Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/acpi_tad.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* ACPI Time and Alarm (TAD) Device Driver
4
*
5
* Copyright (C) 2018 Intel Corporation
6
* Author: Rafael J. Wysocki <[email protected]>
7
*
8
* This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
9
*
10
* It only supports the system wakeup capabilities of the TAD.
11
*
12
* Provided are sysfs attributes, available under the TAD platform device,
13
* allowing user space to manage the AC and DC wakeup timers of the TAD:
14
* set and read their values, set and check their expire timer wake policies,
15
* check and clear their status and check the capabilities of the TAD reported
16
* by AML. The DC timer attributes are only present if the TAD supports a
17
* separate DC alarm timer.
18
*
19
* The wakeup events handling and power management of the TAD is expected to
20
* be taken care of by the ACPI PM domain attached to its platform device.
21
*/
22
23
#include <linux/acpi.h>
24
#include <linux/kernel.h>
25
#include <linux/module.h>
26
#include <linux/platform_device.h>
27
#include <linux/pm_runtime.h>
28
#include <linux/suspend.h>
29
30
MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver");
31
MODULE_LICENSE("GPL v2");
32
MODULE_AUTHOR("Rafael J. Wysocki");
33
34
/* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
35
#define ACPI_TAD_AC_WAKE BIT(0)
36
#define ACPI_TAD_DC_WAKE BIT(1)
37
#define ACPI_TAD_RT BIT(2)
38
#define ACPI_TAD_RT_IN_MS BIT(3)
39
#define ACPI_TAD_S4_S5__GWS BIT(4)
40
#define ACPI_TAD_AC_S4_WAKE BIT(5)
41
#define ACPI_TAD_AC_S5_WAKE BIT(6)
42
#define ACPI_TAD_DC_S4_WAKE BIT(7)
43
#define ACPI_TAD_DC_S5_WAKE BIT(8)
44
45
/* ACPI TAD alarm timer selection */
46
#define ACPI_TAD_AC_TIMER (u32)0
47
#define ACPI_TAD_DC_TIMER (u32)1
48
49
/* Special value for disabled timer or expired timer wake policy. */
50
#define ACPI_TAD_WAKE_DISABLED (~(u32)0)
51
52
struct acpi_tad_driver_data {
53
u32 capabilities;
54
};
55
56
struct acpi_tad_rt {
57
u16 year; /* 1900 - 9999 */
58
u8 month; /* 1 - 12 */
59
u8 day; /* 1 - 31 */
60
u8 hour; /* 0 - 23 */
61
u8 minute; /* 0 - 59 */
62
u8 second; /* 0 - 59 */
63
u8 valid; /* 0 (failed) or 1 (success) for reads, 0 for writes */
64
u16 msec; /* 1 - 1000 */
65
s16 tz; /* -1440 to 1440 or 2047 (unspecified) */
66
u8 daylight;
67
u8 padding[3]; /* must be 0 */
68
} __packed;
69
70
static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
71
{
72
acpi_handle handle = ACPI_HANDLE(dev);
73
union acpi_object args[] = {
74
{ .type = ACPI_TYPE_BUFFER, },
75
};
76
struct acpi_object_list arg_list = {
77
.pointer = args,
78
.count = ARRAY_SIZE(args),
79
};
80
unsigned long long retval;
81
acpi_status status;
82
83
if (rt->year < 1900 || rt->year > 9999 ||
84
rt->month < 1 || rt->month > 12 ||
85
rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
86
rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
87
rt->daylight > 3)
88
return -ERANGE;
89
90
args[0].buffer.pointer = (u8 *)rt;
91
args[0].buffer.length = sizeof(*rt);
92
93
pm_runtime_get_sync(dev);
94
95
status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
96
97
pm_runtime_put_sync(dev);
98
99
if (ACPI_FAILURE(status) || retval)
100
return -EIO;
101
102
return 0;
103
}
104
105
static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
106
{
107
acpi_handle handle = ACPI_HANDLE(dev);
108
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
109
union acpi_object *out_obj;
110
struct acpi_tad_rt *data;
111
acpi_status status;
112
int ret = -EIO;
113
114
pm_runtime_get_sync(dev);
115
116
status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
117
118
pm_runtime_put_sync(dev);
119
120
if (ACPI_FAILURE(status))
121
goto out_free;
122
123
out_obj = output.pointer;
124
if (out_obj->type != ACPI_TYPE_BUFFER)
125
goto out_free;
126
127
if (out_obj->buffer.length != sizeof(*rt))
128
goto out_free;
129
130
data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
131
if (!data->valid)
132
goto out_free;
133
134
memcpy(rt, data, sizeof(*rt));
135
ret = 0;
136
137
out_free:
138
ACPI_FREE(output.pointer);
139
return ret;
140
}
141
142
static char *acpi_tad_rt_next_field(char *s, int *val)
143
{
144
char *p;
145
146
p = strchr(s, ':');
147
if (!p)
148
return NULL;
149
150
*p = '\0';
151
if (kstrtoint(s, 10, val))
152
return NULL;
153
154
return p + 1;
155
}
156
157
