Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/ata/libata-core.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* libata-core.c - helper library for ATA
4
*
5
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6
* Copyright 2003-2004 Jeff Garzik
7
*
8
* libata documentation is available via 'make {ps|pdf}docs',
9
* as Documentation/driver-api/libata.rst
10
*
11
* Hardware documentation available from http://www.t13.org/ and
12
* http://www.sata-io.org/
13
*
14
* Standards documents from:
15
* http://www.t13.org (ATA standards, PCI DMA IDE spec)
16
* http://www.t10.org (SCSI MMC - for ATAPI MMC)
17
* http://www.sata-io.org (SATA)
18
* http://www.compactflash.org (CF)
19
* http://www.qic.org (QIC157 - Tape and DSC)
20
* http://www.ce-ata.org (CE-ATA: not supported)
21
*
22
* libata is essentially a library of internal helper functions for
23
* low-level ATA host controller drivers. As such, the API/ABI is
24
* likely to change as new drivers are added and updated.
25
* Do not depend on ABI/API stability.
26
*/
27
28
#include <linux/kernel.h>
29
#include <linux/module.h>
30
#include <linux/pci.h>
31
#include <linux/init.h>
32
#include <linux/list.h>
33
#include <linux/mm.h>
34
#include <linux/spinlock.h>
35
#include <linux/blkdev.h>
36
#include <linux/delay.h>
37
#include <linux/timer.h>
38
#include <linux/time.h>
39
#include <linux/interrupt.h>
40
#include <linux/completion.h>
41
#include <linux/suspend.h>
42
#include <linux/workqueue.h>
43
#include <linux/scatterlist.h>
44
#include <linux/io.h>
45
#include <linux/log2.h>
46
#include <linux/slab.h>
47
#include <linux/glob.h>
48
#include <scsi/scsi.h>
49
#include <scsi/scsi_cmnd.h>
50
#include <scsi/scsi_host.h>
51
#include <linux/libata.h>
52
#include <asm/byteorder.h>
53
#include <linux/unaligned.h>
54
#include <linux/cdrom.h>
55
#include <linux/ratelimit.h>
56
#include <linux/leds.h>
57
#include <linux/pm_runtime.h>
58
#include <linux/platform_device.h>
59
#include <asm/setup.h>
60
61
#define CREATE_TRACE_POINTS
62
#include <trace/events/libata.h>
63
64
#include "libata.h"
65
#include "libata-transport.h"
66
67
const struct ata_port_operations ata_base_port_ops = {
68
.reset.prereset = ata_std_prereset,
69
.reset.postreset = ata_std_postreset,
70
.error_handler = ata_std_error_handler,
71
.sched_eh = ata_std_sched_eh,
72
.end_eh = ata_std_end_eh,
73
};
74
75
static unsigned int ata_dev_init_params(struct ata_device *dev,
76
u16 heads, u16 sectors);
77
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78
static void ata_dev_xfermask(struct ata_device *dev);
79
static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81
static DEFINE_IDA(ata_ida);
82
83
#ifdef CONFIG_ATA_FORCE
84
struct ata_force_param {
85
const char *name;
86
u8 cbl;
87
u8 spd_limit;
88
unsigned int xfer_mask;
89
unsigned int quirk_on;
90
unsigned int quirk_off;
91
unsigned int pflags_on;
92
u16 lflags_on;
93
u16 lflags_off;
94
};
95
96
struct ata_force_ent {
97
int port;
98
int device;
99
struct ata_force_param param;
100
};
101
102
static struct ata_force_ent *ata_force_tbl;
103
static int ata_force_tbl_size;
104
105
static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106
/* param_buf is thrown away after initialization, disallow read */
107
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108
MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109
#endif
110
111
static int atapi_enabled = 1;
112
module_param(atapi_enabled, int, 0444);
113
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115
static int atapi_dmadir = 0;
116
module_param(atapi_dmadir, int, 0444);
117
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119
int atapi_passthru16 = 1;
120
module_param(atapi_passthru16, int, 0444);
121
MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123
int libata_fua = 0;
124
module_param_named(fua, libata_fua, int, 0444);
125
MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127
static int ata_ignore_hpa;
128
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131
static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132
module_param_named(dma, libata_dma_mask, int, 0444);
133
MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135
static int ata_probe_timeout;
136
module_param(ata_probe_timeout, int, 0444);
137
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139
int libata_noacpi = 0;
140
module_param_named(noacpi, libata_noacpi, int, 0444);
141
MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143
int libata_allow_tpm = 0;
144
module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145
MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147
static int atapi_an;
148
module_param(atapi_an, int, 0444);
149
MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151
MODULE_AUTHOR("Jeff Garzik");
152
MODULE_DESCRIPTION("Library module for ATA devices");
153
MODULE_LICENSE("GPL");
154
MODULE_VERSION(DRV_VERSION);
155
156
static inline bool ata_dev_print_info(const struct ata_device *dev)
157
{
158
struct ata_eh_context *ehc = &dev->link->eh_context;
159
160
return ehc->i.flags & ATA_EHI_PRINTINFO;
161
}
162
163
/**
164
* ata_link_next - link iteration helper
165
* @link: the previous link, NULL to start
166
* @ap: ATA port containing links to iterate
167
* @mode: iteration mode, one of ATA_LITER_*
168
*
169
* LOCKING:
170
* Host lock or EH context.
171
*
172
* RETURNS:
173
* Pointer to the next link.
174
*/
175
struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176
enum ata_link_iter_mode mode)
177
{
178
BUG_ON(mode != ATA_LITER_EDGE &&
179
mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181
/* NULL link indicates start of iteration */
182
if (!link)
183
switch (mode) {
184
case ATA_LITER_EDGE:
185
case ATA_LITER_PMP_FIRST:
186
if (sata_pmp_attached(ap))
187
return ap->pmp_link;
188
fallthrough;
189
case ATA_LITER_HOST_FIRST:
190
return &ap->link;
191
}
192
193
/* we just iterated over the host link, what's next? */
194
if (link == &ap->link)
195
switch (mode) {
196
case ATA_LITER_HOST_FIRST:
197
if (sata_pmp_attached(ap))
198
return ap->pmp_link;
199
fallthrough;
200
case ATA_LITER_PMP_FIRST:
201
if (unlikely(ap->slave_link))
202
return ap->slave_link;
203
fallthrough;
204
case ATA_LITER_EDGE:
205
return NULL;
206
}
207
208
/* slave_link excludes PMP */
209
if (unlikely(link == ap->slave_link))
210
return NULL;
211
212
/* we were over a PMP link */
213
if (++link < ap->pmp_link + ap->nr_pmp_links)
214
return link;
215
216
if (mode == ATA_LITER_PMP_FIRST)
217
return &ap->link;
218
219
return NULL;
220
}
221
EXPORT_SYMBOL_GPL(ata_link_next);
222
223
/**
224
* ata_dev_next - device iteration helper
225
* @dev: the previous device, NULL to start
226
* @link: ATA link containing devices to iterate
227
* @mode: iteration mode, one of ATA_DITER_*
228
*
229
* LOCKING:
230
* Host lock or EH context.
231
*
232
* RETURNS:
233
* Pointer to the next device.
234
*/
235
struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236
enum ata_dev_iter_mode mode)
237
{
238
BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239
mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241
/* NULL dev indicates start of iteration */
242
if (!dev)
243
switch (mode) {
244
case ATA_DITER_ENABLED:
245
case ATA_DITER_ALL:
246
dev = link->device;
247
goto check;
248
case ATA_DITER_ENABLED_REVERSE:
249
case ATA_DITER_ALL_REVERSE:
250
dev = link->device + ata_link_max_devices(link) - 1;
251
goto check;
252
}
253
254
next:
255
/* move to the next one */
256
switch (mode) {
257
case ATA_DITER_ENABLED:
258
case ATA_DITER_ALL:
259
if (++dev < link->device + ata_link_max_devices(link))
260
goto check;
261
return NULL;
262
case ATA_DITER_ENABLED_REVERSE:
263
case ATA_DITER_ALL_REVERSE:
264
if (--dev >= link->device)
265
goto check;
266
return NULL;
267
}
268
269
check:
270
if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271
!ata_dev_enabled(dev))
272
goto next;
273
return dev;
274
}
275
EXPORT_SYMBOL_GPL(ata_dev_next);
276
277
/**
278
* ata_dev_phys_link - find physical link for a device
279
* @dev: ATA device to look up physical link for
280
*
281
* Look up physical link which @dev is attached to. Note that
282
* this is different from @dev->link only when @dev is on slave
283
* link. For all other cases, it's the same as @dev->link.
284
*
285
* LOCKING:
286
* Don't care.
287
*
288
* RETURNS:
289
* Pointer to the found physical link.
290
*/
291
struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292
{
293
struct ata_port *ap = dev->link->ap;
294
295
if (!ap->slave_link)
296
return dev->link;
297
if (!dev->devno)
298
return &ap->link;
299
return ap->slave_link;
300
}
301
302
#ifdef CONFIG_ATA_FORCE
303
/**
304
* ata_force_cbl - force cable type according to libata.force
305
* @ap: ATA port of interest
306
*
307
* Force cable type according to libata.force and whine about it.
308
* The last entry which has matching port number is used, so it
309
* can be specified as part of device force parameters. For
310
* example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311
* same effect.
312
*
313
* LOCKING:
314
* EH context.
315
*/
316
void ata_force_cbl(struct ata_port *ap)
317
{
318
int i;
319
320
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321
const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323
if (fe->port != -1 && fe->port != ap->print_id)
324
continue;
325
326
if (fe->param.cbl == ATA_CBL_NONE)
327
continue;
328
329
ap->cbl = fe->param.cbl;
330
ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331
return;
332
}
333
}
334
335
/**
336
* ata_force_pflags - force port flags according to libata.force
337
* @ap: ATA port of interest
338
*
339
* Force port flags according to libata.force and whine about it.
340
*
341
* LOCKING:
342
* EH context.
343
*/
344
static void ata_force_pflags(struct ata_port *ap)
345
{
346
int i;
347
348
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349
const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351
if (fe->port != -1 && fe->port != ap->print_id)
352
continue;
353
354
/* let pflags stack */
355
if (fe->param.pflags_on) {
356
ap->pflags |= fe->param.pflags_on;
357
ata_port_notice(ap,
358
"FORCE: port flag 0x%x forced -> 0x%x\n",
359
fe->param.pflags_on, ap->pflags);
360
}
361
}
362
}
363
364
/**
365
* ata_force_link_limits - force link limits according to libata.force
366
* @link: ATA link of interest
367
*
368
* Force link flags and SATA spd limit according to libata.force
369
* and whine about it. When only the port part is specified
370
* (e.g. 1:), the limit applies to all links connected to both
371
* the host link and all fan-out ports connected via PMP. If the
372
* device part is specified as 0 (e.g. 1.00:), it specifies the
373
* first fan-out link not the host link. Device number 15 always
374
* points to the host link whether PMP is attached or not. If the
375
* controller has slave link, device number 16 points to it.
376
*
377
* LOCKING:
378
* EH context.
379
*/
380
static void ata_force_link_limits(struct ata_link *link)
381
{
382
bool did_spd = false;
383
int linkno = link->pmp;
384
int i;
385
386
if (ata_is_host_link(link))
387
linkno += 15;
388
389
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390
const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392
if (fe->port != -1 && fe->port != link->ap->print_id)
393
continue;
394
395
if (fe->device != -1 && fe->device != linkno)
396
continue;
397
398
/* only honor the first spd limit */
399
if (!did_spd && fe->param.spd_limit) {
400
link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401
ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402
fe->param.name);
403
did_spd = true;
404
}
405
406
/* let lflags stack */
407
if (fe->param.lflags_on) {
408
link->flags |= fe->param.lflags_on;
409
ata_link_notice(link,
410
"FORCE: link flag 0x%x forced -> 0x%x\n",
411
fe->param.lflags_on, link->flags);
412
}
413
if (fe->param.lflags_off) {
414
link->flags &= ~fe->param.lflags_off;
415
ata_link_notice(link,
416
"FORCE: link flag 0x%x cleared -> 0x%x\n",
417
fe->param.lflags_off, link->flags);
418
}
419
}
420
}
421
422
/**
423
* ata_force_xfermask - force xfermask according to libata.force
424
* @dev: ATA device of interest
425
*
426
* Force xfer_mask according to libata.force and whine about it.
