Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/qaic/qaic_data.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4
/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6
#include <linux/bitfield.h>
7
#include <linux/bits.h>
8
#include <linux/completion.h>
9
#include <linux/delay.h>
10
#include <linux/dma-buf.h>
11
#include <linux/dma-mapping.h>
12
#include <linux/interrupt.h>
13
#include <linux/kref.h>
14
#include <linux/list.h>
15
#include <linux/math64.h>
16
#include <linux/mm.h>
17
#include <linux/moduleparam.h>
18
#include <linux/scatterlist.h>
19
#include <linux/spinlock.h>
20
#include <linux/srcu.h>
21
#include <linux/types.h>
22
#include <linux/uaccess.h>
23
#include <linux/wait.h>
24
#include <drm/drm_file.h>
25
#include <drm/drm_gem.h>
26
#include <drm/drm_prime.h>
27
#include <drm/drm_print.h>
28
#include <uapi/drm/qaic_accel.h>
29
30
#include "qaic.h"
31
32
#define SEM_VAL_MASK GENMASK_ULL(11, 0)
33
#define SEM_INDEX_MASK GENMASK_ULL(4, 0)
34
#define BULK_XFER BIT(3)
35
#define GEN_COMPLETION BIT(4)
36
#define INBOUND_XFER 1
37
#define OUTBOUND_XFER 2
38
#define REQHP_OFF 0x0 /* we read this */
39
#define REQTP_OFF 0x4 /* we write this */
40
#define RSPHP_OFF 0x8 /* we write this */
41
#define RSPTP_OFF 0xc /* we read this */
42
43
#define ENCODE_SEM(val, index, sync, cmd, flags) \
44
({ \
45
FIELD_PREP(GENMASK(11, 0), (val)) | \
46
FIELD_PREP(GENMASK(20, 16), (index)) | \
47
FIELD_PREP(BIT(22), (sync)) | \
48
FIELD_PREP(GENMASK(26, 24), (cmd)) | \
49
FIELD_PREP(GENMASK(30, 29), (flags)) | \
50
FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
51
})
52
#define NUM_EVENTS 128
53
#define NUM_DELAYS 10
54
#define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size())
55
56
static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
57
module_param(wait_exec_default_timeout_ms, uint, 0600);
58
MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
59
60
static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
61
module_param(datapath_poll_interval_us, uint, 0600);
62
MODULE_PARM_DESC(datapath_poll_interval_us,
63
"Amount of time to sleep between activity when datapath polling is enabled");
64
65
struct dbc_req {
66
/*
67
* A request ID is assigned to each memory handle going in DMA queue.
68
* As a single memory handle can enqueue multiple elements in DMA queue
69
* all of them will have the same request ID.
70
*/
71
__le16 req_id;
72
/* Future use */
73
__u8 seq_id;
74
/*
75
* Special encoded variable
76
* 7 0 - Do not force to generate MSI after DMA is completed
77
* 1 - Force to generate MSI after DMA is completed
78
* 6:5 Reserved
79
* 4 1 - Generate completion element in the response queue
80
* 0 - No Completion Code
81
* 3 0 - DMA request is a Link list transfer
82
* 1 - DMA request is a Bulk transfer
83
* 2 Reserved
84
* 1:0 00 - No DMA transfer involved
85
* 01 - DMA transfer is part of inbound transfer
86
* 10 - DMA transfer has outbound transfer
87
* 11 - NA
88
*/
89
__u8 cmd;
90
__le32 resv;
91
/* Source address for the transfer */
92
__le64 src_addr;
93
/* Destination address for the transfer */
94
__le64 dest_addr;
95
/* Length of transfer request */
96
__le32 len;
97
__le32 resv2;
98
/* Doorbell address */
99
__le64 db_addr;
100
/*
101
* Special encoded variable
102
* 7 1 - Doorbell(db) write
103
* 0 - No doorbell write
104
* 6:2 Reserved
105
* 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
106
* 01 - 16 bit access, db address must be aligned to 16bit-boundary
107
* 10 - 8 bit access, db address must be aligned to 8bit-boundary
108
* 11 - Reserved
109
*/
110
__u8 db_len;
111
__u8 resv3;
112
__le16 resv4;
113
/* 32 bit data written to doorbell address */
114
__le32 db_data;
115
/*
116
* Special encoded variable
117
* All the fields of sem_cmdX are passed from user and all are ORed
118
* together to form sem_cmd.
119
* 0:11 Semaphore value
120
* 15:12 Reserved
121
* 20:16 Semaphore index
122
* 21 Reserved
123
* 22 Semaphore Sync
124
* 23 Reserved
125
* 26:24 Semaphore command
126
* 28:27 Reserved
127
* 29 Semaphore DMA out bound sync fence
128
* 30 Semaphore DMA in bound sync fence
129
* 31 Enable semaphore command
130
*/
131
__le32 sem_cmd0;
132
__le32 sem_cmd1;
133
__le32 sem_cmd2;
134
__le32 sem_cmd3;
135
} __packed;
136
137
struct dbc_rsp {
138
/* Request ID of the memory handle whose DMA transaction is completed */
139
__le16 req_id;
140
/* Status of the DMA transaction. 0 : Success otherwise failure */
141
__le16 status;
142
} __packed;
143
144
static inline bool bo_queued(struct qaic_bo *bo)
145
{
146
return !list_empty(&bo->xfer_list);
147
}
148
149
inline int get_dbc_req_elem_size(void)
150
{
151
return sizeof(struct dbc_req);
152
}
153
154
inline int get_dbc_rsp_elem_size(void)
155
{
156
return sizeof(struct dbc_rsp);
157
}
158
159
static void free_slice(struct kref *kref)
160
{
161
struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
162
163
slice->bo->total_slice_nents -= slice->nents;
164
list_del(&slice->slice);
165
drm_gem_object_put(&slice->bo->base);
166
sg_free_table(slice->sgt);
167
kfree(slice->sgt);
168
kfree(slice->reqs);
169
kfree(slice);
170
}
171
172
static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
173
struct sg_table *sgt_in, u64 size, u64 offset)
174
{
175
struct scatterlist *sg, *sgn, *sgf, *sgl;
176
unsigned int len, nents, offf, offl;
177
struct sg_table *sgt;
178
size_t total_len;
179
int ret, j;
180
181
/* find out number of relevant nents needed for this mem */
182
total_len = 0;
183
sgf = NULL;
184
sgl = NULL;
185
nents = 0;
186
offf = 0;
187
offl = 0;
188
189
size = size ? size : PAGE_SIZE;
190
for_each_sgtable_dma_sg(sgt_in, sg, j) {
191
len = sg_dma_len(sg);
192
193
if (!len)
194
continue;
195
if (offset >= total_len && offset < total_len + len) {
196
sgf = sg;
197
offf = offset - total_len;
198
}
199
if (sgf)
200
nents++;
201
if (offset + size >= total_len &&
202
offset + size <= total_len + len) {
203
sgl = sg;
204
offl = offset + size - total_len;
205
break;
206
}
207
total_len += len;
208
}
209
210
if (!sgf || !sgl) {
211
ret = -EINVAL;
212
goto out;
213
}
214
215
sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
216
if (!sgt) {
217
ret = -ENOMEM;
218
goto out;
219
}
220
221
ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
222
if (ret)
223
goto free_sgt;
224
225
/* copy relevant sg node and fix page and length */
226
sgn = sgf;
227
for_each_sgtable_dma_sg(sgt, sg, j) {
228
memcpy(sg, sgn, sizeof(*sg));
229
if (sgn == sgf) {
230
sg_dma_address(sg) += offf;
231
sg_dma_len(sg) -= offf;
232
sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
233
} else {
234
offf = 0;
235
}
236
if (sgn == sgl) {
237
sg_dma_len(sg) = offl - offf;
238
sg_set_page(sg, sg_page(sgn), offl - offf, offf);
239
sg_mark_end(sg);
240
break;
241
}
242
sgn = sg_next(sgn);
243
}
244
245
*sgt_out = sgt;
246
return ret;
247
248
free_sgt:
249
kfree(sgt);
250
out:
251
*sgt_out = NULL;
252
return ret;
253
}
254
255
static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
256
struct qaic_attach_slice_entry *req)
257
{
258
__le64 db_addr = cpu_to_le64(req->db_addr);
259
__le32 db_data = cpu_to_le32(req->db_data);
260
struct scatterlist *sg;
261
__u8 cmd = BULK_XFER;
262
int presync_sem;
263
u64 dev_addr;
264
__u8 db_len;
265
int i;
266
267
if (!slice->no_xfer)
268
cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
269
270
if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
271
return -EINVAL;
272
273
presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
274
if (presync_sem > 1)
275
return -EINVAL;
276
277
presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
278
req->sem2.presync << 2 | req->sem3.presync << 3;
279
280
switch (req->db_len) {
281
case 32:
282
db_len = BIT(7);
283
break;
284
case 16:
285
db_len = BIT(7) | 1;
286
break;
287
case 8:
288
db_len = BIT(7) | 2;
289
break;
290
case 0:
291
db_len = 0; /* doorbell is not active for this command */
292
break;
293
default:
294
return -EINVAL; /* should never hit this */
295
}
296
297
/*
298
* When we end up splitting up a single request (ie a buf slice) into
299
* multiple DMA requests, we have to manage the sync data carefully.
