Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/qaic/qaic_control.c
50843 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4
/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6
#include <asm/byteorder.h>
7
#include <linux/completion.h>
8
#include <linux/crc32.h>
9
#include <linux/delay.h>
10
#include <linux/dma-mapping.h>
11
#include <linux/kref.h>
12
#include <linux/list.h>
13
#include <linux/mhi.h>
14
#include <linux/mm.h>
15
#include <linux/moduleparam.h>
16
#include <linux/mutex.h>
17
#include <linux/overflow.h>
18
#include <linux/pci.h>
19
#include <linux/scatterlist.h>
20
#include <linux/sched/signal.h>
21
#include <linux/types.h>
22
#include <linux/uaccess.h>
23
#include <linux/workqueue.h>
24
#include <linux/wait.h>
25
#include <drm/drm_device.h>
26
#include <drm/drm_file.h>
27
#include <uapi/drm/qaic_accel.h>
28
29
#include "qaic.h"
30
31
#define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */
32
#define QAIC_DBC_Q_GAP SZ_256
33
#define QAIC_DBC_Q_BUF_ALIGN SZ_4K
34
#define QAIC_MANAGE_WIRE_MSG_LENGTH SZ_64K /* Max DMA message length */
35
#define QAIC_WRAPPER_MAX_SIZE SZ_4K
36
#define QAIC_MHI_RETRY_WAIT_MS 100
37
#define QAIC_MHI_RETRY_MAX 20
38
39
static unsigned int control_resp_timeout_s = 60; /* 60 sec default */
40
module_param(control_resp_timeout_s, uint, 0600);
41
MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM");
42
43
struct manage_msg {
44
u32 len;
45
u32 count;
46
u8 data[];
47
};
48
49
/*
50
* wire encoding structures for the manage protocol.
51
* All fields are little endian on the wire
52
*/
53
struct wire_msg_hdr {
54
__le32 crc32; /* crc of everything following this field in the message */
55
__le32 magic_number;
56
__le32 sequence_number;
57
__le32 len; /* length of this message */
58
__le32 count; /* number of transactions in this message */
59
__le32 handle; /* unique id to track the resources consumed */
60
__le32 partition_id; /* partition id for the request (signed) */
61
__le32 padding; /* must be 0 */
62
} __packed;
63
64
struct wire_msg {
65
struct wire_msg_hdr hdr;
66
u8 data[];
67
} __packed;
68
69
struct wire_trans_hdr {
70
__le32 type;
71
__le32 len;
72
} __packed;
73
74
/* Each message sent from driver to device are organized in a list of wrapper_msg */
75
struct wrapper_msg {
76
struct list_head list;
77
struct kref ref_count;
78
u32 len; /* length of data to transfer */
79
struct wrapper_list *head;
80
union {
81
struct wire_msg msg;
82
struct wire_trans_hdr trans;
83
};
84
};
85
86
struct wrapper_list {
87
struct list_head list;
88
spinlock_t lock; /* Protects the list state during additions and removals */
89
};
90
91
struct wire_trans_passthrough {
92
struct wire_trans_hdr hdr;
93
u8 data[];
94
} __packed;
95
96
struct wire_addr_size_pair {
97
__le64 addr;
98
__le64 size;
99
} __packed;
100
101
struct wire_trans_dma_xfer {
102
struct wire_trans_hdr hdr;
103
__le32 tag;
104
__le32 count;
105
__le32 dma_chunk_id;
106
__le32 padding;
107
struct wire_addr_size_pair data[];
108
} __packed;
109
110
/* Initiated by device to continue the DMA xfer of a large piece of data */
111
struct wire_trans_dma_xfer_cont {
112
struct wire_trans_hdr hdr;
113
__le32 dma_chunk_id;
114
__le32 padding;
115
__le64 xferred_size;
116
} __packed;
117
118
struct wire_trans_activate_to_dev {
119
struct wire_trans_hdr hdr;
120
__le64 req_q_addr;
121
__le64 rsp_q_addr;
122
__le32 req_q_size;
123
__le32 rsp_q_size;
124
__le32 buf_len;
125
__le32 options; /* unused, but BIT(16) has meaning to the device */
126
} __packed;
127
128
struct wire_trans_activate_from_dev {
129
struct wire_trans_hdr hdr;
130
__le32 status;
131
__le32 dbc_id;
132
__le64 options; /* unused */
133
} __packed;
134
135
struct wire_trans_deactivate_from_dev {
136
struct wire_trans_hdr hdr;
137
__le32 status;
138
__le32 dbc_id;
139
} __packed;
140
141
struct wire_trans_terminate_to_dev {
142
struct wire_trans_hdr hdr;
143
__le32 handle;
144
__le32 padding;
145
} __packed;
146
147
struct wire_trans_terminate_from_dev {
148
struct wire_trans_hdr hdr;
149
__le32 status;
150
__le32 padding;
151
} __packed;
152
153
struct wire_trans_status_to_dev {
154
struct wire_trans_hdr hdr;
155
} __packed;
156
157
struct wire_trans_status_from_dev {
158
struct wire_trans_hdr hdr;
159
__le16 major;
160
__le16 minor;
161
__le32 status;
162
__le64 status_flags;
163
} __packed;
164
165
struct wire_trans_validate_part_to_dev {
166
struct wire_trans_hdr hdr;
167
__le32 part_id;
168
__le32 padding;
169
} __packed;
170
171
struct wire_trans_validate_part_from_dev {
172
struct wire_trans_hdr hdr;
173
__le32 status;
174
__le32 padding;
175
} __packed;
176
177
struct xfer_queue_elem {
178
/*
179
* Node in list of ongoing transfer request on control channel.
180
* Maintained by root device struct.
