Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/arm64/iort.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2016, Semihalf
4
* Author: Tomasz Nowicki <[email protected]>
5
*
6
* This file implements early detection/parsing of I/O mapping
7
* reported to OS through firmware via I/O Remapping Table (IORT)
8
* IORT document number: ARM DEN 0049A
9
*/
10
11
#define pr_fmt(fmt) "ACPI: IORT: " fmt
12
13
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/iommu.h>
16
#include <linux/kernel.h>
17
#include <linux/list.h>
18
#include <linux/pci.h>
19
#include <linux/platform_device.h>
20
#include <linux/slab.h>
21
#include <linux/dma-map-ops.h>
22
#include "init.h"
23
24
#define IORT_TYPE_MASK(type) (1 << (type))
25
#define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
26
#define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
27
(1 << ACPI_IORT_NODE_SMMU_V3))
28
29
struct iort_its_msi_chip {
30
struct list_head list;
31
struct fwnode_handle *fw_node;
32
phys_addr_t base_addr;
33
u32 translation_id;
34
};
35
36
struct iort_fwnode {
37
struct list_head list;
38
struct acpi_iort_node *iort_node;
39
struct fwnode_handle *fwnode;
40
};
41
static LIST_HEAD(iort_fwnode_list);
42
static DEFINE_SPINLOCK(iort_fwnode_lock);
43
44
/**
45
* iort_set_fwnode() - Create iort_fwnode and use it to register
46
* iommu data in the iort_fwnode_list
47
*
48
* @iort_node: IORT table node associated with the IOMMU
49
* @fwnode: fwnode associated with the IORT node
50
*
51
* Returns: 0 on success
52
* <0 on failure
53
*/
54
static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
55
struct fwnode_handle *fwnode)
56
{
57
struct iort_fwnode *np;
58
59
np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
60
61
if (WARN_ON(!np))
62
return -ENOMEM;
63
64
INIT_LIST_HEAD(&np->list);
65
np->iort_node = iort_node;
66
np->fwnode = fwnode;
67
68
spin_lock(&iort_fwnode_lock);
69
list_add_tail(&np->list, &iort_fwnode_list);
70
spin_unlock(&iort_fwnode_lock);
71
72
return 0;
73
}
74
75
/**
76
* iort_get_fwnode() - Retrieve fwnode associated with an IORT node
77
*
78
* @node: IORT table node to be looked-up
79
*
80
* Returns: fwnode_handle pointer on success, NULL on failure
81
*/
82
static inline struct fwnode_handle *iort_get_fwnode(
83
struct acpi_iort_node *node)
84
{
85
struct iort_fwnode *curr;
86
struct fwnode_handle *fwnode = NULL;
87
88
spin_lock(&iort_fwnode_lock);
89
list_for_each_entry(curr, &iort_fwnode_list, list) {
90
if (curr->iort_node == node) {
91
fwnode = curr->fwnode;
92
break;
93
}
94
}
95
spin_unlock(&iort_fwnode_lock);
96
97
return fwnode;
98
}
99
100
/**
101
* iort_delete_fwnode() - Delete fwnode associated with an IORT node
102
*
103
* @node: IORT table node associated with fwnode to delete
104
*/
105
static inline void iort_delete_fwnode(struct acpi_iort_node *node)
106
{
107
struct iort_fwnode *curr, *tmp;
108
109
spin_lock(&iort_fwnode_lock);
110
list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
111
if (curr->iort_node == node) {
112
list_del(&curr->list);
113
kfree(curr);
114
break;
115
}
116
}
117
spin_unlock(&iort_fwnode_lock);
118
}
119
120
/**
121
* iort_get_iort_node() - Retrieve iort_node associated with an fwnode
122
*
123
* @fwnode: fwnode associated with device to be looked-up
124
*
125
* Returns: iort_node pointer on success, NULL on failure
126
*/
127
static inline struct acpi_iort_node *iort_get_iort_node(
128
struct fwnode_handle *fwnode)
129
{
130
struct iort_fwnode *curr;
131
struct acpi_iort_node *iort_node = NULL;
132
133
spin_lock(&iort_fwnode_lock);
134
list_for_each_entry(curr, &iort_fwnode_list, list) {
135
if (curr->fwnode == fwnode) {
136
iort_node = curr->iort_node;
137
break;
138
}
139
}
140
spin_unlock(&iort_fwnode_lock);
141
142
return iort_node;
143
}
144
145
typedef acpi_status (*iort_find_node_callback)
146
(struct acpi_iort_node *node, void *context);
147
148
/* Root pointer to the mapped IORT table */
149
static struct acpi_table_header *iort_table;
150
151
static LIST_HEAD(iort_msi_chip_list);
152
static DEFINE_SPINLOCK(iort_msi_chip_lock);
153
154
/**
155
* iort_register_domain_token() - register domain token along with related
156
* ITS ID and base address to the list from where we can get it back later on.
157
* @trans_id: ITS ID.
158
* @base: ITS base address.
159
* @fw_node: Domain token.
160
*
161
* Returns: 0 on success, -ENOMEM if no memory when allocating list element
162
*/
163
int iort_register_domain_token(int trans_id, phys_addr_t base,
164
struct fwnode_handle *fw_node)
165
{
166
struct iort_its_msi_chip *its_msi_chip;
167
168
its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
169
if (!its_msi_chip)
170
return -ENOMEM;
171
172
its_msi_chip->fw_node = fw_node;
173
its_msi_chip->translation_id = trans_id;
174
its_msi_chip->base_addr = base;
175
176
spin_lock(&iort_msi_chip_lock);
177
list_add(&its_msi_chip->list, &iort_msi_chip_list);
178
spin_unlock(&iort_msi_chip_lock);
179
180
return 0;
181
}
182
183
/**
184
* iort_deregister_domain_token() - Deregister domain token based on ITS ID
185
* @trans_id: ITS ID.
186
*
187
* Returns: none.
188
*/
189
void iort_deregister_domain_token(int trans_id)
190
{
191
struct iort_its_msi_chip *its_msi_chip, *t;
192
193
spin_lock(&iort_msi_chip_lock);
194
list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
195
if (its_msi_chip->translation_id == trans_id) {
196
list_del(&its_msi_chip->list);
197
kfree(its_msi_chip);
198
break;
199
}
200
}
201
spin_unlock(&iort_msi_chip_lock);
202
}
203
204
/**
205
* iort_find_domain_token() - Find domain token based on given ITS ID
206
* @trans_id: ITS ID.
