Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/cppc_acpi.c
49239 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4
*
5
* (C) Copyright 2014, 2015 Linaro Ltd.
6
* Author: Ashwin Chaugule <[email protected]>
7
*
8
* CPPC describes a few methods for controlling CPU performance using
9
* information from a per CPU table called CPC. This table is described in
10
* the ACPI v5.0+ specification. The table consists of a list of
11
* registers which may be memory mapped or hardware registers and also may
12
* include some static integer values.
13
*
14
* CPU performance is on an abstract continuous scale as against a discretized
15
* P-state scale which is tied to CPU frequency only. In brief, the basic
16
* operation involves:
17
*
18
* - OS makes a CPU performance request. (Can provide min and max bounds)
19
*
20
* - Platform (such as BMC) is free to optimize request within requested bounds
21
* depending on power/thermal budgets etc.
22
*
23
* - Platform conveys its decision back to OS
24
*
25
* The communication between OS and platform occurs through another medium
26
* called (PCC) Platform Communication Channel. This is a generic mailbox like
27
* mechanism which includes doorbell semantics to indicate register updates.
28
* See drivers/mailbox/pcc.c for details on PCC.
29
*
30
* Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31
* above specifications.
32
*/
33
34
#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36
#include <linux/delay.h>
37
#include <linux/iopoll.h>
38
#include <linux/ktime.h>
39
#include <linux/rwsem.h>
40
#include <linux/wait.h>
41
#include <linux/topology.h>
42
#include <linux/dmi.h>
43
#include <linux/units.h>
44
#include <linux/unaligned.h>
45
46
#include <acpi/cppc_acpi.h>
47
48
struct cppc_pcc_data {
49
struct pcc_mbox_chan *pcc_channel;
50
bool pcc_channel_acquired;
51
unsigned int deadline_us;
52
unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
53
54
bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
55
bool platform_owns_pcc; /* Ownership of PCC subspace */
56
unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57
58
/*
59
* Lock to provide controlled access to the PCC channel.
60
*
61
* For performance critical usecases(currently cppc_set_perf)
62
* We need to take read_lock and check if channel belongs to OSPM
63
* before reading or writing to PCC subspace
64
* We need to take write_lock before transferring the channel
65
* ownership to the platform via a Doorbell
66
* This allows us to batch a number of CPPC requests if they happen
67
* to originate in about the same time
68
*
69
* For non-performance critical usecases(init)
70
* Take write_lock for all purposes which gives exclusive access
71
*/
72
struct rw_semaphore pcc_lock;
73
74
/* Wait queue for CPUs whose requests were batched */
75
wait_queue_head_t pcc_write_wait_q;
76
ktime_t last_cmd_cmpl_time;
77
ktime_t last_mpar_reset;
78
int mpar_count;
79
int refcount;
80
};
81
82
/* Array to represent the PCC channel per subspace ID */
83
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
84
/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
85
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86
87
/*
88
* The cpc_desc structure contains the ACPI register details
89
* as described in the per CPU _CPC tables. The details
90
* include the type of register (e.g. PCC, System IO, FFH etc.)
91
* and destination addresses which lets us READ/WRITE CPU performance
92
* information using the appropriate I/O methods.
93
*/
94
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
95
96
/* pcc mapped address + header size + offset within PCC subspace */
97
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_channel->shmem + \
98
0x8 + (offs))
99
100
/* Check if a CPC register is in PCC */
101
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
102
(cpc)->cpc_entry.reg.space_id == \
103
ACPI_ADR_SPACE_PLATFORM_COMM)
104
105
/* Check if a CPC register is in FFH */
106
#define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
107
(cpc)->cpc_entry.reg.space_id == \
108
ACPI_ADR_SPACE_FIXED_HARDWARE)
109
110
/* Check if a CPC register is in SystemMemory */
111
#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
112
(cpc)->cpc_entry.reg.space_id == \
113
ACPI_ADR_SPACE_SYSTEM_MEMORY)
114
115
/* Check if a CPC register is in SystemIo */
116
#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
117
(cpc)->cpc_entry.reg.space_id == \
118
ACPI_ADR_SPACE_SYSTEM_IO)
119
120
/* Evaluates to True if reg is a NULL register descriptor */
121
#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
122
(reg)->address == 0 && \
123
(reg)->bit_width == 0 && \
124
(reg)->bit_offset == 0 && \
125
(reg)->access_width == 0)
126
127
/* Evaluates to True if an optional cpc field is supported */
128
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
129
!!(cpc)->cpc_entry.int_value : \
130
!IS_NULL_REG(&(cpc)->cpc_entry.reg))
131
132
/*
133
* Each bit indicates the optionality of the register in per-cpu
134
* cpc_regs[] with the corresponding index. 0 means mandatory and 1
135
* means optional.
136
*/
137
#define REG_OPTIONAL (0x1FC7D0)
138
139
/*
140
* Use the index of the register in per-cpu cpc_regs[] to check if
141
* it's an optional one.
142
*/
143
#define IS_OPTIONAL_CPC_REG(reg_idx) (REG_OPTIONAL & (1U << (reg_idx)))
144
145
/*
146
* Arbitrary Retries in case the remote processor is slow to respond
147
* to PCC commands. Keeping it high enough to cover emulators where
148
* the processors run painfully slow.
149
*/
150
#define NUM_RETRIES 500ULL
151
152
#define OVER_16BTS_MASK ~0xFFFFULL
153
154
#define define_one_cppc_ro(_name) \
155
static struct kobj_attribute _name = \
156
__ATTR(_name, 0444, show_##_name, NULL)
157
158
#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
159
160
#define show_cppc_data(access_fn, struct_name, member_name) \
161
static ssize_t show_##member_name(struct kobject *kobj, \
162
struct kobj_attribute *attr, char *buf) \
163
{ \
164
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
165
struct struct_name st_name = {0}; \
166
int ret; \
167
\
168
ret = access_fn(cpc_ptr->cpu_id, &st_name); \
169
if (ret) \
170
return ret; \
171
\
172
return sysfs_emit(buf, "%llu\n", \
173
(u64)st_name.member_name); \
174
} \
175
define_one_cppc_ro(member_name)
176
177
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
178
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
179
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
180
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
181
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
182
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
183
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
184
185
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
186
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
187
188
/* Check for valid access_width, otherwise, fallback to using bit_width */
189
#define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
190
191
/* Shift and apply the mask for CPC reads/writes */
192
#define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) & \
193
GENMASK(((reg)->bit_width) - 1, 0))
194
#define MASK_VAL_WRITE(reg, prev_val, val) \
195
((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) | \
196
((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset))) \
197
198
static ssize_t show_feedback_ctrs(struct kobject *kobj,
199
struct kobj_attribute *attr, char *buf)
200
{
201
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
202
struct cppc_perf_fb_ctrs fb_ctrs = {0};
203
int ret;
204
205
ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
206
if (ret)
207
return ret;
208
209
return sysfs_emit(buf, "ref:%llu del:%llu\n",
210
fb_ctrs.reference, fb_ctrs.delivered);
211
}
212
define_one_cppc_ro(feedback_ctrs);
213
214
static struct attribute *cppc_attrs[] = {
215
&feedback_ctrs.attr,
216
&reference_perf.attr,
217
&wraparound_time.attr,
218
&highest_perf.attr,
219
&lowest_perf.attr,
220
&lowest_nonlinear_perf.attr,
221
&guaranteed_perf.attr,
222
&nominal_perf.attr,
223
&nominal_freq.attr,
224
&lowest_freq.attr,
225
NULL
226
};
227
ATTRIBUTE_GROUPS(cppc);
228
229
