Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/ec.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* ec.c - ACPI Embedded Controller Driver (v3)
4
*
5
* Copyright (C) 2001-2015 Intel Corporation
6
* Author: 2014, 2015 Lv Zheng <[email protected]>
7
* 2006, 2007 Alexey Starikovskiy <[email protected]>
8
* 2006 Denis Sadykov <[email protected]>
9
* 2004 Luming Yu <[email protected]>
10
* 2001, 2002 Andy Grover <[email protected]>
11
* 2001, 2002 Paul Diefenbaugh <[email protected]>
12
* Copyright (C) 2008 Alexey Starikovskiy <[email protected]>
13
*/
14
15
/* Uncomment next line to get verbose printout */
16
/* #define DEBUG */
17
#define pr_fmt(fmt) "ACPI: EC: " fmt
18
19
#include <linux/kernel.h>
20
#include <linux/module.h>
21
#include <linux/init.h>
22
#include <linux/types.h>
23
#include <linux/delay.h>
24
#include <linux/interrupt.h>
25
#include <linux/list.h>
26
#include <linux/printk.h>
27
#include <linux/spinlock.h>
28
#include <linux/slab.h>
29
#include <linux/string.h>
30
#include <linux/suspend.h>
31
#include <linux/acpi.h>
32
#include <linux/dmi.h>
33
#include <asm/io.h>
34
35
#include "internal.h"
36
37
#define ACPI_EC_CLASS "embedded_controller"
38
#define ACPI_EC_DEVICE_NAME "Embedded Controller"
39
40
/* EC status register */
41
#define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
42
#define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
43
#define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
44
#define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
45
#define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
46
47
/*
48
* The SCI_EVT clearing timing is not defined by the ACPI specification.
49
* This leads to lots of practical timing issues for the host EC driver.
50
* The following variations are defined (from the target EC firmware's
51
* perspective):
52
* STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
53
* target can clear SCI_EVT at any time so long as the host can see
54
* the indication by reading the status register (EC_SC). So the
55
* host should re-check SCI_EVT after the first time the SCI_EVT
56
* indication is seen, which is the same time the query request
57
* (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
58
* at any later time could indicate another event. Normally such
59
* kind of EC firmware has implemented an event queue and will
60
* return 0x00 to indicate "no outstanding event".
61
* QUERY: After seeing the query request (QR_EC) written to the command
62
* register (EC_CMD) by the host and having prepared the responding
63
* event value in the data register (EC_DATA), the target can safely
64
* clear SCI_EVT because the target can confirm that the current
65
* event is being handled by the host. The host then should check
66
* SCI_EVT right after reading the event response from the data
67
* register (EC_DATA).
68
* EVENT: After seeing the event response read from the data register
69
* (EC_DATA) by the host, the target can clear SCI_EVT. As the
70
* target requires time to notice the change in the data register
71
* (EC_DATA), the host may be required to wait additional guarding
72
* time before checking the SCI_EVT again. Such guarding may not be
73
* necessary if the host is notified via another IRQ.
74
*/
75
#define ACPI_EC_EVT_TIMING_STATUS 0x00
76
#define ACPI_EC_EVT_TIMING_QUERY 0x01
77
#define ACPI_EC_EVT_TIMING_EVENT 0x02
78
79
/* EC commands */
80
enum ec_command {
81
ACPI_EC_COMMAND_READ = 0x80,
82
ACPI_EC_COMMAND_WRITE = 0x81,
83
ACPI_EC_BURST_ENABLE = 0x82,
84
ACPI_EC_BURST_DISABLE = 0x83,
85
ACPI_EC_COMMAND_QUERY = 0x84,
86
};
87
88
#define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
89
#define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
90
#define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
91
#define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
92
* when trying to clear the EC */
93
#define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
94
95
enum {
96
EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
97
EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */
98
EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
99
EC_FLAGS_EC_REG_CALLED, /* OpReg ACPI _REG method called */
100
EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
101
EC_FLAGS_STARTED, /* Driver is started */
102
EC_FLAGS_STOPPED, /* Driver is stopped */
103
EC_FLAGS_EVENTS_MASKED, /* Events masked */
104
};
105
106
#define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
107
#define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
108
109
/* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
110
static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
111
module_param(ec_delay, uint, 0644);
112
MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
113
114
static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
115
module_param(ec_max_queries, uint, 0644);
116
MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
117
118
static bool ec_busy_polling __read_mostly;
119
module_param(ec_busy_polling, bool, 0644);
120
MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
121
122
static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
123
module_param(ec_polling_guard, uint, 0644);
124
MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
125
126
static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
127
128
/*
129
* If the number of false interrupts per one transaction exceeds
130
* this threshold, will think there is a GPE storm happened and
131
* will disable the GPE for normal transaction.
132
*/
133
static unsigned int ec_storm_threshold __read_mostly = 8;
134
module_param(ec_storm_threshold, uint, 0644);
135
MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
136
137
static bool ec_freeze_events __read_mostly;
138
module_param(ec_freeze_events, bool, 0644);
139
MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
140
141
static bool ec_no_wakeup __read_mostly;
142
module_param(ec_no_wakeup, bool, 0644);
143
MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
144
145
struct acpi_ec_query_handler {
146
struct list_head node;
147
acpi_ec_query_func func;
148
acpi_handle handle;
149
void *data;
150
u8 query_bit;
151
struct kref kref;
152
};
153
154
struct transaction {
155
const u8 *wdata;
156
u8 *rdata;
157
unsigned short irq_count;
158
u8 command;
159
u8 wi;
160
u8 ri;
161
u8 wlen;
162
u8 rlen;
163
u8 flags;
164
};
165
166
struct acpi_ec_query {
167
struct transaction transaction;
168
struct work_struct work;
169
struct acpi_ec_query_handler *handler;
170
struct acpi_ec *ec;
171
};
172
173
static int acpi_ec_submit_query(struct acpi_ec *ec);
174
static void advance_transaction(struct acpi_ec *ec, bool interrupt);
175
static void acpi_ec_event_handler(struct work_struct *work);
176
177
struct acpi_ec *first_ec;
178
EXPORT_SYMBOL(first_ec);
179
180
static struct acpi_ec *boot_ec;
181
static bool boot_ec_is_ecdt;
182
static struct workqueue_struct *ec_wq;
183
static struct workqueue_struct *ec_query_wq;
184
185
static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
186
static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
187
static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
188
189
/* --------------------------------------------------------------------------
190
* Logging/Debugging
191
* -------------------------------------------------------------------------- */
192
193
/*
194
* Splitters used by the developers to track the boundary of the EC
195
* handling processes.
196
*/
197
#ifdef DEBUG
198
#define EC_DBG_SEP " "
199
#define EC_DBG_DRV "+++++"
200
#define EC_DBG_STM "====="
201
#define EC_DBG_REQ "*****"
202
#define EC_DBG_EVT "#####"
203
#else
204
#define EC_DBG_SEP ""
205
#define EC_DBG_DRV
206
#define EC_DBG_STM
207
#define EC_DBG_REQ
208
#define EC_DBG_EVT
209
#endif
210
211
#define ec_log_raw(fmt, ...) \
212
pr_info(fmt "\n", ##__VA_ARGS__)
213
#define ec_dbg_raw(fmt, ...) \
214
pr_debug(fmt "\n", ##__VA_ARGS__)
215
#define ec_log(filter, fmt, ...) \
216
ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
217
#define ec_dbg(filter, fmt, ...) \
218
ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
219
220
#define ec_log_drv(fmt, ...) \
221
ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
222
#define ec_dbg_drv(fmt, ...) \
223
ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
224
#define ec_dbg_stm(fmt, ...) \
225
ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
226
#define ec_dbg_req(fmt, ...) \
227
ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
228
#define ec_dbg_evt(fmt, ...) \
229
ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
230
#define ec_dbg_ref(ec, fmt, ...) \
231
ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
232
233
/* --------------------------------------------------------------------------
234
* Device Flags
235
* -------------------------------------------------------------------------- */
236
237
static bool acpi_ec_started(struct acpi_ec *ec)
238
{
239
return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
240
!test_bit(EC_FLAGS_STOPPED, &ec->flags);
241
}
242
243
static bool acpi_ec_event_enabled(struct acpi_ec *ec)
244
{
245
/*
246
* There is an OSPM early stage logic. During the early stages
247
* (boot/resume), OSPMs shouldn't enable the event handling, only
248
* the EC transactions are allowed to be performed.
249
*/
250
if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
251
return false;
252
/*
253
* However, disabling the event handling is experimental for late
254
* stage (suspend), and is controlled by the boot parameter of
255
* "ec_freeze_events":
256
* 1. true: The EC event handling is disabled before entering
257
* the noirq stage.
258
* 2. false: The EC event handling is automatically disabled as
259
* soon as the EC driver is stopped.