181
*/
182
struct list_head list;
183
/* Sequence number of this transfer request */
184
u32 seq_num;
185
/* This is used to wait on until completion of transfer request */
186
struct completion xfer_done;
187
/* Received data from device */
188
void *buf;
189
};
190
191
struct dma_xfer {
192
/* Node in list of DMA transfers which is used for cleanup */
193
struct list_head list;
194
/* SG table of memory used for DMA */
195
struct sg_table *sgt;
196
/* Array pages used for DMA */
197
struct page **page_list;
198
/* Number of pages used for DMA */
199
unsigned long nr_pages;
200
};
201
202
struct ioctl_resources {
203
/* List of all DMA transfers which is used later for cleanup */
204
struct list_head dma_xfers;
205
/* Base address of request queue which belongs to a DBC */
206
void *buf;
207
/*
208
* Base bus address of request queue which belongs to a DBC. Response
209
* queue base bus address can be calculated by adding size of request
210
* queue to base bus address of request queue.
211
*/
212
dma_addr_t dma_addr;
213
/* Total size of request queue and response queue in byte */
214
u32 total_size;
215
/* Total number of elements that can be queued in each of request and response queue */
216
u32 nelem;
217
/* Base address of response queue which belongs to a DBC */
218
void *rsp_q_base;
219
/* Status of the NNC message received */
220
u32 status;
221
/* DBC id of the DBC received from device */
222
u32 dbc_id;
223
/*
224
* DMA transfer request messages can be big in size and it may not be
225
* possible to send them in one shot. In such cases the messages are
226
* broken into chunks, this field stores ID of such chunks.
227
*/
228
u32 dma_chunk_id;
229
/* Total number of bytes transferred for a DMA xfer request */
230
u64 xferred_dma_size;
231
/* Header of transaction message received from user. Used during DMA xfer request. */
232
void *trans_hdr;
233
};
234
235
struct resp_work {
236
struct work_struct work;
237
struct qaic_device *qdev;
238
void *buf;
239
};
240
241
/*
242
* Since we're working with little endian messages, its useful to be able to
243
* increment without filling a whole line with conversions back and forth just
244
* to add one(1) to a message count.
245
*/
246
static __le32 incr_le32(__le32 val)
247
{
248
return cpu_to_le32(le32_to_cpu(val) + 1);
249
}
250
251
static u32 gen_crc(void *msg)
252
{
253
struct wrapper_list *wrappers = msg;
254
struct wrapper_msg *w;
255
u32 crc = ~0;
256
257
list_for_each_entry(w, &wrappers->list, list)
258
crc = crc32(crc, &w->msg, w->len);
259
260
return crc ^ ~0;
261
}
262
263
static u32 gen_crc_stub(void *msg)
264
{
265
return 0;
266
}
267
268
static bool valid_crc(void *msg)
269
{
270
struct wire_msg_hdr *hdr = msg;
271
bool ret;
272
u32 crc;
273
274
/*
275
* The output of this algorithm is always converted to the native
276
* endianness.
277
*/
278
crc = le32_to_cpu(hdr->crc32);
279
hdr->crc32 = 0;
280
ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc;
281
hdr->crc32 = cpu_to_le32(crc);
282
return ret;
283
}
284
285
static bool valid_crc_stub(void *msg)
286
{
287
return true;
288
}
289
290
static void free_wrapper(struct kref *ref)
291
{
292
struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count);
293
294
list_del(&wrapper->list);
295
kfree(wrapper);
296
}
297
298
static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources,
299
struct qaic_user *usr)
300
{
301
u32 dbc_id = resources->dbc_id;
302
303
if (resources->buf) {
304
wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use);
305
qdev->dbc[dbc_id].req_q_base = resources->buf;
306
qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base;
307
qdev->dbc[dbc_id].dma_addr = resources->dma_addr;
308
qdev->dbc[dbc_id].total_size = resources->total_size;
309
qdev->dbc[dbc_id].nelem = resources->nelem;
310
enable_dbc(qdev, dbc_id, usr);
311
qdev->dbc[dbc_id].in_use = true;
312
resources->buf = NULL;
313
set_dbc_state(qdev, dbc_id, DBC_STATE_ASSIGNED);
314
}
315
}
316
317
static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources)
318
{
319
if (resources->buf)
320
dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf,
321
resources->dma_addr);
322
resources->buf = NULL;
323
}
324
325
static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources)
326
{
327
struct dma_xfer *xfer;
328
struct dma_xfer *x;
329
int i;
330
331
list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) {
332
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
333
sg_free_table(xfer->sgt);
334
kfree(xfer->sgt);
335
for (i = 0; i < xfer->nr_pages; ++i)
336
put_page(xfer->page_list[i]);
337
kfree(xfer->page_list);
338
list_del(&xfer->list);
339
kfree(xfer);
340
}
341
}
342
343
static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size)
344
{
345
struct wrapper_msg *w = kzalloc(size, GFP_KERNEL);
346
347
if (!w)
348
return NULL;
349
list_add_tail(&w->list, &wrappers->list);
350
kref_init(&w->ref_count);
351
w->head = wrappers;
352
return w;
353
}
354
355
static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
356
u32 *user_len)
357
{
358
struct qaic_manage_trans_passthrough *in_trans = trans;
359
struct wire_trans_passthrough *out_trans;
360
struct wrapper_msg *trans_wrapper;
361
struct wrapper_msg *wrapper;
362
struct wire_msg *msg;
363
u32 msg_hdr_len;
364
365
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
366
msg = &wrapper->msg;
367
msg_hdr_len = le32_to_cpu(msg->hdr.len);
368
369
if (in_trans->hdr.len % 8 != 0)
370
return -EINVAL;
371
372
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_WIRE_MSG_LENGTH)
373
return -ENOSPC;
374
375
trans_wrapper = add_wrapper(wrappers,