207
*
208
* Returns: domain token when find on the list, NULL otherwise
209
*/
210
struct fwnode_handle *iort_find_domain_token(int trans_id)
211
{
212
struct fwnode_handle *fw_node = NULL;
213
struct iort_its_msi_chip *its_msi_chip;
214
215
spin_lock(&iort_msi_chip_lock);
216
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
217
if (its_msi_chip->translation_id == trans_id) {
218
fw_node = its_msi_chip->fw_node;
219
break;
220
}
221
}
222
spin_unlock(&iort_msi_chip_lock);
223
224
return fw_node;
225
}
226
227
static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
228
iort_find_node_callback callback,
229
void *context)
230
{
231
struct acpi_iort_node *iort_node, *iort_end;
232
struct acpi_table_iort *iort;
233
int i;
234
235
if (!iort_table)
236
return NULL;
237
238
/* Get the first IORT node */
239
iort = (struct acpi_table_iort *)iort_table;
240
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
241
iort->node_offset);
242
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
243
iort_table->length);
244
245
for (i = 0; i < iort->node_count; i++) {
246
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
247
"IORT node pointer overflows, bad table!\n"))
248
return NULL;
249
250
if (iort_node->type == type &&
251
ACPI_SUCCESS(callback(iort_node, context)))
252
return iort_node;
253
254
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
255
iort_node->length);
256
}
257
258
return NULL;
259
}
260
261
static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
262
void *context)
263
{
264
struct device *dev = context;
265
acpi_status status = AE_NOT_FOUND;
266
267
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
268
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
269
struct acpi_device *adev;
270
struct acpi_iort_named_component *ncomp;
271
struct device *nc_dev = dev;
272
273
/*
274
* Walk the device tree to find a device with an
275
* ACPI companion; there is no point in scanning
276
* IORT for a device matching a named component if
277
* the device does not have an ACPI companion to
278
* start with.
279
*/
280
do {
281
adev = ACPI_COMPANION(nc_dev);
282
if (adev)
283
break;
284
285
nc_dev = nc_dev->parent;
286
} while (nc_dev);
287
288
if (!adev)
289
goto out;
290
291
status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
292
if (ACPI_FAILURE(status)) {
293
dev_warn(nc_dev, "Can't get device full path name\n");
294
goto out;
295
}
296
297
ncomp = (struct acpi_iort_named_component *)node->node_data;
298
status = !strcmp(ncomp->device_name, buf.pointer) ?
299
AE_OK : AE_NOT_FOUND;
300
acpi_os_free(buf.pointer);
301
} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
302
struct acpi_iort_root_complex *pci_rc;
303
struct pci_bus *bus;
304
305
bus = to_pci_bus(dev);
306
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
307
308
/*
309
* It is assumed that PCI segment numbers maps one-to-one
310
* with root complexes. Each segment number can represent only
311
* one root complex.
312
*/
313
status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
314
AE_OK : AE_NOT_FOUND;
315
}
316
out:
317
return status;
318
}
319
320
static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
321
u32 *rid_out, bool check_overlap)
322
{
323
/* Single mapping does not care for input id */
324
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
325
if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
326
type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
327
*rid_out = map->output_base;
328
return 0;
329
}
330
331
pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
332
map, type);
333
return -ENXIO;
334
}
335
336
if (rid_in < map->input_base ||
337
(rid_in > map->input_base + map->id_count))
338
return -ENXIO;
339
340
if (check_overlap) {
341
/*
342
* We already found a mapping for this input ID at the end of
343
* another region. If it coincides with the start of this
344
* region, we assume the prior match was due to the off-by-1
345
* issue mentioned below, and allow it to be superseded.
346
* Otherwise, things are *really* broken, and we just disregard
347
* duplicate matches entirely to retain compatibility.
348
*/
349
pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
350
map, rid_in);
351
if (rid_in != map->input_base)
352
return -ENXIO;
353
354
pr_err(FW_BUG "applying workaround.\n");
355
}
356
357
*rid_out = map->output_base + (rid_in - map->input_base);
358
359
/*
360
* Due to confusion regarding the meaning of the id_count field (which
361
* carries the number of IDs *minus 1*), we may have to disregard this
362
* match if it is at the end of the range, and overlaps with the start
363
* of another one.
364
*/
365
if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
366
return -EAGAIN;
367
return 0;
368
}
369
370
static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
371
u32 *id_out, int index)
372
{
373
struct acpi_iort_node *parent;
374
struct acpi_iort_id_mapping *map;
375
376
if (!node->mapping_offset || !node->mapping_count ||
377
index >= node->mapping_count)
378
return NULL;
379
380
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
381
node->mapping_offset + index * sizeof(*map));
382
383
/* Firmware bug! */
384
if (!map->output_reference) {
385
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
386
node, node->type);
387
return NULL;
388
}
389
390
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
391
map->output_reference);
392
393
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
394
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
395
node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
396
node->type == ACPI_IORT_NODE_SMMU_V3 ||
397
node->type == ACPI_IORT_NODE_PMCG) {
398
*id_out = map->output_base;
399
return parent;
400
}
401
}
402
403
return NULL;
404
}
405
406
#ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
407
#define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
408
#endif
409
410
static int iort_get_id_mapping_index(struct acpi_iort_node *node)
411
{
412
struct acpi_iort_smmu_v3 *smmu;
413
struct acpi_iort_pmcg *pmcg;
414
415
switch (node->type) {
416
case ACPI_IORT_NODE_SMMU_V3:
417
/*
418
* SMMUv3 dev ID mapping index was introduced in revision 1
419
* table, not available in revision 0
420
*/
421
if (node->revision < 1)
422
return -EINVAL;
423
424
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
425
/*
426
* Until IORT E.e (node rev. 5), the ID mapping index was
427
* defined to be valid unless all interrupts are GSIV-based.
428
*/
429
if (node->revision < 5) {
430
if (smmu->event_gsiv && smmu->pri_gsiv &&
431
smmu->gerr_gsiv && smmu->sync_gsiv)
432
return -EINVAL;
433
} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
434
return -EINVAL;
435
}
436
437
if (smmu->id_mapping_index >= node->mapping_count) {
438
pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
439
node, node->type);
440
return -EINVAL;
441
}
442
443
return smmu->id_mapping_index;
444
case ACPI_IORT_NODE_PMCG:
445
pmcg = (struct acpi_iort_pmcg *)node->node_data;
446
if (pmcg->overflow_gsiv || node->mapping_count == 0)
447
return -EINVAL;
448
449
return 0;
450
default:
451
return -EINVAL;
452
}
453
}
454
455
static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
456
u32 id_in, u32 *id_out,
457
u8 type_mask)
458
{
459
u32 id = id_in;
460
461
/* Parse the ID mapping tree to find specified node type */
462
while (node) {
463
struct acpi_iort_id_mapping *map;
464
int i, index, rc = 0;
465
u32 out_ref = 0, map_id = id;
466
467
if (IORT_TYPE_MASK(node->type) & type_mask) {
468
if (id_out)
469
*id_out = id;
470
return node;
471
}
472
473
if (!node->mapping_offset || !node->mapping_count)
474
goto fail_map;
475
476
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
477
node->mapping_offset);
478
479
/* Firmware bug! */
480
if (!map->output_reference) {
481
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
482
node, node->type);
483
goto fail_map;
484
}
485
486
/*
487
* Get the special ID mapping index (if any) and skip its
488
* associated ID map to prevent erroneous multi-stage
489
* IORT ID translations.
490
*/
491
index = iort_get_id_mapping_index(node);
492
493
/* Do the ID translation */
494
for (i = 0; i < node->mapping_count; i++, map++) {
495
/* if it is special mapping index, skip it */
496
if (i == index)
497
continue;
498
499
rc = iort_id_map(map, node->type, map_id, &id, out_ref);
500
if (!rc)
501
break;
502
if (rc == -EAGAIN)
503
out_ref = map->output_reference;
504
}
505
506
if (i == node->mapping_count && !out_ref)
507
goto fail_map;
508
509
node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
510
rc ? out_ref : map->output_reference);
511
}
512
513
fail_map:
514
/* Map input ID to output ID unchanged on mapping failure */
515
if (id_out)
516
*id_out = id_in;
517
518
return NULL;
519
}
520
521
static struct acpi_iort_node *iort_node_map_platform_id(
522
struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
523
int index)
524
{
525
struct acpi_iort_node *parent;
526
u32 id;
527
528
/* step 1: retrieve the initial dev id */
529
parent = iort_node_get_id(node, &id, index);
530
if (!parent)
531
return NULL;
532
533
/*
534
* optional step 2: map the initial dev id if its parent is not
535
* the target type we want, map it again for the use cases such
536
* as NC (named component) -> SMMU -> ITS. If the type is matched,
537
* return the initial dev id and its parent pointer directly.