300
* There can only be one presync sem. That needs to be on every xfer
301
* so that the DMA engine doesn't transfer data before the receiver is
302
* ready. We only do the doorbell and postsync sems after the xfer.
303
* To guarantee previous xfers for the request are complete, we use a
304
* fence.
305
*/
306
dev_addr = req->dev_addr;
307
for_each_sgtable_dma_sg(slice->sgt, sg, i) {
308
slice->reqs[i].cmd = cmd;
309
slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
310
sg_dma_address(sg) : dev_addr);
311
slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
312
dev_addr : sg_dma_address(sg));
313
/*
314
* sg_dma_len(sg) returns size of a DMA segment, maximum DMA
315
* segment size is set to UINT_MAX by qaic and hence return
316
* values of sg_dma_len(sg) can never exceed u32 range. So,
317
* by down sizing we are not corrupting the value.
318
*/
319
slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
320
switch (presync_sem) {
321
case BIT(0):
322
slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
323
req->sem0.index,
324
req->sem0.presync,
325
req->sem0.cmd,
326
req->sem0.flags));
327
break;
328
case BIT(1):
329
slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
330
req->sem1.index,
331
req->sem1.presync,
332
req->sem1.cmd,
333
req->sem1.flags));
334
break;
335
case BIT(2):
336
slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
337
req->sem2.index,
338
req->sem2.presync,
339
req->sem2.cmd,
340
req->sem2.flags));
341
break;
342
case BIT(3):
343
slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
344
req->sem3.index,
345
req->sem3.presync,
346
req->sem3.cmd,
347
req->sem3.flags));
348
break;
349
}
350
dev_addr += sg_dma_len(sg);
351
}
352
/* add post transfer stuff to last segment */
353
i--;
354
slice->reqs[i].cmd |= GEN_COMPLETION;
355
slice->reqs[i].db_addr = db_addr;
356
slice->reqs[i].db_len = db_len;
357
slice->reqs[i].db_data = db_data;
358
/*
359
* Add a fence if we have more than one request going to the hardware
360
* representing the entirety of the user request, and the user request
361
* has no presync condition.
362
* Fences are expensive, so we try to avoid them. We rely on the
363
* hardware behavior to avoid needing one when there is a presync
364
* condition. When a presync exists, all requests for that same
365
* presync will be queued into a fifo. Thus, since we queue the
366
* post xfer activity only on the last request we queue, the hardware
367
* will ensure that the last queued request is processed last, thus
368
* making sure the post xfer activity happens at the right time without
369
* a fence.
370
*/
371
if (i && !presync_sem)
372
req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
373
QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
374
slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
375
req->sem0.presync, req->sem0.cmd,
376
req->sem0.flags));
377
slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
378
req->sem1.presync, req->sem1.cmd,
379
req->sem1.flags));
380
slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
381
req->sem2.presync, req->sem2.cmd,
382
req->sem2.flags));
383
slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
384
req->sem3.presync, req->sem3.cmd,
385
req->sem3.flags));
386
387
return 0;
388
}
389
390
static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
391
struct qaic_attach_slice_entry *slice_ent)
392
{
393
struct sg_table *sgt = NULL;
394
struct bo_slice *slice;
395
int ret;
396
397
ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
398
if (ret)
399
goto out;
400
401
slice = kmalloc(sizeof(*slice), GFP_KERNEL);
402
if (!slice) {
403
ret = -ENOMEM;
404
goto free_sgt;
405
}
406
407
slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
408
if (!slice->reqs) {
409
ret = -ENOMEM;
410
goto free_slice;
411
}
412
413
slice->no_xfer = !slice_ent->size;
414
slice->sgt = sgt;
415
slice->nents = sgt->nents;
416
slice->dir = bo->dir;
417
slice->bo = bo;
418
slice->size = slice_ent->size;
419
slice->offset = slice_ent->offset;
420
421
ret = encode_reqs(qdev, slice, slice_ent);
422
if (ret)
423
goto free_req;
424
425
bo->total_slice_nents += sgt->nents;
426
kref_init(&slice->ref_count);
427
drm_gem_object_get(&bo->base);
428
list_add_tail(&slice->slice, &bo->slices);
429
430
return 0;
431
432
free_req:
433
kfree(slice->reqs);
434
free_slice:
435
kfree(slice);
436
free_sgt:
437
sg_free_table(sgt);
438
kfree(sgt);
439
out:
440
return ret;
441
}
442
443
static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
444
{
445
struct scatterlist *sg;
446
struct sg_table *sgt;
447
struct page **pages;
448
int *pages_order;
449
int buf_extra;
450
int max_order;
451
int nr_pages;
452
int ret = 0;
453
int i, j, k;
454
int order;
455
456
if (size) {
457
nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
458
/*
459
* calculate how much extra we are going to allocate, to remove
460
* later
461
*/
462
buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
463
max_order = min(MAX_PAGE_ORDER, get_order(size));
464
} else {
465
/* allocate a single page for book keeping */
466
nr_pages = 1;
467
buf_extra = 0;
468
max_order = 0;
469
}
470
471
pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
472
if (!pages) {
473
ret = -ENOMEM;
474
goto out;
475
}
476
pages_order = (void *)pages + sizeof(*pages) * nr_pages;
477
478
/*
479
* Allocate requested memory using alloc_pages. It is possible to allocate
480
* the requested memory in multiple chunks by calling alloc_pages
481
* multiple times. Use SG table to handle multiple allocated pages.