376
offsetof(struct wrapper_msg, trans) + in_trans->hdr.len);
377
if (!trans_wrapper)
378
return -ENOMEM;
379
trans_wrapper->len = in_trans->hdr.len;
380
out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans;
381
382
memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr));
383
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
384
msg->hdr.count = incr_le32(msg->hdr.count);
385
*user_len += in_trans->hdr.len;
386
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV);
387
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
388
389
return 0;
390
}
391
392
/* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */
393
static int find_and_map_user_pages(struct qaic_device *qdev,
394
struct qaic_manage_trans_dma_xfer *in_trans,
395
struct ioctl_resources *resources, struct dma_xfer *xfer)
396
{
397
u64 xfer_start_addr, remaining, end, total;
398
unsigned long need_pages;
399
struct page **page_list;
400
unsigned long nr_pages;
401
struct sg_table *sgt;
402
int ret;
403
int i;
404
405
if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr))
406
return -EINVAL;
407
408
if (in_trans->size < resources->xferred_dma_size)
409
return -EINVAL;
410
remaining = in_trans->size - resources->xferred_dma_size;
411
if (remaining == 0)
412
return -EINVAL;
413
414
if (check_add_overflow(xfer_start_addr, remaining, &end))
415
return -EINVAL;
416
417
total = remaining + offset_in_page(xfer_start_addr);
418
if (total >= SIZE_MAX)
419
return -EINVAL;
420
421
need_pages = DIV_ROUND_UP(total, PAGE_SIZE);
422
423
nr_pages = need_pages;
424
425
while (1) {
426
page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN);
427
if (!page_list) {
428
nr_pages = nr_pages / 2;
429
if (!nr_pages)
430
return -ENOMEM;
431
} else {
432
break;
433
}
434
}
435
436
ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list);
437
if (ret < 0)
438
goto free_page_list;
439
if (ret != nr_pages) {
440
nr_pages = ret;
441
ret = -EFAULT;
442
goto put_pages;
443
}
444
445
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
446
if (!sgt) {
447
ret = -ENOMEM;
448
goto put_pages;
449
}
450
451
ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages,
452
offset_in_page(xfer_start_addr),
453
remaining, GFP_KERNEL);
454
if (ret) {
455
ret = -ENOMEM;
456
goto free_sgt;
457
}
458
459
ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0);
460
if (ret)
461
goto free_table;
462
463
xfer->sgt = sgt;
464
xfer->page_list = page_list;
465
xfer->nr_pages = nr_pages;
466
467
return need_pages > nr_pages ? 1 : 0;
468
469
free_table:
470
sg_free_table(sgt);
471
free_sgt:
472
kfree(sgt);
473
put_pages:
474
for (i = 0; i < nr_pages; ++i)
475
put_page(page_list[i]);
476
free_page_list:
477
kfree(page_list);
478
return ret;
479
}
480
481
/* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */
482
static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers,
483
struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size,
484
struct wire_trans_dma_xfer **out_trans)
485
{
486
struct wrapper_msg *trans_wrapper;
487
struct sg_table *sgt = xfer->sgt;
488
struct wire_addr_size_pair *asp;
489
struct scatterlist *sg;
490
struct wrapper_msg *w;
491
unsigned int dma_len;
492
u64 dma_chunk_len;
493
void *boundary;
494
int nents_dma;
495
int nents;
496
int i;
497
498
nents = sgt->nents;
499
nents_dma = nents;
500
*size = QAIC_MANAGE_WIRE_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans);
501
for_each_sgtable_dma_sg(sgt, sg, i) {
502
*size -= sizeof(*asp);
503
/* Save 1K for possible follow-up transactions. */
504
if (*size < SZ_1K) {
505
nents_dma = i;
506
break;
507
}
508
}
509
510
trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
511
if (!trans_wrapper)
512
return -ENOMEM;
513
*out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans;
514
515
asp = (*out_trans)->data;
516
boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE;
517
*size = 0;
518
519
dma_len = 0;
520
w = trans_wrapper;
521
dma_chunk_len = 0;
522
for_each_sg(sgt->sgl, sg, nents_dma, i) {
523
asp->size = cpu_to_le64(dma_len);
524
dma_chunk_len += dma_len;
525
if (dma_len) {
526
asp++;
527
if ((void *)asp + sizeof(*asp) > boundary) {
528
w->len = (void *)asp - (void *)&w->msg;
529
*size += w->len;
530
w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
531
if (!w)
532
return -ENOMEM;
533
boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE;
534
asp = (struct wire_addr_size_pair *)&w->msg;
535
}
536
}
537
asp->addr = cpu_to_le64(sg_dma_address(sg));
538
dma_len = sg_dma_len(sg);
539
}
540
/* finalize the last segment */
541
asp->size = cpu_to_le64(dma_len);
542
w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg;
543
*size += w->len;
544
dma_chunk_len += dma_len;
545
resources->xferred_dma_size += dma_chunk_len;
546
547
return nents_dma < nents ? 1 : 0;
548
}
549
550
static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer)
551
{
552
int i;
553
554
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
555
sg_free_table(xfer->sgt);
556
kfree(xfer->sgt);
557
for (i = 0; i < xfer->nr_pages; ++i)
558
put_page(xfer->page_list[i]);
559
kfree(xfer->page_list);
560
}
561
562
static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
563
u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr)
564
{
565
struct qaic_manage_trans_dma_xfer *in_trans = trans;
566
struct wire_trans_dma_xfer *out_trans;
567
struct wrapper_msg *wrapper;
568
struct dma_xfer *xfer;
569
struct wire_msg *msg;
570
bool need_cont_dma;
571
u32 msg_hdr_len;
572
u32 size;
573
int ret;
574
575
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
576
msg = &wrapper->msg;
577
msg_hdr_len = le32_to_cpu(msg->hdr.len);