427
* For consistency with link selection, device number 15 selects
428
* the first device connected to the host link.
429
*
430
* LOCKING:
431
* EH context.
432
*/
433
static void ata_force_xfermask(struct ata_device *dev)
434
{
435
int devno = dev->link->pmp + dev->devno;
436
int alt_devno = devno;
437
int i;
438
439
/* allow n.15/16 for devices attached to host port */
440
if (ata_is_host_link(dev->link))
441
alt_devno += 15;
442
443
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444
const struct ata_force_ent *fe = &ata_force_tbl[i];
445
unsigned int pio_mask, mwdma_mask, udma_mask;
446
447
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448
continue;
449
450
if (fe->device != -1 && fe->device != devno &&
451
fe->device != alt_devno)
452
continue;
453
454
if (!fe->param.xfer_mask)
455
continue;
456
457
ata_unpack_xfermask(fe->param.xfer_mask,
458
&pio_mask, &mwdma_mask, &udma_mask);
459
if (udma_mask)
460
dev->udma_mask = udma_mask;
461
else if (mwdma_mask) {
462
dev->udma_mask = 0;
463
dev->mwdma_mask = mwdma_mask;
464
} else {
465
dev->udma_mask = 0;
466
dev->mwdma_mask = 0;
467
dev->pio_mask = pio_mask;
468
}
469
470
ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471
fe->param.name);
472
return;
473
}
474
}
475
476
/**
477
* ata_force_quirks - force quirks according to libata.force
478
* @dev: ATA device of interest
479
*
480
* Force quirks according to libata.force and whine about it.
481
* For consistency with link selection, device number 15 selects
482
* the first device connected to the host link.
483
*
484
* LOCKING:
485
* EH context.
486
*/
487
static void ata_force_quirks(struct ata_device *dev)
488
{
489
int devno = dev->link->pmp + dev->devno;
490
int alt_devno = devno;
491
int i;
492
493
/* allow n.15/16 for devices attached to host port */
494
if (ata_is_host_link(dev->link))
495
alt_devno += 15;
496
497
for (i = 0; i < ata_force_tbl_size; i++) {
498
const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501
continue;
502
503
if (fe->device != -1 && fe->device != devno &&
504
fe->device != alt_devno)
505
continue;
506
507
if (!(~dev->quirks & fe->param.quirk_on) &&
508
!(dev->quirks & fe->param.quirk_off))
509
continue;
510
511
dev->quirks |= fe->param.quirk_on;
512
dev->quirks &= ~fe->param.quirk_off;
513
514
ata_dev_notice(dev, "FORCE: modified (%s)\n",
515
fe->param.name);
516
}
517
}
518
#else
519
static inline void ata_force_pflags(struct ata_port *ap) { }
520
static inline void ata_force_link_limits(struct ata_link *link) { }
521
static inline void ata_force_xfermask(struct ata_device *dev) { }
522
static inline void ata_force_quirks(struct ata_device *dev) { }
523
#endif
524
525
/**
526
* atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527
* @opcode: SCSI opcode
528
*
529
* Determine ATAPI command type from @opcode.
530
*
531
* LOCKING:
532
* None.
533
*
534
* RETURNS:
535
* ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536
*/
537
int atapi_cmd_type(u8 opcode)
538
{
539
switch (opcode) {
540
case GPCMD_READ_10:
541
case GPCMD_READ_12:
542
return ATAPI_READ;
543
544
case GPCMD_WRITE_10:
545
case GPCMD_WRITE_12:
546
case GPCMD_WRITE_AND_VERIFY_10:
547
return ATAPI_WRITE;
548
549
case GPCMD_READ_CD:
550
case GPCMD_READ_CD_MSF:
551
return ATAPI_READ_CD;
552
553
case ATA_16:
554
case ATA_12:
555
if (atapi_passthru16)
556
return ATAPI_PASS_THRU;
557
fallthrough;
558
default:
559
return ATAPI_MISC;
560
}
561
}
562
EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564
static const u8 ata_rw_cmds[] = {
565
/* pio multi */
566
ATA_CMD_READ_MULTI,
567
ATA_CMD_WRITE_MULTI,
568
ATA_CMD_READ_MULTI_EXT,
569
ATA_CMD_WRITE_MULTI_EXT,
570
0,
571
0,
572
0,
573
0,
574
/* pio */
575
ATA_CMD_PIO_READ,
576
ATA_CMD_PIO_WRITE,
577
ATA_CMD_PIO_READ_EXT,
578
ATA_CMD_PIO_WRITE_EXT,
579
0,
580
0,
581
0,
582
0,
583
/* dma */
584
ATA_CMD_READ,
585
ATA_CMD_WRITE,
586
ATA_CMD_READ_EXT,
587
ATA_CMD_WRITE_EXT,
588
0,
589
0,
590
0,
591
ATA_CMD_WRITE_FUA_EXT
592
};
593
594
/**
595
* ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596
* @dev: target device for the taskfile
597
* @tf: taskfile to examine and configure
598
*
599
* Examine the device configuration and tf->flags to determine
600
* the proper read/write command and protocol to use for @tf.
601
*
602
* LOCKING:
603
* caller.
604
*/
605
static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606
struct ata_taskfile *tf)
607
{
608
u8 cmd;
609
610
int index, fua, lba48, write;
611
612
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616
if (dev->flags & ATA_DFLAG_PIO) {
617
tf->protocol = ATA_PROT_PIO;
618
index = dev->multi_count ? 0 : 8;
619
} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620
/* Unable to use DMA due to host limitation */
621
tf->protocol = ATA_PROT_PIO;
622
index = dev->multi_count ? 0 : 8;
623
} else {
624
tf->protocol = ATA_PROT_DMA;
625
index = 16;
626
}
627
628
cmd = ata_rw_cmds[index + fua + lba48 + write];
629
if (!cmd)
630
return false;
631
632
tf->command = cmd;
633
634
return true;
635
}
636
637
/**
638
* ata_tf_read_block - Read block address from ATA taskfile
639
* @tf: ATA taskfile of interest
640
* @dev: ATA device @tf belongs to
641
*
642
* LOCKING:
643
* None.
644
*
645
* Read block address from @tf. This function can handle all
646
* three address formats - LBA, LBA48 and CHS. tf->protocol and
647
* flags select the address format to use.
648
*
649
* RETURNS:
650
* Block address read from @tf.
651
*/
652
u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653
{
654
u64 block = 0;
655
656
if (tf->flags & ATA_TFLAG_LBA) {
657
if (tf->flags & ATA_TFLAG_LBA48) {
658
block |= (u64)tf->hob_lbah << 40;
659
block |= (u64)tf->hob_lbam << 32;
660
block |= (u64)tf->hob_lbal << 24;
661
} else
662
block |= (tf->device & 0xf) << 24;
663
664
block |= tf->lbah << 16;
665
block |= tf->lbam << 8;
666
block |= tf->lbal;
667
} else {
668
u32 cyl, head, sect;
669
670
cyl = tf->lbam | (tf->lbah << 8);
671
head = tf->device & 0xf;
672
sect = tf->lbal;
673
674
if (!sect) {
675
ata_dev_warn(dev,
676
"device reported invalid CHS sector 0\n");
677
return U64_MAX;
678
}
679
680
block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681
}
682
683
return block;
684
}
685
686
/*
687
* Set a taskfile command duration limit index.
688
*/
689
static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690
{
691
struct ata_taskfile *tf = &qc->tf;
692
693
if (tf->protocol == ATA_PROT_NCQ)
694
tf->auxiliary |= cdl;
695
else
696
tf->feature |= cdl;
697
698
/*
699
* Mark this command as having a CDL and request the result
700
* task file so that we can inspect the sense data available
701
* bit on completion.
702
*/
703
qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704
}
705
706
/**
707
* ata_build_rw_tf - Build ATA taskfile for given read/write request
708
* @qc: Metadata associated with the taskfile to build
709
* @block: Block address
710
* @n_block: Number of blocks
711
* @tf_flags: RW/FUA etc...
712
* @cdl: Command duration limit index
713
* @class: IO priority class
714
*
715
* LOCKING:
716
* None.
717
*
718
* Build ATA taskfile for the command @qc for read/write request described
719
* by @block, @n_block, @tf_flags and @class.
720
*
721
* RETURNS:
722
*
723
* 0 on success, -ERANGE if the request is too large for @dev,
724
* -EINVAL if the request is invalid.
725
*/
726
int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727
unsigned int tf_flags, int cdl, int class)
728
{
729
struct ata_taskfile *tf = &qc->tf;
730
struct ata_device *dev = qc->dev;
731
732
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733
tf->flags |= tf_flags;
734
735
if (ata_ncq_enabled(dev)) {
736
/* yay, NCQ */
737
if (!lba_48_ok(block, n_block))
738
return -ERANGE;
739
740
tf->protocol = ATA_PROT_NCQ;
741
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743
if (tf->flags & ATA_TFLAG_WRITE)
744
tf->command = ATA_CMD_FPDMA_WRITE;
745
else
746
tf->command = ATA_CMD_FPDMA_READ;
747
748
tf->nsect = qc->hw_tag << 3;
749
tf->hob_feature = (n_block >> 8) & 0xff;
750
tf->feature = n_block & 0xff;
751
752
tf->hob_lbah = (block >> 40) & 0xff;
753
tf->hob_lbam = (block >> 32) & 0xff;
754
tf->hob_lbal = (block >> 24) & 0xff;
755
tf->lbah = (block >> 16) & 0xff;
756
tf->lbam = (block >> 8) & 0xff;
757
tf->lbal = block & 0xff;
758
759
tf->device = ATA_LBA;
760
if (tf->flags & ATA_TFLAG_FUA)
761
tf->device |= 1 << 7;
762
763
if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764
class == IOPRIO_CLASS_RT)
765
tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767
if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768
ata_set_tf_cdl(qc, cdl);
769
770
} else if (dev->flags & ATA_DFLAG_LBA) {
771
tf->flags |= ATA_TFLAG_LBA;
772
773
if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774
ata_set_tf_cdl(qc, cdl);
775
776
/* Both FUA writes and a CDL index require 48-bit commands */
777
if (!(tf->flags & ATA_TFLAG_FUA) &&
778
!(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779
lba_28_ok(block, n_block)) {
780
/* use LBA28 */
781
tf->device |= (block >> 24) & 0xf;
782
} else if (lba_48_ok(block, n_block)) {
783
if (!(dev->flags & ATA_DFLAG_LBA48))
784
return -ERANGE;
785
786
/* use LBA48 */
787
tf->flags |= ATA_TFLAG_LBA48;
788
789
tf->hob_nsect = (n_block >> 8) & 0xff;
790
791
tf->hob_lbah = (block >> 40) & 0xff;
792
tf->hob_lbam = (block >> 32) & 0xff;
793
tf->hob_lbal = (block >> 24) & 0xff;
794
} else {
795
/* request too large even for LBA48 */
796
return -ERANGE;
797
}
798
799
if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800
return -EINVAL;
801
802
tf->nsect = n_block & 0xff;
803
804
tf->lbah = (block >> 16) & 0xff;
805
tf->lbam = (block >> 8) & 0xff;
806
tf->lbal = block & 0xff;
807
808
tf->device |= ATA_LBA;
809
} else {
810
/* CHS */
811
u32 sect, head, cyl, track;
812
813
/* The request -may- be too large for CHS addressing. */
814
if (!lba_28_ok(block, n_block))
815
return -ERANGE;
816
817
if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818
return -EINVAL;
819
820
/* Convert LBA to CHS */
821
track = (u32)block / dev->sectors;
822
cyl = track / dev->heads;
823
head = track % dev->heads;
824
sect = (u32)block % dev->sectors + 1;
825
826
/* Check whether the converted CHS can fit.