482
*/
483
i = 0;
484
while (nr_pages > 0) {
485
order = min(get_order(nr_pages * PAGE_SIZE), max_order);
486
while (1) {
487
pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
488
__GFP_NOWARN | __GFP_ZERO |
489
(order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
490
order);
491
if (pages[i])
492
break;
493
if (!order--) {
494
ret = -ENOMEM;
495
goto free_partial_alloc;
496
}
497
}
498
499
max_order = order;
500
pages_order[i] = order;
501
502
nr_pages -= 1 << order;
503
if (nr_pages <= 0)
504
/* account for over allocation */
505
buf_extra += abs(nr_pages) * PAGE_SIZE;
506
i++;
507
}
508
509
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
510
if (!sgt) {
511
ret = -ENOMEM;
512
goto free_partial_alloc;
513
}
514
515
if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
516
ret = -ENOMEM;
517
goto free_sgt;
518
}
519
520
/* Populate the SG table with the allocated memory pages */
521
sg = sgt->sgl;
522
for (k = 0; k < i; k++, sg = sg_next(sg)) {
523
/* Last entry requires special handling */
524
if (k < i - 1) {
525
sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
526
} else {
527
sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
528
sg_mark_end(sg);
529
}
530
}
531
532
kvfree(pages);
533
*sgt_out = sgt;
534
return ret;
535
536
free_sgt:
537
kfree(sgt);
538
free_partial_alloc:
539
for (j = 0; j < i; j++)
540
__free_pages(pages[j], pages_order[j]);
541
kvfree(pages);
542
out:
543
*sgt_out = NULL;
544
return ret;
545
}
546
547
static bool invalid_sem(struct qaic_sem *sem)
548
{
549
if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
550
!(sem->presync == 0 || sem->presync == 1) || sem->pad ||
551
sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
552
sem->cmd > QAIC_SEM_WAIT_GT_0)
553
return true;
554
return false;
555
}
556
557
static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
558
u32 count, u64 total_size)
559
{
560
u64 total;
561
int i;
562
563
for (i = 0; i < count; i++) {
564
if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
565
slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
566
invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
567
invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
568
return -EINVAL;
569
570
if (check_add_overflow(slice_ent[i].offset, slice_ent[i].size, &total) ||
571
total > total_size)
572
return -EINVAL;
573
}
574
575
return 0;
576
}
577
578
static void qaic_free_sgt(struct sg_table *sgt)
579
{
580
struct scatterlist *sg;
581
582
if (!sgt)
583
return;
584
585
for (sg = sgt->sgl; sg; sg = sg_next(sg))
586
if (sg_page(sg))
587
__free_pages(sg_page(sg), get_order(sg->length));
588
sg_free_table(sgt);
589
kfree(sgt);
590
}
591
592
static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
593
const struct drm_gem_object *obj)
594
{
595
struct qaic_bo *bo = to_qaic_bo(obj);
596
597
drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir);
598
}
599
600
static const struct vm_operations_struct drm_vm_ops = {
601
.open = drm_gem_vm_open,
602
.close = drm_gem_vm_close,
603
};
604
605
static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
606
{
607
struct qaic_bo *bo = to_qaic_bo(obj);
608
unsigned long offset = 0;
609
struct scatterlist *sg;
610
int ret = 0;
611
612
if (drm_gem_is_imported(obj))
613
return -EINVAL;
614
615
for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
616
if (sg_page(sg)) {
617
ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
618
sg->length, vma->vm_page_prot);
619
if (ret)
620
goto out;
621
offset += sg->length;
622
}
623
}
624
625
out:
626
return ret;
627
}
628
629
static void qaic_free_object(struct drm_gem_object *obj)
630
{
631
struct qaic_bo *bo = to_qaic_bo(obj);
632
633
if (drm_gem_is_imported(obj)) {
634
/* DMABUF/PRIME Path */
635
drm_prime_gem_destroy(obj, NULL);
636
} else {
637
/* Private buffer allocation path */
638
qaic_free_sgt(bo->sgt);
639
}
640
641
mutex_destroy(&bo->lock);
642
drm_gem_object_release(obj);
643
kfree(bo);
644
}
645
646
static const struct drm_gem_object_funcs qaic_gem_funcs = {
647
.free = qaic_free_object,
648
.print_info = qaic_gem_print_info,
649
.mmap = qaic_gem_object_mmap,
650
.vm_ops = &drm_vm_ops,
651
};
652
653
static void qaic_init_bo(struct qaic_bo *bo, bool reinit)
654
{
655
if (reinit) {
656
bo->sliced = false;
657
reinit_completion(&bo->xfer_done);
658
} else {
659
mutex_init(&bo->lock);
660
init_completion(&bo->xfer_done);
661
}
662
complete_all(&bo->xfer_done);
663
INIT_LIST_HEAD(&bo->slices);
664
INIT_LIST_HEAD(&bo->xfer_list);
665
}
666
667
static struct qaic_bo *qaic_alloc_init_bo(void)
668
{
669
struct qaic_bo *bo;
670
671
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
672
if (!bo)
673
return ERR_PTR(-ENOMEM);
674
675
qaic_init_bo(bo, false);
676
677
return bo;
678
}
679
680
int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
681
{
682
struct qaic_create_bo *args = data;
683
int usr_rcu_id, qdev_rcu_id;
684
struct drm_gem_object *obj;
685
struct qaic_device *qdev;
686
struct qaic_user *usr;
687
struct qaic_bo *bo;
688
size_t size;
689
int ret;
690
691
if (args->pad)
692
return -EINVAL;
693
694
size = PAGE_ALIGN(args->size);
695
if (size == 0)
696
return -EINVAL;
697
698
usr = file_priv->driver_priv;
699
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
700
if (!usr->qddev) {
701
ret = -ENODEV;
702
goto unlock_usr_srcu;
703
}
704
705
qdev = usr->qddev->qdev;
706
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
707
if (qdev->dev_state != QAIC_ONLINE) {
708
ret = -ENODEV;
709
goto unlock_dev_srcu;
710
}
711
712
bo = qaic_alloc_init_bo();
713
if (IS_ERR(bo)) {
714
ret = PTR_ERR(bo);
715
goto unlock_dev_srcu;
716
}
717
obj = &bo->base;
718
719
drm_gem_private_object_init(dev, obj, size);
720
721
obj->funcs = &qaic_gem_funcs;
722
ret = create_sgt(qdev, &bo->sgt, size);
723
if (ret)
724
goto free_bo;
725
726
ret = drm_gem_create_mmap_offset(obj);
727
if (ret)
728
goto free_bo;
729
730
ret = drm_gem_handle_create(file_priv, obj, &args->handle);
731
if (ret)
732
goto free_bo;
733
734
drm_gem_object_put(obj);
735
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
736
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
737
738
return 0;
739
740
free_bo:
741
drm_gem_object_put(obj);
742
unlock_dev_srcu:
743
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
744
unlock_usr_srcu:
745
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
746
return ret;
747
}
748
749
int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
750
{
751
struct qaic_mmap_bo *args = data;
752
int usr_rcu_id, qdev_rcu_id;
753
struct drm_gem_object *obj;
754
struct qaic_device *qdev;
755
struct qaic_user *usr;
756
int ret = 0;
757
758
usr = file_priv->driver_priv;
759
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
760
if (!usr->qddev) {
761
ret = -ENODEV;
762
goto unlock_usr_srcu;
763
}
764
765
qdev = usr->qddev->qdev;
766
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
767
if (qdev->dev_state != QAIC_ONLINE) {
768
ret = -ENODEV;
769
goto unlock_dev_srcu;
770
}
771
772
obj = drm_gem_object_lookup(file_priv, args->handle);
773
if (!obj) {
774
ret = -ENOENT;
775
goto unlock_dev_srcu;
776
}
777
778
args->offset = drm_vma_node_offset_addr(&obj->vma_node);
779
780
drm_gem_object_put(obj);
781
782
unlock_dev_srcu:
783
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
784
unlock_usr_srcu:
785
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
786
return ret;
787
}
788
789
struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
790
{
791
struct dma_buf_attachment *attach;
792
struct drm_gem_object *obj;
793
struct qaic_bo *bo;
794
int ret;
795
796
bo = qaic_alloc_init_bo();
797
if (IS_ERR(bo)) {
798
ret = PTR_ERR(bo);
799
goto out;
800
}
801
802
obj = &bo->base;
803
get_dma_buf(dma_buf);
804
805
attach = dma_buf_attach(dma_buf, dev->dev);
806
if (IS_ERR(attach)) {
807
ret = PTR_ERR(attach);
808
goto attach_fail;
809
}
810
811
if (!attach->dmabuf->size) {
812
ret = -EINVAL;
813
goto size_align_fail;
814
}
815
816
drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
817
/*
818
* skipping dma_buf_map_attachment() as we do not know the direction
819
* just yet. Once the direction is known in the subsequent IOCTL to
820
* attach slicing, we can do it then.