578
579
/* There should be enough space to hold at least one ASP entry. */
580
if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) >
581
QAIC_MANAGE_WIRE_MSG_LENGTH)
582
return -ENOMEM;
583
584
xfer = kmalloc(sizeof(*xfer), GFP_KERNEL);
585
if (!xfer)
586
return -ENOMEM;
587
588
ret = find_and_map_user_pages(qdev, in_trans, resources, xfer);
589
if (ret < 0)
590
goto free_xfer;
591
592
need_cont_dma = (bool)ret;
593
594
ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans);
595
if (ret < 0)
596
goto cleanup_xfer;
597
598
need_cont_dma = need_cont_dma || (bool)ret;
599
600
msg->hdr.len = cpu_to_le32(msg_hdr_len + size);
601
msg->hdr.count = incr_le32(msg->hdr.count);
602
603
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
604
out_trans->hdr.len = cpu_to_le32(size);
605
out_trans->tag = cpu_to_le32(in_trans->tag);
606
out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) /
607
sizeof(struct wire_addr_size_pair));
608
609
*user_len += in_trans->hdr.len;
610
611
if (resources->dma_chunk_id) {
612
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
613
} else if (need_cont_dma) {
614
while (resources->dma_chunk_id == 0)
615
resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id);
616
617
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
618
}
619
resources->trans_hdr = trans;
620
621
list_add(&xfer->list, &resources->dma_xfers);
622
return 0;
623
624
cleanup_xfer:
625
cleanup_xfer(qdev, xfer);
626
free_xfer:
627
kfree(xfer);
628
return ret;
629
}
630
631
static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
632
u32 *user_len, struct ioctl_resources *resources)
633
{
634
struct qaic_manage_trans_activate_to_dev *in_trans = trans;
635
struct wire_trans_activate_to_dev *out_trans;
636
struct wrapper_msg *trans_wrapper;
637
struct wrapper_msg *wrapper;
638
struct wire_msg *msg;
639
dma_addr_t dma_addr;
640
u32 msg_hdr_len;
641
void *buf;
642
u32 nelem;
643
u32 size;
644
int ret;
645
646
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
647
msg = &wrapper->msg;
648
msg_hdr_len = le32_to_cpu(msg->hdr.len);
649
650
if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_WIRE_MSG_LENGTH)
651
return -ENOSPC;
652
653
if (!in_trans->queue_size)
654
return -EINVAL;
655
656
if (in_trans->pad)
657
return -EINVAL;
658
659
nelem = in_trans->queue_size;
660
if (check_mul_overflow((u32)(get_dbc_req_elem_size() + get_dbc_rsp_elem_size()),
661
nelem,
662
&size))
663
return -EINVAL;
664
665
if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size)
666
return -EINVAL;
667
668
size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN);
669
670
buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL);
671
if (!buf)
672
return -ENOMEM;
673
674
trans_wrapper = add_wrapper(wrappers,
675
offsetof(struct wrapper_msg, trans) + sizeof(*out_trans));
676
if (!trans_wrapper) {
677
ret = -ENOMEM;
678
goto free_dma;
679
}
680
trans_wrapper->len = sizeof(*out_trans);
681
out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans;
682
683
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV);
684
out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans));
685
out_trans->buf_len = cpu_to_le32(size);
686
out_trans->req_q_addr = cpu_to_le64(dma_addr);
687
out_trans->req_q_size = cpu_to_le32(nelem);
688
out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size());
689
out_trans->rsp_q_size = cpu_to_le32(nelem);
690
out_trans->options = cpu_to_le32(in_trans->options);
691
692
*user_len += in_trans->hdr.len;
693
msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans));
694
msg->hdr.count = incr_le32(msg->hdr.count);
695
696
resources->buf = buf;
697
resources->dma_addr = dma_addr;
698
resources->total_size = size;
699
resources->nelem = nelem;
700
resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size();
701
return 0;
702
703
free_dma:
704
dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr);
705
return ret;
706
}
707
708
static int encode_deactivate(struct qaic_device *qdev, void *trans,
709
u32 *user_len, struct qaic_user *usr)
710
{
711
struct qaic_manage_trans_deactivate *in_trans = trans;
712
713
if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad)
714
return -EINVAL;
715
716
*user_len += in_trans->hdr.len;
717
718
return disable_dbc(qdev, in_trans->dbc_id, usr);
719
}
720
721
static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
722
u32 *user_len)
723
{
724
struct qaic_manage_trans_status_to_dev *in_trans = trans;
725
struct wire_trans_status_to_dev *out_trans;
726
struct wrapper_msg *trans_wrapper;
727
struct wrapper_msg *wrapper;
728
struct wire_msg *msg;
729
u32 msg_hdr_len;
730
731
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
732
msg = &wrapper->msg;
733
msg_hdr_len = le32_to_cpu(msg->hdr.len);
734
735
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_WIRE_MSG_LENGTH)
736
return -ENOSPC;
737
738
trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper));
739
if (!trans_wrapper)
740
return -ENOMEM;
741
742
trans_wrapper->len = sizeof(*out_trans);
743
out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans;
744
745
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV);
746
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
747
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
748
msg->hdr.count = incr_le32(msg->hdr.count);
749
*user_len += in_trans->hdr.len;
750
751
return 0;
752
}
753
754
static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
755
struct wrapper_list *wrappers, struct ioctl_resources *resources,
756
struct qaic_user *usr)
757
{
758
struct qaic_manage_trans_hdr *trans_hdr;
759
struct wrapper_msg *wrapper;