260
*/
261
if (ec_freeze_events)
262
return acpi_ec_started(ec);
263
else
264
return test_bit(EC_FLAGS_STARTED, &ec->flags);
265
}
266
267
static bool acpi_ec_flushed(struct acpi_ec *ec)
268
{
269
return ec->reference_count == 1;
270
}
271
272
/* --------------------------------------------------------------------------
273
* EC Registers
274
* -------------------------------------------------------------------------- */
275
276
static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
277
{
278
u8 x = inb(ec->command_addr);
279
280
ec_dbg_raw("EC_SC(R) = 0x%2.2x "
281
"SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
282
x,
283
!!(x & ACPI_EC_FLAG_SCI),
284
!!(x & ACPI_EC_FLAG_BURST),
285
!!(x & ACPI_EC_FLAG_CMD),
286
!!(x & ACPI_EC_FLAG_IBF),
287
!!(x & ACPI_EC_FLAG_OBF));
288
return x;
289
}
290
291
static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
292
{
293
u8 x = inb(ec->data_addr);
294
295
ec->timestamp = jiffies;
296
ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
297
return x;
298
}
299
300
static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
301
{
302
ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
303
outb(command, ec->command_addr);
304
ec->timestamp = jiffies;
305
}
306
307
static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
308
{
309
ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
310
outb(data, ec->data_addr);
311
ec->timestamp = jiffies;
312
}
313
314
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
315
static const char *acpi_ec_cmd_string(u8 cmd)
316
{
317
switch (cmd) {
318
case 0x80:
319
return "RD_EC";
320
case 0x81:
321
return "WR_EC";
322
case 0x82:
323
return "BE_EC";
324
case 0x83:
325
return "BD_EC";
326
case 0x84:
327
return "QR_EC";
328
}
329
return "UNKNOWN";
330
}
331
#else
332
#define acpi_ec_cmd_string(cmd) "UNDEF"
333
#endif
334
335
/* --------------------------------------------------------------------------
336
* GPE Registers
337
* -------------------------------------------------------------------------- */
338
339
static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
340
{
341
acpi_event_status gpe_status = 0;
342
343
(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
344
return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
345
}
346
347
static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
348
{
349
if (open)
350
acpi_enable_gpe(NULL, ec->gpe);
351
else {
352
BUG_ON(ec->reference_count < 1);
353
acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
354
}
355
if (acpi_ec_gpe_status_set(ec)) {
356
/*
357
* On some platforms, EN=1 writes cannot trigger GPE. So
358
* software need to manually trigger a pseudo GPE event on
359
* EN=1 writes.
360
*/
361
ec_dbg_raw("Polling quirk");
362
advance_transaction(ec, false);
363
}
364
}
365
366
static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
367
{
368
if (close)
369
acpi_disable_gpe(NULL, ec->gpe);
370
else {
371
BUG_ON(ec->reference_count < 1);
372
acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
373
}
374
}
375
376
/* --------------------------------------------------------------------------
377
* Transaction Management
378
* -------------------------------------------------------------------------- */
379
380
static void acpi_ec_submit_request(struct acpi_ec *ec)
381
{
382
ec->reference_count++;
383
if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
384
ec->gpe >= 0 && ec->reference_count == 1)
385
acpi_ec_enable_gpe(ec, true);
386
}
387
388
static void acpi_ec_complete_request(struct acpi_ec *ec)
389
{
390
bool flushed = false;
391
392
ec->reference_count--;
393
if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
394
ec->gpe >= 0 && ec->reference_count == 0)
395
acpi_ec_disable_gpe(ec, true);
396
flushed = acpi_ec_flushed(ec);
397
if (flushed)
398
wake_up(&ec->wait);
399
}
400
401
static void acpi_ec_mask_events(struct acpi_ec *ec)
402
{
403
if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
404
if (ec->gpe >= 0)
405
acpi_ec_disable_gpe(ec, false);
406
else
407
disable_irq_nosync(ec->irq);
408
409
ec_dbg_drv("Polling enabled");
410
set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
411
}
412
}
413
414
static void acpi_ec_unmask_events(struct acpi_ec *ec)
415
{
416
if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
417
clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
418
if (ec->gpe >= 0)
419
acpi_ec_enable_gpe(ec, false);
420
else
421
enable_irq(ec->irq);
422
423
ec_dbg_drv("Polling disabled");
424
}
425
}
426
427
/*
428
* acpi_ec_submit_flushable_request() - Increase the reference count unless
429
* the flush operation is not in
430
* progress
431
* @ec: the EC device
432
*
433
* This function must be used before taking a new action that should hold
434
* the reference count. If this function returns false, then the action
435
* must be discarded or it will prevent the flush operation from being
436
* completed.
437
*/
438
static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
439
{
440
if (!acpi_ec_started(ec))
441
return false;
442
acpi_ec_submit_request(ec);
443
return true;
444
}
445
446
static void acpi_ec_submit_event(struct acpi_ec *ec)
447
{
448
/*
449
* It is safe to mask the events here, because acpi_ec_close_event()
450
* will run at least once after this.
451
*/
452
acpi_ec_mask_events(ec);
453
if (!acpi_ec_event_enabled(ec))
454
return;
455
456
if (ec->event_state != EC_EVENT_READY)
457
return;
458
459
ec_dbg_evt("Command(%s) submitted/blocked",
460
acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
461
462
ec->event_state = EC_EVENT_IN_PROGRESS;
463
/*
464
* If events_to_process is greater than 0 at this point, the while ()
465
* loop in acpi_ec_event_handler() is still running and incrementing
466
* events_to_process will cause it to invoke acpi_ec_submit_query() once
467
* more, so it is not necessary to queue up the event work to start the
468
* same loop again.
469
*/
470
if (ec->events_to_process++ > 0)
471
return;
472
473
ec->events_in_progress++;
474
queue_work(ec_wq, &ec->work);
475
}
476
477
static void acpi_ec_complete_event(struct acpi_ec *ec)
478
{
479
if (ec->event_state == EC_EVENT_IN_PROGRESS)
480
ec->event_state = EC_EVENT_COMPLETE;
481
}
482
483
static void acpi_ec_close_event(struct acpi_ec *ec)
484
{
485
if (ec->event_state != EC_EVENT_READY)
486
ec_dbg_evt("Command(%s) unblocked",
487
acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
488
489
ec->event_state = EC_EVENT_READY;
490
acpi_ec_unmask_events(ec);
491
}
492
493
static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
494
{
495
if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
496
ec_log_drv("event unblocked");
497
/*
498
* Unconditionally invoke this once after enabling the event
499
* handling mechanism to detect the pending events.
500
*/
501
advance_transaction(ec, false);
502
}
503
504
static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
505
{
506
if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
507
ec_log_drv("event blocked");
508
}
509
510
/*
511
* Process _Q events that might have accumulated in the EC.
512
* Run with locked ec mutex.
513
*/
514
static void acpi_ec_clear(struct acpi_ec *ec)
515
{
516
int i;
517
518
for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
519
if (acpi_ec_submit_query(ec))
520
break;
521
}
522
if (unlikely(i == ACPI_EC_CLEAR_MAX))
523
pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
524
else
525
pr_info("%d stale EC events cleared\n", i);
526
}
527
528
static void acpi_ec_enable_event(struct acpi_ec *ec)
529
{
530
unsigned long flags;
531
532
spin_lock_irqsave(&ec->lock, flags);
533
if (acpi_ec_started(ec))
534
__acpi_ec_enable_event(ec);
535
spin_unlock_irqrestore(&ec->lock, flags);
536
537
/* Drain additional events if hardware requires that */
538
if (EC_FLAGS_CLEAR_ON_RESUME)
539
acpi_ec_clear(ec);
540
}
541
542
#ifdef CONFIG_PM_SLEEP
543
static void __acpi_ec_flush_work(void)
544
{
545
flush_workqueue(ec_wq); /* flush ec->work */
546
flush_workqueue(ec_query_wq); /* flush queries */
547
}
548
549
static void acpi_ec_disable_event(struct acpi_ec *ec)
550
{
551
unsigned long flags;
552
553
spin_lock_irqsave(&ec->lock, flags);
554
__acpi_ec_disable_event(ec);
555
spin_unlock_irqrestore(&ec->lock, flags);
556
557
/*
558
* When ec_freeze_events is true, we need to flush events in
559
* the proper position before entering the noirq stage.
560
*/
561
__acpi_ec_flush_work();
562
}
563
564
void acpi_ec_flush_work(void)
565
{
566
/* Without ec_wq there is nothing to flush. */
567
if (!ec_wq)
568
return;
569
570
__acpi_ec_flush_work();
571
}
572
#endif /* CONFIG_PM_SLEEP */
573
574
static bool acpi_ec_guard_event(struct acpi_ec *ec)
575
{
576
unsigned long flags;
577
bool guarded;
578
579
spin_lock_irqsave(&ec->lock, flags);
580
/*
581
* If firmware SCI_EVT clearing timing is "event", we actually
582
* don't know when the SCI_EVT will be cleared by firmware after
583
* evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
584
* acceptable period.
585
*
586
* The guarding period is applicable if the event state is not
587
* EC_EVENT_READY, but otherwise if the current transaction is of the
588
* ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
589
* and it should not be applied to let the transaction transition into
590
* the ACPI_EC_COMMAND_POLL state immediately.