827
Cylinder: 0-65535
828
Head: 0-15
829
Sector: 1-255*/
830
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831
return -ERANGE;
832
833
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834
tf->lbal = sect;
835
tf->lbam = cyl;
836
tf->lbah = cyl >> 8;
837
tf->device |= head;
838
}
839
840
return 0;
841
}
842
843
/**
844
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845
* @pio_mask: pio_mask
846
* @mwdma_mask: mwdma_mask
847
* @udma_mask: udma_mask
848
*
849
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850
* unsigned int xfer_mask.
851
*
852
* LOCKING:
853
* None.
854
*
855
* RETURNS:
856
* Packed xfer_mask.
857
*/
858
unsigned int ata_pack_xfermask(unsigned int pio_mask,
859
unsigned int mwdma_mask,
860
unsigned int udma_mask)
861
{
862
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865
}
866
EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868
/**
869
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870
* @xfer_mask: xfer_mask to unpack
871
* @pio_mask: resulting pio_mask
872
* @mwdma_mask: resulting mwdma_mask
873
* @udma_mask: resulting udma_mask
874
*
875
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876
* Any NULL destination masks will be ignored.
877
*/
878
void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879
unsigned int *mwdma_mask, unsigned int *udma_mask)
880
{
881
if (pio_mask)
882
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883
if (mwdma_mask)
884
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885
if (udma_mask)
886
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887
}
888
889
static const struct ata_xfer_ent {
890
int shift, bits;
891
u8 base;
892
} ata_xfer_tbl[] = {
893
{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894
{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895
{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896
{ -1, },
897
};
898
899
/**
900
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901
* @xfer_mask: xfer_mask of interest
902
*
903
* Return matching XFER_* value for @xfer_mask. Only the highest
904
* bit of @xfer_mask is considered.
905
*
906
* LOCKING:
907
* None.
908
*
909
* RETURNS:
910
* Matching XFER_* value, 0xff if no match found.
911
*/
912
u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913
{
914
int highbit = fls(xfer_mask) - 1;
915
const struct ata_xfer_ent *ent;
916
917
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919
return ent->base + highbit - ent->shift;
920
return 0xff;
921
}
922
EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924
/**
925
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926
* @xfer_mode: XFER_* of interest
927
*
928
* Return matching xfer_mask for @xfer_mode.
929
*
930
* LOCKING:
931
* None.
932
*
933
* RETURNS:
934
* Matching xfer_mask, 0 if no match found.
935
*/
936
unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937
{
938
const struct ata_xfer_ent *ent;
939
940
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942
return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943
& ~((1 << ent->shift) - 1);
944
return 0;
945
}
946
EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948
/**
949
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950
* @xfer_mode: XFER_* of interest
951
*
952
* Return matching xfer_shift for @xfer_mode.
953
*
954
* LOCKING:
955
* None.
956
*
957
* RETURNS:
958
* Matching xfer_shift, -1 if no match found.
959
*/
960
int ata_xfer_mode2shift(u8 xfer_mode)
961
{
962
const struct ata_xfer_ent *ent;
963
964
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966
return ent->shift;
967
return -1;
968
}
969
EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971
/**
972
* ata_mode_string - convert xfer_mask to string
973
* @xfer_mask: mask of bits supported; only highest bit counts.
974
*
975
* Determine string which represents the highest speed
976
* (highest bit in @modemask).
977
*
978
* LOCKING:
979
* None.
980
*
981
* RETURNS:
982
* Constant C string representing highest speed listed in
983
* @mode_mask, or the constant C string "<n/a>".
984
*/
985
const char *ata_mode_string(unsigned int xfer_mask)
986
{
987
static const char * const xfer_mode_str[] = {
988
"PIO0",
989
"PIO1",
990
"PIO2",
991
"PIO3",
992
"PIO4",
993
"PIO5",
994
"PIO6",
995
"MWDMA0",
996
"MWDMA1",
997
"MWDMA2",
998
"MWDMA3",
999
"MWDMA4",
1000
"UDMA/16",
1001
"UDMA/25",
1002
"UDMA/33",
1003
"UDMA/44",
1004
"UDMA/66",
1005
"UDMA/100",
1006
"UDMA/133",
1007
"UDMA7",
1008
};
1009
int highbit;
1010
1011
highbit = fls(xfer_mask) - 1;
1012
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013
return xfer_mode_str[highbit];
1014
return "<n/a>";
1015
}
1016
EXPORT_SYMBOL_GPL(ata_mode_string);
1017
1018
const char *sata_spd_string(unsigned int spd)
1019
{
1020
static const char * const spd_str[] = {
1021
"1.5 Gbps",
1022
"3.0 Gbps",
1023
"6.0 Gbps",
1024
};
1025
1026
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027
return "<unknown>";
1028
return spd_str[spd - 1];
1029
}
1030
1031
/**
1032
* ata_dev_classify - determine device type based on ATA-spec signature
1033
* @tf: ATA taskfile register set for device to be identified
1034
*
1035
* Determine from taskfile register contents whether a device is
1036
* ATA or ATAPI, as per "Signature and persistence" section
1037
* of ATA/PI spec (volume 1, sect 5.14).
1038
*
1039
* LOCKING:
1040
* None.
1041
*
1042
* RETURNS:
1043
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044
* %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045
*/
1046
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047
{
1048
/* Apple's open source Darwin code hints that some devices only
1049
* put a proper signature into the LBA mid/high registers,
1050
* So, we only check those. It's sufficient for uniqueness.
1051
*
1052
* ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053
* signatures for ATA and ATAPI devices attached on SerialATA,
1054
* 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055
* spec has never mentioned about using different signatures
1056
* for ATA/ATAPI devices. Then, Serial ATA II: Port
1057
* Multiplier specification began to use 0x69/0x96 to identify
1058
* port multpliers and 0x3c/0xc3 to identify SEMB device.
1059
* ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060
* 0x69/0x96 shortly and described them as reserved for
1061
* SerialATA.
1062
*
1063
* We follow the current spec and consider that 0x69/0x96
1064
* identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065
* Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066
* SEMB signature. This is worked around in
1067
* ata_dev_read_id().
1068
*/
1069
if (tf->lbam == 0 && tf->lbah == 0)
1070
return ATA_DEV_ATA;
1071
1072
if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073
return ATA_DEV_ATAPI;
1074
1075
if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076
return ATA_DEV_PMP;
1077
1078
if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079
return ATA_DEV_SEMB;
1080
1081
if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082
return ATA_DEV_ZAC;
1083
1084
return ATA_DEV_UNKNOWN;
1085
}
1086
EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088
/**
1089
* ata_id_string - Convert IDENTIFY DEVICE page into string
1090
* @id: IDENTIFY DEVICE results we will examine
1091
* @s: string into which data is output
1092
* @ofs: offset into identify device page
1093
* @len: length of string to return. must be an even number.
1094
*
1095
* The strings in the IDENTIFY DEVICE page are broken up into
1096
* 16-bit chunks. Run through the string, and output each
1097
* 8-bit chunk linearly, regardless of platform.
1098
*
1099
* LOCKING:
1100
* caller.
1101
*/
1102
1103
void ata_id_string(const u16 *id, unsigned char *s,
1104
unsigned int ofs, unsigned int len)
1105
{
1106
unsigned int c;
1107
1108
BUG_ON(len & 1);
1109
1110
while (len > 0) {
1111
c = id[ofs] >> 8;
1112
*s = c;
1113
s++;
1114
1115
c = id[ofs] & 0xff;
1116
*s = c;
1117
s++;
1118
1119
ofs++;
1120
len -= 2;
1121
}
1122
}
1123
EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125
/**
1126
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127
* @id: IDENTIFY DEVICE results we will examine
1128
* @s: string into which data is output
1129
* @ofs: offset into identify device page
1130
* @len: length of string to return. must be an odd number.
1131
*
1132
* This function is identical to ata_id_string except that it
1133
* trims trailing spaces and terminates the resulting string with
1134
* null. @len must be actual maximum length (even number) + 1.
1135
*
1136
* LOCKING:
1137
* caller.
1138
*/
1139
void ata_id_c_string(const u16 *id, unsigned char *s,
1140
unsigned int ofs, unsigned int len)
1141
{
1142
unsigned char *p;
1143
1144
ata_id_string(id, s, ofs, len - 1);
1145
1146
p = s + strnlen(s, len - 1);
1147
while (p > s && p[-1] == ' ')
1148
p--;
1149
*p = '\0';
1150
}
1151
EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
1153
static u64 ata_id_n_sectors(const u16 *id)
1154
{
1155
if (ata_id_has_lba(id)) {
1156
if (ata_id_has_lba48(id))
1157
return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159
return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160
}
1161
1162
if (ata_id_current_chs_valid(id))
1163
return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164
(u32)id[ATA_ID_CUR_SECTORS];
1165
1166
return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167
(u32)id[ATA_ID_SECTORS];
1168
}
1169
1170
u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171
{
1172
u64 sectors = 0;
1173
1174
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176
sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177
sectors |= (tf->lbah & 0xff) << 16;
1178
sectors |= (tf->lbam & 0xff) << 8;
1179
sectors |= (tf->lbal & 0xff);
1180
1181
return sectors;
1182
}
1183
1184
u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185
{
1186
u64 sectors = 0;
1187
1188
sectors |= (tf->device & 0x0f) << 24;
1189
sectors |= (tf->lbah & 0xff) << 16;
1190
sectors |= (tf->lbam & 0xff) << 8;
1191
sectors |= (tf->lbal & 0xff);
1192
1193
return sectors;
1194
}
1195
1196
/**
1197
* ata_read_native_max_address - Read native max address
1198
* @dev: target device
1199
* @max_sectors: out parameter for the result native max address
1200
*
1201
* Perform an LBA48 or LBA28 native size query upon the device in
1202
* question.
1203
*
1204
* RETURNS:
1205
* 0 on success, -EACCES if command is aborted by the drive.
1206
* -EIO on other errors.
1207
*/
1208
static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209
{
1210
unsigned int err_mask;
1211
struct ata_taskfile tf;
1212
int lba48 = ata_id_has_lba48(dev->id);
1213
1214
ata_tf_init(dev, &tf);
1215
1216
/* always clear all address registers */
1217
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219
if (lba48) {
1220
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221
tf.flags |= ATA_TFLAG_LBA48;
1222
} else
1223
tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225
tf.protocol = ATA_PROT_NODATA;
1226
tf.device |= ATA_LBA;
1227
1228
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229
if (err_mask) {
1230
ata_dev_warn(dev,
1231
"failed to read native max address (err_mask=0x%x)\n",
1232
err_mask);
1233
if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234
return -EACCES;
1235
return -EIO;
1236
}
1237
1238
if (lba48)
1239
*max_sectors = ata_tf_to_lba48(&tf) + 1;
1240
else
1241
*max_sectors = ata_tf_to_lba(&tf) + 1;
1242
if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243
(*max_sectors)--;
1244
return 0;
1245
}
1246
1247
/**
1248
* ata_set_max_sectors - Set max sectors
1249
* @dev: target device
1250
* @new_sectors: new max sectors value to set for the device
1251
*
1252
* Set max sectors of @dev to @new_sectors.
1253
*
1254
* RETURNS:
1255
* 0 on success, -EACCES if command is aborted or denied (due to
1256
* previous non-volatile SET_MAX) by the drive. -EIO on other
1257
* errors.