538
*/
539
if (!(IORT_TYPE_MASK(parent->type) & type_mask))
540
parent = iort_node_map_id(parent, id, id_out, type_mask);
541
else
542
if (id_out)
543
*id_out = id;
544
545
return parent;
546
}
547
548
static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
549
{
550
struct pci_bus *pbus;
551
552
if (!dev_is_pci(dev)) {
553
struct acpi_iort_node *node;
554
/*
555
* scan iort_fwnode_list to see if it's an iort platform
556
* device (such as SMMU, PMCG),its iort node already cached
557
* and associated with fwnode when iort platform devices
558
* were initialized.
559
*/
560
node = iort_get_iort_node(dev->fwnode);
561
if (node)
562
return node;
563
/*
564
* if not, then it should be a platform device defined in
565
* DSDT/SSDT (with Named Component node in IORT)
566
*/
567
return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
568
iort_match_node_callback, dev);
569
}
570
571
pbus = to_pci_dev(dev)->bus;
572
573
return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
574
iort_match_node_callback, &pbus->dev);
575
}
576
577
/**
578
* iort_msi_map_id() - Map a MSI input ID for a device
579
* @dev: The device for which the mapping is to be done.
580
* @input_id: The device input ID.
581
*
582
* Returns: mapped MSI ID on success, input ID otherwise
583
*/
584
u32 iort_msi_map_id(struct device *dev, u32 input_id)
585
{
586
struct acpi_iort_node *node;
587
u32 dev_id;
588
589
node = iort_find_dev_node(dev);
590
if (!node)
591
return input_id;
592
593
iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
594
return dev_id;
595
}
596
597
/**
598
* iort_pmsi_get_dev_id() - Get the device id for a device
599
* @dev: The device for which the mapping is to be done.
600
* @dev_id: The device ID found.
601
*
602
* Returns: 0 for successful find a dev id, -ENODEV on error
603
*/
604
int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
605
{
606
int i, index;
607
struct acpi_iort_node *node;
608
609
node = iort_find_dev_node(dev);
610
if (!node)
611
return -ENODEV;
612
613
index = iort_get_id_mapping_index(node);
614
/* if there is a valid index, go get the dev_id directly */
615
if (index >= 0) {
616
if (iort_node_get_id(node, dev_id, index))
617
return 0;
618
} else {
619
for (i = 0; i < node->mapping_count; i++) {
620
if (iort_node_map_platform_id(node, dev_id,
621
IORT_MSI_TYPE, i))
622
return 0;
623
}
624
}
625
626
return -ENODEV;
627
}
628
629
static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
630
{
631
struct iort_its_msi_chip *its_msi_chip;
632
int ret = -ENODEV;
633
634
spin_lock(&iort_msi_chip_lock);
635
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
636
if (its_msi_chip->translation_id == its_id) {
637
*base = its_msi_chip->base_addr;
638
ret = 0;
639
break;
640
}
641
}
642
spin_unlock(&iort_msi_chip_lock);
643
644
return ret;
645
}
646
647
/**
648
* iort_dev_find_its_id() - Find the ITS identifier for a device
649
* @dev: The device.
650
* @id: Device's ID
651
* @idx: Index of the ITS identifier list.
652
* @its_id: ITS identifier.
653
*
654
* Returns: 0 on success, appropriate error value otherwise
655
*/
656
static int iort_dev_find_its_id(struct device *dev, u32 id,
657
unsigned int idx, int *its_id)
658
{
659
struct acpi_iort_its_group *its;
660
struct acpi_iort_node *node;
661
662
node = iort_find_dev_node(dev);
663
if (!node)
664
return -ENXIO;
665
666
node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
667
if (!node)
668
return -ENXIO;
669
670
/* Move to ITS specific data */
671
its = (struct acpi_iort_its_group *)node->node_data;
672
if (idx >= its->its_count) {
673
dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
674
idx, its->its_count);
675
return -ENXIO;
676
}
677
678
*its_id = its->identifiers[idx];
679
return 0;
680
}
681
682
/**
683
* iort_get_device_domain() - Find MSI domain related to a device
684
* @dev: The device.
685
* @id: Requester ID for the device.
686
* @bus_token: irq domain bus token.
687
*
688
* Returns: the MSI domain for this device, NULL otherwise
689
*/
690
struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
691
enum irq_domain_bus_token bus_token)
692
{
693
struct fwnode_handle *handle;
694
int its_id;
695
696
if (iort_dev_find_its_id(dev, id, 0, &its_id))
697
return NULL;
698
699
handle = iort_find_domain_token(its_id);
700
if (!handle)
701
return NULL;
702
703
return irq_find_matching_fwnode(handle, bus_token);
704
}
705
706
static void iort_set_device_domain(struct device *dev,
707
struct acpi_iort_node *node)
708
{
709
struct acpi_iort_its_group *its;
710
struct acpi_iort_node *msi_parent;
711
struct acpi_iort_id_mapping *map;
712
struct fwnode_handle *iort_fwnode;
713
struct irq_domain *domain;
714
int index;
715
716
index = iort_get_id_mapping_index(node);
717
if (index < 0)
718
return;
719
720
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
721
node->mapping_offset + index * sizeof(*map));
722
723
/* Firmware bug! */
724
if (!map->output_reference ||
725
!(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
726
pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
727
node, node->type);
728
return;
729
}
730
731
msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
732
map->output_reference);
733
734
if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
735
return;
736
737
/* Move to ITS specific data */
738
its = (struct acpi_iort_its_group *)msi_parent->node_data;
739
740
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
741
if (!iort_fwnode)
742
return;
743
744
domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
745
if (domain)
746
dev_set_msi_domain(dev, domain);
747
}
748
749
/**
750
* iort_get_platform_device_domain() - Find MSI domain related to a
751
* platform device
752
* @dev: the dev pointer associated with the platform device
753
*
754
* Returns: the MSI domain for this device, NULL otherwise
755
*/
756
static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
757
{
758
struct acpi_iort_node *node, *msi_parent = NULL;
759
struct fwnode_handle *iort_fwnode;
760
struct acpi_iort_its_group *its;
761
int i;
762
763
/* find its associated iort node */
764
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
765
iort_match_node_callback, dev);
766
if (!node)
767
return NULL;
768
769
/* then find its msi parent node */
770
for (i = 0; i < node->mapping_count; i++) {
771
msi_parent = iort_node_map_platform_id(node, NULL,
772
IORT_MSI_TYPE, i);
773
if (msi_parent)
774
break;
775
}
776
777
if (!msi_parent)
778
return NULL;
779
780
/* Move to ITS specific data */
781
its = (struct acpi_iort_its_group *)msi_parent->node_data;
782
783
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
784
if (!iort_fwnode)
785
return NULL;
786
787
return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
788
}
789
790
void acpi_configure_pmsi_domain(struct device *dev)
791
{
792
struct irq_domain *msi_domain;
793
794
msi_domain = iort_get_platform_device_domain(dev);
795
if (msi_domain)
796
dev_set_msi_domain(dev, msi_domain);
797
}
798
799
#ifdef CONFIG_IOMMU_API
800
static void iort_rmr_free(struct device *dev,
801
struct iommu_resv_region *region)
802
{
803
struct iommu_iort_rmr_data *rmr_data;
804
805
rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
806
kfree(rmr_data->sids);
807
kfree(rmr_data);
808
}