821
*/
822
823
obj->funcs = &qaic_gem_funcs;
824
obj->import_attach = attach;
825
obj->resv = dma_buf->resv;
826
827
return obj;
828
829
size_align_fail:
830
dma_buf_detach(dma_buf, attach);
831
attach_fail:
832
dma_buf_put(dma_buf);
833
kfree(bo);
834
out:
835
return ERR_PTR(ret);
836
}
837
838
static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
839
{
840
struct drm_gem_object *obj = &bo->base;
841
struct sg_table *sgt;
842
int ret;
843
844
sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
845
if (IS_ERR(sgt)) {
846
ret = PTR_ERR(sgt);
847
return ret;
848
}
849
850
bo->sgt = sgt;
851
852
return 0;
853
}
854
855
static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
856
struct qaic_attach_slice_hdr *hdr)
857
{
858
int ret;
859
860
ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
861
if (ret)
862
return -EFAULT;
863
864
return 0;
865
}
866
867
static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
868
struct qaic_attach_slice_hdr *hdr)
869
{
870
int ret;
871
872
if (drm_gem_is_imported(&bo->base))
873
ret = qaic_prepare_import_bo(bo, hdr);
874
else
875
ret = qaic_prepare_export_bo(qdev, bo, hdr);
876
bo->dir = hdr->dir;
877
bo->dbc = &qdev->dbc[hdr->dbc_id];
878
bo->nr_slice = hdr->count;
879
880
return ret;
881
}
882
883
static void qaic_unprepare_import_bo(struct qaic_bo *bo)
884
{
885
dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
886
bo->sgt = NULL;
887
}
888
889
static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
890
{
891
dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
892
}
893
894
static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
895
{
896
if (drm_gem_is_imported(&bo->base))
897
qaic_unprepare_import_bo(bo);
898
else
899
qaic_unprepare_export_bo(qdev, bo);
900
901
bo->dir = 0;
902
bo->dbc = NULL;
903
bo->nr_slice = 0;
904
}
905
906
static void qaic_free_slices_bo(struct qaic_bo *bo)
907
{
908
struct bo_slice *slice, *temp;
909
910
list_for_each_entry_safe(slice, temp, &bo->slices, slice)
911
kref_put(&slice->ref_count, free_slice);
912
if (WARN_ON_ONCE(bo->total_slice_nents != 0))
913
bo->total_slice_nents = 0;
914
bo->nr_slice = 0;
915
}
916
917
static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
918
struct qaic_attach_slice_hdr *hdr,
919
struct qaic_attach_slice_entry *slice_ent)
920
{
921
int ret, i;
922
923
for (i = 0; i < hdr->count; i++) {
924
ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
925
if (ret) {
926
qaic_free_slices_bo(bo);
927
return ret;
928
}
929
}
930
931
if (bo->total_slice_nents > bo->dbc->nelem) {
932
qaic_free_slices_bo(bo);
933
return -ENOSPC;
934
}
935
936
return 0;
937
}
938
939
int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
940
{
941
struct qaic_attach_slice_entry *slice_ent;
942
struct qaic_attach_slice *args = data;
943
int rcu_id, usr_rcu_id, qdev_rcu_id;
944
struct dma_bridge_chan *dbc;
945
struct drm_gem_object *obj;
946
struct qaic_device *qdev;
947
unsigned long arg_size;
948
struct qaic_user *usr;
949
u8 __user *user_data;
950
struct qaic_bo *bo;
951
int ret;
952
953
if (args->hdr.count == 0)
954
return -EINVAL;
955
956
arg_size = args->hdr.count * sizeof(*slice_ent);
957
if (arg_size / args->hdr.count != sizeof(*slice_ent))
958
return -EINVAL;
959
960
if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
961
return -EINVAL;
962
963
if (args->data == 0)
964
return -EINVAL;
965
966
usr = file_priv->driver_priv;
967
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
968
if (!usr->qddev) {
969
ret = -ENODEV;
970
goto unlock_usr_srcu;
971
}
972
973
qdev = usr->qddev->qdev;
974
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
975
if (qdev->dev_state != QAIC_ONLINE) {
976
ret = -ENODEV;
977
goto unlock_dev_srcu;
978
}
979
980
if (args->hdr.dbc_id >= qdev->num_dbc) {
981
ret = -EINVAL;
982
goto unlock_dev_srcu;
983
}
984
985
user_data = u64_to_user_ptr(args->data);
986
987
slice_ent = kzalloc(arg_size, GFP_KERNEL);
988
if (!slice_ent) {
989
ret = -EINVAL;
990
goto unlock_dev_srcu;
991
}
992
993
ret = copy_from_user(slice_ent, user_data, arg_size);
994
if (ret) {
995
ret = -EFAULT;
996
goto free_slice_ent;
997
}
998
999
obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
1000
if (!obj) {
1001
ret = -ENOENT;
1002
goto free_slice_ent;
1003
}
1004
1005
ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, obj->size);
1006
if (ret)
1007
goto put_bo;
1008
1009
bo = to_qaic_bo(obj);
1010
ret = mutex_lock_interruptible(&bo->lock);
1011
if (ret)
1012
goto put_bo;
1013
1014
if (bo->sliced) {
1015
ret = -EINVAL;
1016
goto unlock_bo;
1017
}
1018
1019
dbc = &qdev->dbc[args->hdr.dbc_id];
1020
rcu_id = srcu_read_lock(&dbc->ch_lock);
1021
if (dbc->usr != usr) {
1022
ret = -EINVAL;
1023
goto unlock_ch_srcu;
1024
}
1025
1026
ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1027
if (ret)
1028
goto unlock_ch_srcu;
1029
1030
ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1031
if (ret)
1032
goto unprepare_bo;
1033
1034
if (args->hdr.dir == DMA_TO_DEVICE)
1035
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1036
1037
bo->sliced = true;
1038
list_add_tail(&bo->bo_list, &bo->dbc->bo_lists);
1039
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1040
mutex_unlock(&bo->lock);
1041
kfree(slice_ent);
1042
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1043
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1044
1045
return 0;
1046
1047
unprepare_bo:
1048
qaic_unprepare_bo(qdev, bo);
1049
unlock_ch_srcu:
1050
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1051
unlock_bo:
1052
mutex_unlock(&bo->lock);
1053
put_bo:
1054
drm_gem_object_put(obj);
1055
free_slice_ent:
1056
kfree(slice_ent);
1057
unlock_dev_srcu:
1058
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1059
unlock_usr_srcu:
1060
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1061
return ret;
1062
}
1063
1064
static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size)
1065
{
1066
u32 avail = head - tail - 1;
1067
1068
if (head <= tail)
1069
avail += q_size;
1070
1071
return avail;
1072
}
1073
1074
static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1075
u32 head, u32 *ptail)
1076
{
1077
struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1078
struct dbc_req *reqs = slice->reqs;
1079
u32 tail = *ptail;
1080
u32 avail;
1081
1082
