled.
1484
* Now that qaic knows whether device has CRC enabled or not it acts
1485
* accordingly.
1486
*/
1487
qdev->gen_crc = gen_crc;
1488
qdev->valid_crc = valid_crc_stub;
1489
1490
return mhi_prepare_for_transfer(qdev->cntl_ch);
1491
}
1492
1493
void qaic_control_close(struct qaic_device *qdev)
1494
{
1495
mhi_unprepare_from_transfer(qdev->cntl_ch);
1496
}
1497
1498
void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr)
1499
{
1500
struct wire_trans_terminate_to_dev *trans;
1501
struct wrapper_list *wrappers;
1502
struct wrapper_msg *wrapper;
1503
struct wire_msg *msg;
1504
struct wire_msg *rsp;
1505
1506
wrappers = alloc_wrapper_list();
1507
if (!wrappers)
1508
return;
1509
1510
wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans));
1511
if (!wrapper)
1512
return;
1513
1514
msg = &wrapper->msg;
1515
1516
trans = (struct wire_trans_terminate_to_dev *)msg->data;
1517
1518
trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV);
1519
trans->hdr.len = cpu_to_le32(sizeof(*trans));
1520
trans->handle = cpu_to_le32(usr->handle);
1521
1522
mutex_lock(&qdev->cntl_mutex);
1523
wrapper->len = sizeof(msg->hdr) + sizeof(*trans);
1524
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1525
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1526
msg->hdr.len = cpu_to_le32(wrapper->len);
1527
msg->hdr.count = cpu_to_le32(1);
1528
msg->hdr.handle = cpu_to_le32(usr->handle);
1529
msg->hdr.padding = cpu_to_le32(0);
1530
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1531
1532
/*
1533
* msg_xfer releases the mutex
1534
* We don't care about the return of msg_xfer since we will not do
1535
* anything different based on what happens.
1536
* We ignore pending signals since one will be set if the user is
1537
* killed, and we need give the device a chance to cleanup, otherwise
1538
* DMA may still be in progress when we return.
1539
*/
1540
rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true);
1541
if (!IS_ERR(rsp))
1542
kfree(rsp);
1543
free_wrapper_from_list(wrappers, wrapper);
1544
}
1545
1546
void wake_all_cntl(struct qaic_device *qdev)
1547
{
1548
struct xfer_queue_elem *elem;
1549
struct xfer_queue_elem *i;
1550
1551
mutex_lock(&qdev->cntl_mutex);
1552
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1553
list_del_init(&elem->list);
1554
complete_all(&elem->xfer_done);
1555
}
1556
mutex_unlock(&qdev->cntl_mutex);
1557
}
1558
1559