591
*/
592
guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
593
ec->event_state != EC_EVENT_READY &&
594
(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
595
spin_unlock_irqrestore(&ec->lock, flags);
596
return guarded;
597
}
598
599
static int ec_transaction_polled(struct acpi_ec *ec)
600
{
601
unsigned long flags;
602
int ret = 0;
603
604
spin_lock_irqsave(&ec->lock, flags);
605
if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
606
ret = 1;
607
spin_unlock_irqrestore(&ec->lock, flags);
608
return ret;
609
}
610
611
static int ec_transaction_completed(struct acpi_ec *ec)
612
{
613
unsigned long flags;
614
int ret = 0;
615
616
spin_lock_irqsave(&ec->lock, flags);
617
if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
618
ret = 1;
619
spin_unlock_irqrestore(&ec->lock, flags);
620
return ret;
621
}
622
623
static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
624
{
625
ec->curr->flags |= flag;
626
627
if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
628
return;
629
630
switch (ec_event_clearing) {
631
case ACPI_EC_EVT_TIMING_STATUS:
632
if (flag == ACPI_EC_COMMAND_POLL)
633
acpi_ec_close_event(ec);
634
635
return;
636
637
case ACPI_EC_EVT_TIMING_QUERY:
638
if (flag == ACPI_EC_COMMAND_COMPLETE)
639
acpi_ec_close_event(ec);
640
641
return;
642
643
case ACPI_EC_EVT_TIMING_EVENT:
644
if (flag == ACPI_EC_COMMAND_COMPLETE)
645
acpi_ec_complete_event(ec);
646
}
647
}
648
649
static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
650
{
651
if (t->irq_count < ec_storm_threshold)
652
++t->irq_count;
653
654
/* Trigger if the threshold is 0 too. */
655
if (t->irq_count == ec_storm_threshold)
656
acpi_ec_mask_events(ec);
657
}
658
659
static void advance_transaction(struct acpi_ec *ec, bool interrupt)
660
{
661
struct transaction *t = ec->curr;
662
bool wakeup = false;
663
u8 status;
664
665
ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
666
667
status = acpi_ec_read_status(ec);
668
669
/*
670
* Another IRQ or a guarded polling mode advancement is detected,
671
* the next QR_EC submission is then allowed.
672
*/
673
if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
674
if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
675
ec->event_state == EC_EVENT_COMPLETE)
676
acpi_ec_close_event(ec);
677
678
if (!t)
679
goto out;
680
}
681
682
if (t->flags & ACPI_EC_COMMAND_POLL) {
683
if (t->wlen > t->wi) {
684
if (!(status & ACPI_EC_FLAG_IBF))
685
acpi_ec_write_data(ec, t->wdata[t->wi++]);
686
else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
687
acpi_ec_spurious_interrupt(ec, t);
688
} else if (t->rlen > t->ri) {
689
if (status & ACPI_EC_FLAG_OBF) {
690
t->rdata[t->ri++] = acpi_ec_read_data(ec);
691
if (t->rlen == t->ri) {
692
ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
693
wakeup = true;
694
if (t->command == ACPI_EC_COMMAND_QUERY)
695
ec_dbg_evt("Command(%s) completed by hardware",
696
acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
697
}
698
} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
699
acpi_ec_spurious_interrupt(ec, t);
700
}
701
} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
702
ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
703
wakeup = true;
704
}
705
} else if (!(status & ACPI_EC_FLAG_IBF)) {
706
acpi_ec_write_cmd(ec, t->command);
707
ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
708
}
709
710
out:
711
if (status & ACPI_EC_FLAG_SCI)
712
acpi_ec_submit_event(ec);
713
714
if (wakeup && interrupt)
715
wake_up(&ec->wait);
716
}
717
718
static void start_transaction(struct acpi_ec *ec)
719
{
720
ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
721
ec->curr->flags = 0;
722
}
723
724
static int ec_guard(struct acpi_ec *ec)
725
{
726
unsigned long guard = usecs_to_jiffies(ec->polling_guard);
727
unsigned long timeout = ec->timestamp + guard;
728
729
/* Ensure guarding period before polling EC status */
730
do {
731
if (ec->busy_polling) {
732
/* Perform busy polling */
733
if (ec_transaction_completed(ec))
734
return 0;
735
udelay(jiffies_to_usecs(guard));
736
} else {
737
/*
738
* Perform wait polling
739
* 1. Wait the transaction to be completed by the
740
* GPE handler after the transaction enters
741
* ACPI_EC_COMMAND_POLL state.
742
* 2. A special guarding logic is also required
743
* for event clearing mode "event" before the
744
* transaction enters ACPI_EC_COMMAND_POLL
745
* state.
746
*/
747
if (!ec_transaction_polled(ec) &&
748
!acpi_ec_guard_event(ec))
749
break;
750
if (wait_event_timeout(ec->wait,
751
ec_transaction_completed(ec),
752
guard))
753
return 0;
754
}
755
} while (time_before(jiffies, timeout));
756
return -ETIME;
757
}
758
759
static int ec_poll(struct acpi_ec *ec)
760
{
761
unsigned long flags;
762
int repeat = 5; /* number of command restarts */
763
764
while (repeat--) {
765
unsigned long delay = jiffies +
766
msecs_to_jiffies(ec_delay);
767
do {
768
if (!ec_guard(ec))
769
return 0;
770
spin_lock_irqsave(&ec->lock, flags);
771
advance_transaction(ec, false);
772
spin_unlock_irqrestore(&ec->lock, flags);
773
} while (time_before(jiffies, delay));
774
pr_debug("controller reset, restart transaction\n");
775
spin_lock_irqsave(&ec->lock, flags);
776
start_transaction(ec);
777
spin_unlock_irqrestore(&ec->lock, flags);
778
}
779
return -ETIME;
780
}
781
782
static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
783
struct transaction *t)
784
{
785
unsigned long tmp;
786
int ret = 0;
787
788
if (t->rdata)
789
memset(t->rdata, 0, t->rlen);
790
791
/* start transaction */
792
spin_lock_irqsave(&ec->lock, tmp);
793
/* Enable GPE for command processing (IBF=0/OBF=1) */
794
if (!acpi_ec_submit_flushable_request(ec)) {
795
ret = -EINVAL;
796
goto unlock;
797
}
798
ec_dbg_ref(ec, "Increase command");
799
/* following two actions should be kept atomic */
800
ec->curr = t;
801
ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
802
start_transaction(ec);
803
spin_unlock_irqrestore(&ec->lock, tmp);
804
805
ret = ec_poll(ec);
806
807
spin_lock_irqsave(&ec->lock, tmp);
808
if (t->irq_count == ec_storm_threshold)
809
acpi_ec_unmask_events(ec);
810
ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
811
ec->curr = NULL;
812
/* Disable GPE for command processing (IBF=0/OBF=1) */
813
acpi_ec_complete_request(ec);
814
ec_dbg_ref(ec, "Decrease command");
815
unlock:
816
spin_unlock_irqrestore(&ec->lock, tmp);
817
return ret;
818
}
819
820
static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
821
{
822
int status;
823
u32 glk;
824
825
if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
826
return -EINVAL;
827
828
mutex_lock(&ec->mutex);
829
if (ec->global_lock) {
830
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
831
if (ACPI_FAILURE(status)) {
832
status = -ENODEV;
833
goto unlock;
834
}
835
}
836
837
status = acpi_ec_transaction_unlocked(ec, t);
838
839
if (ec->global_lock)
840
acpi_release_global_lock(glk);
841
unlock:
842
mutex_unlock(&ec->mutex);
843
return status;
844
}
845
846
static int acpi_ec_burst_enable(struct acpi_ec *ec)
847
{
848
u8 d;
849
struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
850
.wdata = NULL, .rdata = &d,
851
.wlen = 0, .rlen = 1};
852
853
return acpi_ec_transaction_unlocked(ec, &t);
854
}
855
856
static int acpi_ec_burst_disable(struct acpi_ec *ec)
857
{
858
struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
859
.wdata = NULL, .rdata = NULL,
860
.wlen = 0, .rlen = 0};
861
862
return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
863
acpi_ec_transaction_unlocked(ec, &t) : 0;
864
}
865
866
static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
867
{
868
int result;
869
u8 d;
870
struct transaction t = {.command = ACPI_EC_COMMAND_READ,
871
.wdata = &address, .rdata = &d,
872
.wlen = 1, .rlen = 1};
873
874
result = acpi_ec_transaction(ec, &t);
875
*data = d;
876
return result;
877
}
878
879
static int acpi_ec_read_unlocked(struct acpi_ec *ec, u8 address, u8 *data)
880
{
881
int result;
882
u8 d;
883
struct transaction t = {.command = ACPI_EC_COMMAND_READ,
884
.wdata = &address, .rdata = &d,
885
.wlen = 1, .rlen = 1};
886
887
result = acpi_ec_transaction_unlocked(ec, &t);
888
*data = d;
889
return result;
890
}
891
892
static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
893
{
894
u8 wdata[2] = { address, data };
895
struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
896