avail = fifo_space_avail(head, tail, dbc->nelem);
1083
if (avail < slice->nents)
1084
return -EAGAIN;
1085
1086
if (tail + slice->nents > dbc->nelem) {
1087
avail = dbc->nelem - tail;
1088
avail = min_t(u32, avail, slice->nents);
1089
memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1090
reqs += avail;
1091
avail = slice->nents - avail;
1092
if (avail)
1093
memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1094
} else {
1095
memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents);
1096
}
1097
1098
*ptail = (tail + slice->nents) % dbc->nelem;
1099
1100
return 0;
1101
}
1102
1103
static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1104
u64 resize, struct dma_bridge_chan *dbc, u32 head,
1105
u32 *ptail)
1106
{
1107
struct dbc_req *reqs = slice->reqs;
1108
struct dbc_req *last_req;
1109
u32 tail = *ptail;
1110
u64 last_bytes;
1111
u32 first_n;
1112
u32 avail;
1113
1114
avail = fifo_space_avail(head, tail, dbc->nelem);
1115
1116
/*
1117
* After this for loop is complete, first_n represents the index
1118
* of the last DMA request of this slice that needs to be
1119
* transferred after resizing and last_bytes represents DMA size
1120
* of that request.
1121
*/
1122
last_bytes = resize;
1123
for (first_n = 0; first_n < slice->nents; first_n++)
1124
if (last_bytes > le32_to_cpu(reqs[first_n].len))
1125
last_bytes -= le32_to_cpu(reqs[first_n].len);
1126
else
1127
break;
1128
1129
if (avail < (first_n + 1))
1130
return -EAGAIN;
1131
1132
if (first_n) {
1133
if (tail + first_n > dbc->nelem) {
1134
avail = dbc->nelem - tail;
1135
avail = min_t(u32, avail, first_n);
1136
memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1137
last_req = reqs + avail;
1138
avail = first_n - avail;
1139
if (avail)
1140
memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1141
} else {
1142
memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n);
1143
}
1144
}
1145
1146
/*
1147
* Copy over the last entry. Here we need to adjust len to the left over
1148
* size, and set src and dst to the entry it is copied to.
1149
*/
1150
last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem);
1151
memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1152
1153
/*
1154
* last_bytes holds size of a DMA segment, maximum DMA segment size is
1155
* set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1156
* range. So, by down sizing we are not corrupting the value.
1157
*/
1158
last_req->len = cpu_to_le32((u32)last_bytes);
1159
last_req->src_addr = reqs[first_n].src_addr;
1160
last_req->dest_addr = reqs[first_n].dest_addr;
1161
if (!last_bytes)
1162
/* Disable DMA transfer */
1163
last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd;
1164
1165
*ptail = (tail + first_n + 1) % dbc->nelem;
1166
1167
return 0;
1168
}
1169
1170
static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1171
struct qaic_execute_entry *exec, unsigned int count,
1172
bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1173
u32 *tail)
1174
{
1175
struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1176
struct drm_gem_object *obj;
1177
struct bo_slice *slice;
1178
unsigned long flags;
1179
struct qaic_bo *bo;
1180
int i, j;
1181
int ret;
1182
1183
for (i = 0; i < count; i++) {
1184
/*
1185
* ref count will be decremented when the transfer of this
1186
* buffer is complete. It is inside dbc_irq_threaded_fn().
1187
*/
1188
obj = drm_gem_object_lookup(file_priv,
1189
is_partial ? pexec[i].handle : exec[i].handle);
1190
if (!obj) {
1191
ret = -ENOENT;
1192
goto failed_to_send_bo;
1193
}
1194
1195
bo = to_qaic_bo(obj);
1196
ret = mutex_lock_interruptible(&bo->lock);
1197
if (ret)
1198
goto failed_to_send_bo;
1199
1200
if (!bo->sliced) {
1201
ret = -EINVAL;
1202
goto unlock_bo;
1203
}
1204
1205
if (is_partial && pexec[i].resize > bo->base.size) {
1206
ret = -EINVAL;
1207
goto unlock_bo;
1208
}
1209
1210
spin_lock_irqsave(&dbc->xfer_lock, flags);
1211
if (bo_queued(bo)) {
1212
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1213
ret = -EINVAL;
1214
goto unlock_bo;
1215
}
1216
1217
bo->req_id = dbc->next_req_id++;
1218
1219
list_for_each_entry(slice, &bo->slices, slice) {
1220
for (j = 0; j < slice->nents; j++)
1221
slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1222
1223
if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset))
1224
/* Configure the slice for no DMA transfer */
1225
ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail);
1226
else if (is_partial && pexec[i].resize < slice->offset + slice->size)
1227
/* Configure the slice to be partially DMA transferred */
1228
ret = copy_partial_exec_reqs(qdev, slice,
1229
pexec[i].resize - slice->offset, dbc,
1230
head, tail);
1231
else
1232
ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1233
if (ret) {
1234
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1235
goto unlock_bo;
1236
}
1237
}
1238
reinit_completion(&bo->xfer_done);
1239
list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1240
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1241
dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1242
mutex_unlock(&bo->lock);
1243
}
1244
1245
return 0;
1246
1247
unlock_bo:
1248
mutex_unlock(&bo->lock);
1249
failed_to_send_bo:
1250
if (likely(obj))
1251
drm_gem_object_put(obj);
1252
for (j = 0; j < i; j++) {
1253
spin_lock_irqsave(&dbc->xfer_lock, flags);
1254
bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1255
obj = &bo->base;
1256
list_del_init(&bo->xfer_list);
1257
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1258
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1259
drm_gem_object_put(obj);
1260
}
1261
return ret;
1262
}
1263
1264
static void update_profiling_data(struct drm_file *file_priv,
1265
struct qaic_execute_entry *exec, unsigned int count,
1266
bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1267
{
1268
struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1269
struct drm_gem_object *obj;
1270
struct qaic_bo *bo;
1271
int i;
1272
1273
for (i = 0; i < count; i++) {
1274
/*
1275
* Since we already committed the BO to hardware, the only way
1276
* this should fail is a pending signal. We can't cancel the
1277
* submit to hardware, so we have to just skip the profiling
1278
* data. In case the signal is not fatal to the process, we
1279
* return success so that the user doesn't try to resubmit.