static const struct kobj_type cppc_ktype = {
230
.sysfs_ops = &kobj_sysfs_ops,
231
.default_groups = cppc_groups,
232
};
233
234
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
235
{
236
int ret, status;
237
struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
238
struct acpi_pcct_shared_memory __iomem *generic_comm_base =
239
pcc_ss_data->pcc_channel->shmem;
240
241
if (!pcc_ss_data->platform_owns_pcc)
242
return 0;
243
244
/*
245
* Poll PCC status register every 3us(delay_us) for maximum of
246
* deadline_us(timeout_us) until PCC command complete bit is set(cond)
247
*/
248
ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
249
status & PCC_CMD_COMPLETE_MASK, 3,
250
pcc_ss_data->deadline_us);
251
252
if (likely(!ret)) {
253
pcc_ss_data->platform_owns_pcc = false;
254
if (chk_err_bit && (status & PCC_ERROR_MASK))
255
ret = -EIO;
256
}
257
258
if (unlikely(ret))
259
pr_err("PCC check channel failed for ss: %d. ret=%d\n",
260
pcc_ss_id, ret);
261
262
return ret;
263
}
264
265
/*
266
* This function transfers the ownership of the PCC to the platform
267
* So it must be called while holding write_lock(pcc_lock)
268
*/
269
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
270
{
271
int ret = -EIO, i;
272
struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
273
struct acpi_pcct_shared_memory __iomem *generic_comm_base =
274
pcc_ss_data->pcc_channel->shmem;
275
unsigned int time_delta;
276
277
/*
278
* For CMD_WRITE we know for a fact the caller should have checked
279
* the channel before writing to PCC space
280
*/
281
if (cmd == CMD_READ) {
282
/*
283
* If there are pending cpc_writes, then we stole the channel
284
* before write completion, so first send a WRITE command to
285
* platform
286
*/
287
if (pcc_ss_data->pending_pcc_write_cmd)
288
send_pcc_cmd(pcc_ss_id, CMD_WRITE);
289
290
ret = check_pcc_chan(pcc_ss_id, false);
291
if (ret)
292
goto end;
293
} else /* CMD_WRITE */
294
pcc_ss_data->pending_pcc_write_cmd = FALSE;
295
296
/*
297
* Handle the Minimum Request Turnaround Time(MRTT)
298
* "The minimum amount of time that OSPM must wait after the completion
299
* of a command before issuing the next command, in microseconds"
300
*/
301
if (pcc_ss_data->pcc_mrtt) {
302
time_delta = ktime_us_delta(ktime_get(),
303
pcc_ss_data->last_cmd_cmpl_time);
304
if (pcc_ss_data->pcc_mrtt > time_delta)
305
udelay(pcc_ss_data->pcc_mrtt - time_delta);
306
}
307
308
/*
309
* Handle the non-zero Maximum Periodic Access Rate(MPAR)
310
* "The maximum number of periodic requests that the subspace channel can
311
* support, reported in commands per minute. 0 indicates no limitation."
312
*
313
* This parameter should be ideally zero or large enough so that it can
314
* handle maximum number of requests that all the cores in the system can
315
* collectively generate. If it is not, we will follow the spec and just
316
* not send the request to the platform after hitting the MPAR limit in
317
* any 60s window
318
*/
319
if (pcc_ss_data->pcc_mpar) {
320
if (pcc_ss_data->mpar_count == 0) {
321
time_delta = ktime_ms_delta(ktime_get(),
322
pcc_ss_data->last_mpar_reset);
323
if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
324
pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
325
pcc_ss_id);
326
ret = -EIO;
327
goto end;
328
}
329
pcc_ss_data->last_mpar_reset = ktime_get();
330
pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
331
}
332
pcc_ss_data->mpar_count--;
333
}
334
335
/* Write to the shared comm region. */
336
writew_relaxed(cmd, &generic_comm_base->command);
337
338
/* Flip CMD COMPLETE bit */
339
writew_relaxed(0, &generic_comm_base->status);
340
341
pcc_ss_data->platform_owns_pcc = true;
342
343
/* Ring doorbell */
344
ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
345
if (ret < 0) {
346
pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
347
pcc_ss_id, cmd, ret);
348
goto end;
349
}
350
351
/* wait for completion and check for PCC error bit */
352
ret = check_pcc_chan(pcc_ss_id, true);
353
354
if (pcc_ss_data->pcc_mrtt)
355
pcc_ss_data->last_cmd_cmpl_time = ktime_get();
356
357
if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
358
mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
359
else
360
mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
361
362
end:
363
if (cmd == CMD_WRITE) {
364
if (unlikely(ret)) {
365
for_each_possible_cpu(i) {
366
struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
367
368
if (!desc)
369
continue;
370
371
if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
372
desc->write_cmd_status = ret;
373
}
374
}
375
pcc_ss_data->pcc_write_cnt++;
376
wake_up_all(&pcc_ss_data->pcc_write_wait_q);
377
}
378
379
return ret;
380
}
381
382
static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
383
{
384
if (ret < 0)
385
pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
386
*(u16 *)msg, ret);
387
else
388
pr_debug("TX completed. CMD sent:%x, ret:%d\n",
389
*(u16 *)msg, ret);
390
}
391
392
static struct mbox_client cppc_mbox_cl = {
393
.tx_done = cppc_chan_tx_done,
394
.knows_txdone = true,
395
};
396
397
static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
398
{
399
int result = -EFAULT;
400
acpi_status status = AE_OK;
401
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
402
struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
403
struct acpi_buffer state = {0, NULL};
404
union acpi_object *psd = NULL;
405
struct acpi_psd_package *pdomain;
406
407
status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
408
&buffer, ACPI_TYPE_PACKAGE);
409
if (status == AE_NOT_FOUND) /* _PSD is optional */
410
return 0;
411
if (ACPI_FAILURE(status))
412
return -ENODEV;
413
414
psd = buffer.pointer;
415
if (!psd || psd->package.count != 1) {
416
pr_debug("Invalid _PSD data\n");
417
goto end;
418
}
419
420
pdomain = &(cpc_ptr->domain_info);
421
422
state.length = sizeof(struct acpi_psd_package);
423
state.pointer = pdomain;
424
425
status = acpi_extract_package(&(psd->package.elements[0]),
426
&format, &state);
427
if (ACPI_FAILURE(status)) {
428
pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
429
goto end;
430
}
431
432
if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
433
pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
434
goto end;
435
}
436
437
if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
438
pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
439
goto end;
440
}
441
442
if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
443
pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
444
pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
445
pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
446
goto end;
447
}
448
449
result = 0;
450
end:
451
kfree(buffer.pointer);
452
return result;
453
}
454
455
bool acpi_cpc_valid(void)
456
{
457
struct cpc_desc *cpc_ptr;
458
int cpu;
459
460
if (acpi_disabled)
461
return false;
462
463
for_each_online_cpu(cpu) {
464
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
465
if (!cpc_ptr)
466
return false;
467
}
468
469
return true;
470
}
471
EXPORT_SYMBOL_GPL(acpi_cpc_valid);
472
473
bool cppc_allow_fast_switch(void)
474
{
475
struct cpc_register_resource *desired_reg;
476
struct cpc_desc *cpc_ptr;
477
int cpu;
478
479
for_each_online_cpu(cpu) {
480
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
481
desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
482
if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
483
!CPC_IN_SYSTEM_IO(desired_reg))
484
return false;
485
}
486
487
return true;
488
}
489
EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
490
491
/**
492
* acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
493
* @cpu: Find all CPUs that share a domain with cpu.
494
* @cpu_data: Pointer to CPU specific CPPC data including PSD info.
495
*
496
* Return: 0 for success or negative value for err.
497
*/
498
int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
499
{
500
struct cpc_desc *cpc_ptr, *match_cpc_ptr;
501
struct acpi_psd_package *match_pdomain;
502
struct acpi_psd_package *pdomain;
503
int count_target, i;
504
505
/*
506
* Now that we have _PSD data from all CPUs, let's setup P-state
507
* domain info.