1258
*/
1259
static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260
{
1261
unsigned int err_mask;
1262
struct ata_taskfile tf;
1263
int lba48 = ata_id_has_lba48(dev->id);
1264
1265
new_sectors--;
1266
1267
ata_tf_init(dev, &tf);
1268
1269
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271
if (lba48) {
1272
tf.command = ATA_CMD_SET_MAX_EXT;
1273
tf.flags |= ATA_TFLAG_LBA48;
1274
1275
tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276
tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277
tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278
} else {
1279
tf.command = ATA_CMD_SET_MAX;
1280
1281
tf.device |= (new_sectors >> 24) & 0xf;
1282
}
1283
1284
tf.protocol = ATA_PROT_NODATA;
1285
tf.device |= ATA_LBA;
1286
1287
tf.lbal = (new_sectors >> 0) & 0xff;
1288
tf.lbam = (new_sectors >> 8) & 0xff;
1289
tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292
if (err_mask) {
1293
ata_dev_warn(dev,
1294
"failed to set max address (err_mask=0x%x)\n",
1295
err_mask);
1296
if (err_mask == AC_ERR_DEV &&
1297
(tf.error & (ATA_ABORTED | ATA_IDNF)))
1298
return -EACCES;
1299
return -EIO;
1300
}
1301
1302
return 0;
1303
}
1304
1305
/**
1306
* ata_hpa_resize - Resize a device with an HPA set
1307
* @dev: Device to resize
1308
*
1309
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310
* it if required to the full size of the media. The caller must check
1311
* the drive has the HPA feature set enabled.
1312
*
1313
* RETURNS:
1314
* 0 on success, -errno on failure.
1315
*/
1316
static int ata_hpa_resize(struct ata_device *dev)
1317
{
1318
bool print_info = ata_dev_print_info(dev);
1319
bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320
u64 sectors = ata_id_n_sectors(dev->id);
1321
u64 native_sectors;
1322
int rc;
1323
1324
/* do we need to do it? */
1325
if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326
!ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327
(dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328
return 0;
1329
1330
/* read native max address */
1331
rc = ata_read_native_max_address(dev, &native_sectors);
1332
if (rc) {
1333
/* If device aborted the command or HPA isn't going to
1334
* be unlocked, skip HPA resizing.
1335
*/
1336
if (rc == -EACCES || !unlock_hpa) {
1337
ata_dev_warn(dev,
1338
"HPA support seems broken, skipping HPA handling\n");
1339
dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341
/* we can continue if device aborted the command */
1342
if (rc == -EACCES)
1343
rc = 0;
1344
}
1345
1346
return rc;
1347
}
1348
dev->n_native_sectors = native_sectors;
1349
1350
/* nothing to do? */
1351
if (native_sectors <= sectors || !unlock_hpa) {
1352
if (!print_info || native_sectors == sectors)
1353
return 0;
1354
1355
if (native_sectors > sectors)
1356
ata_dev_info(dev,
1357
"HPA detected: current %llu, native %llu\n",
1358
(unsigned long long)sectors,
1359
(unsigned long long)native_sectors);
1360
else if (native_sectors < sectors)
1361
ata_dev_warn(dev,
1362
"native sectors (%llu) is smaller than sectors (%llu)\n",
1363
(unsigned long long)native_sectors,
1364
(unsigned long long)sectors);
1365
return 0;
1366
}
1367
1368
/* let's unlock HPA */
1369
rc = ata_set_max_sectors(dev, native_sectors);
1370
if (rc == -EACCES) {
1371
/* if device aborted the command, skip HPA resizing */
1372
ata_dev_warn(dev,
1373
"device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374
(unsigned long long)sectors,
1375
(unsigned long long)native_sectors);
1376
dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377
return 0;
1378
} else if (rc)
1379
return rc;
1380
1381
/* re-read IDENTIFY data */
1382
rc = ata_dev_reread_id(dev, 0);
1383
if (rc) {
1384
ata_dev_err(dev,
1385
"failed to re-read IDENTIFY data after HPA resizing\n");
1386
return rc;
1387
}
1388
1389
if (print_info) {
1390
u64 new_sectors = ata_id_n_sectors(dev->id);
1391
ata_dev_info(dev,
1392
"HPA unlocked: %llu -> %llu, native %llu\n",
1393
(unsigned long long)sectors,
1394
(unsigned long long)new_sectors,
1395
(unsigned long long)native_sectors);
1396
}
1397
1398
return 0;
1399
}
1400
1401
/**
1402
* ata_dump_id - IDENTIFY DEVICE info debugging output
1403
* @dev: device from which the information is fetched
1404
* @id: IDENTIFY DEVICE page to dump
1405
*
1406
* Dump selected 16-bit words from the given IDENTIFY DEVICE
1407
* page.
1408
*
1409
* LOCKING:
1410
* caller.
1411
*/
1412
1413
static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414
{
1415
ata_dev_dbg(dev,
1416
"49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417
"80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418
"88==0x%04x 93==0x%04x\n",
1419
id[49], id[53], id[63], id[64], id[75], id[80],
1420
id[81], id[82], id[83], id[84], id[88], id[93]);
1421
}
1422
1423
/**
1424
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425
* @id: IDENTIFY data to compute xfer mask from
1426
*
1427
* Compute the xfermask for this device. This is not as trivial
1428
* as it seems if we must consider early devices correctly.
1429
*
1430
* FIXME: pre IDE drive timing (do we care ?).
1431
*
1432
* LOCKING:
1433
* None.
1434
*
1435
* RETURNS:
1436
* Computed xfermask
1437
*/
1438
unsigned int ata_id_xfermask(const u16 *id)
1439
{
1440
unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442
/* Usual case. Word 53 indicates word 64 is valid */
1443
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445
pio_mask <<= 3;
1446
pio_mask |= 0x7;
1447
} else {
1448
/* If word 64 isn't valid then Word 51 high byte holds
1449
* the PIO timing number for the maximum. Turn it into
1450
* a mask.
1451
*/
1452
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453
if (mode < 5) /* Valid PIO range */
1454
pio_mask = (2 << mode) - 1;
1455
else
1456
pio_mask = 1;
1457
1458
/* But wait.. there's more. Design your standards by
1459
* committee and you too can get a free iordy field to
1460
* process. However it is the speeds not the modes that
1461
* are supported... Note drivers using the timing API
1462
* will get this right anyway
1463
*/
1464
}
1465
1466
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468
if (ata_id_is_cfa(id)) {
1469
/*
1470
* Process compact flash extended modes
1471
*/
1472
int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473
int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475
if (pio)
1476
pio_mask |= (1 << 5);
1477
if (pio > 1)
1478
pio_mask |= (1 << 6);
1479
if (dma)
1480
mwdma_mask |= (1 << 3);
1481
if (dma > 1)
1482
mwdma_mask |= (1 << 4);
1483
}
1484
1485
udma_mask = 0;
1486
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490
}
1491
EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
1493
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494
{
1495
struct completion *waiting = qc->private_data;
1496
1497
complete(waiting);
1498
}
1499
1500
/**
1501
* ata_exec_internal - execute libata internal command
1502
* @dev: Device to which the command is sent
1503
* @tf: Taskfile registers for the command and the result
1504
* @cdb: CDB for packet command
1505
* @dma_dir: Data transfer direction of the command
1506
* @buf: Data buffer of the command
1507
* @buflen: Length of data buffer
1508
* @timeout: Timeout in msecs (0 for default)
1509
*
1510
* Executes libata internal command with timeout. @tf contains
1511
* the command on entry and the result on return. Timeout and error
1512
* conditions are reported via the return value. No recovery action
1513
* is taken after a command times out. It is the caller's duty to
1514
* clean up after timeout.
1515
*
1516
* LOCKING:
1517
* None. Should be called with kernel context, might sleep.
1518
*
1519
* RETURNS:
1520
* Zero on success, AC_ERR_* mask on failure
1521
*/
1522
unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523
const u8 *cdb, enum dma_data_direction dma_dir,
1524
void *buf, unsigned int buflen,
1525
unsigned int timeout)
1526
{
1527
struct ata_link *link = dev->link;
1528
struct ata_port *ap = link->ap;
1529
u8 command = tf->command;
1530
struct ata_queued_cmd *qc;
1531
struct scatterlist sgl;
1532
unsigned int preempted_tag;
1533
u32 preempted_sactive;
1534
u64 preempted_qc_active;
1535
int preempted_nr_active_links;
1536
bool auto_timeout = false;
1537
DECLARE_COMPLETION_ONSTACK(wait);
1538
unsigned long flags;
1539
unsigned int err_mask;
1540
int rc;
1541
1542
if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543
return AC_ERR_INVALID;
1544
1545
spin_lock_irqsave(ap->lock, flags);
1546
1547
/* No internal command while frozen */
1548
if (ata_port_is_frozen(ap)) {
1549
spin_unlock_irqrestore(ap->lock, flags);
1550
return AC_ERR_SYSTEM;
1551
}
1552
1553
/* Initialize internal qc */
1554
qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556
qc->tag = ATA_TAG_INTERNAL;
1557
qc->hw_tag = 0;
1558
qc->scsicmd = NULL;
1559
qc->ap = ap;
1560
qc->dev = dev;
1561
ata_qc_reinit(qc);
1562
1563
preempted_tag = link->active_tag;
1564
preempted_sactive = link->sactive;
1565
preempted_qc_active = ap->qc_active;
1566
preempted_nr_active_links = ap->nr_active_links;
1567
link->active_tag = ATA_TAG_POISON;
1568
link->sactive = 0;
1569
ap->qc_active = 0;
1570
ap->nr_active_links = 0;
1571
1572
/* Prepare and issue qc */
1573
qc->tf = *tf;
1574
if (cdb)
1575
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577
/* Some SATA bridges need us to indicate data xfer direction */
1578
if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579
dma_dir == DMA_FROM_DEVICE)
1580
qc->tf.feature |= ATAPI_DMADIR;
1581
1582
qc->flags |= ATA_QCFLAG_RESULT_TF;
1583
qc->dma_dir = dma_dir;
1584
if (dma_dir != DMA_NONE) {
1585
sg_init_one(&sgl, buf, buflen);
1586
ata_sg_init(qc, &sgl, 1);
1587
qc->nbytes = buflen;
1588
}
1589
1590
qc->private_data = &wait;
1591
qc->complete_fn = ata_qc_complete_internal;
1592
1593
ata_qc_issue(qc);
1594
1595
spin_unlock_irqrestore(ap->lock, flags);
1596
1597
if (!timeout) {
1598
if (ata_probe_timeout) {
1599
timeout = ata_probe_timeout * 1000;
1600
} else {
1601
timeout = ata_internal_cmd_timeout(dev, command);
1602
auto_timeout = true;
1603
}
1604
}
1605
1606
ata_eh_release(ap);
1607
1608
rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610
ata_eh_acquire(ap);
1611
1612
ata_sff_flush_pio_task(ap);
1613
1614
if (!rc) {
1615
/*
1616
* We are racing with irq here. If we lose, the following test
1617
* prevents us from completing the qc twice. If we win, the port
1618
* is frozen and will be cleaned up by ->post_internal_cmd().