1280
*/
1281
obj = drm_gem_object_lookup(file_priv,
1282
is_partial ? pexec[i].handle : exec[i].handle);
1283
if (!obj)
1284
break;
1285
bo = to_qaic_bo(obj);
1286
bo->perf_stats.req_received_ts = received_ts;
1287
bo->perf_stats.req_submit_ts = submit_ts;
1288
bo->perf_stats.queue_level_before = queue_level;
1289
queue_level += bo->total_slice_nents;
1290
drm_gem_object_put(obj);
1291
}
1292
}
1293
1294
static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1295
bool is_partial)
1296
{
1297
struct qaic_execute *args = data;
1298
struct qaic_execute_entry *exec;
1299
struct dma_bridge_chan *dbc;
1300
int usr_rcu_id, qdev_rcu_id;
1301
struct qaic_device *qdev;
1302
struct qaic_user *usr;
1303
u8 __user *user_data;
1304
unsigned long n;
1305
u64 received_ts;
1306
u32 queue_level;
1307
u64 submit_ts;
1308
int rcu_id;
1309
u32 head;
1310
u32 tail;
1311
u64 size;
1312
int ret;
1313
1314
received_ts = ktime_get_ns();
1315
1316
size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1317
n = (unsigned long)size * args->hdr.count;
1318
if (args->hdr.count == 0 || n / args->hdr.count != size)
1319
return -EINVAL;
1320
1321
user_data = u64_to_user_ptr(args->data);
1322
1323
exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1324
if (!exec)
1325
return -ENOMEM;
1326
1327
if (copy_from_user(exec, user_data, n)) {
1328
ret = -EFAULT;
1329
goto free_exec;
1330
}
1331
1332
usr = file_priv->driver_priv;
1333
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1334
if (!usr->qddev) {
1335
ret = -ENODEV;
1336
goto unlock_usr_srcu;
1337
}
1338
1339
qdev = usr->qddev->qdev;
1340
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1341
if (qdev->dev_state != QAIC_ONLINE) {
1342
ret = -ENODEV;
1343
goto unlock_dev_srcu;
1344
}
1345
1346
if (args->hdr.dbc_id >= qdev->num_dbc) {
1347
ret = -EINVAL;
1348
goto unlock_dev_srcu;
1349
}
1350
1351
dbc = &qdev->dbc[args->hdr.dbc_id];
1352
1353
rcu_id = srcu_read_lock(&dbc->ch_lock);
1354
if (!dbc->usr || dbc->usr->handle != usr->handle) {
1355
ret = -EPERM;
1356
goto release_ch_rcu;
1357
}
1358
1359
head = readl(dbc->dbc_base + REQHP_OFF);
1360
tail = readl(dbc->dbc_base + REQTP_OFF);
1361
1362
if (head == U32_MAX || tail == U32_MAX) {
1363
/* PCI link error */
1364
ret = -ENODEV;
1365
goto release_ch_rcu;
1366
}
1367
1368
queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1369
1370
ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1371
head, &tail);
1372
if (ret)
1373
goto release_ch_rcu;
1374
1375
/* Finalize commit to hardware */
1376
submit_ts = ktime_get_ns();
1377
writel(tail, dbc->dbc_base + REQTP_OFF);
1378
1379
update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1380
submit_ts, queue_level);
1381
1382
if (datapath_polling)
1383
schedule_work(&dbc->poll_work);
1384
1385
release_ch_rcu:
1386
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1387
unlock_dev_srcu:
1388
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1389
unlock_usr_srcu:
1390
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1391
free_exec:
1392
kfree(exec);
1393
return ret;
1394
}
1395
1396
int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1397
{
1398
return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1399
}
1400
1401
int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1402
{
1403
return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1404
}
1405
1406
/*
1407
* Our interrupt handling is a bit more complicated than a simple ideal, but
1408
* sadly necessary.
1409
*
1410
* Each dbc has a completion queue. Entries in the queue correspond to DMA
1411
* requests which the device has processed. The hardware already has a built
1412
* in irq mitigation. When the device puts an entry into the queue, it will
1413
* only trigger an interrupt if the queue was empty. Therefore, when adding
1414
* the Nth event to a non-empty queue, the hardware doesn't trigger an
1415
* interrupt. This means the host doesn't get additional interrupts signaling
1416
* the same thing - the queue has something to process.
1417
* This behavior can be overridden in the DMA request.
1418
* This means that when the host receives an interrupt, it is required to
1419
* drain the queue.
1420
*
1421
* This behavior is what NAPI attempts to accomplish, although we can't use
1422
* NAPI as we don't have a netdev. We use threaded irqs instead.
1423
*
1424
* However, there is a situation where the host drains the queue fast enough
1425
* that every event causes an interrupt. Typically this is not a problem as
1426
* the rate of events would be low. However, that is not the case with
1427
* lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1428
* lprnet, the host receives roughly 80k interrupts per second from the device
1429
* (per /proc/interrupts). While NAPI documentation indicates the host should
1430
* just chug along, sadly that behavior causes instability in some hosts.
1431
*
1432
* Therefore, we implement an interrupt disable scheme similar to NAPI. The
1433
* key difference is that we will delay after draining the queue for a small
1434
* time to allow additional events to come in via polling. Using the above
1435
* lprnet workload, this reduces the number of interrupts processed from
1436
* ~80k/sec to about 64 in 5 minutes and appears to solve the system
1437
* instability.
1438
*/
1439
irqreturn_t dbc_irq_handler(int irq, void *data)
1440
{
1441
struct dma_bridge_chan *dbc = data;
1442
int rcu_id;
1443
u32 head;
1444
u32 tail;
1445
1446
rcu_id = srcu_read_lock(&dbc->ch_lock);
1447
1448
if (datapath_polling) {
1449
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1450
/*
1451
* Normally datapath_polling will not have irqs enabled, but
1452
* when running with only one MSI the interrupt is shared with
1453
* MHI so it cannot be disabled. Return ASAP instead.