508
*/
509
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
510
if (!cpc_ptr)
511
return -EFAULT;
512
513
pdomain = &(cpc_ptr->domain_info);
514
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
515
if (pdomain->num_processors <= 1)
516
return 0;
517
518
/* Validate the Domain info */
519
count_target = pdomain->num_processors;
520
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
521
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
522
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
523
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
524
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
525
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
526
527
for_each_possible_cpu(i) {
528
if (i == cpu)
529
continue;
530
531
match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
532
if (!match_cpc_ptr)
533
goto err_fault;
534
535
match_pdomain = &(match_cpc_ptr->domain_info);
536
if (match_pdomain->domain != pdomain->domain)
537
continue;
538
539
/* Here i and cpu are in the same domain */
540
if (match_pdomain->num_processors != count_target)
541
goto err_fault;
542
543
if (pdomain->coord_type != match_pdomain->coord_type)
544
goto err_fault;
545
546
cpumask_set_cpu(i, cpu_data->shared_cpu_map);
547
}
548
549
return 0;
550
551
err_fault:
552
/* Assume no coordination on any error parsing domain info */
553
cpumask_clear(cpu_data->shared_cpu_map);
554
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
555
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
556
557
return -EFAULT;
558
}
559
EXPORT_SYMBOL_GPL(acpi_get_psd_map);
560
561
static int register_pcc_channel(int pcc_ss_idx)
562
{
563
struct pcc_mbox_chan *pcc_chan;
564
u64 usecs_lat;
565
566
if (pcc_ss_idx >= 0) {
567
pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
568
569
if (IS_ERR(pcc_chan)) {
570
pr_err("Failed to find PCC channel for subspace %d\n",
571
pcc_ss_idx);
572
return -ENODEV;
573
}
574
575
pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
576
/*
577
* cppc_ss->latency is just a Nominal value. In reality
578
* the remote processor could be much slower to reply.
579
* So add an arbitrary amount of wait on top of Nominal.
580
*/
581
usecs_lat = NUM_RETRIES * pcc_chan->latency;
582
pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
583
pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
584
pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
585
pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
586
587
/* Set flag so that we don't come here for each CPU. */
588
pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
589
}
590
591
return 0;
592
}
593
594
/**
595
* cpc_ffh_supported() - check if FFH reading supported
596
*
597
* Check if the architecture has support for functional fixed hardware
598
* read/write capability.
599
*
600
* Return: true for supported, false for not supported
601
*/
602
bool __weak cpc_ffh_supported(void)
603
{
604
return false;
605
}
606
607
/**
608
* cpc_supported_by_cpu() - check if CPPC is supported by CPU
609
*
610
* Check if the architectural support for CPPC is present even
611
* if the _OSC hasn't prescribed it
612
*
613
* Return: true for supported, false for not supported
614
*/
615
bool __weak cpc_supported_by_cpu(void)
616
{
617
return false;
618
}
619
620
/**
621
* pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
622
* @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
623
*
624
* Check and allocate the cppc_pcc_data memory.
625
* In some processor configurations it is possible that same subspace
626
* is shared between multiple CPUs. This is seen especially in CPUs
627
* with hardware multi-threading support.
628
*
629
* Return: 0 for success, errno for failure
630
*/
631
static int pcc_data_alloc(int pcc_ss_id)
632
{
633
if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
634
return -EINVAL;
635
636
if (pcc_data[pcc_ss_id]) {
637
pcc_data[pcc_ss_id]->refcount++;
638
} else {
639
pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
640
GFP_KERNEL);
641
if (!pcc_data[pcc_ss_id])
642
return -ENOMEM;
643
pcc_data[pcc_ss_id]->refcount++;
644
}
645
646
return 0;
647
}
648
649
/*
650
* An example CPC table looks like the following.
651
*
652
* Name (_CPC, Package() {
653
* 17, // NumEntries
654
* 1, // Revision
655
* ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
656
* ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
657
* ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
658
* ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
659
* ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
660
* ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
661
* ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
662
* ...
663
* ...
664
* ...
665
* }
666
* Each Register() encodes how to access that specific register.
667
* e.g. a sample PCC entry has the following encoding:
668
*
669
* Register (
670
* PCC, // AddressSpaceKeyword
671
* 8, // RegisterBitWidth
672
* 8, // RegisterBitOffset
673
* 0x30, // RegisterAddress
674
* 9, // AccessSize (subspace ID)
675
* )
676
*/
677
678
/**
679
* acpi_cppc_processor_probe - Search for per CPU _CPC objects.
680
* @pr: Ptr to acpi_processor containing this CPU's logical ID.
681
*
682
* Return: 0 for success or negative value for err.
683
*/
684
int acpi_cppc_processor_probe(struct acpi_processor *pr)
685
{
686
struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
687
union acpi_object *out_obj, *cpc_obj;
688
struct cpc_desc *cpc_ptr;
689
struct cpc_reg *gas_t;
690
struct device *cpu_dev;
691
acpi_handle handle = pr->handle;
692
unsigned int num_ent, i, cpc_rev;
693
int pcc_subspace_id = -1;
694
acpi_status status;
695
int ret = -ENODATA;
696
697
if (!osc_sb_cppc2_support_acked) {
698
pr_debug("CPPC v2 _OSC not acked\n");
699
if (!cpc_supported_by_cpu()) {
700
pr_debug("CPPC is not supported by the CPU\n");
701
return -ENODEV;
702
}
703
}
704
705
/* Parse the ACPI _CPC table for this CPU. */
706
status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
707
ACPI_TYPE_PACKAGE);
708
if (ACPI_FAILURE(status)) {
709
ret = -ENODEV;
710
goto out_buf_free;
711
}
712
713
out_obj = (union acpi_object *) output.pointer;
714
715
cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
716
if (!cpc_ptr) {
717
ret = -ENOMEM;
718
goto out_buf_free;
719
}
720
721
/* First entry is NumEntries. */
722
cpc_obj = &out_obj->package.elements[0];
723
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
724
num_ent = cpc_obj->integer.value;
725
if (num_ent <= 1) {
726
pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
727
num_ent, pr->id);
728
goto out_free;
729
}
730
} else {
731
pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
732
cpc_obj->type, pr->id);
733
goto out_free;
734
}
735
736
/* Second entry should be revision. */
737
cpc_obj = &out_obj->package.elements[1];
738
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
739
cpc_rev = cpc_obj->integer.value;
740
} else {
741
pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
742
cpc_obj->type, pr->id);
743
goto out_free;
744
}
745
746
if (cpc_rev < CPPC_V2_REV) {
747
pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
748
pr->id);
749
goto out_free;
750
}
751
752
/*
753
* Disregard _CPC if the number of entries in the return package is not
754
* as expected, but support future revisions being proper supersets of
755
* the v3 and only causing more entries to be returned by _CPC.
756
*/
757
if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
758
(cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
759
(cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
760
pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
761
num_ent, pr->id);
762
goto out_free;
763
}
764
if (cpc_rev > CPPC_V3_REV) {
765
num_ent = CPPC_V3_NUM_ENT;
766
cpc_rev = CPPC_V3_REV;
767
}
768
769
cpc_ptr->num_entries = num_ent;
770
cpc_ptr->version = cpc_rev;
771
772
/* Iterate through remaining entries in _CPC */
773
for (i = 2; i < num_ent; i++) {
774
cpc_obj = &out_obj->package.elements[i];
775
776
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
777
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
778
cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
779
} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
780
gas_t = (struct cpc_reg *)
781
cpc_obj->buffer.pointer;
782
783
/*
784
* The PCC Subspace index is encoded inside
785
* the CPC table entries. The same PCC index
786
* will be used for all the PCC entries,
787
* so extract it only once.