1619
*/
1620
spin_lock_irqsave(ap->lock, flags);
1621
if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622
qc->err_mask |= AC_ERR_TIMEOUT;
1623
ata_port_freeze(ap);
1624
ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625
timeout, command);
1626
}
1627
spin_unlock_irqrestore(ap->lock, flags);
1628
}
1629
1630
if (ap->ops->post_internal_cmd)
1631
ap->ops->post_internal_cmd(qc);
1632
1633
/* Perform minimal error analysis */
1634
if (qc->flags & ATA_QCFLAG_EH) {
1635
if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636
qc->err_mask |= AC_ERR_DEV;
1637
1638
if (!qc->err_mask)
1639
qc->err_mask |= AC_ERR_OTHER;
1640
1641
if (qc->err_mask & ~AC_ERR_OTHER)
1642
qc->err_mask &= ~AC_ERR_OTHER;
1643
} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644
qc->result_tf.status |= ATA_SENSE;
1645
}
1646
1647
/* Finish up */
1648
spin_lock_irqsave(ap->lock, flags);
1649
1650
*tf = qc->result_tf;
1651
err_mask = qc->err_mask;
1652
1653
ata_qc_free(qc);
1654
link->active_tag = preempted_tag;
1655
link->sactive = preempted_sactive;
1656
ap->qc_active = preempted_qc_active;
1657
ap->nr_active_links = preempted_nr_active_links;
1658
1659
spin_unlock_irqrestore(ap->lock, flags);
1660
1661
if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662
ata_internal_cmd_timed_out(dev, command);
1663
1664
return err_mask;
1665
}
1666
1667
/**
1668
* ata_pio_need_iordy - check if iordy needed
1669
* @adev: ATA device
1670
*
1671
* Check if the current speed of the device requires IORDY. Used
1672
* by various controllers for chip configuration.
1673
*/
1674
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675
{
1676
/* Don't set IORDY if we're preparing for reset. IORDY may
1677
* lead to controller lock up on certain controllers if the
1678
* port is not occupied. See bko#11703 for details.
1679
*/
1680
if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681
return 0;
1682
/* Controller doesn't support IORDY. Probably a pointless
1683
* check as the caller should know this.
1684
*/
1685
if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686
return 0;
1687
/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688
if (ata_id_is_cfa(adev->id)
1689
&& (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690
return 0;
1691
/* PIO3 and higher it is mandatory */
1692
if (adev->pio_mode > XFER_PIO_2)
1693
return 1;
1694
/* We turn it on when possible */
1695
if (ata_id_has_iordy(adev->id))
1696
return 1;
1697
return 0;
1698
}
1699
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701
/**
1702
* ata_pio_mask_no_iordy - Return the non IORDY mask
1703
* @adev: ATA device
1704
*
1705
* Compute the highest mode possible if we are not using iordy. Return
1706
* -1 if no iordy mode is available.
1707
*/
1708
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709
{
1710
/* If we have no drive specific rule, then PIO 2 is non IORDY */
1711
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712
u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713
/* Is the speed faster than the drive allows non IORDY ? */
1714
if (pio) {
1715
/* This is cycle times not frequency - watch the logic! */
1716
if (pio > 240) /* PIO2 is 240nS per cycle */
1717
return 3 << ATA_SHIFT_PIO;
1718
return 7 << ATA_SHIFT_PIO;
1719
}
1720
}
1721
return 3 << ATA_SHIFT_PIO;
1722
}
1723
1724
/**
1725
* ata_do_dev_read_id - default ID read method
1726
* @dev: device
1727
* @tf: proposed taskfile
1728
* @id: data buffer
1729
*
1730
* Issue the identify taskfile and hand back the buffer containing
1731
* identify data. For some RAID controllers and for pre ATA devices
1732
* this function is wrapped or replaced by the driver
1733
*/
1734
unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735
struct ata_taskfile *tf, __le16 *id)
1736
{
1737
return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738
id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739
}
1740
EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742
/**
1743
* ata_dev_read_id - Read ID data from the specified device
1744
* @dev: target device
1745
* @p_class: pointer to class of the target device (may be changed)
1746
* @flags: ATA_READID_* flags
1747
* @id: buffer to read IDENTIFY data into
1748
*
1749
* Read ID data from the specified device. ATA_CMD_ID_ATA is
1750
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752
* for pre-ATA4 drives.
1753
*
1754
* FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755
* now we abort if we hit that case.
1756
*
1757
* LOCKING:
1758
* Kernel thread context (may sleep)
1759
*
1760
* RETURNS:
1761
* 0 on success, -errno otherwise.
1762
*/
1763
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764
unsigned int flags, u16 *id)
1765
{
1766
struct ata_port *ap = dev->link->ap;
1767
unsigned int class = *p_class;
1768
struct ata_taskfile tf;
1769
unsigned int err_mask = 0;
1770
const char *reason;
1771
bool is_semb = class == ATA_DEV_SEMB;
1772
int may_fallback = 1, tried_spinup = 0;
1773
int rc;
1774
1775
retry:
1776
ata_tf_init(dev, &tf);
1777
1778
switch (class) {
1779
case ATA_DEV_SEMB:
1780
class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781
fallthrough;
1782
case ATA_DEV_ATA:
1783
case ATA_DEV_ZAC:
1784
tf.command = ATA_CMD_ID_ATA;
1785
break;
1786
case ATA_DEV_ATAPI:
1787
tf.command = ATA_CMD_ID_ATAPI;
1788
break;
1789
default:
1790
rc = -ENODEV;
1791
reason = "unsupported class";
1792
goto err_out;
1793
}
1794
1795
tf.protocol = ATA_PROT_PIO;
1796
1797
/* Some devices choke if TF registers contain garbage. Make
1798
* sure those are properly initialized.
1799
*/
1800
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802
/* Device presence detection is unreliable on some
1803
* controllers. Always poll IDENTIFY if available.
1804
*/
1805
tf.flags |= ATA_TFLAG_POLLING;
1806
1807
if (ap->ops->read_id)
1808
err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809
else
1810
err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812
if (err_mask) {
1813
if (err_mask & AC_ERR_NODEV_HINT) {
1814
ata_dev_dbg(dev, "NODEV after polling detection\n");
1815
return -ENOENT;
1816
}
1817
1818
if (is_semb) {
1819
ata_dev_info(dev,
1820
"IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821
/* SEMB is not supported yet */
1822
*p_class = ATA_DEV_SEMB_UNSUP;
1823
return 0;
1824
}
1825
1826
if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827
/* Device or controller might have reported
1828
* the wrong device class. Give a shot at the
1829
* other IDENTIFY if the current one is
1830
* aborted by the device.
1831
*/
1832
if (may_fallback) {
1833
may_fallback = 0;
1834
1835
if (class == ATA_DEV_ATA)
1836
class = ATA_DEV_ATAPI;
1837
else
1838
class = ATA_DEV_ATA;
1839
goto retry;
1840
}
1841
1842
/* Control reaches here iff the device aborted
1843
* both flavors of IDENTIFYs which happens
1844
* sometimes with phantom devices.
1845
*/
1846
ata_dev_dbg(dev,
1847
"both IDENTIFYs aborted, assuming NODEV\n");
1848
return -ENOENT;
1849
}
1850
1851
rc = -EIO;
1852
reason = "I/O error";
1853
goto err_out;
1854
}
1855
1856
if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857
ata_dev_info(dev, "dumping IDENTIFY data, "
1858
"class=%d may_fallback=%d tried_spinup=%d\n",
1859
class, may_fallback, tried_spinup);
1860
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861
16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862
}
1863
1864
/* Falling back doesn't make sense if ID data was read
1865
* successfully at least once.
1866
*/
1867
may_fallback = 0;
1868
1869
swap_buf_le16(id, ATA_ID_WORDS);
1870
1871
/* sanity check */
1872
rc = -EINVAL;
1873
reason = "device reports invalid type";
1874
1875
if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877
goto err_out;
1878
if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879
ata_id_is_ata(id)) {
1880
ata_dev_dbg(dev,
1881
"host indicates ignore ATA devices, ignored\n");
1882
return -ENOENT;
1883
}
1884
} else {
1885
if (ata_id_is_ata(id))
1886
goto err_out;
1887
}
1888
1889
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890
tried_spinup = 1;
1891
/*
1892
* Drive powered-up in standby mode, and requires a specific
1893
* SET_FEATURES spin-up subcommand before it will accept
1894
* anything other than the original IDENTIFY command.
1895
*/
1896
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897
if (err_mask && id[2] != 0x738c) {
1898
rc = -EIO;
1899
reason = "SPINUP failed";
1900
goto err_out;
1901
}
1902
/*
1903
* If the drive initially returned incomplete IDENTIFY info,
1904
* we now must reissue the IDENTIFY command.
1905
*/
1906
if (id[2] == 0x37c8)
1907
goto retry;
1908
}
1909
1910
if ((flags & ATA_READID_POSTRESET) &&
1911
(class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912
/*
1913
* The exact sequence expected by certain pre-ATA4 drives is:
1914
* SRST RESET
1915
* IDENTIFY (optional in early ATA)
1916
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917
* anything else..
1918
* Some drives were very specific about that exact sequence.
1919
*
1920
* Note that ATA4 says lba is mandatory so the second check
1921
* should never trigger.
1922
*/
1923
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924
err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925
if (err_mask) {
1926
rc = -EIO;
1927
reason = "INIT_DEV_PARAMS failed";
1928
goto err_out;
1929
}
1930
1931
/* current CHS translation info (id[53-58]) might be
1932
* changed. reread the identify device info.
1933
*/
1934
flags &= ~ATA_READID_POSTRESET;
1935
goto retry;
1936
}
1937
}
1938
1939
*p_class = class;
1940
1941
return 0;
1942
1943
err_out:
1944
ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945
reason, err_mask);
1946
return rc;
1947
}
1948
1949
bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950
bool set_active)
1951
{
1952
/* Only applies to ATA and ZAC devices */
1953
if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954
return false;
1955
1956
ata_tf_init(dev, tf);
1957
tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958
tf->protocol = ATA_PROT_NODATA;
1959
1960
if (set_active) {
1961
/* VERIFY for 1 sector at lba=0 */
1962
tf->command = ATA_CMD_VERIFY;
1963
tf->nsect = 1;
1964
if (dev->flags & ATA_DFLAG_LBA) {
1965
tf->flags |= ATA_TFLAG_LBA;
1966
tf->device |= ATA_LBA;
1967
} else {
1968
/* CHS */
1969
tf->lbal = 0x1; /* sect */
1970
}
1971
} else {
1972
tf->command = ATA_CMD_STANDBYNOW1;
1973
}
1974
1975
return true;
1976
}
1977
1978
static bool ata_dev_power_is_active(struct ata_device *dev)
1979
{
1980
struct ata_taskfile tf;
1981
unsigned int err_mask;
1982
1983
ata_tf_init(dev, &tf);
1984
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985
tf.protocol = ATA_PROT_NODATA;
1986
tf.command = ATA_CMD_CHK_POWER;
1987
1988
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989
if (err_mask) {
1990
ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991
err_mask);
1992
/*
1993
* Assume we are in standby mode so that we always force a
1994
* spinup in ata_dev_power_set_active().
1995
*/
1996
return false;
1997
}
1998
1999
ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001
/* Active or idle */
2002
return tf.nsect == 0xff;
2003
}
2004
2005
/**
2006
* ata_dev_power_set_standby - Set a device power mode to standby
2007
* @dev: target device
2008
*
2009
* Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010
* For an HDD device, this spins down the disks.
2011
*
2012
* LOCKING:
2013
* Kernel thread context (may sleep).
2014
*/
2015
void ata_dev_power_set_standby(struct ata_device *dev)
2016
{
2017
unsigned long ap_flags = dev->link->ap->flags;
2018
struct ata_taskfile tf;
2019
unsigned int err_mask;
2020
2021
/* If the device is already sleeping or in standby, do nothing. */
2022
if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023
!ata_dev_power_is_active(dev))
2024
return;
2025
2026
/*
2027
* Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028
* causing some drives to spin up and down again. For these, do nothing
2029
* if we are being called on shutdown.
2030
*/
2031
if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032
system_state == SYSTEM_POWER_OFF)
2033
return;
2034
2035
if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036
system_entering_hibernation())
2037
return;
2038
2039
/* Issue STANDBY IMMEDIATE command only if supported by the device */
2040
if (!ata_dev_power_init_tf(dev, &tf, false))
2041
return;
2042
2043
ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046
if (err_mask)
2047
ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048
err_mask);
2049
}
2050
2051
/**
2052
* ata_dev_power_set_active - Set a device power mode to active
2053
* @dev: target device
2054
*
2055
* Issue a VERIFY command to enter to ensure that the device is in the
2056
* active power mode. For a spun-down HDD (standby or idle power mode),
2057
* the VERIFY command will complete after the disk spins up.