809
810
static struct iommu_iort_rmr_data *iort_rmr_alloc(
811
struct acpi_iort_rmr_desc *rmr_desc,
812
int prot, enum iommu_resv_type type,
813
u32 *sids, u32 num_sids)
814
{
815
struct iommu_iort_rmr_data *rmr_data;
816
struct iommu_resv_region *region;
817
u32 *sids_copy;
818
u64 addr = rmr_desc->base_address, size = rmr_desc->length;
819
820
rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
821
if (!rmr_data)
822
return NULL;
823
824
/* Create a copy of SIDs array to associate with this rmr_data */
825
sids_copy = kmemdup_array(sids, num_sids, sizeof(*sids), GFP_KERNEL);
826
if (!sids_copy) {
827
kfree(rmr_data);
828
return NULL;
829
}
830
rmr_data->sids = sids_copy;
831
rmr_data->num_sids = num_sids;
832
833
if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
834
/* PAGE align base addr and size */
835
addr &= PAGE_MASK;
836
size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
837
838
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
839
rmr_desc->base_address,
840
rmr_desc->base_address + rmr_desc->length - 1,
841
addr, addr + size - 1);
842
}
843
844
region = &rmr_data->rr;
845
INIT_LIST_HEAD(&region->list);
846
region->start = addr;
847
region->length = size;
848
region->prot = prot;
849
region->type = type;
850
region->free = iort_rmr_free;
851
852
return rmr_data;
853
}
854
855
static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
856
u32 count)
857
{
858
int i, j;
859
860
for (i = 0; i < count; i++) {
861
u64 end, start = desc[i].base_address, length = desc[i].length;
862
863
if (!length) {
864
pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
865
start);
866
continue;
867
}
868
869
end = start + length - 1;
870
871
/* Check for address overlap */
872
for (j = i + 1; j < count; j++) {
873
u64 e_start = desc[j].base_address;
874
u64 e_end = e_start + desc[j].length - 1;
875
876
if (start <= e_end && end >= e_start)
877
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
878
start, end);
879
}
880
}
881
}
882
883
/*
884
* Please note, we will keep the already allocated RMR reserve
885
* regions in case of a memory allocation failure.
886
*/
887
static void iort_get_rmrs(struct acpi_iort_node *node,
888
struct acpi_iort_node *smmu,
889
u32 *sids, u32 num_sids,
890
struct list_head *head)
891
{
892
struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
893
struct acpi_iort_rmr_desc *rmr_desc;
894
int i;
895
896
rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
897
rmr->rmr_offset);
898
899
iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
900
901
for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
902
struct iommu_iort_rmr_data *rmr_data;
903
enum iommu_resv_type type;
904
int prot = IOMMU_READ | IOMMU_WRITE;
905
906
if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
907
type = IOMMU_RESV_DIRECT_RELAXABLE;
908
else
909
type = IOMMU_RESV_DIRECT;
910
911
if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
912
prot |= IOMMU_PRIV;
913
914
/* Attributes 0x00 - 0x03 represents device memory */
915
if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
916
ACPI_IORT_RMR_ATTR_DEVICE_GRE)
917
prot |= IOMMU_MMIO;
918
else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
919
ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
920
prot |= IOMMU_CACHE;
921
922
rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
923
sids, num_sids);
924
if (!rmr_data)
925
return;
926
927
list_add_tail(&rmr_data->rr.list, head);
928
}
929
}
930
931
static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
932
u32 new_count)
933
{
934
u32 *new_sids;
935
u32 total_count = count + new_count;
936
int i;
937
938
new_sids = krealloc_array(sids, count + new_count,
939
sizeof(*new_sids), GFP_KERNEL);
940
if (!new_sids)
941
return NULL;
942
943
for (i = count; i < total_count; i++)
944
new_sids[i] = id_start++;
945
946
return new_sids;
947
}
948
949
static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
950
u32 id_count)
951
{
952
int i;
953
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
954
955
/*
956
* Make sure the kernel has preserved the boot firmware PCIe
957
* configuration. This is required to ensure that the RMR PCIe
958
* StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
959
*/
960
if (dev_is_pci(dev)) {
961
struct pci_dev *pdev = to_pci_dev(dev);
962
struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
963
964
if (!host->preserve_config)
965
return false;
966
}
967
968
for (i = 0; i < fwspec->num_ids; i++) {
969
if (fwspec->ids[i] >= id_start &&
970
fwspec->ids[i] <= id_start + id_count)
971
return true;
972
}
973
974
return false;
975
}
976
977
static void iort_node_get_rmr_info(struct acpi_iort_node *node,
978
struct acpi_iort_node *iommu,
979
struct device *dev, struct list_head *head)
980
{
981
struct acpi_iort_node *smmu = NULL;
982
struct acpi_iort_rmr *rmr;
983
struct acpi_iort_id_mapping *map;
984
u32 *sids = NULL;
985
u32 num_sids = 0;
986
int i;
987
988
if (!node->mapping_offset || !node->mapping_count) {
989
pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
990
node);
991
return;
992
}
993
994
rmr = (struct acpi_iort_rmr *)node->node_data;
995
if (!rmr->rmr_offset || !rmr->rmr_count)
996
return;
997
998
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
999
node->mapping_offset);
1000
1001
/*
1002
* Go through the ID mappings and see if we have a match for SMMU
1003
* and dev(if !NULL). If found, get the sids for the Node.
1004
* Please note, id_count is equal to the number of IDs in the
1005
* range minus one.
1006
*/
1007
for (i = 0; i < node->mapping_count; i++, map++) {
1008
struct acpi_iort_node *parent;
1009
1010
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1011
map->output_reference);
1012
if (parent != iommu)
1013
continue;
1014
1015
/* If dev is valid, check RMR node corresponds to the dev SID */
1016
if (dev && !iort_rmr_has_dev(dev, map->output_base,
1017
map->id_count))
1018
continue;
1019
1020
/* Retrieve SIDs associated with the Node. */
1021
sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1022
map->id_count + 1);
1023
if (!sids)
1024
return;
1025
1026
num_sids += map->id_count + 1;
1027
}
1028
1029
if (!sids)
1030
return;
1031
1032
iort_get_rmrs(node, smmu, sids, num_sids, head);
1033
kfree(sids);
1034
}
1035
1036
static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1037
struct list_head *head)
1038
{
1039
struct acpi_table_iort *iort;
1040
struct acpi_iort_node *iort_node, *iort_end;
1041
int i;
1042
1043
/* Only supports ARM DEN 0049E.d onwards */
1044
if (iort_table->revision < 5)
1045
return;
1046
1047
iort = (struct acpi_table_iort *)iort_table;
1048
1049
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1050
iort->node_offset);
1051
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052
iort_table->length);
1053
1054
for (i = 0; i < iort->node_count; i++) {
1055
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1056
"IORT node pointer overflows, bad table!\n"))
1057
return;
1058
1059
if (iort_node->type == ACPI_IORT_NODE_RMR)
1060
iort_node_get_rmr_info(iort_node, iommu, dev, head);
1061
1062
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1063
iort_node->length);
1064
}
1065
}
1066
1067
/*
1068
* Populate the RMR list associated with a given IOMMU and dev(if provided).