788
*/
789
if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
790
if (pcc_subspace_id < 0) {
791
pcc_subspace_id = gas_t->access_width;
792
if (pcc_data_alloc(pcc_subspace_id))
793
goto out_free;
794
} else if (pcc_subspace_id != gas_t->access_width) {
795
pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
796
pr->id);
797
goto out_free;
798
}
799
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
800
if (gas_t->address) {
801
void __iomem *addr;
802
size_t access_width;
803
804
if (!osc_cpc_flexible_adr_space_confirmed) {
805
pr_debug("Flexible address space capability not supported\n");
806
if (!cpc_supported_by_cpu())
807
goto out_free;
808
}
809
810
access_width = GET_BIT_WIDTH(gas_t) / 8;
811
addr = ioremap(gas_t->address, access_width);
812
if (!addr)
813
goto out_free;
814
cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
815
}
816
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
817
if (gas_t->access_width < 1 || gas_t->access_width > 3) {
818
/*
819
* 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
820
* SystemIO doesn't implement 64-bit
821
* registers.
822
*/
823
pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
824
gas_t->access_width);
825
goto out_free;
826
}
827
if (gas_t->address & OVER_16BTS_MASK) {
828
/* SystemIO registers use 16-bit integer addresses */
829
pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
830
gas_t->address);
831
goto out_free;
832
}
833
if (!osc_cpc_flexible_adr_space_confirmed) {
834
pr_debug("Flexible address space capability not supported\n");
835
if (!cpc_supported_by_cpu())
836
goto out_free;
837
}
838
} else {
839
if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
840
/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
841
pr_debug("Unsupported register type (%d) in _CPC\n",
842
gas_t->space_id);
843
goto out_free;
844
}
845
}
846
847
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
848
memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
849
} else {
850
pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
851
i, pr->id);
852
goto out_free;
853
}
854
}
855
per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
856
857
/*
858
* Initialize the remaining cpc_regs as unsupported.
859
* Example: In case FW exposes CPPC v2, the below loop will initialize
860
* LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
861
*/
862
for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
863
cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
864
cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
865
}
866
867
868
/* Store CPU Logical ID */
869
cpc_ptr->cpu_id = pr->id;
870
raw_spin_lock_init(&cpc_ptr->rmw_lock);
871
872
/* Parse PSD data for this CPU */
873
ret = acpi_get_psd(cpc_ptr, handle);
874
if (ret)
875
goto out_free;
876
877
/* Register PCC channel once for all PCC subspace ID. */
878
if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
879
ret = register_pcc_channel(pcc_subspace_id);
880
if (ret)
881
goto out_free;
882
883
init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
884
init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
885
}
886
887
/* Everything looks okay */
888
pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
889
890
/* Add per logical CPU nodes for reading its feedback counters. */
891
cpu_dev = get_cpu_device(pr->id);
892
if (!cpu_dev) {
893
ret = -EINVAL;
894
goto out_free;
895
}
896
897
/* Plug PSD data into this CPU's CPC descriptor. */
898
per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
899
900
ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
901
"acpi_cppc");
902
if (ret) {
903
per_cpu(cpc_desc_ptr, pr->id) = NULL;
904
kobject_put(&cpc_ptr->kobj);
905
goto out_free;
906
}
907
908
kfree(output.pointer);
909
return 0;
910
911
out_free:
912
/* Free all the mapped sys mem areas for this CPU */
913
for (i = 2; i < cpc_ptr->num_entries; i++) {
914
void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
915
916
if (addr)
917
iounmap(addr);
918
}
919
kfree(cpc_ptr);
920
921
out_buf_free:
922
kfree(output.pointer);
923
return ret;
924
}
925
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
926
927
/**
928
* acpi_cppc_processor_exit - Cleanup CPC structs.
929
* @pr: Ptr to acpi_processor containing this CPU's logical ID.
930
*
931
* Return: Void
932
*/
933
void acpi_cppc_processor_exit(struct acpi_processor *pr)
934
{
935
struct cpc_desc *cpc_ptr;
936
unsigned int i;
937
void __iomem *addr;
938
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
939
940
if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
941
if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
942
pcc_data[pcc_ss_id]->refcount--;
943
if (!pcc_data[pcc_ss_id]->refcount) {
944
pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
945
kfree(pcc_data[pcc_ss_id]);
946
pcc_data[pcc_ss_id] = NULL;
947
}
948
}
949
}
950
951
cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
952
if (!cpc_ptr)
953
return;
954
955
/* Free all the mapped sys mem areas for this CPU */
956
for (i = 2; i < cpc_ptr->num_entries; i++) {
957
addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
958
if (addr)
959
iounmap(addr);
960
}
961
962
kobject_put(&cpc_ptr->kobj);
963
kfree(cpc_ptr);
964
}
965
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
966
967
/**
968
* cpc_read_ffh() - Read FFH register
969
* @cpunum: CPU number to read
970
* @reg: cppc register information
971
* @val: place holder for return value
972
*
973
* Read bit_width bits from a specified address and bit_offset
974
*
975
* Return: 0 for success and error code
976
*/
977
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
978
{
979
return -ENOTSUPP;
980
}
981
982
/**
983
* cpc_write_ffh() - Write FFH register
984
* @cpunum: CPU number to write
985
* @reg: cppc register information
986
* @val: value to write
987
*
988
* Write value of bit_width bits to a specified address and bit_offset
989
*
990
* Return: 0 for success and error code
991
*/
992
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
993
{
994
return -ENOTSUPP;
995
}
996
997
/*
998
* Since cpc_read and cpc_write are called while holding pcc_lock, it should be
999
* as fast as possible. We have already mapped the PCC subspace during init, so
1000
* we can directly write to it.
1001
*/
1002
1003
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1004
{
1005
void __iomem *vaddr = NULL;
1006
int size;
1007
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1008
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1009
1010
if (reg_res->type == ACPI_TYPE_INTEGER) {
1011
*val = reg_res->cpc_entry.int_value;
1012
return 0;
1013
}
1014
1015
*val = 0;
1016
size = GET_BIT_WIDTH(reg);
1017
1018
if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1019
reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1020
u32 val_u32;
1021
acpi_status status;
1022
1023
status = acpi_os_read_port((acpi_io_address)reg->address,
1024
&val_u32, size);
1025
if (ACPI_FAILURE(status)) {
1026
pr_debug("Error: Failed to read SystemIO port %llx\n",
1027
reg->address);
1028
return -EFAULT;
1029
}
1030
1031
*val = val_u32;
1032
return 0;
1033
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1034
/*
1035
* For registers in PCC space, the register size is determined
1036
* by the bit width field; the access size is used to indicate
1037
* the PCC subspace id.
1038
*/
1039
size = reg->bit_width;
1040
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1041
}
1042
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1043
vaddr = reg_res->sys_mem_vaddr;
1044
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1045
return cpc_read_ffh(cpu, reg, val);
1046
else
1047
return acpi_os_read_memory((acpi_physical_address)reg->address,
1048
val, size);
1049
1050
switch (size) {
1051
case 8:
1052
*val = readb_relaxed(vaddr);
1053
break;
1054
case 16:
1055
*val = readw_relaxed(vaddr);
1056
break;
1057
case 32:
1058
*val = readl_relaxed(vaddr);
1059
break;
1060
case 64:
1061
*val = readq_relaxed(vaddr);
1062
break;
1063
default:
1064
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1065
pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1066
size, reg->address);
1067
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1068
pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1069
size, pcc_ss_id);
1070
}
1071
return -EFAULT;
1072
}
1073
1074
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1075
*val = MASK_VAL_READ(reg, *val);
1076
1077
return 0;
1078
}
1079
1080
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1081
{
1082
int ret_val = 0;
1083
int size;
1084
u64 prev_val;
1085
void __iomem *vaddr = NULL;
1086
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1087
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1088
struct cpc_desc *cpc_desc;
1089
unsigned long flags;
1090
1091
size = GET_BIT_WIDTH(reg);
1092
1093
if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1094
reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1095
acpi_status status;
1096
1097
status = acpi_os_write_port((acpi_io_address)reg->address,
1098
(u32)val, size);
1099
if (ACPI_FAILURE(status)) {
1100
pr_debug("Error: Failed to write SystemIO port %llx\n",
1101
reg->address);
1102
return -EFAULT;
1103
}
1104
1105
return 0;
1106
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1107
/*
1108
* For registers in PCC space, the register size is determined
1109
* by the bit width field; the access size is used to indicate
1110
* the PCC subspace id.