.wdata = wdata, .rdata = NULL,
897
.wlen = 2, .rlen = 0};
898
899
return acpi_ec_transaction(ec, &t);
900
}
901
902
static int acpi_ec_write_unlocked(struct acpi_ec *ec, u8 address, u8 data)
903
{
904
u8 wdata[2] = { address, data };
905
struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
906
.wdata = wdata, .rdata = NULL,
907
.wlen = 2, .rlen = 0};
908
909
return acpi_ec_transaction_unlocked(ec, &t);
910
}
911
912
int ec_read(u8 addr, u8 *val)
913
{
914
int err;
915
u8 temp_data;
916
917
if (!first_ec)
918
return -ENODEV;
919
920
err = acpi_ec_read(first_ec, addr, &temp_data);
921
922
if (!err) {
923
*val = temp_data;
924
return 0;
925
}
926
return err;
927
}
928
EXPORT_SYMBOL(ec_read);
929
930
int ec_write(u8 addr, u8 val)
931
{
932
if (!first_ec)
933
return -ENODEV;
934
935
return acpi_ec_write(first_ec, addr, val);
936
}
937
EXPORT_SYMBOL(ec_write);
938
939
int ec_transaction(u8 command,
940
const u8 *wdata, unsigned wdata_len,
941
u8 *rdata, unsigned rdata_len)
942
{
943
struct transaction t = {.command = command,
944
.wdata = wdata, .rdata = rdata,
945
.wlen = wdata_len, .rlen = rdata_len};
946
947
if (!first_ec)
948
return -ENODEV;
949
950
return acpi_ec_transaction(first_ec, &t);
951
}
952
EXPORT_SYMBOL(ec_transaction);
953
954
/* Get the handle to the EC device */
955
acpi_handle ec_get_handle(void)
956
{
957
if (!first_ec)
958
return NULL;
959
return first_ec->handle;
960
}
961
EXPORT_SYMBOL(ec_get_handle);
962
963
static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
964
{
965
unsigned long flags;
966
967
spin_lock_irqsave(&ec->lock, flags);
968
if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
969
ec_dbg_drv("Starting EC");
970
/* Enable GPE for event processing (SCI_EVT=1) */
971
if (!resuming) {
972
acpi_ec_submit_request(ec);
973
ec_dbg_ref(ec, "Increase driver");
974
}
975
ec_log_drv("EC started");
976
}
977
spin_unlock_irqrestore(&ec->lock, flags);
978
}
979
980
static bool acpi_ec_stopped(struct acpi_ec *ec)
981
{
982
unsigned long flags;
983
bool flushed;
984
985
spin_lock_irqsave(&ec->lock, flags);
986
flushed = acpi_ec_flushed(ec);
987
spin_unlock_irqrestore(&ec->lock, flags);
988
return flushed;
989
}
990
991
static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
992
{
993
unsigned long flags;
994
995
spin_lock_irqsave(&ec->lock, flags);
996
if (acpi_ec_started(ec)) {
997
ec_dbg_drv("Stopping EC");
998
set_bit(EC_FLAGS_STOPPED, &ec->flags);
999
spin_unlock_irqrestore(&ec->lock, flags);
1000
wait_event(ec->wait, acpi_ec_stopped(ec));
1001
spin_lock_irqsave(&ec->lock, flags);
1002
/* Disable GPE for event processing (SCI_EVT=1) */
1003
if (!suspending) {
1004
acpi_ec_complete_request(ec);
1005
ec_dbg_ref(ec, "Decrease driver");
1006
} else if (!ec_freeze_events)
1007
__acpi_ec_disable_event(ec);
1008
clear_bit(EC_FLAGS_STARTED, &ec->flags);
1009
clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1010
ec_log_drv("EC stopped");
1011
}
1012
spin_unlock_irqrestore(&ec->lock, flags);
1013
}
1014
1015
static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1016
{
1017
unsigned long flags;
1018
1019
spin_lock_irqsave(&ec->lock, flags);
1020
ec->busy_polling = true;
1021
ec->polling_guard = 0;
1022
ec_log_drv("interrupt blocked");
1023
spin_unlock_irqrestore(&ec->lock, flags);
1024
}
1025
1026
static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1027
{
1028
unsigned long flags;
1029
1030
spin_lock_irqsave(&ec->lock, flags);
1031
ec->busy_polling = ec_busy_polling;
1032
ec->polling_guard = ec_polling_guard;
1033
ec_log_drv("interrupt unblocked");
1034
spin_unlock_irqrestore(&ec->lock, flags);
1035
}
1036
1037
void acpi_ec_block_transactions(void)
1038
{
1039
struct acpi_ec *ec = first_ec;
1040
1041
if (!ec)
1042
return;
1043
1044
mutex_lock(&ec->mutex);
1045
/* Prevent transactions from being carried out */
1046
acpi_ec_stop(ec, true);
1047
mutex_unlock(&ec->mutex);
1048
}
1049
1050
void acpi_ec_unblock_transactions(void)
1051
{
1052
/*
1053
* Allow transactions to happen again (this function is called from
1054
* atomic context during wakeup, so we don't need to acquire the mutex).
1055
*/
1056
if (first_ec)
1057
acpi_ec_start(first_ec, true);
1058
}
1059
1060
/* --------------------------------------------------------------------------
1061
Event Management
1062
-------------------------------------------------------------------------- */
1063
static struct acpi_ec_query_handler *
1064
acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1065
{
1066
struct acpi_ec_query_handler *handler;
1067
1068
mutex_lock(&ec->mutex);
1069
list_for_each_entry(handler, &ec->list, node) {
1070
if (value == handler->query_bit) {
1071
kref_get(&handler->kref);
1072
mutex_unlock(&ec->mutex);
1073
return handler;
1074
}
1075
}
1076
mutex_unlock(&ec->mutex);
1077
return NULL;
1078
}
1079
1080
static void acpi_ec_query_handler_release(struct kref *kref)
1081
{
1082
struct acpi_ec_query_handler *handler =
1083
container_of(kref, struct acpi_ec_query_handler, kref);
1084
1085
kfree(handler);
1086
}
1087
1088
static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1089
{
1090
kref_put(&handler->kref, acpi_ec_query_handler_release);
1091
}
1092
1093
int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1094
acpi_handle handle, acpi_ec_query_func func,
1095
void *data)
1096
{
1097
struct acpi_ec_query_handler *handler;
1098
1099
if (!handle && !func)
1100
return -EINVAL;
1101
1102
handler = kzalloc(sizeof(*handler), GFP_KERNEL);
1103
if (!handler)
1104
return -ENOMEM;
1105
1106
handler->query_bit = query_bit;
1107
handler->handle = handle;
1108
handler->func = func;
1109
handler->data = data;
1110
mutex_lock(&ec->mutex);
1111
kref_init(&handler->kref);
1112
list_add(&handler->node, &ec->list);
1113
mutex_unlock(&ec->mutex);
1114
1115
return 0;
1116
}
1117
EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1118
1119
static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1120
bool remove_all, u8 query_bit)
1121
{
1122
struct acpi_ec_query_handler *handler, *tmp;
1123
LIST_HEAD(free_list);
1124
1125
mutex_lock(&ec->mutex);
1126
list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1127
/*
1128
* When remove_all is false, only remove custom query handlers
1129
* which have handler->func set. This is done to preserve query
1130
* handlers discovered thru ACPI, as they should continue handling
1131
* EC queries.
1132
*/
1133
if (remove_all || (handler->func && handler->query_bit == query_bit)) {
1134
list_del_init(&handler->node);
1135
list_add(&handler->node, &free_list);
1136
1137
}
1138
}
1139
mutex_unlock(&ec->mutex);
1140
list_for_each_entry_safe(handler, tmp, &free_list, node)
1141
acpi_ec_put_query_handler(handler);
1142
}
1143
1144
void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1145
{
1146
acpi_ec_remove_query_handlers(ec, false, query_bit);
1147
flush_workqueue(ec_query_wq);
1148
}
1149
EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1150
1151
static void acpi_ec_event_processor(struct work_struct *work)
1152
{
1153
struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1154
struct acpi_ec_query_handler *handler = q->handler;
1155
struct acpi_ec *ec = q->ec;
1156
1157
ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1158
1159
if (handler->func)
1160
handler->func(handler->data);
1161
else if (handler->handle)
1162
acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1163
1164
ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1165
1166
spin_lock_irq(&ec->lock);
1167
ec->queries_in_progress--;
1168
spin_unlock_irq(&ec->lock);
1169
1170
acpi_ec_put_query_handler(handler);
1171
kfree(q);
1172
}
1173
1174
static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1175
{
1176
struct acpi_ec_query *q;
1177
struct transaction *t;
1178
1179
q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1180
if (!q)
1181
return NULL;
1182
1183
INIT_WORK(&q->work, acpi_ec_event_processor);
1184
t = &q->transaction;
1185
t->command = ACPI_EC_COMMAND_QUERY;
1186
t->rdata = pval;
1187
t->rlen = 1;
1188
q->ec = ec;
1189
return q;
1190
}
1191
1192
static int acpi_ec_submit_query(struct acpi_ec *ec)
1193
{
1194
struct acpi_ec_query *q;
1195
u8 value = 0;
1196
int result;
1197
1198
q = acpi_ec_create_query(ec, &value);
1199
if (!q)
1200
return -ENOMEM;
1201
1202
/*
1203
* Query the EC to find out which _Qxx method we need to evaluate.