1069
* If dev is NULL, the function populates all the RMRs associated with the
1070
* given IOMMU.
1071
*/
1072
static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1073
struct device *dev,
1074
struct list_head *head)
1075
{
1076
struct acpi_iort_node *iommu;
1077
1078
iommu = iort_get_iort_node(iommu_fwnode);
1079
if (!iommu)
1080
return;
1081
1082
iort_find_rmrs(iommu, dev, head);
1083
}
1084
1085
static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1086
{
1087
struct acpi_iort_node *iommu;
1088
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1089
1090
iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1091
1092
if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1093
struct acpi_iort_smmu_v3 *smmu;
1094
1095
smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1096
if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1097
return iommu;
1098
}
1099
1100
return NULL;
1101
}
1102
1103
/*
1104
* Retrieve platform specific HW MSI reserve regions.
1105
* The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1106
* associated with the device are the HW MSI reserved regions.
1107
*/
1108
static void iort_iommu_msi_get_resv_regions(struct device *dev,
1109
struct list_head *head)
1110
{
1111
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1112
struct acpi_iort_its_group *its;
1113
struct acpi_iort_node *iommu_node, *its_node = NULL;
1114
int i;
1115
1116
iommu_node = iort_get_msi_resv_iommu(dev);
1117
if (!iommu_node)
1118
return;
1119
1120
/*
1121
* Current logic to reserve ITS regions relies on HW topologies
1122
* where a given PCI or named component maps its IDs to only one
1123
* ITS group; if a PCI or named component can map its IDs to
1124
* different ITS groups through IORT mappings this function has
1125
* to be reworked to ensure we reserve regions for all ITS groups
1126
* a given PCI or named component may map IDs to.
1127
*/
1128
1129
for (i = 0; i < fwspec->num_ids; i++) {
1130
its_node = iort_node_map_id(iommu_node,
1131
fwspec->ids[i],
1132
NULL, IORT_MSI_TYPE);
1133
if (its_node)
1134
break;
1135
}
1136
1137
if (!its_node)
1138
return;
1139
1140
/* Move to ITS specific data */
1141
its = (struct acpi_iort_its_group *)its_node->node_data;
1142
1143
for (i = 0; i < its->its_count; i++) {
1144
phys_addr_t base;
1145
1146
if (!iort_find_its_base(its->identifiers[i], &base)) {
1147
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1148
struct iommu_resv_region *region;
1149
1150
region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1151
prot, IOMMU_RESV_MSI,
1152
GFP_KERNEL);
1153
if (region)
1154
list_add_tail(&region->list, head);
1155
}
1156
}
1157
}
1158
1159
/**
1160
* iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1161
* @dev: Device from iommu_get_resv_regions()
1162
* @head: Reserved region list from iommu_get_resv_regions()
1163
*/
1164
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1165
{
1166
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1167
1168
iort_iommu_msi_get_resv_regions(dev, head);
1169
iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1170
}
1171
1172
/**
1173
* iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1174
* associated StreamIDs information.
1175
* @iommu_fwnode: fwnode associated with IOMMU
1176
* @head: Resereved region list
1177
*/
1178
void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1179
struct list_head *head)
1180
{
1181
iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1182
}
1183
EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1184
1185
/**
1186
* iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1187
* @iommu_fwnode: fwnode associated with IOMMU
1188
* @head: Resereved region list
1189
*/
1190
void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1191
struct list_head *head)
1192
{
1193
struct iommu_resv_region *entry, *next;
1194
1195
list_for_each_entry_safe(entry, next, head, list)
1196
entry->free(NULL, entry);
1197
}
1198
EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1199
1200
static inline bool iort_iommu_driver_enabled(u8 type)
1201
{
1202
switch (type) {
1203
case ACPI_IORT_NODE_SMMU_V3:
1204
return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1205
case ACPI_IORT_NODE_SMMU:
1206
return IS_ENABLED(CONFIG_ARM_SMMU);
1207
default:
1208
pr_warn("IORT node type %u does not describe an SMMU\n", type);
1209
return false;
1210
}
1211
}
1212
1213
static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1214
{
1215
struct acpi_iort_root_complex *pci_rc;
1216
1217
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1218
return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1219
}
1220
1221
static bool iort_pci_rc_supports_canwbs(struct acpi_iort_node *node)
1222
{
1223
struct acpi_iort_memory_access *memory_access;
1224
struct acpi_iort_root_complex *pci_rc;
1225
1226
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1227
memory_access =
1228
(struct acpi_iort_memory_access *)&pci_rc->memory_properties;
1229
return memory_access->memory_flags & ACPI_IORT_MF_CANWBS;
1230
}
1231
1232
static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1233
u32 streamid)
1234
{
1235
struct fwnode_handle *iort_fwnode;
1236
1237
/* If there's no SMMU driver at all, give up now */
1238
if (!node || !iort_iommu_driver_enabled(node->type))
1239
return -ENODEV;
1240
1241
iort_fwnode = iort_get_fwnode(node);
1242
if (!iort_fwnode)
1243
return -ENODEV;
1244
1245
/*
1246
* If the SMMU drivers are enabled but not loaded/probed
1247
* yet, this will defer.