1111
*/
1112
size = reg->bit_width;
1113
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1114
}
1115
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1116
vaddr = reg_res->sys_mem_vaddr;
1117
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1118
return cpc_write_ffh(cpu, reg, val);
1119
else
1120
return acpi_os_write_memory((acpi_physical_address)reg->address,
1121
val, size);
1122
1123
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1124
cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1125
if (!cpc_desc) {
1126
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1127
return -ENODEV;
1128
}
1129
1130
raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1131
switch (size) {
1132
case 8:
1133
prev_val = readb_relaxed(vaddr);
1134
break;
1135
case 16:
1136
prev_val = readw_relaxed(vaddr);
1137
break;
1138
case 32:
1139
prev_val = readl_relaxed(vaddr);
1140
break;
1141
case 64:
1142
prev_val = readq_relaxed(vaddr);
1143
break;
1144
default:
1145
raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1146
return -EFAULT;
1147
}
1148
val = MASK_VAL_WRITE(reg, prev_val, val);
1149
}
1150
1151
switch (size) {
1152
case 8:
1153
writeb_relaxed(val, vaddr);
1154
break;
1155
case 16:
1156
writew_relaxed(val, vaddr);
1157
break;
1158
case 32:
1159
writel_relaxed(val, vaddr);
1160
break;
1161
case 64:
1162
writeq_relaxed(val, vaddr);
1163
break;
1164
default:
1165
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1166
pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1167
size, reg->address);
1168
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1169
pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1170
size, pcc_ss_id);
1171
}
1172
ret_val = -EFAULT;
1173
break;
1174
}
1175
1176
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1177
raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1178
1179
return ret_val;
1180
}
1181
1182
static int cppc_get_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 *val)
1183
{
1184
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1185
struct cppc_pcc_data *pcc_ss_data = NULL;
1186
int ret;
1187
1188
if (pcc_ss_id < 0) {
1189
pr_debug("Invalid pcc_ss_id\n");
1190
return -ENODEV;
1191
}
1192
1193
pcc_ss_data = pcc_data[pcc_ss_id];
1194
1195
down_write(&pcc_ss_data->pcc_lock);
1196
1197
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1198
ret = cpc_read(cpu, reg, val);
1199
else
1200
ret = -EIO;
1201
1202
up_write(&pcc_ss_data->pcc_lock);
1203
1204
return ret;
1205
}
1206
1207
static int cppc_get_reg_val(int cpu, enum cppc_regs reg_idx, u64 *val)
1208
{
1209
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1210
struct cpc_register_resource *reg;
1211
1212
if (val == NULL)
1213
return -EINVAL;
1214
1215
if (!cpc_desc) {
1216
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1217
return -ENODEV;
1218
}
1219
1220
reg = &cpc_desc->cpc_regs[reg_idx];
1221
1222
if ((reg->type == ACPI_TYPE_INTEGER && IS_OPTIONAL_CPC_REG(reg_idx) &&
1223
!reg->cpc_entry.int_value) || (reg->type != ACPI_TYPE_INTEGER &&
1224
IS_NULL_REG(&reg->cpc_entry.reg))) {
1225
pr_debug("CPC register is not supported\n");
1226
return -EOPNOTSUPP;
1227
}
1228
1229
if (CPC_IN_PCC(reg))
1230
return cppc_get_reg_val_in_pcc(cpu, reg, val);
1231
1232
return cpc_read(cpu, reg, val);
1233
}
1234
1235
static int cppc_set_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 val)
1236
{
1237
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1238
struct cppc_pcc_data *pcc_ss_data = NULL;
1239
int ret;
1240
1241
if (pcc_ss_id < 0) {
1242
pr_debug("Invalid pcc_ss_id\n");
1243
return -ENODEV;
1244
}
1245
1246
ret = cpc_write(cpu, reg, val);
1247
if (ret)
1248
return ret;
1249
1250
pcc_ss_data = pcc_data[pcc_ss_id];
1251
1252
down_write(&pcc_ss_data->pcc_lock);
1253
/* after writing CPC, transfer the ownership of PCC to platform */
1254
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1255
up_write(&pcc_ss_data->pcc_lock);
1256
1257
return ret;
1258
}
1259
1260
static int cppc_set_reg_val(int cpu, enum cppc_regs reg_idx, u64 val)
1261
{
1262
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1263
struct cpc_register_resource *reg;
1264
1265
if (!cpc_desc) {
1266
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1267
return -ENODEV;
1268
}
1269
1270
reg = &cpc_desc->cpc_regs[reg_idx];
1271
1272
/* if a register is writeable, it must be a buffer and not null */
1273
if ((reg->type != ACPI_TYPE_BUFFER) || IS_NULL_REG(&reg->cpc_entry.reg)) {
1274
pr_debug("CPC register is not supported\n");
1275
return -EOPNOTSUPP;
1276
}
1277
1278
if (CPC_IN_PCC(reg))
1279
return cppc_set_reg_val_in_pcc(cpu, reg, val);
1280
1281
return cpc_write(cpu, reg, val);
1282
}
1283
1284
/**
1285
* cppc_get_desired_perf - Get the desired performance register value.
1286
* @cpunum: CPU from which to get desired performance.
1287
* @desired_perf: Return address.
1288
*
1289
* Return: 0 for success, -EIO otherwise.
1290
*/
1291
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1292
{
1293
return cppc_get_reg_val(cpunum, DESIRED_PERF, desired_perf);
1294
}
1295
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1296
1297
/**
1298
* cppc_get_nominal_perf - Get the nominal performance register value.
1299
* @cpunum: CPU from which to get nominal performance.
1300
* @nominal_perf: Return address.
1301
*
1302
* Return: 0 for success, -EIO otherwise.
1303
*/
1304
int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1305
{
1306
return cppc_get_reg_val(cpunum, NOMINAL_PERF, nominal_perf);
1307
}
1308
1309
/**
1310
* cppc_get_highest_perf - Get the highest performance register value.
1311
* @cpunum: CPU from which to get highest performance.
1312
* @highest_perf: Return address.
1313
*
1314
* Return: 0 for success, -EIO otherwise.
1315
*/
1316
int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1317
{
1318
return cppc_get_reg_val(cpunum, HIGHEST_PERF, highest_perf);
1319
}
1320
EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1321
1322
/**
1323
* cppc_get_epp_perf - Get the epp register value.
1324
* @cpunum: CPU from which to get epp preference value.
1325
* @epp_perf: Return address.
1326
*
1327
* Return: 0 for success, -EIO otherwise.
1328
*/
1329
int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1330
{
1331
return cppc_get_reg_val(cpunum, ENERGY_PERF, epp_perf);
1332
}
1333
EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1334
1335
/**
1336
* cppc_get_perf_caps - Get a CPU's performance capabilities.
1337
* @cpunum: CPU from which to get capabilities info.
1338
* @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1339
*
1340
* Return: 0 for success with perf_caps populated else -ERRNO.