1204
* Note that successful completion of the query causes the ACPI_EC_SCI
1205
* bit to be cleared (and thus clearing the interrupt source).
1206
*/
1207
result = acpi_ec_transaction(ec, &q->transaction);
1208
if (result)
1209
goto err_exit;
1210
1211
if (!value) {
1212
result = -ENODATA;
1213
goto err_exit;
1214
}
1215
1216
q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1217
if (!q->handler) {
1218
result = -ENODATA;
1219
goto err_exit;
1220
}
1221
1222
/*
1223
* It is reported that _Qxx are evaluated in a parallel way on Windows:
1224
* https://bugzilla.kernel.org/show_bug.cgi?id=94411
1225
*
1226
* Put this log entry before queue_work() to make it appear in the log
1227
* before any other messages emitted during workqueue handling.
1228
*/
1229
ec_dbg_evt("Query(0x%02x) scheduled", value);
1230
1231
spin_lock_irq(&ec->lock);
1232
1233
ec->queries_in_progress++;
1234
queue_work(ec_query_wq, &q->work);
1235
1236
spin_unlock_irq(&ec->lock);
1237
1238
return 0;
1239
1240
err_exit:
1241
kfree(q);
1242
1243
return result;
1244
}
1245
1246
static void acpi_ec_event_handler(struct work_struct *work)
1247
{
1248
struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1249
1250
ec_dbg_evt("Event started");
1251
1252
spin_lock_irq(&ec->lock);
1253
1254
while (ec->events_to_process) {
1255
spin_unlock_irq(&ec->lock);
1256
1257
acpi_ec_submit_query(ec);
1258
1259
spin_lock_irq(&ec->lock);
1260
1261
ec->events_to_process--;
1262
}
1263
1264
/*
1265
* Before exit, make sure that the it will be possible to queue up the
1266
* event handling work again regardless of whether or not the query
1267
* queued up above is processed successfully.
1268
*/
1269
if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1270
bool guard_timeout;
1271
1272
acpi_ec_complete_event(ec);
1273
1274
ec_dbg_evt("Event stopped");
1275
1276
spin_unlock_irq(&ec->lock);
1277
1278
guard_timeout = !!ec_guard(ec);
1279
1280
spin_lock_irq(&ec->lock);
1281
1282
/* Take care of SCI_EVT unless someone else is doing that. */
1283
if (guard_timeout && !ec->curr)
1284
advance_transaction(ec, false);
1285
} else {
1286
acpi_ec_close_event(ec);
1287
1288
ec_dbg_evt("Event stopped");
1289
}
1290
1291
ec->events_in_progress--;
1292
1293
spin_unlock_irq(&ec->lock);
1294
}
1295
1296
static void clear_gpe_and_advance_transaction(struct acpi_ec *ec, bool interrupt)
1297
{
1298
/*
1299
* Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
1300
* changes to always trigger a GPE interrupt.
1301
*
1302
* GPE STS is a W1C register, which means:
1303
*
1304
* 1. Software can clear it without worrying about clearing the other
1305
* GPEs' STS bits when the hardware sets them in parallel.
1306
*
1307
* 2. As long as software can ensure only clearing it when it is set,
1308
* hardware won't set it in parallel.
1309
*/
1310
if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
1311
acpi_clear_gpe(NULL, ec->gpe);
1312
1313
advance_transaction(ec, true);
1314
}
1315
1316
static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1317
{
1318
unsigned long flags;
1319
1320
spin_lock_irqsave(&ec->lock, flags);
1321
1322
clear_gpe_and_advance_transaction(ec, true);
1323
1324
spin_unlock_irqrestore(&ec->lock, flags);
1325
}
1326
1327
static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1328
u32 gpe_number, void *data)
1329
{
1330
acpi_ec_handle_interrupt(data);
1331
return ACPI_INTERRUPT_HANDLED;
1332
}
1333
1334
static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1335
{
1336
acpi_ec_handle_interrupt(data);
1337
return IRQ_HANDLED;
1338
}
1339
1340
/* --------------------------------------------------------------------------
1341
* Address Space Management
1342
* -------------------------------------------------------------------------- */
1343
1344
static acpi_status
1345
acpi_ec_space_handler(u32 function, acpi_physical_address address,
1346
u32 bits, u64 *value64,
1347
void *handler_context, void *region_context)
1348
{
1349
struct acpi_ec *ec = handler_context;
1350
int result = 0, i, bytes = bits / 8;
1351
u8 *value = (u8 *)value64;
1352
u32 glk;
1353
1354
if ((address > 0xFF) || !value || !handler_context)
1355
return AE_BAD_PARAMETER;
1356
1357
if (function != ACPI_READ && function != ACPI_WRITE)
1358
return AE_BAD_PARAMETER;
1359
1360
mutex_lock(&ec->mutex);
1361
1362
if (ec->global_lock) {
1363
acpi_status status;
1364
1365
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
1366
if (ACPI_FAILURE(status)) {
1367
result = -ENODEV;
1368
goto unlock;
1369
}
1370
}
1371
1372
if (ec->busy_polling || bits > 8)
1373
acpi_ec_burst_enable(ec);
1374
1375
for (i = 0; i < bytes; ++i, ++address, ++value) {
1376
result = (function == ACPI_READ) ?
1377
acpi_ec_read_unlocked(ec, address, value) :
1378
acpi_ec_write_unlocked(ec, address, *value);
1379
if (result < 0)
1380
break;
1381
}
1382
1383
if (ec->busy_polling || bits > 8)
1384
acpi_ec_burst_disable(ec);
1385
1386
if (ec->global_lock)
1387
acpi_release_global_lock(glk);
1388
1389
unlock:
1390
mutex_unlock(&ec->mutex);
1391
1392
switch (result) {
1393
case -EINVAL:
1394
return AE_BAD_PARAMETER;
1395
case -ENODEV:
1396
return AE_NOT_FOUND;
1397
case -ETIME:
1398
return AE_TIME;
1399
case 0:
1400
return AE_OK;
1401
default:
1402
return AE_ERROR;
1403
}
1404
}
1405
1406
/* --------------------------------------------------------------------------
1407
* Driver Interface
1408
* -------------------------------------------------------------------------- */
1409
1410
static acpi_status
1411
ec_parse_io_ports(struct acpi_resource *resource, void *context);
1412
1413
static void acpi_ec_free(struct acpi_ec *ec)
1414
{
1415
if (first_ec == ec)
1416
first_ec = NULL;
1417
if (boot_ec == ec)
1418
boot_ec = NULL;
1419
kfree(ec);
1420
}
1421
1422
static struct acpi_ec *acpi_ec_alloc(void)
1423
{
1424
struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1425
1426
if (!ec)
1427
return NULL;
1428
mutex_init(&ec->mutex);
1429
init_waitqueue_head(&ec->wait);
1430
INIT_LIST_HEAD(&ec->list);
1431
spin_lock_init(&ec->lock);
1432
INIT_WORK(&ec->work, acpi_ec_event_handler);
1433
ec->timestamp = jiffies;
1434
ec->busy_polling = true;
1435
ec->polling_guard = 0;
1436
ec->gpe = -1;
1437
ec->irq = -1;
1438
return ec;
1439
}
1440
1441
static acpi_status
1442
acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1443
void *context, void **return_value)
1444
{
1445
char node_name[5];
1446
struct acpi_buffer buffer = { sizeof(node_name), node_name };
1447
struct acpi_ec *ec = context;
1448
int value = 0;
1449
acpi_status status;
1450
1451
status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1452
1453
if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1454
acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1455
return AE_OK;
1456
}
1457
1458
static acpi_status
1459
ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1460
{
1461
acpi_status status;
1462
unsigned long long tmp = 0;
1463
struct acpi_ec *ec = context;
1464
1465
/* clear addr values, ec_parse_io_ports depend on it */
1466
ec->command_addr = ec->data_addr = 0;
1467
1468
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1469
ec_parse_io_ports, ec);
1470
if (ACPI_FAILURE(status))
1471
return status;
1472
if (ec->data_addr == 0 || ec->command_addr == 0)
1473
return AE_OK;
1474
1475
/* Get GPE bit assignment (EC events). */
1476
/* TODO: Add support for _GPE returning a package */
1477
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1478
if (ACPI_SUCCESS(status))
1479
ec->gpe = tmp;
1480
/*
1481
* Errors are non-fatal, allowing for ACPI Reduced Hardware
1482
* platforms which use GpioInt instead of GPE.
1483
*/
1484
1485
/* Use the global lock for all EC transactions? */
1486
tmp = 0;
1487
acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1488
ec->global_lock = tmp;
1489
ec->handle = handle;
1490
return AE_CTRL_TERMINATE;
1491
}
1492
1493
static bool install_gpe_event_handler(struct acpi_ec *ec)
1494
{
1495
acpi_status status;
1496
1497
status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1498
ACPI_GPE_EDGE_TRIGGERED,
1499
&acpi_ec_gpe_handler, ec);
1500
if (ACPI_FAILURE(status))
1501
return false;
1502
1503
if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1504
acpi_ec_enable_gpe(ec, true);
1505
1506
return true;
1507
}
1508
1509
static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1510
{
1511
return request_threaded_irq(ec->irq, NULL, acpi_ec_irq_handler,
1512
IRQF_SHARED | IRQF_ONESHOT, "ACPI EC", ec) >= 0;
1513
}
1514
1515
/**
1516
* ec_install_handlers - Install service callbacks and register query methods.