2058
*
2059
* LOCKING:
2060
* Kernel thread context (may sleep).
2061
*/
2062
void ata_dev_power_set_active(struct ata_device *dev)
2063
{
2064
struct ata_taskfile tf;
2065
unsigned int err_mask;
2066
2067
/*
2068
* Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069
* if supported by the device.
2070
*/
2071
if (!ata_dev_power_init_tf(dev, &tf, true))
2072
return;
2073
2074
/*
2075
* Check the device power state & condition and force a spinup with
2076
* VERIFY command only if the drive is not already ACTIVE or IDLE.
2077
*/
2078
if (ata_dev_power_is_active(dev))
2079
return;
2080
2081
ata_dev_notice(dev, "Entering active power mode\n");
2082
2083
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084
if (err_mask)
2085
ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086
err_mask);
2087
}
2088
2089
/**
2090
* ata_read_log_page - read a specific log page
2091
* @dev: target device
2092
* @log: log to read
2093
* @page: page to read
2094
* @buf: buffer to store read page
2095
* @sectors: number of sectors to read
2096
*
2097
* Read log page using READ_LOG_EXT command.
2098
*
2099
* LOCKING:
2100
* Kernel thread context (may sleep).
2101
*
2102
* RETURNS:
2103
* 0 on success, AC_ERR_* mask otherwise.
2104
*/
2105
unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106
u8 page, void *buf, unsigned int sectors)
2107
{
2108
unsigned long ap_flags = dev->link->ap->flags;
2109
struct ata_taskfile tf;
2110
unsigned int err_mask;
2111
bool dma = false;
2112
2113
ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115
/*
2116
* Return error without actually issuing the command on controllers
2117
* which e.g. lockup on a read log page.
2118
*/
2119
if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120
return AC_ERR_DEV;
2121
2122
retry:
2123
ata_tf_init(dev, &tf);
2124
if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125
!(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126
tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127
tf.protocol = ATA_PROT_DMA;
2128
dma = true;
2129
} else {
2130
tf.command = ATA_CMD_READ_LOG_EXT;
2131
tf.protocol = ATA_PROT_PIO;
2132
dma = false;
2133
}
2134
tf.lbal = log;
2135
tf.lbam = page;
2136
tf.nsect = sectors;
2137
tf.hob_nsect = sectors >> 8;
2138
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141
buf, sectors * ATA_SECT_SIZE, 0);
2142
2143
if (err_mask) {
2144
if (dma) {
2145
dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146
if (!ata_port_is_frozen(dev->link->ap))
2147
goto retry;
2148
}
2149
ata_dev_err(dev,
2150
"Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151
(unsigned int)log, (unsigned int)page, err_mask);
2152
}
2153
2154
return err_mask;
2155
}
2156
2157
static inline void ata_clear_log_directory(struct ata_device *dev)
2158
{
2159
memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160
}
2161
2162
static int ata_read_log_directory(struct ata_device *dev)
2163
{
2164
u16 version;
2165
2166
/* If the log page is already cached, do nothing. */
2167
version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168
if (version == 0x0001)
2169
return 0;
2170
2171
if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172
ata_clear_log_directory(dev);
2173
return -EIO;
2174
}
2175
2176
version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177
if (version != 0x0001) {
2178
ata_dev_err(dev, "Invalid log directory version 0x%04x\n",
2179
version);
2180
ata_clear_log_directory(dev);
2181
dev->quirks |= ATA_QUIRK_NO_LOG_DIR;
2182
return -EINVAL;
2183
}
2184
2185
return 0;
2186
}
2187
2188
static int ata_log_supported(struct ata_device *dev, u8 log)
2189
{
2190
if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2191
return 0;
2192
2193
if (ata_read_log_directory(dev))
2194
return 0;
2195
2196
return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2197
}
2198
2199
static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2200
{
2201
unsigned int err, i;
2202
2203
if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2204
return false;
2205
2206
if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2207
/*
2208
* IDENTIFY DEVICE data log is defined as mandatory starting
2209
* with ACS-3 (ATA version 10). Warn about the missing log
2210
* for drives which implement this ATA level or above.
2211
*/
2212
if (ata_id_major_version(dev->id) >= 10)
2213
ata_dev_warn(dev,
2214
"ATA Identify Device Log not supported\n");
2215
dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2216
return false;
2217
}
2218
2219
/*
2220
* Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2221
* supported.
2222
*/
2223
err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2224
dev->sector_buf, 1);
2225
if (err)
2226
return false;
2227
2228
for (i = 0; i < dev->sector_buf[8]; i++) {
2229
if (dev->sector_buf[9 + i] == page)
2230
return true;
2231
}
2232
2233
return false;
2234
}
2235
2236
static int ata_do_link_spd_quirk(struct ata_device *dev)
2237
{
2238
struct ata_link *plink = ata_dev_phys_link(dev);
2239
u32 target, target_limit;
2240
2241
if (!sata_scr_valid(plink))
2242
return 0;
2243
2244
if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2245
target = 1;
2246
else
2247
return 0;
2248
2249
target_limit = (1 << target) - 1;
2250
2251
/* if already on stricter limit, no need to push further */
2252
if (plink->sata_spd_limit <= target_limit)
2253
return 0;
2254
2255
plink->sata_spd_limit = target_limit;
2256
2257
/* Request another EH round by returning -EAGAIN if link is
2258
* going faster than the target speed. Forward progress is
2259
* guaranteed by setting sata_spd_limit to target_limit above.
2260
*/
2261
if (plink->sata_spd > target) {
2262
ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2263
sata_spd_string(target));
2264
return -EAGAIN;
2265
}
2266
return 0;
2267
}
2268
2269
static inline bool ata_dev_knobble(struct ata_device *dev)
2270
{
2271
struct ata_port *ap = dev->link->ap;
2272
2273
if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2274
return false;
2275
2276
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2277
}
2278
2279
static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2280
{
2281
unsigned int err_mask;
2282
2283
if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2284
ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2285
return;
2286
}
2287
err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2288
0, dev->sector_buf, 1);
2289
if (!err_mask) {
2290
u8 *cmds = dev->ncq_send_recv_cmds;
2291
2292
dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2293
memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2294
2295
if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2296
ata_dev_dbg(dev, "disabling queued TRIM support\n");
2297
cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2298
~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2299
}
2300
}
2301
}
2302
2303
static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2304
{
2305
unsigned int err_mask;
2306
2307
if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2308
ata_dev_warn(dev,
2309
"NCQ Non-Data Log not supported\n");
2310
return;
2311
}
2312
err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2313
0, dev->sector_buf, 1);
2314
if (!err_mask)
2315
memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2316
ATA_LOG_NCQ_NON_DATA_SIZE);
2317
}
2318
2319
static void ata_dev_config_ncq_prio(struct ata_device *dev)
2320
{
2321
unsigned int err_mask;
2322
2323
if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2324
return;
2325
2326
err_mask = ata_read_log_page(dev,
2327
ATA_LOG_IDENTIFY_DEVICE,
2328
ATA_LOG_SATA_SETTINGS,
2329
dev->sector_buf, 1);
2330
if (err_mask)
2331
goto not_supported;
2332
2333
if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2334
goto not_supported;
2335
2336
dev->flags |= ATA_DFLAG_NCQ_PRIO;
2337
2338
return;
2339
2340
not_supported:
2341
dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2342
dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2343
}
2344
2345
static bool ata_dev_check_adapter(struct ata_device *dev,
2346
unsigned short vendor_id)
2347
{
2348
struct pci_dev *pcidev = NULL;
2349
struct device *parent_dev = NULL;
2350
2351
for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2352
parent_dev = parent_dev->parent) {
2353
if (dev_is_pci(parent_dev)) {
2354
pcidev = to_pci_dev(parent_dev);
2355
if (pcidev->vendor == vendor_id)
2356
return true;
2357
break;
2358
}
2359
}
2360
2361
return false;
2362
}
2363
2364
static int ata_dev_config_ncq(struct ata_device *dev,
2365
char *desc, size_t desc_sz)
2366
{
2367
struct ata_port *ap = dev->link->ap;
2368
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2369
unsigned int err_mask;
2370
char *aa_desc = "";
2371
2372
if (!ata_id_has_ncq(dev->id)) {
2373
desc[0] = '\0';
2374
return 0;
2375
}
2376
if (!IS_ENABLED(CONFIG_SATA_HOST))
2377
return 0;
2378
if (dev->quirks & ATA_QUIRK_NONCQ) {
2379
snprintf(desc, desc_sz, "NCQ (not used)");
2380
return 0;
2381
}
2382
2383
if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2384
ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2385
snprintf(desc, desc_sz, "NCQ (not used)");
2386
return 0;
2387
}
2388
2389
if (ap->flags & ATA_FLAG_NCQ) {
2390
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2391
dev->flags |= ATA_DFLAG_NCQ;
2392
}
2393
2394
if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2395
(ap->flags & ATA_FLAG_FPDMA_AA) &&
2396
ata_id_has_fpdma_aa(dev->id)) {
2397
err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2398
SATA_FPDMA_AA);
2399
if (err_mask) {
2400
ata_dev_err(dev,
2401
"failed to enable AA (error_mask=0x%x)\n",
2402
err_mask);
2403
if (err_mask != AC_ERR_DEV) {
2404
dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2405
return -EIO;
2406
}
2407
} else
2408
aa_desc = ", AA";
2409
}
2410
2411
if (hdepth >= ddepth)
2412
snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2413
else
2414
snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2415
ddepth, aa_desc);
2416
2417
if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2418
if (ata_id_has_ncq_send_and_recv(dev->id))
2419
ata_dev_config_ncq_send_recv(dev);
2420
if (ata_id_has_ncq_non_data(dev->id))
2421
ata_dev_config_ncq_non_data(dev);
2422
if (ata_id_has_ncq_prio(dev->id))
2423
ata_dev_config_ncq_prio(dev);
2424
}
2425
2426
return 0;
2427
}
2428
2429
static void ata_dev_config_sense_reporting(struct ata_device *dev)
2430
{
2431
unsigned int err_mask;
2432
2433
if (!ata_id_has_sense_reporting(dev->id))
2434
return;
2435
2436
if (ata_id_sense_reporting_enabled(dev->id))
2437
return;
2438
2439
err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2440
if (err_mask) {
2441
ata_dev_dbg(dev,
2442
"failed to enable Sense Data Reporting, Emask 0x%x\n",
2443
err_mask);
2444
}
2445
}
2446
2447
static void ata_dev_config_zac(struct ata_device *dev)
2448
{
2449
unsigned int err_mask;
2450
u8 *identify_buf = dev->sector_buf;
2451
2452
dev->zac_zones_optimal_open = U32_MAX;
2453
dev->zac_zones_optimal_nonseq = U32_MAX;
2454
dev->zac_zones_max_open = U32_MAX;
2455
2456
if (!ata_dev_is_zac(dev))
2457
return;
2458
2459
if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2460
ata_dev_warn(dev,
2461
"ATA Zoned Information Log not supported\n");
2462
return;
2463
}
2464
2465
/*
2466
* Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2467
*/
2468
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2469
ATA_LOG_ZONED_INFORMATION,
2470
identify_buf, 1);
2471
if (!err_mask) {
2472
u64 zoned_cap, opt_open, opt_nonseq, max_open;
2473
2474
zoned_cap = get_unaligned_le64(&identify_buf[8]);
2475
if ((zoned_cap >> 63))
2476
dev->zac_zoned_cap = (zoned_cap & 1);
2477
opt_open = get_unaligned_le64(&identify_buf[24]);
2478
if ((opt_open >> 63))
2479
dev->zac_zones_optimal_open = (u32)opt_open;
2480
opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2481
if ((opt_nonseq >> 63))
2482
dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2483
max_open = get_unaligned_le64(&identify_buf[40]);
2484
if ((max_open >> 63))
2485
dev->zac_zones_max_open = (u32)max_open;
2486
}
2487
}
2488
2489
static void ata_dev_config_trusted(struct ata_device *dev)
2490
{
2491
u64 trusted_cap;
2492
unsigned int err;
2493
2494
if (!ata_id_has_trusted(dev->id))
2495
return;
2496
2497
if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2498
ata_dev_warn(dev,
2499
"Security Log not supported\n");
2500
return;
2501
}
2502
2503
err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2504
dev->sector_buf, 1);
2505
if (err)
2506
return;
2507
2508
trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2509
if (!(trusted_cap & (1ULL << 63))) {
2510
ata_dev_dbg(dev,
2511
"Trusted Computing capability qword not valid!\n");
2512
return;
2513
}
2514
2515
if (trusted_cap & (1 << 0))
2516
dev->flags |= ATA_DFLAG_TRUSTED;
2517
}
2518
2519
static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2520
{
2521
kfree(dev->cdl);
2522
dev->cdl = NULL;
2523
}
2524
2525
static int ata_dev_init_cdl_resources(struct ata_device *dev)
2526
{
2527
struct ata_cdl *cdl = dev->cdl;
2528
unsigned int err_mask;
2529
2530
if (!cdl) {
2531
cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2532
if (!cdl)
2533
return -ENOMEM;
2534
dev->cdl = cdl;
2535
}
2536
2537
err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2538
ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2539
if (err_mask) {
2540
ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2541
ata_dev_cleanup_cdl_resources(dev);
2542
return -EIO;
2543
}
2544
2545
return 0;
2546
}
2547
2548
static void ata_dev_config_cdl(struct ata_device *dev)
2549
{
2550
unsigned int err_mask;
2551
bool cdl_enabled;
2552
u64 val;
2553
int ret;
2554
2555
if (ata_id_major_version(dev->id) < 11)
2556
goto not_supported;
2557
2558
if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2559
!ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2560
!ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2561
goto not_supported;
2562
2563
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2564
ATA_LOG_SUPPORTED_CAPABILITIES,
2565
dev->sector_buf, 1);
2566
if (err_mask)
2567
goto not_supported;
2568
2569
/* Check Command Duration Limit Supported bits */
2570
val = get_unaligned_le64(&dev->sector_buf[168]);
2571
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2572
goto not_supported;
2573
2574
/* Warn the user if command duration guideline is not supported */
2575
if (!(val & BIT_ULL(1)))
2576
ata_dev_warn(dev,
2577
"Command duration guideline is not supported\n");
2578
2579
/*
2580
* We must have support for the sense data for successful NCQ commands
2581
* log indicated by the successful NCQ command sense data supported bit.