760
struct wire_msg *msg;
761
u32 user_len = 0;
762
int ret;
763
int i;
764
765
if (!user_msg->count ||
766
user_msg->len < sizeof(*trans_hdr)) {
767
ret = -EINVAL;
768
goto out;
769
}
770
771
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
772
msg = &wrapper->msg;
773
774
msg->hdr.len = cpu_to_le32(sizeof(msg->hdr));
775
776
if (resources->dma_chunk_id) {
777
ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr);
778
msg->hdr.count = cpu_to_le32(1);
779
goto out;
780
}
781
782
for (i = 0; i < user_msg->count; ++i) {
783
if (user_len > user_msg->len - sizeof(*trans_hdr)) {
784
ret = -EINVAL;
785
break;
786
}
787
trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len);
788
if (trans_hdr->len < sizeof(trans_hdr) ||
789
size_add(user_len, trans_hdr->len) > user_msg->len) {
790
ret = -EINVAL;
791
break;
792
}
793
794
switch (trans_hdr->type) {
795
case QAIC_TRANS_PASSTHROUGH_FROM_USR:
796
ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len);
797
break;
798
case QAIC_TRANS_DMA_XFER_FROM_USR:
799
ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr);
800
break;
801
case QAIC_TRANS_ACTIVATE_FROM_USR:
802
ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources);
803
break;
804
case QAIC_TRANS_DEACTIVATE_FROM_USR:
805
ret = encode_deactivate(qdev, trans_hdr, &user_len, usr);
806
break;
807
case QAIC_TRANS_STATUS_FROM_USR:
808
ret = encode_status(qdev, trans_hdr, wrappers, &user_len);
809
break;
810
default:
811
ret = -EINVAL;
812
break;
813
}
814
815
if (ret)
816
goto out;
817
}
818
819
if (user_len != user_msg->len)
820
ret = -EINVAL;
821
out:
822
if (ret) {
823
free_dma_xfers(qdev, resources);
824
free_dbc_buf(qdev, resources);
825
return ret;
826
}
827
828
return 0;
829
}
830
831
static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
832
u32 *msg_len)
833
{
834
struct qaic_manage_trans_passthrough *out_trans;
835
struct wire_trans_passthrough *in_trans = trans;
836
u32 len;
837
838
out_trans = (void *)user_msg->data + user_msg->len;
839
840
len = le32_to_cpu(in_trans->hdr.len);
841
if (len % 8 != 0)
842
return -EINVAL;
843
844
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
845
return -ENOSPC;
846
847
memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr));
848
user_msg->len += len;
849
*msg_len += len;
850
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
851
out_trans->hdr.len = len;
852
853
return 0;
854
}
855
856
static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
857
u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr)
858
{
859
struct qaic_manage_trans_activate_from_dev *out_trans;
860
struct wire_trans_activate_from_dev *in_trans = trans;
861
u32 len;
862
863
out_trans = (void *)user_msg->data + user_msg->len;
864
865
len = le32_to_cpu(in_trans->hdr.len);
866
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
867
return -ENOSPC;
868
869
user_msg->len += len;
870
*msg_len += len;
871
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
872
out_trans->hdr.len = len;
873
out_trans->status = le32_to_cpu(in_trans->status);
874
out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id);
875
out_trans->options = le64_to_cpu(in_trans->options);
876
877
if (!resources->buf)
878
/* how did we get an activate response without a request? */
879
return -EINVAL;
880
881
if (out_trans->dbc_id >= qdev->num_dbc)
882
/*
883
* The device assigned an invalid resource, which should never
884
* happen. Return an error so the user can try to recover.
885
*/
886
return -ENODEV;
887
888
if (out_trans->status)
889
/*
890
* Allocating resources failed on device side. This is not an
891
* expected behaviour, user is expected to handle this situation.
892
*/
893
return -ECANCELED;
894
895
resources->status = out_trans->status;
896
resources->dbc_id = out_trans->dbc_id;
897
save_dbc_buf(qdev, resources, usr);
898
899
return 0;
900
}
901
902
static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len,
903
struct qaic_user *usr)
904
{
905
struct wire_trans_deactivate_from_dev *in_trans = trans;
906
u32 dbc_id = le32_to_cpu(in_trans->dbc_id);
907
u32 status = le32_to_cpu(in_trans->status);
908
909
if (dbc_id >= qdev->num_dbc)
910
/*
911
* The device assigned an invalid resource, which should never
912
* happen. Inject an error so the user can try to recover.
913
*/
914
return -ENODEV;
915
916
if (status) {
917
/*
918
* Releasing resources failed on the device side, which puts
919
* us in a bind since they may still be in use, so enable the
920
* dbc. User is expected to retry deactivation.
921
*/
922
enable_dbc(qdev, dbc_id, usr);
923
return -ECANCELED;
924
}
925
926
release_dbc(qdev, dbc_id);
927
set_dbc_state(qdev, dbc_id, DBC_STATE_IDLE);
928
*msg_len += sizeof(*in_trans);
929
930
return 0;
931
}
932
933
static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
934
u32 *user_len, struct wire_msg *msg)
935
{
936
struct qaic_manage_trans_status_from_dev *out_trans;
937
struct wire_trans_status_from_dev *in_trans = trans;
938
u32 len;
939
940
out_trans = (void *)user_msg->data + user_msg->len;
941
942
len = le32_to_cpu(in_trans->hdr.len);
943
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
944
return -ENOSPC;
945
946
out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV;
947
out_trans->hdr.len = len;
948
out_trans->major = le16_to_cpu(in_trans->major);
949
out_trans->minor = le16_to_cpu(in_trans->minor);
950
out_trans->status_flags = le64_to_cpu(in_trans->status_flags);
951
out_trans->status = le32_to_cpu(in_trans->status);
952
*user_len += le32_to_cpu(in_trans->hdr.len);
953
user_msg->len += len;
954
955
if (out_trans->status)
956
return -ECANCELED;
957