1248
*/
1249
return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode);
1250
}
1251
1252
struct iort_pci_alias_info {
1253
struct device *dev;
1254
struct acpi_iort_node *node;
1255
};
1256
1257
static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1258
{
1259
struct iort_pci_alias_info *info = data;
1260
struct acpi_iort_node *parent;
1261
u32 streamid;
1262
1263
parent = iort_node_map_id(info->node, alias, &streamid,
1264
IORT_IOMMU_TYPE);
1265
return iort_iommu_xlate(info->dev, parent, streamid);
1266
}
1267
1268
static void iort_named_component_init(struct device *dev,
1269
struct acpi_iort_node *node)
1270
{
1271
struct property_entry props[3] = {};
1272
struct acpi_iort_named_component *nc;
1273
1274
nc = (struct acpi_iort_named_component *)node->node_data;
1275
props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1276
FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1277
nc->node_flags));
1278
if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1279
props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1280
1281
if (device_create_managed_software_node(dev, props, NULL))
1282
dev_warn(dev, "Could not add device properties\n");
1283
}
1284
1285
static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1286
{
1287
struct acpi_iort_node *parent;
1288
int err = -ENODEV, i = 0;
1289
u32 streamid = 0;
1290
1291
do {
1292
1293
parent = iort_node_map_platform_id(node, &streamid,
1294
IORT_IOMMU_TYPE,
1295
i++);
1296
1297
if (parent)
1298
err = iort_iommu_xlate(dev, parent, streamid);
1299
} while (parent && !err);
1300
1301
return err;
1302
}
1303
1304
static int iort_nc_iommu_map_id(struct device *dev,
1305
struct acpi_iort_node *node,
1306
const u32 *in_id)
1307
{
1308
struct acpi_iort_node *parent;
1309
u32 streamid;
1310
1311
parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1312
if (parent)
1313
return iort_iommu_xlate(dev, parent, streamid);
1314
1315
return -ENODEV;
1316
}
1317
1318
1319
/**
1320
* iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1321
*
1322
* @dev: device to configure
1323
* @id_in: optional input id const value pointer
1324
*
1325
* Returns: 0 on success, <0 on failure
1326
*/
1327
int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1328
{
1329
struct acpi_iort_node *node;
1330
int err = -ENODEV;
1331
1332
if (dev_is_pci(dev)) {
1333
struct iommu_fwspec *fwspec;
1334
struct pci_bus *bus = to_pci_dev(dev)->bus;
1335
struct iort_pci_alias_info info = { .dev = dev };
1336
1337
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1338
iort_match_node_callback, &bus->dev);
1339
if (!node)
1340
return -ENODEV;
1341
1342
info.node = node;
1343
err = pci_for_each_dma_alias(to_pci_dev(dev),
1344
iort_pci_iommu_init, &info);
1345
1346
fwspec = dev_iommu_fwspec_get(dev);
1347
if (fwspec && iort_pci_rc_supports_ats(node))
1348
fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1349
if (fwspec && iort_pci_rc_supports_canwbs(node))
1350
fwspec->flags |= IOMMU_FWSPEC_PCI_RC_CANWBS;
1351
} else {
1352
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1353
iort_match_node_callback, dev);
1354
if (!node)
1355
return -ENODEV;
1356
1357
err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1358
iort_nc_iommu_map(dev, node);
1359
1360
if (!err)
1361
iort_named_component_init(dev, node);
1362
}
1363
1364
return err;
1365
}
1366
1367
#else
1368
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1369
{ }
1370
int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1371
{ return -ENODEV; }
1372
#endif
1373
1374
static int nc_dma_get_range(struct device *dev, u64 *limit)
1375
{
1376
struct acpi_iort_node *node;
1377
struct acpi_iort_named_component *ncomp;
1378
1379
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1380
iort_match_node_callback, dev);
1381
if (!node)
1382
return -ENODEV;
1383
1384
ncomp = (struct acpi_iort_named_component *)node->node_data;
1385
1386
if (!ncomp->memory_address_limit) {
1387
pr_warn(FW_BUG "Named component missing memory address limit\n");
1388
return -EINVAL;
1389
}
1390
1391
*limit = ncomp->memory_address_limit >= 64 ? U64_MAX :
1392
(1ULL << ncomp->memory_address_limit) - 1;
1393
1394
return 0;
1395
}
1396
1397
static int rc_dma_get_range(struct device *dev, u64 *limit)
1398
{
1399
struct acpi_iort_node *node;
1400
struct acpi_iort_root_complex *rc;
1401
struct pci_bus *pbus = to_pci_dev(dev)->bus;
1402
1403
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1404
iort_match_node_callback, &pbus->dev);
1405
if (!node || node->revision < 1)
1406
return -ENODEV;
1407
1408
rc = (struct acpi_iort_root_complex *)node->node_data;
1409
1410
if (!rc->memory_address_limit) {
1411
pr_warn(FW_BUG "Root complex missing memory address limit\n");
1412
return -EINVAL;
1413
}
1414
1415
*limit = rc->memory_address_limit >= 64 ? U64_MAX :
1416
(1ULL << rc->memory_address_limit) - 1;
1417
1418
return 0;
1419
}
1420
1421
/**
1422
* iort_dma_get_ranges() - Look up DMA addressing limit for the device
1423
* @dev: device to lookup
1424
* @limit: DMA limit result pointer
1425
*
1426
* Return: 0 on success, an error otherwise.
1427
*/
1428
int iort_dma_get_ranges(struct device *dev, u64 *limit)
1429
{
1430
if (dev_is_pci(dev))
1431
return rc_dma_get_range(dev, limit);
1432
else
1433
return nc_dma_get_range(dev, limit);
1434
}
1435
1436
static void __init acpi_iort_register_irq(int hwirq, const char *name,
1437
int trigger,
1438
struct resource *res)
1439
{
1440
int irq = acpi_register_gsi(NULL, hwirq, trigger,
1441
ACPI_ACTIVE_HIGH);
1442
1443
if (irq <= 0) {
1444
pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1445
name);
1446
return;
1447
}
1448
1449
res->start = irq;
1450
res->end = irq;
1451
res->flags = IORESOURCE_IRQ;
1452
res->name = name;
1453
}
1454
1455
static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1456
{
1457
struct acpi_iort_smmu_v3 *smmu;
1458
/* Always present mem resource */
1459
int num_res = 1;
1460
1461
/* Retrieve SMMUv3 specific data */
1462
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1463
1464
if (smmu->event_gsiv)
1465
num_res++;
1466
1467
if (smmu->pri_gsiv)
1468
num_res++;
1469
1470
if (smmu->gerr_gsiv)
1471
num_res++;
1472
1473
if (smmu->sync_gsiv)
1474
num_res++;
1475
1476
return num_res;
1477
}
1478
1479
static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1480
{
1481
/*
1482
* Cavium ThunderX2 implementation doesn't not support unique
1483
* irq line. Use single irq line for all the SMMUv3 interrupts.
1484
*/
1485
if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1486
return false;
1487
1488
/*
1489
* ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1490
* SPI numbers here.
1491
*/
1492
return smmu->event_gsiv == smmu->pri_gsiv &&
1493
smmu->event_gsiv == smmu->gerr_gsiv &&
1494
smmu->event_gsiv == smmu->sync_gsiv;
1495
}
1496
1497
static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1498
{
1499
/*
1500
* Override the size, for Cavium ThunderX2 implementation
1501
* which doesn't support the page 1 SMMU register space.
1502
*/
1503
if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1504
return SZ_64K;
1505
1506
return SZ_128K;
1507
}
1508
1509
static void __init arm_smmu_v3_init_resources(struct resource *res,
1510
struct acpi_iort_node *node)
1511
{
1512
struct acpi_iort_smmu_v3 *smmu;
1513
int num_res = 0;
1514
1515
/* Retrieve SMMUv3 specific data */
1516
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1517
1518
res[num_res].start = smmu->base_address;
1519
res[num_res].end = smmu->base_address +
1520
arm_smmu_v3_resource_size(smmu) - 1;
1521
res[num_res].flags = IORESOURCE_MEM;
1522
1523
num_res++;
1524
if (arm_smmu_v3_is_combined_irq(smmu)) {
1525
if (smmu->event_gsiv)
1526
acpi_iort_register_irq(smmu->event_gsiv, "combined",
1527
ACPI_EDGE_SENSITIVE,
1528
&res[num_res++]);
1529
} else {
1530
1531
if (smmu->event_gsiv)
1532
acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1533
ACPI_EDGE_SENSITIVE,
1534
&res[num_res++]);
1535
1536
if (smmu->pri_gsiv)
1537
acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1538
ACPI_EDGE_SENSITIVE,
1539
&res[num_res++]);
1540
1541
if (smmu->gerr_gsiv)
1542
acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1543
ACPI_EDGE_SENSITIVE,
1544
&res[num_res++]);
1545
1546
if (smmu->sync_gsiv)
1547
acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1548
ACPI_EDGE_SENSITIVE,
1549
&res[num_res++]);
1550
}
1551
}
1552
1553
static void __init arm_smmu_v3_dma_configure(struct device *dev,
1554
struct acpi_iort_node *node)
1555
{
1556
struct acpi_iort_smmu_v3 *smmu;
1557
enum dev_dma_attr attr;
1558
1559
/* Retrieve SMMUv3 specific data */
1560
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1561
1562
attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1563
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1564
1565
/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1566
dev->dma_mask = &dev->coherent_dma_mask;
1567
1568
/* Configure DMA for the page table walker */
1569
acpi_dma_configure(dev, attr);
1570
}
1571
1572
#if defined(CONFIG_ACPI_NUMA)
1573
/*
1574
* set numa proximity domain for smmuv3 device
1575
*/
1576
static int __init arm_smmu_v3_set_proximity(struct device *dev,
1577
struct acpi_iort_node *node)
1578
{
1579
struct acpi_iort_smmu_v3 *smmu;
1580
1581
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1582
if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1583
int dev_node = pxm_to_node(smmu->pxm);
1584
1585
if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1586
return -EINVAL;
1587
1588
set_dev_node(dev, dev_node);
1589
pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1590
smmu->base_address,
1591
smmu->pxm);
1592
}
1593
return 0;
1594
}
1595
#else
1596
#define arm_smmu_v3_set_proximity NULL
1597
#endif
1598
1599
static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1600
{
1601
struct acpi_iort_smmu *smmu;
1602
1603
/* Retrieve SMMU specific data */
1604
smmu = (struct acpi_iort_smmu *)node->node_data;
1605
1606
/*
1607
* Only consider the global fault interrupt and ignore the
1608
* configuration access interrupt.