1341
*/
1342
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1343
{
1344
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1345
struct cpc_register_resource *highest_reg, *lowest_reg,
1346
*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1347
*low_freq_reg = NULL, *nom_freq_reg = NULL;
1348
u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1349
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1350
struct cppc_pcc_data *pcc_ss_data = NULL;
1351
int ret = 0, regs_in_pcc = 0;
1352
1353
if (!cpc_desc) {
1354
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1355
return -ENODEV;
1356
}
1357
1358
highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1359
lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1360
lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1361
nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1362
low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1363
nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1364
guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1365
1366
/* Are any of the regs PCC ?*/
1367
if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1368
CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1369
CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg) ||
1370
CPC_IN_PCC(guaranteed_reg)) {
1371
if (pcc_ss_id < 0) {
1372
pr_debug("Invalid pcc_ss_id\n");
1373
return -ENODEV;
1374
}
1375
pcc_ss_data = pcc_data[pcc_ss_id];
1376
regs_in_pcc = 1;
1377
down_write(&pcc_ss_data->pcc_lock);
1378
/* Ring doorbell once to update PCC subspace */
1379
if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1380
ret = -EIO;
1381
goto out_err;
1382
}
1383
}
1384
1385
cpc_read(cpunum, highest_reg, &high);
1386
perf_caps->highest_perf = high;
1387
1388
cpc_read(cpunum, lowest_reg, &low);
1389
perf_caps->lowest_perf = low;
1390
1391
cpc_read(cpunum, nominal_reg, &nom);
1392
perf_caps->nominal_perf = nom;
1393
1394
if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1395
IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1396
perf_caps->guaranteed_perf = 0;
1397
} else {
1398
cpc_read(cpunum, guaranteed_reg, &guaranteed);
1399
perf_caps->guaranteed_perf = guaranteed;
1400
}
1401
1402
cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1403
perf_caps->lowest_nonlinear_perf = min_nonlinear;
1404
1405
if (!high || !low || !nom || !min_nonlinear)
1406
ret = -EFAULT;
1407
1408
/* Read optional lowest and nominal frequencies if present */
1409
if (CPC_SUPPORTED(low_freq_reg))
1410
cpc_read(cpunum, low_freq_reg, &low_f);
1411
1412
if (CPC_SUPPORTED(nom_freq_reg))
1413
cpc_read(cpunum, nom_freq_reg, &nom_f);
1414
1415
perf_caps->lowest_freq = low_f;
1416
perf_caps->nominal_freq = nom_f;
1417
1418
1419
out_err:
1420
if (regs_in_pcc)
1421
up_write(&pcc_ss_data->pcc_lock);
1422
return ret;
1423
}
1424
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1425
1426
/**
1427
* cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1428
*
1429
* CPPC has flexibility about how CPU performance counters are accessed.
1430
* One of the choices is PCC regions, which can have a high access latency. This
1431
* routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1432
*
1433
* Return: true if any of the counters are in PCC regions, false otherwise
1434
*/
1435
bool cppc_perf_ctrs_in_pcc(void)
1436
{
1437
int cpu;
1438
1439
for_each_online_cpu(cpu) {
1440
struct cpc_register_resource *ref_perf_reg;
1441
struct cpc_desc *cpc_desc;
1442
1443
cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1444
1445
if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1446
CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1447
CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1448
return true;
1449
1450
1451
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1452
1453
/*
1454
* If reference perf register is not supported then we should
1455
* use the nominal perf value
1456
*/
1457
if (!CPC_SUPPORTED(ref_perf_reg))
1458
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1459
1460
if (CPC_IN_PCC(ref_perf_reg))
1461
return true;
1462
}
1463
1464
return false;
1465
}
1466
EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1467
1468
/**
1469
* cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1470
* @cpunum: CPU from which to read counters.
1471
* @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1472
*
1473
* Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1474
*/
1475
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1476
{
1477
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1478
struct cpc_register_resource *delivered_reg, *reference_reg,
1479
*ref_perf_reg, *ctr_wrap_reg;
1480
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1481
struct cppc_pcc_data *pcc_ss_data = NULL;
1482
u64 delivered, reference, ref_perf, ctr_wrap_time;
1483
int ret = 0, regs_in_pcc = 0;
1484
1485
if (!cpc_desc) {
1486
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1487
return -ENODEV;
1488
}
1489
1490
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1491
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1492
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1493
ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1494
1495
/*
1496
* If reference perf register is not supported then we should
1497
* use the nominal perf value
1498
*/
1499
if (!CPC_SUPPORTED(ref_perf_reg))
1500
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1501
1502
/* Are any of the regs PCC ?*/
1503
if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1504
CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1505
if (pcc_ss_id < 0) {
1506
pr_debug("Invalid pcc_ss_id\n");
1507
return -ENODEV;
1508
}
1509
pcc_ss_data = pcc_data[pcc_ss_id];
1510
down_write(&pcc_ss_data->pcc_lock);
1511
regs_in_pcc = 1;
1512
/* Ring doorbell once to update PCC subspace */
1513
if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1514
ret = -EIO;
1515
goto out_err;
1516
}
1517
}
1518
1519
cpc_read(cpunum, delivered_reg, &delivered);
1520
cpc_read(cpunum, reference_reg, &reference);
1521
cpc_read(cpunum, ref_perf_reg, &ref_perf);
1522
1523
/*
1524
* Per spec, if ctr_wrap_time optional register is unsupported, then the
1525
* performance counters are assumed to never wrap during the lifetime of
1526
* platform
1527
*/
1528
ctr_wrap_time = (u64)(~((u64)0));
1529
if (CPC_SUPPORTED(ctr_wrap_reg))
1530
cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1531
1532
if (!delivered || !reference || !ref_perf) {
1533
ret = -EFAULT;
1534
goto out_err;
1535
}
1536
1537
perf_fb_ctrs->delivered = delivered;
1538
perf_fb_ctrs->reference = reference;
1539
perf_fb_ctrs->reference_perf = ref_perf;
1540
perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1541
out_err:
1542
if (regs_in_pcc)
1543
up_write(&pcc_ss_data->pcc_lock);
1544
return ret;
1545
}
1546
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1547
1548
/*
1549
* Set Energy Performance Preference Register value through
1550
* Performance Controls Interface
1551
*/
1552
int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1553
{
1554
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1555
struct cpc_register_resource *epp_set_reg;
1556
struct cpc_register_resource *auto_sel_reg;
1557
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1558
struct cppc_pcc_data *pcc_ss_data = NULL;
1559
int ret;
1560
1561
if (!cpc_desc) {
1562
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1563
return -ENODEV;
1564
}
1565
1566
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1567
epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1568
1569
if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1570
if (pcc_ss_id < 0) {
1571
pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1572
return -ENODEV;
1573
}
1574
1575
if (CPC_SUPPORTED(auto_sel_reg)) {
1576
ret = cpc_write(cpu, auto_sel_reg, enable);
1577
if (ret)
1578
return ret;
1579
}
1580
1581
if (CPC_SUPPORTED(epp_set_reg)) {
1582
ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1583
if (ret)
1584
return ret;
1585
}
1586
1587
pcc_ss_data = pcc_data[pcc_ss_id];
1588
1589
down_write(&pcc_ss_data->pcc_lock);
1590
/* after writing CPC, transfer the ownership of PCC to platform */
1591
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1592
up_write(&pcc_ss_data->pcc_lock);
1593
} else if (osc_cpc_flexible_adr_space_confirmed &&
1594
CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1595
ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1596
} else {
1597
ret = -ENOTSUPP;
1598
pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1599
}
1600
1601
return ret;
1602
}
1603
EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1604
1605
/**
1606
* cppc_set_epp() - Write the EPP register.
1607
* @cpu: CPU on which to write register.
1608
* @epp_val: Value to write to the EPP register.
1609
*/
1610
int cppc_set_epp(int cpu, u64 epp_val)
1611
{
1612
if (epp_val > CPPC_ENERGY_PERF_MAX)
1613
return -EINVAL;
1614
1615
return cppc_set_reg_val(cpu, ENERGY_PERF, epp_val);
1616
}
1617
EXPORT_SYMBOL_GPL(cppc_set_epp);
1618
1619
/**
1620
* cppc_get_auto_act_window() - Read autonomous activity window register.