2582
*/
2583
val = get_unaligned_le64(&dev->sector_buf[8]);
2584
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2585
ata_dev_warn(dev,
2586
"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2587
goto not_supported;
2588
}
2589
2590
/* Without NCQ autosense, the successful NCQ commands log is useless. */
2591
if (!ata_id_has_ncq_autosense(dev->id)) {
2592
ata_dev_warn(dev,
2593
"CDL supported but NCQ autosense is not supported\n");
2594
goto not_supported;
2595
}
2596
2597
/*
2598
* If CDL is marked as enabled, make sure the feature is enabled too.
2599
* Conversely, if CDL is disabled, make sure the feature is turned off.
2600
*/
2601
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2602
ATA_LOG_CURRENT_SETTINGS,
2603
dev->sector_buf, 1);
2604
if (err_mask)
2605
goto not_supported;
2606
2607
val = get_unaligned_le64(&dev->sector_buf[8]);
2608
cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2609
if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2610
if (!cdl_enabled) {
2611
/* Enable CDL on the device */
2612
err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2613
if (err_mask) {
2614
ata_dev_err(dev,
2615
"Enable CDL feature failed\n");
2616
goto not_supported;
2617
}
2618
}
2619
} else {
2620
if (cdl_enabled) {
2621
/* Disable CDL on the device */
2622
err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2623
if (err_mask) {
2624
ata_dev_err(dev,
2625
"Disable CDL feature failed\n");
2626
goto not_supported;
2627
}
2628
}
2629
}
2630
2631
/*
2632
* While CDL itself has to be enabled using sysfs, CDL requires that
2633
* sense data for successful NCQ commands is enabled to work properly.
2634
* Just like ata_dev_config_sense_reporting(), enable it unconditionally
2635
* if supported.
2636
*/
2637
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2638
err_mask = ata_dev_set_feature(dev,
2639
SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2640
if (err_mask) {
2641
ata_dev_warn(dev,
2642
"failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2643
err_mask);
2644
goto not_supported;
2645
}
2646
}
2647
2648
/* CDL is supported: allocate and initialize needed resources. */
2649
ret = ata_dev_init_cdl_resources(dev);
2650
if (ret) {
2651
ata_dev_warn(dev, "Initialize CDL resources failed\n");
2652
goto not_supported;
2653
}
2654
2655
dev->flags |= ATA_DFLAG_CDL;
2656
2657
return;
2658
2659
not_supported:
2660
dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2661
ata_dev_cleanup_cdl_resources(dev);
2662
}
2663
2664
static int ata_dev_config_lba(struct ata_device *dev)
2665
{
2666
const u16 *id = dev->id;
2667
const char *lba_desc;
2668
char ncq_desc[32];
2669
int ret;
2670
2671
dev->flags |= ATA_DFLAG_LBA;
2672
2673
if (ata_id_has_lba48(id)) {
2674
lba_desc = "LBA48";
2675
dev->flags |= ATA_DFLAG_LBA48;
2676
if (dev->n_sectors >= (1UL << 28) &&
2677
ata_id_has_flush_ext(id))
2678
dev->flags |= ATA_DFLAG_FLUSH_EXT;
2679
} else {
2680
lba_desc = "LBA";
2681
}
2682
2683
/* config NCQ */
2684
ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2685
2686
/* print device info to dmesg */
2687
if (ata_dev_print_info(dev))
2688
ata_dev_info(dev,
2689
"%llu sectors, multi %u: %s %s\n",
2690
(unsigned long long)dev->n_sectors,
2691
dev->multi_count, lba_desc, ncq_desc);
2692
2693
return ret;
2694
}
2695
2696
static void ata_dev_config_chs(struct ata_device *dev)
2697
{
2698
const u16 *id = dev->id;
2699
2700
if (ata_id_current_chs_valid(id)) {
2701
/* Current CHS translation is valid. */
2702
dev->cylinders = id[54];
2703
dev->heads = id[55];
2704
dev->sectors = id[56];
2705
} else {
2706
/* Default translation */
2707
dev->cylinders = id[1];
2708
dev->heads = id[3];
2709
dev->sectors = id[6];
2710
}
2711
2712
/* print device info to dmesg */
2713
if (ata_dev_print_info(dev))
2714
ata_dev_info(dev,
2715
"%llu sectors, multi %u, CHS %u/%u/%u\n",
2716
(unsigned long long)dev->n_sectors,
2717
dev->multi_count, dev->cylinders,
2718
dev->heads, dev->sectors);
2719
}
2720
2721
static void ata_dev_config_fua(struct ata_device *dev)
2722
{
2723
/* Ignore FUA support if its use is disabled globally */
2724
if (!libata_fua)
2725
goto nofua;
2726
2727
/* Ignore devices without support for WRITE DMA FUA EXT */
2728
if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2729
goto nofua;
2730
2731
/* Ignore known bad devices and devices that lack NCQ support */
2732
if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2733
goto nofua;
2734
2735
dev->flags |= ATA_DFLAG_FUA;
2736
2737
return;
2738
2739
nofua:
2740
dev->flags &= ~ATA_DFLAG_FUA;
2741
}
2742
2743
static void ata_dev_config_devslp(struct ata_device *dev)
2744
{
2745
u8 *sata_setting = dev->sector_buf;
2746
unsigned int err_mask;
2747
int i, j;
2748
2749
/*
2750
* Check device sleep capability. Get DevSlp timing variables
2751
* from SATA Settings page of Identify Device Data Log.
2752
*/
2753
if (!ata_id_has_devslp(dev->id) ||
2754
!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2755
return;
2756
2757
err_mask = ata_read_log_page(dev,
2758
ATA_LOG_IDENTIFY_DEVICE,
2759
ATA_LOG_SATA_SETTINGS,
2760
sata_setting, 1);
2761
if (err_mask)
2762
return;
2763
2764
dev->flags |= ATA_DFLAG_DEVSLP;
2765
for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2766
j = ATA_LOG_DEVSLP_OFFSET + i;
2767
dev->devslp_timing[i] = sata_setting[j];
2768
}
2769
}
2770
2771
static void ata_dev_config_cpr(struct ata_device *dev)
2772
{
2773
unsigned int err_mask;
2774
size_t buf_len;
2775
int i, nr_cpr = 0;
2776
struct ata_cpr_log *cpr_log = NULL;
2777
u8 *desc, *buf = NULL;
2778
2779
if (ata_id_major_version(dev->id) < 11)
2780
goto out;
2781
2782
buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2783
if (buf_len == 0)
2784
goto out;
2785
2786
/*
2787
* Read the concurrent positioning ranges log (0x47). We can have at
2788
* most 255 32B range descriptors plus a 64B header. This log varies in
2789
* size, so use the size reported in the GPL directory. Reading beyond
2790
* the supported length will result in an error.
2791
*/
2792
buf_len <<= 9;
2793
buf = kzalloc(buf_len, GFP_KERNEL);
2794
if (!buf)
2795
goto out;
2796
2797
err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2798
0, buf, buf_len >> 9);
2799
if (err_mask)
2800
goto out;
2801
2802
nr_cpr = buf[0];
2803
if (!nr_cpr)
2804
goto out;
2805
2806
cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2807
if (!cpr_log)
2808
goto out;
2809
2810
cpr_log->nr_cpr = nr_cpr;
2811
desc = &buf[64];
2812
for (i = 0; i < nr_cpr; i++, desc += 32) {
2813
cpr_log->cpr[i].num = desc[0];
2814
cpr_log->cpr[i].num_storage_elements = desc[1];
2815
cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2816
cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2817
}
2818
2819
out:
2820
swap(dev->cpr_log, cpr_log);
2821
kfree(cpr_log);
2822
kfree(buf);
2823
}
2824
2825
/*
2826
* Configure features related to link power management.
2827
*/
2828
static void ata_dev_config_lpm(struct ata_device *dev)
2829
{
2830
struct ata_port *ap = dev->link->ap;
2831
unsigned int err_mask;
2832
2833
if (ap->flags & ATA_FLAG_NO_LPM) {
2834
/*
2835
* When the port does not support LPM, we cannot support it on
2836
* the device either.
2837
*/
2838
dev->quirks |= ATA_QUIRK_NOLPM;
2839
} else {
2840
/*
2841
* Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2842
* them.
2843
*/
2844
if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845
(dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846
dev->quirks |= ATA_QUIRK_NOLPM;
2847
2848
/* ATI specific quirk */
2849
if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2850
ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2851
dev->quirks |= ATA_QUIRK_NOLPM;
2852
}
2853
2854
if (dev->quirks & ATA_QUIRK_NOLPM &&
2855
ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2856
ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2857
ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2858
}
2859
2860
/*
2861
* Device Initiated Power Management (DIPM) is normally disabled by
2862
* default on a device. However, DIPM may have been enabled and that
2863
* setting kept even after COMRESET because of the Software Settings
2864
* Preservation feature. So if the port does not support DIPM and the
2865
* device does, disable DIPM on the device.