1609
*
1610
* MMIO address and global fault interrupt resources are always
1611
* present so add them to the context interrupt count as a static
1612
* value.
1613
*/
1614
return smmu->context_interrupt_count + 2;
1615
}
1616
1617
static void __init arm_smmu_init_resources(struct resource *res,
1618
struct acpi_iort_node *node)
1619
{
1620
struct acpi_iort_smmu *smmu;
1621
int i, hw_irq, trigger, num_res = 0;
1622
u64 *ctx_irq, *glb_irq;
1623
1624
/* Retrieve SMMU specific data */
1625
smmu = (struct acpi_iort_smmu *)node->node_data;
1626
1627
res[num_res].start = smmu->base_address;
1628
res[num_res].end = smmu->base_address + smmu->span - 1;
1629
res[num_res].flags = IORESOURCE_MEM;
1630
num_res++;
1631
1632
glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1633
/* Global IRQs */
1634
hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1635
trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1636
1637
acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1638
&res[num_res++]);
1639
1640
/* Context IRQs */
1641
ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1642
for (i = 0; i < smmu->context_interrupt_count; i++) {
1643
hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1644
trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1645
1646
acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1647
&res[num_res++]);
1648
}
1649
}
1650
1651
static void __init arm_smmu_dma_configure(struct device *dev,
1652
struct acpi_iort_node *node)
1653
{
1654
struct acpi_iort_smmu *smmu;
1655
enum dev_dma_attr attr;
1656
1657
/* Retrieve SMMU specific data */
1658
smmu = (struct acpi_iort_smmu *)node->node_data;
1659
1660
attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1661
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1662
1663
/* We expect the dma masks to be equivalent for SMMU set-ups */
1664
dev->dma_mask = &dev->coherent_dma_mask;
1665
1666
/* Configure DMA for the page table walker */
1667
acpi_dma_configure(dev, attr);
1668
}
1669
1670
static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1671
{
1672
struct acpi_iort_pmcg *pmcg;
1673
1674
/* Retrieve PMCG specific data */
1675
pmcg = (struct acpi_iort_pmcg *)node->node_data;
1676
1677
/*
1678
* There are always 2 memory resources.
1679
* If the overflow_gsiv is present then add that for a total of 3.
1680
*/
1681
return pmcg->overflow_gsiv ? 3 : 2;
1682
}
1683
1684
static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1685
struct acpi_iort_node *node)
1686
{
1687
struct acpi_iort_pmcg *pmcg;
1688
1689
/* Retrieve PMCG specific data */
1690
pmcg = (struct acpi_iort_pmcg *)node->node_data;
1691
1692
res[0].start = pmcg->page0_base_address;
1693
res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1694
res[0].flags = IORESOURCE_MEM;
1695
/*
1696
* The initial version in DEN0049C lacked a way to describe register
1697
* page 1, which makes it broken for most PMCG implementations; in
1698
* that case, just let the driver fail gracefully if it expects to
1699
* find a second memory resource.
1700
*/
1701
if (node->revision > 0) {
1702
res[1].start = pmcg->page1_base_address;
1703
res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1704
res[1].flags = IORESOURCE_MEM;
1705
}
1706
1707
if (pmcg->overflow_gsiv)
1708
acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1709
ACPI_EDGE_SENSITIVE, &res[2]);
1710
}
1711
1712
static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1713
/* HiSilicon Hip08 Platform */
1714
{"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1715
"Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1716
/* HiSilicon Hip09 Platform */
1717
{"HISI ", "HIP09 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1718
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1719
{"HISI ", "HIP09A ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1720
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1721
/* HiSilicon Hip10/11 Platform uses the same SMMU IP with Hip09 */
1722
{"HISI ", "HIP10 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1723
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1724
{"HISI ", "HIP10C ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1725
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1726
{"HISI ", "HIP11 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1727
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1728
{ }
1729
};
1730
1731
static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1732
{
1733
u32 model;
1734
int idx;
1735
1736
idx = acpi_match_platform_list(pmcg_plat_info);
1737
if (idx >= 0)
1738
model = pmcg_plat_info[idx].data;
1739
else
1740
model = IORT_SMMU_V3_PMCG_GENERIC;
1741
1742
return platform_device_add_data(pdev, &model, sizeof(model));
1743
}
1744
1745
struct iort_dev_config {
1746
const char *name;
1747
int (*dev_init)(struct acpi_iort_node *node);
1748
void (*dev_dma_configure)(struct device *dev,
1749
struct acpi_iort_node *node);
1750
int (*dev_count_resources)(struct acpi_iort_node *node);
1751
void (*dev_init_resources)(struct resource *res,
1752
struct acpi_iort_node *node);
1753
int (*dev_set_proximity)(struct device *dev,
1754
struct acpi_iort_node *node);
1755
int (*dev_add_platdata)(struct platform_device *pdev);
1756
};
1757
1758
static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1759
.name = "arm-smmu-v3",
1760
.dev_dma_configure = arm_smmu_v3_dma_configure,
1761
.dev_count_resources = arm_smmu_v3_count_resources,
1762
.dev_init_resources = arm_smmu_v3_init_resources,
1763
.dev_set_proximity = arm_smmu_v3_set_proximity,
1764
};
1765
1766
static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1767
.name = "arm-smmu",
1768
.dev_dma_configure = arm_smmu_dma_configure,
1769
.dev_count_resources = arm_smmu_count_resources,
1770
.dev_init_resources = arm_smmu_init_resources,
1771
};
1772
1773
static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1774
.name = "arm-smmu-v3-pmcg",
1775
.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1776
.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1777
.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1778
};
1779
1780
static __init const struct iort_dev_config *iort_get_dev_cfg(
1781
struct acpi_iort_node *node)
1782
{
1783
switch (node->type) {
1784
case ACPI_IORT_NODE_SMMU_V3:
1785
return &iort_arm_smmu_v3_cfg;
1786
case ACPI_IORT_NODE_SMMU:
1787
return &iort_arm_smmu_cfg;
1788
case ACPI_IORT_NODE_PMCG:
1789
return &iort_arm_smmu_v3_pmcg_cfg;
1790
default:
1791
return NULL;
1792
}
1793
}
1794
1795
/**
1796
* iort_add_platform_device() - Allocate a platform device for IORT node
1797
* @node: Pointer to device ACPI IORT node
1798
* @ops: Pointer to IORT device config struct
1799
*
1800
* Returns: 0 on success, <0 failure
1801
*/
1802
static int __init iort_add_platform_device(struct acpi_iort_node *node,
1803
const struct iort_dev_config *ops)
1804
{
1805
struct fwnode_handle *fwnode;
1806
struct platform_device *pdev;
1807
struct resource *r;
1808
int ret, count;
1809
1810
pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1811
if (!pdev)
1812
return -ENOMEM;
1813
1814
if (ops->dev_set_proximity) {
1815
ret = ops->dev_set_proximity(&pdev->dev, node);
1816
if (ret)
1817
goto dev_put;
1818
}
1819
1820
count = ops->dev_count_resources(node);
1821
1822
r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1823
if (!r) {
1824
ret = -ENOMEM;
1825
goto dev_put;
1826
}
1827
1828
ops->dev_init_resources(r, node);
1829
1830
ret = platform_device_add_resources(pdev, r, count);
1831
/*
1832
* Resources are duplicated in platform_device_add_resources,
1833
* free their allocated memory
1834
*/
1835
kfree(r);
1836
1837
if (ret)
1838
goto dev_put;
1839
1840
/*
1841
* Platform devices based on PMCG nodes uses platform_data to
1842
* pass the hardware model info to the driver. For others, add
1843
* a copy of IORT node pointer to platform_data to be used to
1844
* retrieve IORT data information.