1621
* @cpu: CPU from which to read register.
1622
* @auto_act_window: Return address.
1623
*
1624
* According to ACPI 6.5, s8.4.6.1.6, the value read from the autonomous
1625
* activity window register consists of two parts: a 7 bits value indicate
1626
* significand and a 3 bits value indicate exponent.
1627
*/
1628
int cppc_get_auto_act_window(int cpu, u64 *auto_act_window)
1629
{
1630
unsigned int exp;
1631
u64 val, sig;
1632
int ret;
1633
1634
if (auto_act_window == NULL)
1635
return -EINVAL;
1636
1637
ret = cppc_get_reg_val(cpu, AUTO_ACT_WINDOW, &val);
1638
if (ret)
1639
return ret;
1640
1641
sig = val & CPPC_AUTO_ACT_WINDOW_MAX_SIG;
1642
exp = (val >> CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) & CPPC_AUTO_ACT_WINDOW_MAX_EXP;
1643
*auto_act_window = sig * int_pow(10, exp);
1644
1645
return 0;
1646
}
1647
EXPORT_SYMBOL_GPL(cppc_get_auto_act_window);
1648
1649
/**
1650
* cppc_set_auto_act_window() - Write autonomous activity window register.
1651
* @cpu: CPU on which to write register.
1652
* @auto_act_window: usec value to write to the autonomous activity window register.
1653
*
1654
* According to ACPI 6.5, s8.4.6.1.6, the value to write to the autonomous
1655
* activity window register consists of two parts: a 7 bits value indicate
1656
* significand and a 3 bits value indicate exponent.
1657
*/
1658
int cppc_set_auto_act_window(int cpu, u64 auto_act_window)
1659
{
1660
/* The max value to store is 1270000000 */
1661
u64 max_val = CPPC_AUTO_ACT_WINDOW_MAX_SIG * int_pow(10, CPPC_AUTO_ACT_WINDOW_MAX_EXP);
1662
int exp = 0;
1663
u64 val;
1664
1665
if (auto_act_window > max_val)
1666
return -EINVAL;
1667
1668
/*
1669
* The max significand is 127, when auto_act_window is larger than
1670
* 129, discard the precision of the last digit and increase the
1671
* exponent by 1.
1672
*/
1673
while (auto_act_window > CPPC_AUTO_ACT_WINDOW_SIG_CARRY_THRESH) {
1674
auto_act_window /= 10;
1675
exp += 1;
1676
}
1677
1678
/* For 128 and 129, cut it to 127. */
1679
if (auto_act_window > CPPC_AUTO_ACT_WINDOW_MAX_SIG)
1680
auto_act_window = CPPC_AUTO_ACT_WINDOW_MAX_SIG;
1681
1682
val = (exp << CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) + auto_act_window;
1683
1684
return cppc_set_reg_val(cpu, AUTO_ACT_WINDOW, val);
1685
}
1686
EXPORT_SYMBOL_GPL(cppc_set_auto_act_window);
1687
1688
/**
1689
* cppc_get_auto_sel() - Read autonomous selection register.
1690
* @cpu: CPU from which to read register.
1691
* @enable: Return address.
1692
*/
1693
int cppc_get_auto_sel(int cpu, bool *enable)
1694
{
1695
u64 auto_sel;
1696
int ret;
1697
1698
if (enable == NULL)
1699
return -EINVAL;
1700
1701
ret = cppc_get_reg_val(cpu, AUTO_SEL_ENABLE, &auto_sel);
1702
if (ret)
1703
return ret;
1704
1705
*enable = (bool)auto_sel;
1706
1707
return 0;
1708
}
1709
EXPORT_SYMBOL_GPL(cppc_get_auto_sel);
1710
1711
/**
1712
* cppc_set_auto_sel - Write autonomous selection register.
1713
* @cpu : CPU to which to write register.
1714
* @enable : the desired value of autonomous selection resiter to be updated.
1715
*/
1716
int cppc_set_auto_sel(int cpu, bool enable)
1717
{
1718
return cppc_set_reg_val(cpu, AUTO_SEL_ENABLE, enable);
1719
}
1720
EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1721
1722
/**
1723
* cppc_set_enable - Set to enable CPPC on the processor by writing the
1724
* Continuous Performance Control package EnableRegister field.
1725
* @cpu: CPU for which to enable CPPC register.
1726
* @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1727
*
1728
* Return: 0 for success, -ERRNO or -EIO otherwise.
1729
*/
1730
int cppc_set_enable(int cpu, bool enable)
1731
{
1732
return cppc_set_reg_val(cpu, ENABLE, enable);
1733
}
1734
EXPORT_SYMBOL_GPL(cppc_set_enable);
1735
1736
/**
1737
* cppc_set_perf - Set a CPU's performance controls.
1738
* @cpu: CPU for which to set performance controls.
1739
* @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1740
*
1741
* Return: 0 for success, -ERRNO otherwise.
1742
*/
1743
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1744
{
1745
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1746
struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1747
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1748
struct cppc_pcc_data *pcc_ss_data = NULL;
1749
int ret = 0;
1750
1751
if (!cpc_desc) {
1752
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1753
return -ENODEV;
1754
}
1755
1756
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1757
min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1758
max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1759
1760
/*
1761
* This is Phase-I where we want to write to CPC registers
1762
* -> We want all CPUs to be able to execute this phase in parallel
1763
*
1764
* Since read_lock can be acquired by multiple CPUs simultaneously we
1765
* achieve that goal here
1766
*/
1767
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1768
if (pcc_ss_id < 0) {
1769
pr_debug("Invalid pcc_ss_id\n");
1770
return -ENODEV;
1771
}
1772
pcc_ss_data = pcc_data[pcc_ss_id];
1773
down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1774
if (pcc_ss_data->platform_owns_pcc) {
1775
ret = check_pcc_chan(pcc_ss_id, false);
1776
if (ret) {
1777
up_read(&pcc_ss_data->pcc_lock);
1778
return ret;
1779
}
1780
}
1781
/*
1782
* Update the pending_write to make sure a PCC CMD_READ will not
1783
* arrive and steal the channel during the switch to write lock
1784
*/
1785
pcc_ss_data->pending_pcc_write_cmd = true;
1786
cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1787
cpc_desc->write_cmd_status = 0;
1788
}
1789
1790
cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1791
1792
/*
1793
* Only write if min_perf and max_perf not zero. Some drivers pass zero
1794
* value to min and max perf, but they don't mean to set the zero value,
1795
* they just don't want to write to those registers.
1796
*/
1797
if (perf_ctrls->min_perf)
1798
cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1799
if (perf_ctrls->max_perf)
1800
cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1801
1802
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1803
up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1804
/*
1805
* This is Phase-II where we transfer the ownership of PCC to Platform
1806
*
1807
* Short Summary: Basically if we think of a group of cppc_set_perf
1808
* requests that happened in short overlapping interval. The last CPU to
1809
* come out of Phase-I will enter Phase-II and ring the doorbell.
1810
*
1811
* We have the following requirements for Phase-II:
1812
* 1. We want to execute Phase-II only when there are no CPUs
1813
* currently executing in Phase-I
1814
* 2. Once we start Phase-II we want to avoid all other CPUs from
1815
* entering Phase-I.
1816
* 3. We want only one CPU among all those who went through Phase-I
1817
* to run phase-II
1818
*
1819
* If write_trylock fails to get the lock and doesn't transfer the
1820
* PCC ownership to the platform, then one of the following will be TRUE
1821
* 1. There is at-least one CPU in Phase-I which will later execute
1822
* write_trylock, so the CPUs in Phase-I will be responsible for
1823
* executing the Phase-II.