1454
*/
1455
return IRQ_HANDLED;
1456
}
1457
1458
if (!dbc->usr) {
1459
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1460
return IRQ_HANDLED;
1461
}
1462
1463
head = readl(dbc->dbc_base + RSPHP_OFF);
1464
if (head == U32_MAX) { /* PCI link error */
1465
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1466
return IRQ_NONE;
1467
}
1468
1469
tail = readl(dbc->dbc_base + RSPTP_OFF);
1470
if (tail == U32_MAX) { /* PCI link error */
1471
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1472
return IRQ_NONE;
1473
}
1474
1475
if (head == tail) { /* queue empty */
1476
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1477
return IRQ_NONE;
1478
}
1479
1480
if (!dbc->qdev->single_msi)
1481
disable_irq_nosync(irq);
1482
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1483
return IRQ_WAKE_THREAD;
1484
}
1485
1486
void irq_polling_work(struct work_struct *work)
1487
{
1488
struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1489
unsigned long flags;
1490
int rcu_id;
1491
u32 head;
1492
u32 tail;
1493
1494
rcu_id = srcu_read_lock(&dbc->ch_lock);
1495
1496
while (1) {
1497
if (dbc->qdev->dev_state != QAIC_ONLINE) {
1498
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1499
return;
1500
}
1501
if (!dbc->usr) {
1502
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1503
return;
1504
}
1505
spin_lock_irqsave(&dbc->xfer_lock, flags);
1506
if (list_empty(&dbc->xfer_list)) {
1507
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1508
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1509
return;
1510
}
1511
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1512
1513
head = readl(dbc->dbc_base + RSPHP_OFF);
1514
if (head == U32_MAX) { /* PCI link error */
1515
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1516
return;
1517
}
1518
1519
tail = readl(dbc->dbc_base + RSPTP_OFF);
1520
if (tail == U32_MAX) { /* PCI link error */
1521
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1522
return;
1523
}
1524
1525
if (head != tail) {
1526
irq_wake_thread(dbc->irq, dbc);
1527
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1528
return;
1529
}
1530
1531
cond_resched();
1532
usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1533
}
1534
}
1535
1536
irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1537
{
1538
struct dma_bridge_chan *dbc = data;
1539
int event_count = NUM_EVENTS;
1540
int delay_count = NUM_DELAYS;
1541
struct qaic_device *qdev;
1542
struct qaic_bo *bo, *i;
1543
struct dbc_rsp *rsp;
1544
unsigned long flags;
1545
int rcu_id;
1546
u16 status;
1547
u16 req_id;
1548
u32 head;
1549
u32 tail;
1550
1551
rcu_id = srcu_read_lock(&dbc->ch_lock);
1552
qdev = dbc->qdev;
1553
1554
head = readl(dbc->dbc_base + RSPHP_OFF);
1555
if (head == U32_MAX) /* PCI link error */
1556
goto error_out;
1557
1558
read_fifo:
1559
1560
if (!event_count) {
1561
event_count = NUM_EVENTS;
1562
cond_resched();
1563
}
1564
1565
/*
1566
* if this channel isn't assigned or gets unassigned during processing
1567
* we have nothing further to do
1568
*/
1569
if (!dbc->usr)
1570
goto error_out;
1571
1572
tail = readl(dbc->dbc_base + RSPTP_OFF);
1573
if (tail == U32_MAX) /* PCI link error */
1574
goto error_out;
1575
1576
if (head == tail) { /* queue empty */
1577
if (delay_count) {
1578
--delay_count;
1579
usleep_range(100, 200);
1580
goto read_fifo; /* check for a new event */
1581
}
1582
goto normal_out;
1583
}
1584
1585
delay_count = NUM_DELAYS;
1586
while (head != tail) {
1587
if (!event_count)
1588
break;
1589
--event_count;
1590
rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1591
req_id = le16_to_cpu(rsp->req_id);
1592
status = le16_to_cpu(rsp->status);
1593
if (status)
1594
pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1595
spin_lock_irqsave(&dbc->xfer_lock, flags);
1596
/*
1597
* A BO can receive multiple interrupts, since a BO can be
1598
* divided into multiple slices and a buffer receives as many
1599
* interrupts as slices. So until it receives interrupts for
1600
* all the slices we cannot mark that buffer complete.
1601
*/
1602
list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1603
if (bo->req_id == req_id)
1604
bo->nr_slice_xfer_done++;
1605
else
1606
continue;
1607
1608
if (bo->nr_slice_xfer_done < bo->nr_slice)
1609
break;
1610
1611
/*
1612
* At this point we have received all the interrupts for
1613
* BO, which means BO execution is complete.
1614
*/
1615
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1616
bo->nr_slice_xfer_done = 0;
1617
list_del_init(&bo->xfer_list);
1618
bo->perf_stats.req_processed_ts = ktime_get_ns();
1619
complete_all(&bo->xfer_done);
1620
drm_gem_object_put(&bo->base);
1621
break;
1622
}
1623
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1624
head = (head + 1) % dbc->nelem;
1625
}
1626
1627
/*
1628
* Update the head pointer of response queue and let the device know
1629
* that we have consumed elements from the queue.
1630
*/
1631
writel(head, dbc->dbc_base + RSPHP_OFF);
1632
1633
/* elements might have been put in the queue while we were processing */
1634
goto read_fifo;
1635
1636
normal_out:
1637
if (!qdev->single_msi && likely(!datapath_polling))
1638
enable_irq(irq);
1639
else if (unlikely(datapath_polling))
1640
schedule_work(&dbc->poll_work);
1641
/* checking the fifo and enabling irqs is a race, missed event check */
1642
tail = readl(dbc->dbc_base + RSPTP_OFF);
1643
if (tail != U32_MAX && head != tail) {
1644
if (!qdev->single_msi && likely(!datapath_polling))
1645
disable_irq_nosync(irq);
1646
goto read_fifo;
1647
}
1648
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1649
return IRQ_HANDLED;
1650
1651
error_out:
1652
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1653
if (!qdev->single_msi && likely(!datapath_polling))
1654
enable_irq(irq);
1655
else if (unlikely(datapath_polling))
1656
schedule_work(&dbc->poll_work);
1657
1658
return IRQ_HANDLED;
1659
}
1660
1661
int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1662
{
1663
struct qaic_wait *args = data;
1664
int usr_rcu_id, qdev_rcu_id;
1665
struct dma_bridge_chan *dbc;
1666
struct drm_gem_object *obj;
1667
struct qaic_device *qdev;
1668
unsigned long timeout;
1669
struct qaic_user *usr;
1670
struct qaic_bo *bo;
1671
int rcu_id;
1672
int ret;
1673
1674
if (args->pad != 0)
1675
return -EINVAL;
1676
1677
usr = file_priv->driver_priv;
1678
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1679
if (!usr->qddev) {
1680
ret = -ENODEV;
1681
goto unlock_usr_srcu;
1682
}
1683
1684
qdev = usr->qddev->qdev;
1685
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1686
if (qdev->dev_state != QAIC_ONLINE) {
1687
ret = -ENODEV;
1688
goto unlock_dev_srcu;
1689
}
1690
1691
if (args->dbc_id >= qdev->num_dbc) {
1692
ret = -EINVAL;
1693
goto unlock_dev_srcu;
1694
}
1695
1696
dbc = &qdev->dbc[args->dbc_id];
1697
1698
rcu_id = srcu_read_lock(&dbc->ch_lock);
1699
if (dbc->usr != usr) {
1700
ret = -EPERM;
1701
goto unlock_ch_srcu;
1702
}
1703
1704
obj = drm_gem_object_lookup(file_priv, args->handle);
1705
if (!obj) {
1706
ret = -ENOENT;
1707
goto unlock_ch_srcu;
1708
}
1709
1710
bo = to_qaic_bo(obj);
1711
timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1712
timeout = msecs_to_jiffies(timeout);
1713
ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1714
if (!ret) {
1715
ret = -ETIMEDOUT;
1716
goto put_obj;
1717
}
1718
if (ret > 0)
1719
ret = 0;
1720
1721
if (!dbc->usr)
1722
ret = -EPERM;
1723
1724
put_obj:
1725
drm_gem_object_put(obj);
1726
unlock_ch_srcu:
1727
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1728
unlock_dev_srcu:
1729
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1730
unlock_usr_srcu:
1731
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1732
return ret;
1733
}
1734
1735
int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1736
{
1737
struct qaic_perf_stats_entry *ent = NULL;
1738
struct qaic_perf_stats *args = data;
1739
int usr_rcu_id, qdev_rcu_id;
1740
struct drm_gem_object *obj;
1741
struct qaic_device *qdev;
1742
struct qaic_user *usr;
1743
struct qaic_bo *bo;
1744
int ret, i;
1745
1746
usr = file_priv->driver_priv;
1747
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1748
if (!usr->qddev) {
1749
ret = -ENODEV;
1750
goto unlock_usr_srcu;
1751
}
1752
1753
qdev = usr->qddev->qdev;
1754
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1755
if (qdev->dev_state != QAIC_ONLINE) {
1756
ret = -ENODEV;
1757
goto unlock_dev_srcu;
1758
}
1759
1760
if (args->hdr.dbc_id >= qdev->num_dbc) {
1761
ret = -EINVAL;
1762
goto unlock_dev_srcu;
1763
}
1764
1765
ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1766
if (!ent) {
1767
ret = -EINVAL;
1768
goto unlock_dev_srcu;
1769
}
1770
1771
ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1772
if (ret) {
1773
ret = -EFAULT;
1774
goto free_ent;
1775
}
1776
1777
for (i = 0; i < args->hdr.count; i++) {
1778
obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1779
if (!obj) {
1780
ret = -ENOENT;
1781
goto free_ent;
1782
}
1783
bo = to_qaic_bo(obj);
1784
/*
1785
* perf stats ioctl is called before wait ioctl is complete then
1786
* the latency information is invalid.