if (out_trans->status_flags & BIT(0) && !valid_crc(msg))
958
return -EPIPE;
959
960
return 0;
961
}
962
963
static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
964
struct wire_msg *msg, struct ioctl_resources *resources,
965
struct qaic_user *usr)
966
{
967
u32 msg_hdr_len = le32_to_cpu(msg->hdr.len);
968
struct wire_trans_hdr *trans_hdr;
969
u32 msg_len = 0;
970
int ret;
971
int i;
972
973
if (msg_hdr_len < sizeof(*trans_hdr) ||
974
msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH)
975
return -EINVAL;
976
977
user_msg->len = 0;
978
user_msg->count = le32_to_cpu(msg->hdr.count);
979
980
for (i = 0; i < user_msg->count; ++i) {
981
u32 hdr_len;
982
983
if (msg_len > msg_hdr_len - sizeof(*trans_hdr))
984
return -EINVAL;
985
986
trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len);
987
hdr_len = le32_to_cpu(trans_hdr->len);
988
if (hdr_len < sizeof(*trans_hdr) ||
989
size_add(msg_len, hdr_len) > msg_hdr_len)
990
return -EINVAL;
991
992
switch (le32_to_cpu(trans_hdr->type)) {
993
case QAIC_TRANS_PASSTHROUGH_FROM_DEV:
994
ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len);
995
break;
996
case QAIC_TRANS_ACTIVATE_FROM_DEV:
997
ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr);
998
break;
999
case QAIC_TRANS_DEACTIVATE_FROM_DEV:
1000
ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr);
1001
break;
1002
case QAIC_TRANS_STATUS_FROM_DEV:
1003
ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg);
1004
break;
1005
default:
1006
return -EINVAL;
1007
}
1008
1009
if (ret)
1010
return ret;
1011
}
1012
1013
if (msg_len != (msg_hdr_len - sizeof(msg->hdr)))
1014
return -EINVAL;
1015
1016
return 0;
1017
}
1018
1019
static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num,
1020
bool ignore_signal)
1021
{
1022
struct xfer_queue_elem elem;
1023
struct wire_msg *out_buf;
1024
struct wrapper_msg *w;
1025
long ret = -EAGAIN;
1026
int xfer_count = 0;
1027
int retry_count;
1028
1029
/* Allow QAIC_BOOT state since we need to check control protocol version */
1030
if (qdev->dev_state == QAIC_OFFLINE) {
1031
mutex_unlock(&qdev->cntl_mutex);
1032
return ERR_PTR(-ENODEV);
1033
}
1034
1035
/* Attempt to avoid a partial commit of a message */
1036
list_for_each_entry(w, &wrappers->list, list)
1037
xfer_count++;
1038
1039
for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) {
1040
if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) {
1041
ret = 0;
1042
break;
1043
}
1044
msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS);
1045
if (signal_pending(current))
1046
break;
1047
}
1048
1049
if (ret) {
1050
mutex_unlock(&qdev->cntl_mutex);
1051
return ERR_PTR(ret);
1052
}
1053
1054
elem.seq_num = seq_num;
1055
elem.buf = NULL;
1056
init_completion(&elem.xfer_done);
1057
if (likely(!qdev->cntl_lost_buf)) {
1058
/*
1059
* The max size of request to device is QAIC_MANAGE_WIRE_MSG_LENGTH.
1060
* The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH.
1061
*/
1062
out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL);
1063
if (!out_buf) {
1064
mutex_unlock(&qdev->cntl_mutex);
1065
return ERR_PTR(-ENOMEM);
1066
}
1067
1068
ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf,
1069
QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT);
1070
if (ret) {
1071
mutex_unlock(&qdev->cntl_mutex);
1072
return ERR_PTR(ret);
1073
}
1074
} else {
1075
/*
1076
* we lost a buffer because we queued a recv buf, but then
1077
* queuing the corresponding tx buf failed. To try to avoid
1078
* a memory leak, lets reclaim it and use it for this
1079
* transaction.
1080
*/
1081
qdev->cntl_lost_buf = false;
1082
}
1083
1084
list_for_each_entry(w, &wrappers->list, list) {
1085
kref_get(&w->ref_count);
1086
ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len,
1087
list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN);
1088
if (ret) {
1089
qdev->cntl_lost_buf = true;
1090
kref_put(&w->ref_count, free_wrapper);
1091
mutex_unlock(&qdev->cntl_mutex);
1092
return ERR_PTR(ret);
1093
}
1094
}
1095
1096
list_add_tail(&elem.list, &qdev->cntl_xfer_list);
1097
mutex_unlock(&qdev->cntl_mutex);
1098
1099
if (ignore_signal)
1100
ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ);
1101
else
1102
ret = wait_for_completion_interruptible_timeout(&elem.xfer_done,
1103
control_resp_timeout_s * HZ);
1104
/*
1105
* not using _interruptable because we have to cleanup or we'll
1106
* likely cause memory corruption
1107
*/
1108
mutex_lock(&qdev->cntl_mutex);
1109
if (!list_empty(&elem.list))
1110
list_del(&elem.list);
1111
if (!ret && !elem.buf)
1112
ret = -ETIMEDOUT;
1113
else if (ret > 0 && !elem.buf)
1114
ret = -EIO;
1115
mutex_unlock(&qdev->cntl_mutex);
1116
1117
if (ret < 0) {
1118
kfree(elem.buf);
1119
return ERR_PTR(ret);
1120
} else if (!qdev->valid_crc(elem.buf)) {
1121
kfree(elem.buf);
1122
return ERR_PTR(-EPIPE);
1123
}
1124
1125
return elem.buf;
1126
}
1127
1128
/* Add a transaction to abort the outstanding DMA continuation */
1129
static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id)
1130
{
1131
struct wire_trans_dma_xfer *out_trans;
1132
u32 size = sizeof(*out_trans);
1133
struct wrapper_msg *wrapper;
1134
struct wrapper_msg *w;
1135
struct wire_msg *msg;
1136
1137
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
1138
msg = &wrapper->msg;
1139
1140
/* Remove all but the first wrapper which has the msg header */
1141
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1142
if (!list_is_first(&wrapper->list, &wrappers->list))
1143
kref_put(&wrapper->ref_count, free_wrapper);
1144
1145
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1146
1147
if (!wrapper)
1148
return -ENOMEM;
1149
1150