static ssize_t time_store(struct device *dev, struct device_attribute *attr,
158
const char *buf, size_t count)
159
{
160
struct acpi_tad_rt rt;
161
char *str, *s;
162
int val, ret = -ENODATA;
163
164
str = kmemdup_nul(buf, count, GFP_KERNEL);
165
if (!str)
166
return -ENOMEM;
167
168
s = acpi_tad_rt_next_field(str, &val);
169
if (!s)
170
goto out_free;
171
172
rt.year = val;
173
174
s = acpi_tad_rt_next_field(s, &val);
175
if (!s)
176
goto out_free;
177
178
rt.month = val;
179
180
s = acpi_tad_rt_next_field(s, &val);
181
if (!s)
182
goto out_free;
183
184
rt.day = val;
185
186
s = acpi_tad_rt_next_field(s, &val);
187
if (!s)
188
goto out_free;
189
190
rt.hour = val;
191
192
s = acpi_tad_rt_next_field(s, &val);
193
if (!s)
194
goto out_free;
195
196
rt.minute = val;
197
198
s = acpi_tad_rt_next_field(s, &val);
199
if (!s)
200
goto out_free;
201
202
rt.second = val;
203
204
s = acpi_tad_rt_next_field(s, &val);
205
if (!s)
206
goto out_free;
207
208
rt.tz = val;
209
210
if (kstrtoint(s, 10, &val))
211
goto out_free;
212
213
rt.daylight = val;
214
215
rt.valid = 0;
216
rt.msec = 0;
217
memset(rt.padding, 0, 3);
218
219
ret = acpi_tad_set_real_time(dev, &rt);
220
221
out_free:
222
kfree(str);
223
return ret ? ret : count;
224
}
225
226
static ssize_t time_show(struct device *dev, struct device_attribute *attr,
227
char *buf)
228
{
229
struct acpi_tad_rt rt;
230
int ret;
231
232
ret = acpi_tad_get_real_time(dev, &rt);
233
if (ret)
234
return ret;
235
236
return sysfs_emit(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
237
rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
238
rt.tz, rt.daylight);
239
}
240
241
static DEVICE_ATTR_RW(time);
242
243
static struct attribute *acpi_tad_time_attrs[] = {
244
&dev_attr_time.attr,
245
NULL,
246
};
247
static const struct attribute_group acpi_tad_time_attr_group = {
248
.attrs = acpi_tad_time_attrs,
249
};
250
251
static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
252
u32 value)
253
{
254
acpi_handle handle = ACPI_HANDLE(dev);
255
union acpi_object args[] = {
256
{ .type = ACPI_TYPE_INTEGER, },
257
{ .type = ACPI_TYPE_INTEGER, },
258
};
259
struct acpi_object_list arg_list = {
260
.pointer = args,
261
.count = ARRAY_SIZE(args),
262
};
263
unsigned long long retval;
264
acpi_status status;
265
266
args[0].integer.value = timer_id;
267
args[1].integer.value = value;
268
269
pm_runtime_get_sync(dev);
270
271
status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
272
273
pm_runtime_put_sync(dev);
274
275
if (ACPI_FAILURE(status) || retval)
276
return -EIO;
277
278
return 0;
279
}
280
281
static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
282
u32 timer_id, const char *specval)
283
{
284
u32 value;
285
286
if (sysfs_streq(buf, specval)) {
287
value = ACPI_TAD_WAKE_DISABLED;
288
} else {
289
int ret = kstrtou32(buf, 0, &value);
290
291
if (ret)
292
return ret;
293
294
if (value == ACPI_TAD_WAKE_DISABLED)
295
return -EINVAL;
296
}
297
298
return acpi_tad_wake_set(dev, method, timer_id, value);
299
}
300
301
static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
302
u32 timer_id, const char *specval)
303
{
304
acpi_handle handle = ACPI_HANDLE(dev);
305
union acpi_object args[] = {
306
{ .type = ACPI_TYPE_INTEGER, },
307
};
308
struct acpi_object_list arg_list = {
309
.pointer = args,
310
.count = ARRAY_SIZE(args),
311
};
312
unsigned long long retval;
313
acpi_status status;
314
315
args[0].integer.value = timer_id;
316
317
pm_runtime_get_sync(dev);
318
319
status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
320
321
pm_runtime_put_sync(dev);
322
323
if (ACPI_FAILURE(status))
324
return -EIO;
325
326
if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
327
return sprintf(buf, "%s\n", specval);
328
329
return sprintf(buf, "%u\n", (u32)retval);
330
}
331
332
static const char *alarm_specval = "disabled";
333
334
static int acpi_tad_alarm_write(struct device *dev, const char *buf,
335
u32 timer_id)
336
{
337
return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
338
}
339
340
static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
341
{
342
return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
343
}
344
345
static const char *policy_specval = "never";
346
347
static int acpi_tad_policy_write(struct device *dev, const char *buf,
348
u32 timer_id)
349
{
350
return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
351
}
352
353