1787
*/
1788
if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1789
ent[i].device_latency_us = 0;
1790
} else {
1791
ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1792
bo->perf_stats.req_submit_ts), 1000);
1793
}
1794
ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1795
bo->perf_stats.req_received_ts), 1000);
1796
ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1797
ent[i].num_queue_element = bo->total_slice_nents;
1798
drm_gem_object_put(obj);
1799
}
1800
1801
if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1802
ret = -EFAULT;
1803
1804
free_ent:
1805
kfree(ent);
1806
unlock_dev_srcu:
1807
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1808
unlock_usr_srcu:
1809
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1810
return ret;
1811
}
1812
1813
static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo)
1814
{
1815
qaic_free_slices_bo(bo);
1816
qaic_unprepare_bo(qdev, bo);
1817
qaic_init_bo(bo, true);
1818
list_del(&bo->bo_list);
1819
drm_gem_object_put(&bo->base);
1820
}
1821
1822
int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1823
{
1824
struct qaic_detach_slice *args = data;
1825
int rcu_id, usr_rcu_id, qdev_rcu_id;
1826
struct dma_bridge_chan *dbc;
1827
struct drm_gem_object *obj;
1828
struct qaic_device *qdev;
1829
struct qaic_user *usr;
1830
unsigned long flags;
1831
struct qaic_bo *bo;
1832
int ret;
1833
1834
if (args->pad != 0)
1835
return -EINVAL;
1836
1837
usr = file_priv->driver_priv;
1838
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1839
if (!usr->qddev) {
1840
ret = -ENODEV;
1841
goto unlock_usr_srcu;
1842
}
1843
1844
qdev = usr->qddev->qdev;
1845
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1846
if (qdev->dev_state != QAIC_ONLINE) {
1847
ret = -ENODEV;
1848
goto unlock_dev_srcu;
1849
}
1850
1851
obj = drm_gem_object_lookup(file_priv, args->handle);
1852
if (!obj) {
1853
ret = -ENOENT;
1854
goto unlock_dev_srcu;
1855
}
1856
1857
bo = to_qaic_bo(obj);
1858
ret = mutex_lock_interruptible(&bo->lock);
1859
if (ret)
1860
goto put_bo;
1861
1862
if (!bo->sliced) {
1863
ret = -EINVAL;
1864
goto unlock_bo;
1865
}
1866
1867
dbc = bo->dbc;
1868
rcu_id = srcu_read_lock(&dbc->ch_lock);
1869
if (dbc->usr != usr) {
1870
ret = -EINVAL;
1871
goto unlock_ch_srcu;
1872
}
1873
1874
/* Check if BO is committed to H/W for DMA */
1875
spin_lock_irqsave(&dbc->xfer_lock, flags);
1876
if (bo_queued(bo)) {
1877
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1878
ret = -EBUSY;
1879
goto unlock_ch_srcu;
1880
}
1881
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1882
1883
detach_slice_bo(qdev, bo);
1884
1885
unlock_ch_srcu:
1886
srcu_read_unlock(&dbc->ch_lock, rcu_id);
1887
unlock_bo:
1888
mutex_unlock(&bo->lock);
1889
put_bo:
1890
drm_gem_object_put(obj);
1891
unlock_dev_srcu:
1892
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1893
unlock_usr_srcu:
1894
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1895
return ret;
1896
}
1897
1898
static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1899
{
1900
unsigned long flags;
1901
struct qaic_bo *bo;
1902
1903
spin_lock_irqsave(&dbc->xfer_lock, flags);
1904
while (!list_empty(&dbc->xfer_list)) {
1905
bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1906
list_del_init(&bo->xfer_list);
1907
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1908
bo->nr_slice_xfer_done = 0;
1909
bo->req_id = 0;
1910
bo->perf_stats.req_received_ts = 0;
1911
bo->perf_stats.req_submit_ts = 0;
1912
bo->perf_stats.req_processed_ts = 0;
1913
bo->perf_stats.queue_level_before = 0;
1914
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1915
complete_all(&bo->xfer_done);
1916
drm_gem_object_put(&bo->base);
1917
spin_lock_irqsave(&dbc->xfer_lock, flags);
1918
}
1919
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1920
}
1921
1922
int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1923
{
1924
if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1925
return -EPERM;
1926
1927
qdev->dbc[dbc_id].usr = NULL;
1928
synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1929
return 0;
1930
}
1931
1932
/**
1933
* enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1934
* user. Add user context back to DBC to enable it. This function trusts the
1935
* DBC ID passed and expects the DBC to be disabled.
1936
* @qdev: Qranium device handle
1937
* @dbc_id: ID of the DBC
1938
* @usr: User context
1939
*/
1940
void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1941
{
1942
qdev->dbc[dbc_id].usr = usr;
1943
}
1944
1945
void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1946
{
1947
struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1948
1949
dbc->usr = NULL;
1950
empty_xfer_list(qdev, dbc);
1951
synchronize_srcu(&dbc->ch_lock);
1952
/*
1953
* Threads holding channel lock, may add more elements in the xfer_list.
1954
* Flush out these elements from xfer_list.
1955
*/
1956
empty_xfer_list(qdev, dbc);
1957
}
1958
1959
void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1960
{
1961
struct qaic_bo *bo, *bo_temp;
1962
struct dma_bridge_chan *dbc;
1963
1964
dbc = &qdev->dbc[dbc_id];
1965
if (!dbc->in_use)
1966
return;
1967
1968
wakeup_dbc(qdev, dbc_id);
1969
1970
dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1971
dbc->total_size = 0;
1972
dbc->req_q_base = NULL;
1973
dbc->dma_addr = 0;
1974
dbc->nelem = 0;
1975
dbc->usr = NULL;
1976
1977
list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1978
drm_gem_object_get(&bo->base);
1979
mutex_lock(&bo->lock);
1980
detach_slice_bo(qdev, bo);
1981
mutex_unlock(&bo->lock);
1982
drm_gem_object_put(&bo->base);
1983
}
1984
1985
dbc->in_use = false;
1986
wake_up(&dbc->dbc_release);
1987
}
1988
1989
void qaic_data_get_fifo_info(struct dma_bridge_chan *dbc, u32 *head, u32 *tail)
1990
{
1991
if (!dbc || !head || !tail)
1992
return;
1993
1994
*head = readl(dbc->dbc_base + REQHP_OFF);
1995
*tail = readl(dbc->dbc_base + REQTP_OFF);
1996
}
1997
1998