out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans;
1151
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
1152
out_trans->hdr.len = cpu_to_le32(size);
1153
out_trans->tag = cpu_to_le32(0);
1154
out_trans->count = cpu_to_le32(0);
1155
out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id);
1156
1157
msg->hdr.len = cpu_to_le32(size + sizeof(*msg));
1158
msg->hdr.count = cpu_to_le32(1);
1159
wrapper->len = size;
1160
1161
return 0;
1162
}
1163
1164
static struct wrapper_list *alloc_wrapper_list(void)
1165
{
1166
struct wrapper_list *wrappers;
1167
1168
wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL);
1169
if (!wrappers)
1170
return NULL;
1171
INIT_LIST_HEAD(&wrappers->list);
1172
spin_lock_init(&wrappers->lock);
1173
1174
return wrappers;
1175
}
1176
1177
static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr,
1178
struct manage_msg *user_msg, struct ioctl_resources *resources,
1179
struct wire_msg **rsp)
1180
{
1181
struct wrapper_list *wrappers;
1182
struct wrapper_msg *wrapper;
1183
struct wrapper_msg *w;
1184
bool all_done = false;
1185
struct wire_msg *msg;
1186
int ret;
1187
1188
wrappers = alloc_wrapper_list();
1189
if (!wrappers)
1190
return -ENOMEM;
1191
1192
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1193
if (!wrapper) {
1194
kfree(wrappers);
1195
return -ENOMEM;
1196
}
1197
1198
msg = &wrapper->msg;
1199
wrapper->len = sizeof(*msg);
1200
1201
ret = encode_message(qdev, user_msg, wrappers, resources, usr);
1202
if (ret && resources->dma_chunk_id)
1203
ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id);
1204
if (ret)
1205
goto encode_failed;
1206
1207
ret = mutex_lock_interruptible(&qdev->cntl_mutex);
1208
if (ret)
1209
goto lock_failed;
1210
1211
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1212
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1213
1214
if (usr) {
1215
msg->hdr.handle = cpu_to_le32(usr->handle);
1216
msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id);
1217
} else {
1218
msg->hdr.handle = 0;
1219
msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION);
1220
}
1221
1222
msg->hdr.padding = cpu_to_le32(0);
1223
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1224
1225
/* msg_xfer releases the mutex */
1226
*rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false);
1227
if (IS_ERR(*rsp))
1228
ret = PTR_ERR(*rsp);
1229
1230
lock_failed:
1231
free_dma_xfers(qdev, resources);
1232
encode_failed:
1233
spin_lock(&wrappers->lock);
1234
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1235
kref_put(&wrapper->ref_count, free_wrapper);
1236
all_done = list_empty(&wrappers->list);
1237
spin_unlock(&wrappers->lock);
1238
if (all_done)
1239
kfree(wrappers);
1240
1241
return ret;
1242
}
1243
1244
static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg)
1245
{
1246
struct wire_trans_dma_xfer_cont *dma_cont = NULL;
1247
struct ioctl_resources resources;
1248
struct wire_msg *rsp = NULL;
1249
int ret;
1250
1251
memset(&resources, 0, sizeof(struct ioctl_resources));
1252
1253
INIT_LIST_HEAD(&resources.dma_xfers);
1254
1255
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH ||
1256
user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr))
1257
return -EINVAL;
1258
1259
dma_xfer_continue:
1260
ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp);
1261
if (ret)
1262
return ret;
1263
/* dma_cont should be the only transaction if present */
1264
if (le32_to_cpu(rsp->hdr.count) == 1) {
1265
dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data;
1266
if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT)
1267
dma_cont = NULL;
1268
}
1269
if (dma_cont) {
1270
if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id &&
1271
le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) {
1272
kfree(rsp);
1273
goto dma_xfer_continue;
1274
}
1275
1276
ret = -EINVAL;
1277
goto dma_cont_failed;
1278
}
1279
1280
ret = decode_message(qdev, user_msg, rsp, &resources, usr);
1281
1282
dma_cont_failed:
1283
free_dbc_buf(qdev, &resources);
1284
kfree(rsp);
1285
return ret;
1286
}
1287
1288
int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1289
{
1290
struct qaic_manage_msg *user_msg = data;
1291
struct qaic_device *qdev;
1292
struct manage_msg *msg;
1293
struct qaic_user *usr;
1294
u8 __user *user_data;
1295
int qdev_rcu_id;
1296
int usr_rcu_id;
1297
int ret;
1298
1299
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH)
1300
return -EINVAL;
1301
1302
usr = file_priv->driver_priv;
1303
1304
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1305
if (!usr->qddev) {
1306
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1307
return -ENODEV;
1308
}
1309
1310
qdev = usr->qddev->qdev;
1311
1312
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1313
if (qdev->dev_state != QAIC_ONLINE) {
1314
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1315
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1316
return -ENODEV;
1317
}
1318
1319
msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL);
1320
if (!msg) {
1321
ret = -ENOMEM;
1322
goto out;
1323
}
1324
1325
msg->len = user_msg->len;
1326
msg->count = user_msg->count;
1327
1328
user_data = u64_to_user_ptr(user_msg->data);
1329
1330
if (copy_from_user(msg->data, user_data, user_msg->len)) {
1331
ret = -EFAULT;
1332
goto free_msg;
1333
}
1334
1335
ret = qaic_manage(qdev, usr, msg);
1336
1337
/*
1338
* If the qaic_manage() is successful then we copy the message onto
1339
* userspace memory but we have an exception for -ECANCELED.
1340
* For -ECANCELED, it means that device has NACKed the message with a
1341
* status error code which userspace would like to know.