static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
354
{
355
return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
356
}
357
358
static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
359
{
360
acpi_handle handle = ACPI_HANDLE(dev);
361
union acpi_object args[] = {
362
{ .type = ACPI_TYPE_INTEGER, },
363
};
364
struct acpi_object_list arg_list = {
365
.pointer = args,
366
.count = ARRAY_SIZE(args),
367
};
368
unsigned long long retval;
369
acpi_status status;
370
371
args[0].integer.value = timer_id;
372
373
pm_runtime_get_sync(dev);
374
375
status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
376
377
pm_runtime_put_sync(dev);
378
379
if (ACPI_FAILURE(status) || retval)
380
return -EIO;
381
382
return 0;
383
}
384
385
static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
386
{
387
int ret, value;
388
389
ret = kstrtoint(buf, 0, &value);
390
if (ret)
391
return ret;
392
393
if (value)
394
return -EINVAL;
395
396
return acpi_tad_clear_status(dev, timer_id);
397
}
398
399
static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
400
{
401
acpi_handle handle = ACPI_HANDLE(dev);
402
union acpi_object args[] = {
403
{ .type = ACPI_TYPE_INTEGER, },
404
};
405
struct acpi_object_list arg_list = {
406
.pointer = args,
407
.count = ARRAY_SIZE(args),
408
};
409
unsigned long long retval;
410
acpi_status status;
411
412
args[0].integer.value = timer_id;
413
414
pm_runtime_get_sync(dev);
415
416
status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
417
418
pm_runtime_put_sync(dev);
419
420
if (ACPI_FAILURE(status))
421
return -EIO;
422
423
return sprintf(buf, "0x%02X\n", (u32)retval);
424
}
425
426
static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
427
char *buf)
428
{
429
struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
430
431
return sysfs_emit(buf, "0x%02X\n", dd->capabilities);
432
}
433
434
static DEVICE_ATTR_RO(caps);
435
436
static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
437
const char *buf, size_t count)
438
{
439
int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
440
441
return ret ? ret : count;
442
}
443
444
static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
445
char *buf)
446
{
447
return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
448
}
449
450
static DEVICE_ATTR_RW(ac_alarm);
451
452
static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
453
const char *buf, size_t count)
454
{
455
int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
456
457
return ret ? ret : count;
458
}
459
460
static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
461
char *buf)
462
{
463
return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
464
}
465
466
static DEVICE_ATTR_RW(ac_policy);
467
468
static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
469
const char *buf, size_t count)
470
{
471
int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
472
473
return ret ? ret : count;
474
}
475
476
static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
477
char *buf)
478
{
479
return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
480
}
481
482
static DEVICE_ATTR_RW(ac_status);
483
484
static struct attribute *acpi_tad_attrs[] = {
485
&dev_attr_caps.attr,
486
&dev_attr_ac_alarm.attr,
487
&dev_attr_ac_policy.attr,
488
&dev_attr_ac_status.attr,
489
NULL,
490
};
491
static const struct attribute_group acpi_tad_attr_group = {
492
.attrs = acpi_tad_attrs,
493
};
494
495
static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
496
const char *buf, size_t count)
497
{
498
int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
499
500
return ret ? ret : count;
501
}
502
503
static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
504
char *buf)
505
{
506
return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
507
}
508
509
static DEVICE_ATTR_RW(dc_alarm);
510
511
static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
512
const char *buf, size_t count)
513
{
514
int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
515
516
return ret ? ret : count;
517
}
518
519
static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
520
char *buf)
521
{
522
return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
523
}
524
525
static DEVICE_ATTR_RW(dc_policy);
526
527
static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
528
const char *buf, size_t count)
529
{
530
int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