1517
* @ec: Target EC.
1518
* @device: ACPI device object corresponding to @ec.
1519
* @call_reg: If _REG should be called to notify OpRegion availability
1520
*
1521
* Install a handler for the EC address space type unless it has been installed
1522
* already. If @device is not NULL, also look for EC query methods in the
1523
* namespace and register them, and install an event (either GPE or GPIO IRQ)
1524
* handler for the EC, if possible.
1525
*
1526
* Return:
1527
* -ENODEV if the address space handler cannot be installed, which means
1528
* "unable to handle transactions",
1529
* -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1530
* or 0 (success) otherwise.
1531
*/
1532
static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device,
1533
bool call_reg)
1534
{
1535
acpi_status status;
1536
1537
acpi_ec_start(ec, false);
1538
1539
if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1540
acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1541
1542
acpi_ec_enter_noirq(ec);
1543
status = acpi_install_address_space_handler_no_reg(scope_handle,
1544
ACPI_ADR_SPACE_EC,
1545
&acpi_ec_space_handler,
1546
NULL, ec);
1547
if (ACPI_FAILURE(status)) {
1548
acpi_ec_stop(ec, false);
1549
return -ENODEV;
1550
}
1551
set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1552
}
1553
1554
if (call_reg && !test_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags)) {
1555
acpi_execute_reg_methods(ec->handle, ACPI_UINT32_MAX, ACPI_ADR_SPACE_EC);
1556
set_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags);
1557
}
1558
1559
if (!device)
1560
return 0;
1561
1562
if (ec->gpe < 0) {
1563
/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1564
int irq = acpi_dev_gpio_irq_get(device, 0);
1565
/*
1566
* Bail out right away for deferred probing or complete the
1567
* initialization regardless of any other errors.
1568
*/
1569
if (irq == -EPROBE_DEFER)
1570
return -EPROBE_DEFER;
1571
else if (irq >= 0)
1572
ec->irq = irq;
1573
}
1574
1575
if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1576
/* Find and register all query methods */
1577
acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1578
acpi_ec_register_query_methods,
1579
NULL, ec, NULL);
1580
set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1581
}
1582
if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1583
bool ready = false;
1584
1585
if (ec->gpe >= 0)
1586
ready = install_gpe_event_handler(ec);
1587
else if (ec->irq >= 0)
1588
ready = install_gpio_irq_event_handler(ec);
1589
1590
if (ready) {
1591
set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1592
acpi_ec_leave_noirq(ec);
1593
}
1594
/*
1595
* Failures to install an event handler are not fatal, because
1596
* the EC can be polled for events.
1597
*/
1598
}
1599
/* EC is fully operational, allow queries */
1600
acpi_ec_enable_event(ec);
1601
1602
return 0;
1603
}
1604
1605
static void ec_remove_handlers(struct acpi_ec *ec)
1606
{
1607
acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1608
1609
if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1610
if (ACPI_FAILURE(acpi_remove_address_space_handler(
1611
scope_handle,
1612
ACPI_ADR_SPACE_EC,
1613
&acpi_ec_space_handler)))
1614
pr_err("failed to remove space handler\n");
1615
clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1616
}
1617
1618
/*
1619
* Stops handling the EC transactions after removing the operation
1620
* region handler. This is required because _REG(DISCONNECT)
1621
* invoked during the removal can result in new EC transactions.
1622
*
1623
* Flushes the EC requests and thus disables the GPE before
1624
* removing the GPE handler. This is required by the current ACPICA
1625
* GPE core. ACPICA GPE core will automatically disable a GPE when
1626
* it is indicated but there is no way to handle it. So the drivers
1627
* must disable the GPEs prior to removing the GPE handlers.
1628
*/
1629
acpi_ec_stop(ec, false);
1630
1631
if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1632
if (ec->gpe >= 0 &&
1633
ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1634
&acpi_ec_gpe_handler)))
1635
pr_err("failed to remove gpe handler\n");
1636
1637
if (ec->irq >= 0)
1638
free_irq(ec->irq, ec);
1639
1640
clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1641
}
1642
if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1643
acpi_ec_remove_query_handlers(ec, true, 0);
1644
clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1645
}
1646
}
1647
1648
static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device, bool call_reg)
1649
{
1650
int ret;
1651
1652
/* First EC capable of handling transactions */
1653
if (!first_ec)
1654
first_ec = ec;
1655
1656
ret = ec_install_handlers(ec, device, call_reg);
1657
if (ret) {
1658
if (ec == first_ec)
1659
first_ec = NULL;
1660
1661
return ret;
1662
}
1663
1664
pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1665
ec->data_addr);
1666
1667
if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1668
if (ec->gpe >= 0)
1669
pr_info("GPE=0x%x\n", ec->gpe);
1670
else
1671
pr_info("IRQ=%d\n", ec->irq);
1672
}
1673
1674
return ret;
1675
}
1676
1677
static int acpi_ec_add(struct acpi_device *device)
1678
{
1679
struct acpi_ec *ec;
1680
int ret;
1681
1682
strscpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1683
strscpy(acpi_device_class(device), ACPI_EC_CLASS);
1684
1685
if (boot_ec && (boot_ec->handle == device->handle ||
1686
!strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1687
/* Fast path: this device corresponds to the boot EC. */
1688
ec = boot_ec;
1689
} else {
1690
acpi_status status;
1691
1692
ec = acpi_ec_alloc();
1693
if (!ec)
1694
return -ENOMEM;
1695
1696
status = ec_parse_device(device->handle, 0, ec, NULL);
1697
if (status != AE_CTRL_TERMINATE) {
1698
ret = -EINVAL;
1699
goto err;
1700
}
1701
1702
if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1703
ec->data_addr == boot_ec->data_addr) {
1704
/*
1705
* Trust PNP0C09 namespace location rather than ECDT ID.
1706
* But trust ECDT GPE rather than _GPE because of ASUS
1707
* quirks. So do not change boot_ec->gpe to ec->gpe,
1708
* except when the TRUST_DSDT_GPE quirk is set.
1709
*/
1710
boot_ec->handle = ec->handle;
1711
1712
if (EC_FLAGS_TRUST_DSDT_GPE)
1713
boot_ec->gpe = ec->gpe;
1714
1715
acpi_handle_debug(ec->handle, "duplicated.\n");
1716
acpi_ec_free(ec);
1717
ec = boot_ec;
1718
}
1719
}
1720
1721
ret = acpi_ec_setup(ec, device, true);
1722
if (ret)
1723
goto err;
1724
1725
if (ec == boot_ec)
1726
acpi_handle_info(boot_ec->handle,
1727
"Boot %s EC initialization complete\n",
1728
boot_ec_is_ecdt ? "ECDT" : "DSDT");
1729
1730
acpi_handle_info(ec->handle,
1731
"EC: Used to handle transactions and events\n");
1732
1733
device->driver_data = ec;
1734
1735
ret = !!request_region(ec->data_addr, 1, "EC data");
1736
WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1737
ret = !!request_region(ec->command_addr, 1, "EC cmd");
1738
WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1739
1740
/* Reprobe devices depending on the EC */
1741
acpi_dev_clear_dependencies(device);
1742
1743
acpi_handle_debug(ec->handle, "enumerated.\n");
1744
return 0;
1745
1746
err:
1747
if (ec != boot_ec)
1748
acpi_ec_free(ec);
1749
1750
return ret;
1751
}
1752
1753
static void acpi_ec_remove(struct acpi_device *device)
1754
{
1755
struct acpi_ec *ec;
1756
1757
if (!device)
1758
return;
1759
1760
ec = acpi_driver_data(device);
1761
release_region(ec->data_addr, 1);
1762
release_region(ec->command_addr, 1);
1763
device->driver_data = NULL;
1764
if (ec != boot_ec) {
1765
ec_remove_handlers(ec);
1766
acpi_ec_free(ec);
1767
}
1768
}
1769
1770
void acpi_ec_register_opregions(struct acpi_device *adev)
1771
{
1772
if (first_ec && first_ec->handle != adev->handle)
1773
acpi_execute_reg_methods(adev->handle, 1, ACPI_ADR_SPACE_EC);
1774
}
1775
1776
static acpi_status
1777
ec_parse_io_ports(struct acpi_resource *resource, void *context)
1778
{
1779
struct acpi_ec *ec = context;
1780
1781
if (resource->type != ACPI_RESOURCE_TYPE_IO)
1782
return AE_OK;
1783
1784
/*
1785
* The first address region returned is the data port, and
1786
* the second address region returned is the status/command
1787
* port.