1845
*/
1846
if (ops->dev_add_platdata)
1847
ret = ops->dev_add_platdata(pdev);
1848
else
1849
ret = platform_device_add_data(pdev, &node, sizeof(node));
1850
1851
if (ret)
1852
goto dev_put;
1853
1854
fwnode = iort_get_fwnode(node);
1855
1856
if (!fwnode) {
1857
ret = -ENODEV;
1858
goto dev_put;
1859
}
1860
1861
pdev->dev.fwnode = fwnode;
1862
1863
if (ops->dev_dma_configure)
1864
ops->dev_dma_configure(&pdev->dev, node);
1865
1866
iort_set_device_domain(&pdev->dev, node);
1867
1868
ret = platform_device_add(pdev);
1869
if (ret)
1870
goto dma_deconfigure;
1871
1872
return 0;
1873
1874
dma_deconfigure:
1875
arch_teardown_dma_ops(&pdev->dev);
1876
dev_put:
1877
platform_device_put(pdev);
1878
1879
return ret;
1880
}
1881
1882
#ifdef CONFIG_PCI
1883
static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1884
{
1885
static bool acs_enabled __initdata;
1886
1887
if (acs_enabled)
1888
return;
1889
1890
if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1891
struct acpi_iort_node *parent;
1892
struct acpi_iort_id_mapping *map;
1893
int i;
1894
1895
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1896
iort_node->mapping_offset);
1897
1898
for (i = 0; i < iort_node->mapping_count; i++, map++) {
1899
if (!map->output_reference)
1900
continue;
1901
1902
parent = ACPI_ADD_PTR(struct acpi_iort_node,
1903
iort_table, map->output_reference);
1904
/*
1905
* If we detect a RC->SMMU mapping, make sure
1906
* we enable ACS on the system.
1907
*/
1908
if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1909
(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1910
pci_request_acs();
1911
acs_enabled = true;
1912
return;
1913
}
1914
}
1915
}
1916
}
1917
#else
1918
static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1919
#endif
1920
1921
static void __init iort_init_platform_devices(void)
1922
{
1923
struct acpi_iort_node *iort_node, *iort_end;
1924
struct acpi_table_iort *iort;
1925
struct fwnode_handle *fwnode;
1926
int i, ret;
1927
const struct iort_dev_config *ops;
1928
1929
/*
1930
* iort_table and iort both point to the start of IORT table, but
1931
* have different struct types
1932
*/
1933
iort = (struct acpi_table_iort *)iort_table;
1934
1935
/* Get the first IORT node */
1936
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1937
iort->node_offset);
1938
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1939
iort_table->length);
1940
1941
for (i = 0; i < iort->node_count; i++) {
1942
if (iort_node >= iort_end) {
1943
pr_err("iort node pointer overflows, bad table\n");
1944
return;
1945
}
1946
1947
iort_enable_acs(iort_node);
1948
1949
ops = iort_get_dev_cfg(iort_node);
1950
if (ops) {
1951
fwnode = acpi_alloc_fwnode_static();
1952
if (!fwnode)
1953
return;
1954
1955
iort_set_fwnode(iort_node, fwnode);
1956
1957
ret = iort_add_platform_device(iort_node, ops);
1958
if (ret) {
1959
iort_delete_fwnode(iort_node);
1960
acpi_free_fwnode_static(fwnode);
1961
return;
1962
}
1963
}
1964
1965
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1966
iort_node->length);
1967
}
1968
}
1969
1970
void __init acpi_iort_init(void)
1971
{
1972
acpi_status status;
1973
1974
/* iort_table will be used at runtime after the iort init,
1975
* so we don't need to call acpi_put_table() to release
1976
* the IORT table mapping.
1977
*/
1978
status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1979
if (ACPI_FAILURE(status)) {
1980
if (status != AE_NOT_FOUND) {
1981
const char *msg = acpi_format_exception(status);
1982
1983
pr_err("Failed to get table, %s\n", msg);
1984
}
1985
1986
return;
1987
}
1988
1989
iort_init_platform_devices();
1990
}
1991
1992
#ifdef CONFIG_ZONE_DMA
1993
/*
1994
* Extract the highest CPU physical address accessible to all DMA masters in
1995
* the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1996
*/
1997
phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1998
{
1999
phys_addr_t limit = PHYS_ADDR_MAX;
2000
struct acpi_iort_node *node, *end;
2001
struct acpi_table_iort *iort;
2002
acpi_status status;
2003
int i;
2004
2005
if (acpi_disabled)
2006
return limit;
2007
2008
status = acpi_get_table(ACPI_SIG_IORT, 0,
2009
(struct acpi_table_header **)&iort);
2010
if (ACPI_FAILURE(status))
2011
return limit;
2012
2013
node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2014
end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2015
2016
for (i = 0; i < iort->node_count; i++) {
2017
if (node >= end)
2018
break;
2019
2020
switch (node->type) {
2021
struct acpi_iort_named_component *ncomp;
2022
struct acpi_iort_root_complex *rc;
2023
phys_addr_t local_limit;
2024
2025
case ACPI_IORT_NODE_NAMED_COMPONENT:
2026
ncomp = (struct acpi_iort_named_component *)node->node_data;
2027
local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2028
limit = min_not_zero(limit, local_limit);
2029
break;
2030
2031
case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2032
if (node->revision < 1)
2033
break;
2034
2035
rc = (struct acpi_iort_root_complex *)node->node_data;
2036
local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2037
limit = min_not_zero(limit, local_limit);
2038
break;
2039
}
2040
node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2041
}
2042
acpi_put_table(&iort->header);
2043
return limit;
2044
}
2045
#endif
2046
2047