531
532
return ret ? ret : count;
533
}
534
535
static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
536
char *buf)
537
{
538
return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
539
}
540
541
static DEVICE_ATTR_RW(dc_status);
542
543
static struct attribute *acpi_tad_dc_attrs[] = {
544
&dev_attr_dc_alarm.attr,
545
&dev_attr_dc_policy.attr,
546
&dev_attr_dc_status.attr,
547
NULL,
548
};
549
static const struct attribute_group acpi_tad_dc_attr_group = {
550
.attrs = acpi_tad_dc_attrs,
551
};
552
553
static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
554
{
555
return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
556
}
557
558
static void acpi_tad_remove(struct platform_device *pdev)
559
{
560
struct device *dev = &pdev->dev;
561
acpi_handle handle = ACPI_HANDLE(dev);
562
struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
563
564
device_init_wakeup(dev, false);
565
566
pm_runtime_get_sync(dev);
567
568
if (dd->capabilities & ACPI_TAD_DC_WAKE)
569
sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
570
571
sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
572
573
acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
574
acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
575
if (dd->capabilities & ACPI_TAD_DC_WAKE) {
576
acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
577
acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
578
}
579
580
pm_runtime_put_sync(dev);
581
pm_runtime_disable(dev);
582
acpi_remove_cmos_rtc_space_handler(handle);
583
}
584
585
static int acpi_tad_probe(struct platform_device *pdev)
586
{
587
struct device *dev = &pdev->dev;
588
acpi_handle handle = ACPI_HANDLE(dev);
589
struct acpi_tad_driver_data *dd;
590
acpi_status status;
591
unsigned long long caps;
592
int ret;
593
594
ret = acpi_install_cmos_rtc_space_handler(handle);
595
if (ret < 0) {
596
dev_info(dev, "Unable to install space handler\n");
597
return -ENODEV;
598
}
599
/*
600
* Initialization failure messages are mostly about firmware issues, so
601
* print them at the "info" level.
602
*/
603
status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
604
if (ACPI_FAILURE(status)) {
605
dev_info(dev, "Unable to get capabilities\n");
606
ret = -ENODEV;
607
goto remove_handler;
608
}
609
610
if (!(caps & ACPI_TAD_AC_WAKE)) {
611
dev_info(dev, "Unsupported capabilities\n");
612
ret = -ENODEV;
613
goto remove_handler;
614
}
615
616
if (!acpi_has_method(handle, "_PRW")) {
617
dev_info(dev, "Missing _PRW\n");
618
ret = -ENODEV;
619
goto remove_handler;
620
}
621
622
dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
623
if (!dd) {
624
ret = -ENOMEM;
625
goto remove_handler;
626
}
627
628
dd->capabilities = caps;
629
dev_set_drvdata(dev, dd);
630
631
/*
632
* Assume that the ACPI PM domain has been attached to the device and
633
* simply enable system wakeup and runtime PM and put the device into
634
* runtime suspend. Everything else should be taken care of by the ACPI
635
* PM domain callbacks.
636
*/
637
device_init_wakeup(dev, true);
638
dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
639
DPM_FLAG_MAY_SKIP_RESUME);
640
/*
641
* The platform bus type layer tells the ACPI PM domain powers up the
642
* device, so set the runtime PM status of it to "active".
643
*/
644
pm_runtime_set_active(dev);
645
pm_runtime_enable(dev);
646
pm_runtime_suspend(dev);
647
648
ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
649
if (ret)
650
goto fail;
651
652
if (caps & ACPI_TAD_DC_WAKE) {
653
ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
654
if (ret)
655
goto fail;
656
}
657
658
if (caps & ACPI_TAD_RT) {
659
ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
660
if (ret)
661
goto fail;
662
}
663
664
return 0;
665
666
fail:
667
acpi_tad_remove(pdev);
668
/* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */
669
return ret;
670
671
remove_handler:
672
acpi_remove_cmos_rtc_space_handler(handle);
673
return ret;
674
}
675
676
static const struct acpi_device_id acpi_tad_ids[] = {
677
{"ACPI000E", 0},
678
{}
679
};
680
681
static struct platform_driver acpi_tad_driver = {
682
.driver = {
683
.name = "acpi-tad",
684
.acpi_match_table = acpi_tad_ids,
685
},
686
.probe = acpi_tad_probe,
687
.remove = acpi_tad_remove,
688
};
689
MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
690
691
module_platform_driver(acpi_tad_driver);
692
693