1788
*/
1789
if (ec->data_addr == 0)
1790
ec->data_addr = resource->data.io.minimum;
1791
else if (ec->command_addr == 0)
1792
ec->command_addr = resource->data.io.minimum;
1793
else
1794
return AE_CTRL_TERMINATE;
1795
1796
return AE_OK;
1797
}
1798
1799
static const struct acpi_device_id ec_device_ids[] = {
1800
{"PNP0C09", 0},
1801
{ACPI_ECDT_HID, 0},
1802
{"", 0},
1803
};
1804
1805
/*
1806
* This function is not Windows-compatible as Windows never enumerates the
1807
* namespace EC before the main ACPI device enumeration process. It is
1808
* retained for historical reason and will be deprecated in the future.
1809
*/
1810
void __init acpi_ec_dsdt_probe(void)
1811
{
1812
struct acpi_ec *ec;
1813
acpi_status status;
1814
int ret;
1815
1816
/*
1817
* If a platform has ECDT, there is no need to proceed as the
1818
* following probe is not a part of the ACPI device enumeration,
1819
* executing _STA is not safe, and thus this probe may risk of
1820
* picking up an invalid EC device.
1821
*/
1822
if (boot_ec)
1823
return;
1824
1825
ec = acpi_ec_alloc();
1826
if (!ec)
1827
return;
1828
1829
/*
1830
* At this point, the namespace is initialized, so start to find
1831
* the namespace objects.
1832
*/
1833
status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1834
if (ACPI_FAILURE(status) || !ec->handle) {
1835
acpi_ec_free(ec);
1836
return;
1837
}
1838
1839
/*
1840
* When the DSDT EC is available, always re-configure boot EC to
1841
* have _REG evaluated. _REG can only be evaluated after the
1842
* namespace initialization.
1843
* At this point, the GPE is not fully initialized, so do not to
1844
* handle the events.
1845
*/
1846
ret = acpi_ec_setup(ec, NULL, true);
1847
if (ret) {
1848
acpi_ec_free(ec);
1849
return;
1850
}
1851
1852
boot_ec = ec;
1853
1854
acpi_handle_info(ec->handle,
1855
"Boot DSDT EC used to handle transactions\n");
1856
}
1857
1858
/*
1859
* acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1860
*
1861
* First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1862
* found a matching object in the namespace.
1863
*
1864
* Next, in case the DSDT EC is not functioning, it is still necessary to
1865
* provide a functional ECDT EC to handle events, so add an extra device object
1866
* to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1867
*
1868
* This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1869
* like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1870
*/
1871
static void __init acpi_ec_ecdt_start(void)
1872
{
1873
struct acpi_table_ecdt *ecdt_ptr;
1874
acpi_handle handle;
1875
acpi_status status;
1876
1877
/* Bail out if a matching EC has been found in the namespace. */
1878
if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1879
return;
1880
1881
/* Look up the object pointed to from the ECDT in the namespace. */
1882
status = acpi_get_table(ACPI_SIG_ECDT, 1,
1883
(struct acpi_table_header **)&ecdt_ptr);
1884
if (ACPI_FAILURE(status))
1885
return;
1886
1887
status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1888
if (ACPI_SUCCESS(status)) {
1889
boot_ec->handle = handle;
1890
1891
/* Add a special ACPI device object to represent the boot EC. */
1892
acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1893
}
1894
1895
acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1896
}
1897
1898
/*
1899
* On some hardware it is necessary to clear events accumulated by the EC during
1900
* sleep. These ECs stop reporting GPEs until they are manually polled, if too
1901
* many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1902
*
1903
* https://bugzilla.kernel.org/show_bug.cgi?id=44161
1904
*
1905
* Ideally, the EC should also be instructed NOT to accumulate events during
1906
* sleep (which Windows seems to do somehow), but the interface to control this
1907
* behaviour is not known at this time.
1908
*
1909
* Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1910
* however it is very likely that other Samsung models are affected.
1911
*
1912
* On systems which don't accumulate _Q events during sleep, this extra check
1913
* should be harmless.
1914
*/
1915
static int ec_clear_on_resume(const struct dmi_system_id *id)
1916
{
1917
pr_debug("Detected system needing EC poll on resume.\n");
1918
EC_FLAGS_CLEAR_ON_RESUME = 1;
1919
ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1920
return 0;
1921
}
1922
1923
/*
1924
* Some ECDTs contain wrong register addresses.
1925
* MSI MS-171F
1926
* https://bugzilla.kernel.org/show_bug.cgi?id=12461
1927
*/
1928
static int ec_correct_ecdt(const struct dmi_system_id *id)
1929
{
1930
pr_debug("Detected system needing ECDT address correction.\n");
1931
EC_FLAGS_CORRECT_ECDT = 1;
1932
return 0;
1933
}
1934
1935
/*
1936
* Some ECDTs contain wrong GPE setting, but they share the same port addresses
1937
* with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1938
* https://bugzilla.kernel.org/show_bug.cgi?id=209989
1939
*/
1940
static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1941
{
1942
pr_debug("Detected system needing DSDT GPE setting.\n");
1943
EC_FLAGS_TRUST_DSDT_GPE = 1;
1944
return 0;
1945
}
1946
1947
static const struct dmi_system_id ec_dmi_table[] __initconst = {
1948
{
1949
/*
1950
* MSI MS-171F
1951
* https://bugzilla.kernel.org/show_bug.cgi?id=12461
1952
*/
1953
.callback = ec_correct_ecdt,
1954
.matches = {
1955
DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1956
DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1957
},
1958
},
1959
{
1960
/*
1961
* HP Pavilion Gaming Laptop 15-cx0xxx
1962
* https://bugzilla.kernel.org/show_bug.cgi?id=209989
1963
*/
1964
.callback = ec_honor_dsdt_gpe,
1965
.matches = {
1966
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1967
DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1968
},
1969
},
1970
{
1971
/*
1972
* HP Pavilion Gaming Laptop 15-cx0041ur
1973
*/
1974
.callback = ec_honor_dsdt_gpe,
1975
.matches = {
1976
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1977
DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1978
},
1979
},
1980
{
1981
/*
1982
* HP Pavilion Gaming Laptop 15-dk1xxx
1983
* https://github.com/systemd/systemd/issues/28942
1984
*/
1985
.callback = ec_honor_dsdt_gpe,
1986
.matches = {
1987
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1988
DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"),
1989
},
1990
},
1991
{
1992
/*
1993
* HP 250 G7 Notebook PC
1994
*/
1995
.callback = ec_honor_dsdt_gpe,
1996
.matches = {
1997
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1998
DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"),
1999
},
2000
},
2001
{
2002
/*
2003
* Samsung hardware
2004
* https://bugzilla.kernel.org/show_bug.cgi?id=44161
2005
*/
2006
.callback = ec_clear_on_resume,
2007
.matches = {
2008
DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
2009
},
2010
},
2011
{}
2012
};
2013
2014
void __init acpi_ec_ecdt_probe(void)
2015
{
2016
struct acpi_table_ecdt *ecdt_ptr;
2017
struct acpi_ec *ec;
2018
acpi_status status;
2019
int ret;
2020
2021
/* Generate a boot ec context. */
2022
dmi_check_system(ec_dmi_table);
2023
status = acpi_get_table(ACPI_SIG_ECDT, 1,
2024
(struct acpi_table_header **)&ecdt_ptr);
2025
if (ACPI_FAILURE(status))
2026
return;
2027
2028
if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
2029
/*
2030
* Asus X50GL:
2031
* https://bugzilla.kernel.org/show_bug.cgi?id=11880
2032
*/
2033
goto out;
2034
}
2035
2036
if (!strlen(ecdt_ptr->id)) {
2037
/*
2038
* The ECDT table on some MSI notebooks contains invalid data, together
2039
* with an empty ID string ("").
2040
*
2041
* Section 5.2.15 of the ACPI specification requires the ID string to be
2042
* a "fully qualified reference to the (...) embedded controller device",
2043
* so this string always has to start with a backslash.
2044
*
2045
* However some ThinkBook machines have a ECDT table with a valid EC
2046
* description but an invalid ID string ("_SB.PC00.LPCB.EC0").
2047
*
2048
* Because of this we only check if the ID string is empty in order to
2049
* avoid the obvious cases.
2050
*/
2051
pr_err(FW_BUG "Ignoring ECDT due to empty ID string\n");
2052
goto out;
2053
}
2054
2055
ec = acpi_ec_alloc();
2056
if (!ec)
2057
goto out;
2058
2059
if (EC_FLAGS_CORRECT_ECDT) {
2060
ec->command_addr = ecdt_ptr->data.address;
2061
ec->data_addr = ecdt_ptr->control.address;
2062
} else {
2063
ec->command_addr = ecdt_ptr->control.address;
2064
ec->data_addr = ecdt_ptr->data.address;
2065
}
2066
2067
/*
2068
* Ignore the GPE value on Reduced Hardware platforms.
2069
* Some products have this set to an erroneous value.
2070
*/
2071
if (!acpi_gbl_reduced_hardware)
2072
ec->gpe = ecdt_ptr->gpe;
2073
2074
ec->handle = ACPI_ROOT_OBJECT;
2075
2076
/*
2077
* At this point, the namespace is not initialized, so do not find
2078
* the namespace objects, or handle the events.