1824
* 2. Some other CPU has beaten this CPU to successfully execute the
1825
* write_trylock and has already acquired the write_lock. We know for a
1826
* fact it (other CPU acquiring the write_lock) couldn't have happened
1827
* before this CPU's Phase-I as we held the read_lock.
1828
* 3. Some other CPU executing pcc CMD_READ has stolen the
1829
* down_write, in which case, send_pcc_cmd will check for pending
1830
* CMD_WRITE commands by checking the pending_pcc_write_cmd.
1831
* So this CPU can be certain that its request will be delivered
1832
* So in all cases, this CPU knows that its request will be delivered
1833
* by another CPU and can return
1834
*
1835
* After getting the down_write we still need to check for
1836
* pending_pcc_write_cmd to take care of the following scenario
1837
* The thread running this code could be scheduled out between
1838
* Phase-I and Phase-II. Before it is scheduled back on, another CPU
1839
* could have delivered the request to Platform by triggering the
1840
* doorbell and transferred the ownership of PCC to platform. So this
1841
* avoids triggering an unnecessary doorbell and more importantly before
1842
* triggering the doorbell it makes sure that the PCC channel ownership
1843
* is still with OSPM.
1844
* pending_pcc_write_cmd can also be cleared by a different CPU, if
1845
* there was a pcc CMD_READ waiting on down_write and it steals the lock
1846
* before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1847
* case during a CMD_READ and if there are pending writes it delivers
1848
* the write command before servicing the read command
1849
*/
1850
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1851
if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1852
/* Update only if there are pending write commands */
1853
if (pcc_ss_data->pending_pcc_write_cmd)
1854
send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1855
up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1856
} else
1857
/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1858
wait_event(pcc_ss_data->pcc_write_wait_q,
1859
cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1860
1861
/* send_pcc_cmd updates the status in case of failure */
1862
ret = cpc_desc->write_cmd_status;
1863
}
1864
return ret;
1865
}
1866
EXPORT_SYMBOL_GPL(cppc_set_perf);
1867
1868
/**
1869
* cppc_get_transition_latency - returns frequency transition latency in ns
1870
* @cpu_num: CPU number for per_cpu().
1871
*
1872
* ACPI CPPC does not explicitly specify how a platform can specify the
1873
* transition latency for performance change requests. The closest we have
1874
* is the timing information from the PCCT tables which provides the info
1875
* on the number and frequency of PCC commands the platform can handle.
1876
*
1877
* If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1878
* then assume there is no latency.
1879
*/
1880
int cppc_get_transition_latency(int cpu_num)
1881
{
1882
/*
1883
* Expected transition latency is based on the PCCT timing values
1884
* Below are definition from ACPI spec:
1885
* pcc_nominal- Expected latency to process a command, in microseconds
1886
* pcc_mpar - The maximum number of periodic requests that the subspace
1887
* channel can support, reported in commands per minute. 0
1888
* indicates no limitation.
1889
* pcc_mrtt - The minimum amount of time that OSPM must wait after the
1890
* completion of a command before issuing the next command,
1891
* in microseconds.
1892
*/
1893
struct cpc_desc *cpc_desc;
1894
struct cpc_register_resource *desired_reg;
1895
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1896
struct cppc_pcc_data *pcc_ss_data;
1897
int latency_ns = 0;
1898
1899
cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1900
if (!cpc_desc)
1901
return -ENODATA;
1902
1903
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1904
if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1905
return 0;
1906
1907
if (!CPC_IN_PCC(desired_reg) || pcc_ss_id < 0)
1908
return -ENODATA;
1909
1910
pcc_ss_data = pcc_data[pcc_ss_id];
1911
if (pcc_ss_data->pcc_mpar)
1912
latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1913
1914
latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_nominal * 1000);
1915
latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1916
1917
return latency_ns;
1918
}
1919
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1920
1921
/* Minimum struct length needed for the DMI processor entry we want */
1922
#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1923
1924
/* Offset in the DMI processor structure for the max frequency */
1925
#define DMI_PROCESSOR_MAX_SPEED 0x14
1926
1927
/* Callback function used to retrieve the max frequency from DMI */
1928
static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1929
{
1930
const u8 *dmi_data = (const u8 *)dm;
1931
u16 *mhz = (u16 *)private;
1932
1933
if (dm->type == DMI_ENTRY_PROCESSOR &&
1934
dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1935
u16 val = (u16)get_unaligned((const u16 *)
1936
(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1937
*mhz = umax(val, *mhz);
1938
}
1939
}
1940
1941
/* Look up the max frequency in DMI */
1942
static u64 cppc_get_dmi_max_khz(void)
1943
{
1944
u16 mhz = 0;
1945
1946
dmi_walk(cppc_find_dmi_mhz, &mhz);
1947
1948
/*
1949
* Real stupid fallback value, just in case there is no
1950
* actual value set.
1951
*/
1952
mhz = mhz ? mhz : 1;
1953
1954
return KHZ_PER_MHZ * mhz;
1955
}
1956
1957
/*
1958
* If CPPC lowest_freq and nominal_freq registers are exposed then we can
1959
* use them to convert perf to freq and vice versa. The conversion is
1960
* extrapolated as an affine function passing by the 2 points:
1961
* - (Low perf, Low freq)
1962
* - (Nominal perf, Nominal freq)
1963
*/
1964
unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1965
{
1966
s64 retval, offset = 0;
1967
static u64 max_khz;
1968
u64 mul, div;
1969
1970
if (caps->lowest_freq && caps->nominal_freq) {
1971
/* Avoid special case when nominal_freq is equal to lowest_freq */
1972
if (caps->lowest_freq == caps->nominal_freq) {
1973
mul = caps->nominal_freq;
1974
div = caps->nominal_perf;
1975
} else {
1976
mul = caps->nominal_freq - caps->lowest_freq;
1977
div = caps->nominal_perf - caps->lowest_perf;
1978
}
1979
mul *= KHZ_PER_MHZ;
1980
offset = caps->nominal_freq * KHZ_PER_MHZ -
1981
div64_u64(caps->nominal_perf * mul, div);
1982
} else {
1983
if (!max_khz)
1984
max_khz = cppc_get_dmi_max_khz();
1985
mul = max_khz;
1986
div = caps->highest_perf;
1987
}
1988
1989
retval = offset + div64_u64(perf * mul, div);
1990
if (retval >= 0)
1991
return retval;
1992
return 0;
1993
}
1994
EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1995
1996
unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1997
{
1998
s64 retval, offset = 0;
1999
static u64 max_khz;
2000
u64 mul, div;
2001
2002
if (caps->lowest_freq && caps->nominal_freq) {
2003
/* Avoid special case when nominal_freq is equal to lowest_freq */
2004
if (caps->lowest_freq == caps->nominal_freq) {
2005
mul = caps->nominal_perf;
2006
div = caps->nominal_freq;
2007
} else {
2008
mul = caps->nominal_perf - caps->lowest_perf;
2009
div = caps->nominal_freq - caps->lowest_freq;
2010
}
2011
/*
2012
* We don't need to convert to kHz for computing offset and can
2013
* directly use nominal_freq and lowest_freq as the div64_u64
2014
* will remove the frequency unit.
2015
*/
2016
offset = caps->nominal_perf -
2017
div64_u64(caps->nominal_freq * mul, div);
2018
/* But we need it for computing the perf level. */
2019
div *= KHZ_PER_MHZ;
2020
} else {
2021
if (!max_khz)
2022
max_khz = cppc_get_dmi_max_khz();
2023
mul = caps->highest_perf;
2024
div = max_khz;
2025
}
2026
2027
retval = offset + div64_u64(freq * mul, div);
2028
if (retval >= 0)
2029
return retval;
2030
return 0;
2031
}
2032
EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
2033
2034