1342
*/
1343
if (ret == -ECANCELED || !ret) {
1344
if (copy_to_user(user_data, msg->data, msg->len)) {
1345
ret = -EFAULT;
1346
} else {
1347
user_msg->len = msg->len;
1348
user_msg->count = msg->count;
1349
}
1350
}
1351
1352
free_msg:
1353
kfree(msg);
1354
out:
1355
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1356
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1357
return ret;
1358
}
1359
1360
int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor)
1361
{
1362
struct qaic_manage_trans_status_from_dev *status_result;
1363
struct qaic_manage_trans_status_to_dev *status_query;
1364
struct manage_msg *user_msg;
1365
int ret;
1366
1367
user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL);
1368
if (!user_msg) {
1369
ret = -ENOMEM;
1370
goto out;
1371
}
1372
user_msg->len = sizeof(*status_query);
1373
user_msg->count = 1;
1374
1375
status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data;
1376
status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR;
1377
status_query->hdr.len = sizeof(status_query->hdr);
1378
1379
ret = qaic_manage(qdev, usr, user_msg);
1380
if (ret)
1381
goto kfree_user_msg;
1382
status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data;
1383
*major = status_result->major;
1384
*minor = status_result->minor;
1385
1386
if (status_result->status_flags & BIT(0)) { /* device is using CRC */
1387
/* By default qdev->gen_crc is programmed to generate CRC */
1388
qdev->valid_crc = valid_crc;
1389
} else {
1390
/* By default qdev->valid_crc is programmed to bypass CRC */
1391
qdev->gen_crc = gen_crc_stub;
1392
}
1393
1394
kfree_user_msg:
1395
kfree(user_msg);
1396
out:
1397
return ret;
1398
}
1399
1400
static void resp_worker(struct work_struct *work)
1401
{
1402
struct resp_work *resp = container_of(work, struct resp_work, work);
1403
struct qaic_device *qdev = resp->qdev;
1404
struct wire_msg *msg = resp->buf;
1405
struct xfer_queue_elem *elem;
1406
struct xfer_queue_elem *i;
1407
bool found = false;
1408
1409
mutex_lock(&qdev->cntl_mutex);
1410
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1411
if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) {
1412
found = true;
1413
list_del_init(&elem->list);
1414
elem->buf = msg;
1415
complete_all(&elem->xfer_done);
1416
break;
1417
}
1418
}
1419
mutex_unlock(&qdev->cntl_mutex);
1420
1421
if (!found)
1422
/* request must have timed out, drop packet */
1423
kfree(msg);
1424
1425
kfree(resp);
1426
}
1427
1428
static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper)
1429
{
1430
bool all_done = false;
1431
1432
spin_lock(&wrappers->lock);
1433
kref_put(&wrapper->ref_count, free_wrapper);
1434
all_done = list_empty(&wrappers->list);
1435
spin_unlock(&wrappers->lock);
1436
1437
if (all_done)
1438
kfree(wrappers);
1439
}
1440
1441
void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1442
{
1443
struct wire_msg *msg = mhi_result->buf_addr;
1444
struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg);
1445
1446
free_wrapper_from_list(wrapper->head, wrapper);
1447
}
1448
1449
void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1450
{
1451
struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev);
1452
struct wire_msg *msg = mhi_result->buf_addr;
1453
struct resp_work *resp;
1454
1455
if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) {
1456
kfree(msg);
1457
return;
1458
}
1459
1460
resp = kmalloc(sizeof(*resp), GFP_ATOMIC);
1461
if (!resp) {
1462
kfree(msg);
1463
return;
1464
}
1465
1466
INIT_WORK(&resp->work, resp_worker);
1467
resp->qdev = qdev;
1468
resp->buf = msg;
1469
queue_work(qdev->cntl_wq, &resp->work);
1470
}
1471
1472
int qaic_control_open(struct qaic_device *qdev)
1473
{
1474
if (!qdev->cntl_ch)
1475
return -ENODEV;
1476
1477
qdev->cntl_lost_buf = false;
1478
/*
1479
* By default qaic should assume that device has CRC enabled.
1480
* Qaic comes to know if device has CRC enabled or disabled during the
1481
* device status transaction, which is the first transaction performed
1482
* on control channel.
1483
*
1484
* So CRC validation of first device status transaction response is
1485
* ignored (by calling valid_crc_stub) and is done later during decoding
1486
* if device has CRC enabled.
1487
* Now that qaic knows whether device has CRC enabled or not it acts
1488
* accordingly.
1489
*/
1490
qdev->gen_crc = gen_crc;
1491
qdev->valid_crc = valid_crc_stub;
1492
1493
return mhi_prepare_for_transfer(qdev->cntl_ch);
1494
}
1495
1496
void qaic_control_close(struct qaic_device *qdev)
1497
{
1498
mhi_unprepare_from_transfer(qdev->cntl_ch);
1499
}
1500
1501
void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr)
1502
{
1503
struct wire_trans_terminate_to_dev *trans;
1504
struct wrapper_list *wrappers;
1505
struct wrapper_msg *wrapper;
1506
struct wire_msg *msg;
1507
struct wire_msg *rsp;
1508
1509
wrappers = alloc_wrapper_list();
1510
if (!wrappers)
1511
return;
1512
1513
wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans));
1514
if (!wrapper)
1515
return;
1516
1517
msg = &wrapper->msg;
1518
1519
trans = (struct wire_trans_terminate_to_dev *)msg->data;
1520
1521
trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV);
1522
trans->hdr.len = cpu_to_le32(sizeof(*trans));
1523
trans->handle = cpu_to_le32(usr->handle);
1524
1525
mutex_lock(&qdev->cntl_mutex);
1526
wrapper->len = sizeof(msg->hdr) + sizeof(*trans);
1527
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1528
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1529
msg->hdr.len = cpu_to_le32(wrapper->len);
1530
msg->hdr.count = cpu_to_le32(1);
1531
msg->hdr.handle = cpu_to_le32(usr->handle);
1532
msg->hdr.padding = cpu_to_le32(0);
1533
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1534
1535
/*
1536
* msg_xfer releases the mutex
1537
* We don't care about the return of msg_xfer since we will not do
1538
* anything different based on what happens.
1539
* We ignore pending signals since one will be set if the user is
1540
* killed, and we need give the device a chance to cleanup, otherwise
1541
* DMA may still be in progress when we return.
1542
*/
1543
rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true);
1544
if (!IS_ERR(rsp))
1545
kfree(rsp);
1546
free_wrapper_from_list(wrappers, wrapper);
1547
}
1548
1549
void wake_all_cntl(struct qaic_device *qdev)
1550
{
1551
struct xfer_queue_elem *elem;
1552
struct xfer_queue_elem *i;
1553
1554
mutex_lock(&qdev->cntl_mutex);
1555
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1556
list_del_init(&elem->list);
1557
complete_all(&elem->xfer_done);
1558
}
1559
mutex_unlock(&qdev->cntl_mutex);
1560
}
1561
1562