2079
*/
2080
ret = acpi_ec_setup(ec, NULL, false);
2081
if (ret) {
2082
acpi_ec_free(ec);
2083
goto out;
2084
}
2085
2086
boot_ec = ec;
2087
boot_ec_is_ecdt = true;
2088
2089
pr_info("Boot ECDT EC used to handle transactions\n");
2090
2091
out:
2092
acpi_put_table((struct acpi_table_header *)ecdt_ptr);
2093
}
2094
2095
#ifdef CONFIG_PM_SLEEP
2096
static int acpi_ec_suspend(struct device *dev)
2097
{
2098
struct acpi_ec *ec =
2099
acpi_driver_data(to_acpi_device(dev));
2100
2101
if (!pm_suspend_no_platform() && ec_freeze_events)
2102
acpi_ec_disable_event(ec);
2103
return 0;
2104
}
2105
2106
static int acpi_ec_suspend_noirq(struct device *dev)
2107
{
2108
struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2109
2110
/*
2111
* The SCI handler doesn't run at this point, so the GPE can be
2112
* masked at the low level without side effects.
2113
*/
2114
if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2115
ec->gpe >= 0 && ec->reference_count >= 1)
2116
acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2117
2118
acpi_ec_enter_noirq(ec);
2119
2120
return 0;
2121
}
2122
2123
static int acpi_ec_resume_noirq(struct device *dev)
2124
{
2125
struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2126
2127
acpi_ec_leave_noirq(ec);
2128
2129
if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2130
ec->gpe >= 0 && ec->reference_count >= 1)
2131
acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2132
2133
return 0;
2134
}
2135
2136
static int acpi_ec_resume(struct device *dev)
2137
{
2138
struct acpi_ec *ec =
2139
acpi_driver_data(to_acpi_device(dev));
2140
2141
acpi_ec_enable_event(ec);
2142
return 0;
2143
}
2144
2145
void acpi_ec_mark_gpe_for_wake(void)
2146
{
2147
if (first_ec && !ec_no_wakeup)
2148
acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2149
}
2150
EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2151
2152
void acpi_ec_set_gpe_wake_mask(u8 action)
2153
{
2154
if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2155
acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2156
}
2157
2158
static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2159
{
2160
return ec->events_in_progress + ec->queries_in_progress > 0;
2161
}
2162
2163
bool acpi_ec_dispatch_gpe(void)
2164
{
2165
bool work_in_progress = false;
2166
2167
if (!first_ec)
2168
return acpi_any_gpe_status_set(U32_MAX);
2169
2170
/*
2171
* Report wakeup if the status bit is set for any enabled GPE other
2172
* than the EC one.
2173
*/
2174
if (acpi_any_gpe_status_set(first_ec->gpe))
2175
return true;
2176
2177
/*
2178
* Cancel the SCI wakeup and process all pending events in case there
2179
* are any wakeup ones in there.
2180
*
2181
* Note that if any non-EC GPEs are active at this point, the SCI will
2182
* retrigger after the rearming in acpi_s2idle_wake(), so no events
2183
* should be missed by canceling the wakeup here.
2184
*/
2185
pm_system_cancel_wakeup();
2186
2187
/*
2188
* Dispatch the EC GPE in-band, but do not report wakeup in any case
2189
* to allow the caller to process events properly after that.
2190
*/
2191
spin_lock_irq(&first_ec->lock);
2192
2193
if (acpi_ec_gpe_status_set(first_ec)) {
2194
pm_pr_dbg("ACPI EC GPE status set\n");
2195
2196
clear_gpe_and_advance_transaction(first_ec, false);
2197
work_in_progress = acpi_ec_work_in_progress(first_ec);
2198
}
2199
2200
spin_unlock_irq(&first_ec->lock);
2201
2202
if (!work_in_progress)
2203
return false;
2204
2205
pm_pr_dbg("ACPI EC GPE dispatched\n");
2206
2207
/* Drain EC work. */
2208
do {
2209
acpi_ec_flush_work();
2210
2211
pm_pr_dbg("ACPI EC work flushed\n");
2212
2213
spin_lock_irq(&first_ec->lock);
2214
2215
work_in_progress = acpi_ec_work_in_progress(first_ec);
2216
2217
spin_unlock_irq(&first_ec->lock);
2218
} while (work_in_progress && !pm_wakeup_pending());
2219
2220
return false;
2221
}
2222
#endif /* CONFIG_PM_SLEEP */
2223
2224
static const struct dev_pm_ops acpi_ec_pm = {
2225
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2226
SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2227
};
2228
2229
static int param_set_event_clearing(const char *val,
2230
const struct kernel_param *kp)
2231
{
2232
int result = 0;
2233
2234
if (!strncmp(val, "status", sizeof("status") - 1)) {
2235
ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2236
pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2237
} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2238
ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2239
pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2240
} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2241
ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2242
pr_info("Assuming SCI_EVT clearing on event reads\n");
2243
} else
2244
result = -EINVAL;
2245
return result;
2246
}
2247
2248
static int param_get_event_clearing(char *buffer,
2249
const struct kernel_param *kp)
2250
{
2251
switch (ec_event_clearing) {
2252
case ACPI_EC_EVT_TIMING_STATUS:
2253
return sprintf(buffer, "status\n");
2254
case ACPI_EC_EVT_TIMING_QUERY:
2255
return sprintf(buffer, "query\n");
2256
case ACPI_EC_EVT_TIMING_EVENT:
2257
return sprintf(buffer, "event\n");
2258
default:
2259
return sprintf(buffer, "invalid\n");
2260
}
2261
return 0;
2262
}
2263
2264
module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2265
NULL, 0644);
2266
MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2267
2268
static struct acpi_driver acpi_ec_driver = {
2269
.name = "ec",
2270
.class = ACPI_EC_CLASS,
2271
.ids = ec_device_ids,
2272
.ops = {
2273
.add = acpi_ec_add,
2274
.remove = acpi_ec_remove,
2275
},
2276
.drv.pm = &acpi_ec_pm,
2277
};
2278
2279
static void acpi_ec_destroy_workqueues(void)
2280
{
2281
if (ec_wq) {
2282
destroy_workqueue(ec_wq);
2283
ec_wq = NULL;
2284
}
2285
if (ec_query_wq) {
2286
destroy_workqueue(ec_query_wq);
2287
ec_query_wq = NULL;
2288
}
2289
}
2290
2291
static int acpi_ec_init_workqueues(void)
2292
{
2293
if (!ec_wq)
2294
ec_wq = alloc_ordered_workqueue("kec", 0);
2295
2296
if (!ec_query_wq)
2297
ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2298
2299
if (!ec_wq || !ec_query_wq) {
2300
acpi_ec_destroy_workqueues();
2301
return -ENODEV;
2302
}
2303
return 0;
2304
}
2305
2306
static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2307
{
2308
.matches = {
2309
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2310
DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2311
},
2312
},
2313
{
2314
.matches = {
2315
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2316
DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2317
},
2318
},
2319
{
2320
.matches = {
2321
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2322
DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2323
},
2324
},
2325
/*
2326
* Lenovo Legion Go S; touchscreen blocks HW sleep when woken up from EC
2327
* https://gitlab.freedesktop.org/drm/amd/-/issues/3929
2328
*/
2329
{
2330
.matches = {
2331
DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2332
DMI_MATCH(DMI_PRODUCT_NAME, "83L3"),
2333
}
2334
},
2335
{
2336
.matches = {
2337
DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2338
DMI_MATCH(DMI_PRODUCT_NAME, "83N6"),
2339
}
2340
},
2341
{
2342
.matches = {
2343
DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2344
DMI_MATCH(DMI_PRODUCT_NAME, "83Q2"),
2345
}
2346
},
2347
{
2348
.matches = {
2349
DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2350
DMI_MATCH(DMI_PRODUCT_NAME, "83Q3"),
2351
}
2352
},
2353
{
2354
// TUXEDO InfinityBook Pro AMD Gen9
2355
.matches = {
2356
DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"),
2357
},
2358
},
2359
{ },
2360
};
2361
2362
void __init acpi_ec_init(void)
2363
{
2364
int result;
2365
2366
result = acpi_ec_init_workqueues();
2367
if (result)
2368
return;
2369
2370
/*
2371
* Disable EC wakeup on following systems to prevent periodic
2372
* wakeup from EC GPE.
2373
*/
2374
if (dmi_check_system(acpi_ec_no_wakeup)) {
2375
ec_no_wakeup = true;
2376
pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2377
}
2378
2379
/* Driver must be registered after acpi_ec_init_workqueues(). */
2380
acpi_bus_register_driver(&acpi_ec_driver);
2381
2382
acpi_ec_ecdt_start();
2383
}
2384
2385
/* EC driver currently not unloadable */
2386
#if 0
2387
static void __exit acpi_ec_exit(void)
2388
{
2389
2390
acpi_bus_unregister_driver(&acpi_ec_driver);
2391
acpi_ec_destroy_workqueues();
2392
}
2393
#endif /* 0 */
2394
2395