2866
*/
2867
if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2868
err_mask = ata_dev_set_feature(dev,
2869
SETFEATURES_SATA_DISABLE, SATA_DIPM);
2870
if (err_mask && err_mask != AC_ERR_DEV)
2871
ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2872
err_mask);
2873
}
2874
}
2875
2876
static void ata_dev_print_features(struct ata_device *dev)
2877
{
2878
if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2879
return;
2880
2881
ata_dev_info(dev,
2882
"Features:%s%s%s%s%s%s%s%s%s%s\n",
2883
dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2884
dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2885
dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2886
dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2887
ata_id_has_hipm(dev->id) ? " HIPM" : "",
2888
ata_id_has_dipm(dev->id) ? " DIPM" : "",
2889
dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2890
dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2891
dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2892
dev->cpr_log ? " CPR" : "");
2893
}
2894
2895
/**
2896
* ata_dev_configure - Configure the specified ATA/ATAPI device
2897
* @dev: Target device to configure
2898
*
2899
* Configure @dev according to @dev->id. Generic and low-level
2900
* driver specific fixups are also applied.
2901
*
2902
* LOCKING:
2903
* Kernel thread context (may sleep)
2904
*
2905
* RETURNS:
2906
* 0 on success, -errno otherwise
2907
*/
2908
int ata_dev_configure(struct ata_device *dev)
2909
{
2910
struct ata_port *ap = dev->link->ap;
2911
bool print_info = ata_dev_print_info(dev);
2912
const u16 *id = dev->id;
2913
unsigned int xfer_mask;
2914
unsigned int err_mask;
2915
char revbuf[7]; /* XYZ-99\0 */
2916
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2917
char modelbuf[ATA_ID_PROD_LEN+1];
2918
int rc;
2919
2920
if (!ata_dev_enabled(dev)) {
2921
ata_dev_dbg(dev, "no device\n");
2922
return 0;
2923
}
2924
2925
/* Clear the general purpose log directory cache. */
2926
ata_clear_log_directory(dev);
2927
2928
/* Set quirks */
2929
dev->quirks |= ata_dev_quirks(dev);
2930
ata_force_quirks(dev);
2931
2932
if (dev->quirks & ATA_QUIRK_DISABLE) {
2933
ata_dev_info(dev, "unsupported device, disabling\n");
2934
ata_dev_disable(dev);
2935
return 0;
2936
}
2937
2938
if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2939
dev->class == ATA_DEV_ATAPI) {
2940
ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2941
atapi_enabled ? "not supported with this driver"
2942
: "disabled");
2943
ata_dev_disable(dev);
2944
return 0;
2945
}
2946
2947
rc = ata_do_link_spd_quirk(dev);
2948
if (rc)
2949
return rc;
2950
2951
/* let ACPI work its magic */
2952
rc = ata_acpi_on_devcfg(dev);
2953
if (rc)
2954
return rc;
2955
2956
/* massage HPA, do it early as it might change IDENTIFY data */
2957
rc = ata_hpa_resize(dev);
2958
if (rc)
2959
return rc;
2960
2961
/* print device capabilities */
2962
ata_dev_dbg(dev,
2963
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2964
"85:%04x 86:%04x 87:%04x 88:%04x\n",
2965
__func__,
2966
id[49], id[82], id[83], id[84],
2967
id[85], id[86], id[87], id[88]);
2968
2969
/* initialize to-be-configured parameters */
2970
dev->flags &= ~ATA_DFLAG_CFG_MASK;
2971
dev->max_sectors = 0;
2972
dev->cdb_len = 0;
2973
dev->n_sectors = 0;
2974
dev->cylinders = 0;
2975
dev->heads = 0;
2976
dev->sectors = 0;
2977
dev->multi_count = 0;
2978
2979
/*
2980
* common ATA, ATAPI feature tests
2981
*/
2982
2983
/* find max transfer mode; for printk only */
2984
xfer_mask = ata_id_xfermask(id);
2985
2986
ata_dump_id(dev, id);
2987
2988
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2989
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2990
sizeof(fwrevbuf));
2991
2992
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2993
sizeof(modelbuf));
2994
2995
/* ATA-specific feature tests */
2996
if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2997
if (ata_id_is_cfa(id)) {
2998
/* CPRM may make this media unusable */
2999
if (id[ATA_ID_CFA_KEY_MGMT] & 1)
3000
ata_dev_warn(dev,
3001
"supports DRM functions and may not be fully accessible\n");
3002
snprintf(revbuf, 7, "CFA");
3003
} else {
3004
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3005
/* Warn the user if the device has TPM extensions */
3006
if (ata_id_has_tpm(id))
3007
ata_dev_warn(dev,
3008
"supports DRM functions and may not be fully accessible\n");
3009
}
3010
3011
dev->n_sectors = ata_id_n_sectors(id);
3012
3013
/* get current R/W Multiple count setting */
3014
if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3015
unsigned int max = dev->id[47] & 0xff;
3016
unsigned int cnt = dev->id[59] & 0xff;
3017
/* only recognize/allow powers of two here */
3018
if (is_power_of_2(max) && is_power_of_2(cnt))
3019
if (cnt <= max)
3020
dev->multi_count = cnt;
3021
}
3022
3023
/* print device info to dmesg */
3024
if (print_info)
3025
ata_dev_info(dev, "%s: %s, %s, max %s\n",
3026
revbuf, modelbuf, fwrevbuf,
3027
ata_mode_string(xfer_mask));
3028
3029
if (ata_id_has_lba(id)) {
3030
rc = ata_dev_config_lba(dev);
3031
if (rc)
3032
return rc;
3033
} else {
3034
ata_dev_config_chs(dev);
3035
}
3036
3037
ata_dev_config_lpm(dev);
3038
ata_dev_config_fua(dev);
3039
ata_dev_config_devslp(dev);
3040
ata_dev_config_sense_reporting(dev);
3041
ata_dev_config_zac(dev);
3042
ata_dev_config_trusted(dev);
3043
ata_dev_config_cpr(dev);
3044
ata_dev_config_cdl(dev);
3045
dev->cdb_len = 32;
3046
3047
if (print_info)
3048
ata_dev_print_features(dev);
3049
}
3050
3051
/* ATAPI-specific feature tests */
3052
else if (dev->class == ATA_DEV_ATAPI) {
3053
const char *cdb_intr_string = "";
3054
const char *atapi_an_string = "";
3055
const char *dma_dir_string = "";
3056
u32 sntf;
3057
3058
rc = atapi_cdb_len(id);
3059
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3060
ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3061
rc = -EINVAL;
3062
goto err_out_nosup;
3063
}
3064
dev->cdb_len = (unsigned int) rc;
3065
3066
/* Enable ATAPI AN if both the host and device have
3067
* the support. If PMP is attached, SNTF is required
3068
* to enable ATAPI AN to discern between PHY status
3069
* changed notifications and ATAPI ANs.
3070
*/
3071
if (atapi_an &&
3072
(ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3073
(!sata_pmp_attached(ap) ||
3074
sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3075
/* issue SET feature command to turn this on */
3076
err_mask = ata_dev_set_feature(dev,
3077
SETFEATURES_SATA_ENABLE, SATA_AN);
3078
if (err_mask)
3079
ata_dev_err(dev,
3080
"failed to enable ATAPI AN (err_mask=0x%x)\n",
3081
err_mask);
3082
else {
3083
dev->flags |= ATA_DFLAG_AN;
3084
atapi_an_string = ", ATAPI AN";
3085
}
3086
}
3087
3088
if (ata_id_cdb_intr(dev->id)) {
3089
dev->flags |= ATA_DFLAG_CDB_INTR;
3090
cdb_intr_string = ", CDB intr";
3091
}
3092
3093
if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3094
atapi_id_dmadir(dev->id)) {
3095
dev->flags |= ATA_DFLAG_DMADIR;
3096
dma_dir_string = ", DMADIR";
3097
}
3098
3099
if (ata_id_has_da(dev->id)) {
3100
dev->flags |= ATA_DFLAG_DA;
3101
zpodd_init(dev);
3102
}
3103
3104
/* print device info to dmesg */
3105
if (print_info)
3106
ata_dev_info(dev,
3107
"ATAPI: %s, %s, max %s%s%s%s\n",
3108
modelbuf, fwrevbuf,
3109
ata_mode_string(xfer_mask),
3110
cdb_intr_string, atapi_an_string,
3111
dma_dir_string);
3112
}
3113
3114
/* determine max_sectors */
3115
dev->max_sectors = ATA_MAX_SECTORS;
3116
if (dev->flags & ATA_DFLAG_LBA48)
3117
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3118
3119
/* Limit PATA drive on SATA cable bridge transfers to udma5,
3120
200 sectors */
3121
if (ata_dev_knobble(dev)) {
3122
if (print_info)
3123
ata_dev_info(dev, "applying bridge limits\n");
3124
dev->udma_mask &= ATA_UDMA5;
3125
dev->max_sectors = ATA_MAX_SECTORS;
3126
}
3127
3128
if ((dev->class == ATA_DEV_ATAPI) &&
3129
(atapi_command_packet_set(id) == TYPE_TAPE)) {
3130
dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3131
dev->quirks |= ATA_QUIRK_STUCK_ERR;
3132
}
3133
3134
if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3135
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3136
dev->max_sectors);
3137
3138
if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3139
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3140
dev->max_sectors);
3141
3142
if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3143
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3144
3145
if (ap->ops->dev_config)
3146
ap->ops->dev_config(dev);
3147
3148
if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3149
/* Let the user know. We don't want to disallow opens for
3150
rescue purposes, or in case the vendor is just a blithering
3151
idiot. Do this after the dev_config call as some controllers
3152
with buggy firmware may want to avoid reporting false device
3153
bugs */
3154
3155
if (print_info) {
3156
ata_dev_warn(dev,
3157
"Drive reports diagnostics failure. This may indicate a drive\n");
3158
ata_dev_warn(dev,
3159
"fault or invalid emulation. Contact drive vendor for information.\n");
3160
}
3161
}
3162
3163
if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3164
ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3165
ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3166
}
3167
3168
return 0;
3169
3170
err_out_nosup:
3171
return rc;
3172
}
3173
3174
/**
3175
* ata_cable_40wire - return 40 wire cable type
3176
* @ap: port
3177
*
3178
* Helper method for drivers which want to hardwire 40 wire cable
3179
* detection.
3180
*/
3181
3182
int ata_cable_40wire(struct ata_port *ap)
3183
{
3184
return ATA_CBL_PATA40;
3185
}
3186
EXPORT_SYMBOL_GPL(ata_cable_40wire);
3187
3188
/**
3189
* ata_cable_80wire - return 80 wire cable type
3190
* @ap: port
3191
*
3192
* Helper method for drivers which want to hardwire 80 wire cable
3193
* detection.
3194
*/
3195
3196
int ata_cable_80wire(struct ata_port *ap)
3197
{
3198
return ATA_CBL_PATA80;
3199
}
3200
EXPORT_SYMBOL_GPL(ata_cable_80wire);
3201
3202
/**
3203
* ata_cable_unknown - return unknown PATA cable.
3204
* @ap: port
3205
*
3206
* Helper method for drivers which have no PATA cable detection.
3207
*/
3208
3209
int ata_cable_unknown(struct ata_port *ap)
3210
{
3211
return ATA_CBL_PATA_UNK;
3212
}
3213
EXPORT_SYMBOL_GPL(ata_cable_unknown);
3214
3215
/**
3216
* ata_cable_ignore - return ignored PATA cable.
3217
* @ap: port
3218
*
3219
* Helper method for drivers which don't use cable type to limit
3220
* transfer mode.
3221
*/
3222
int ata_cable_ignore(struct ata_port *ap)
3223
{
3224
return ATA_CBL_PATA_IGN;
3225
}
3226
EXPORT_SYMBOL_GPL(ata_cable_ignore);
3227
3228
/**
3229
* ata_cable_sata - return SATA cable type
3230
* @ap: port
3231
*
3232
* Helper method for drivers which have SATA cables
3233
*/
3234
3235
int ata_cable_sata(struct ata_port *ap)
3236
{
3237
return ATA_CBL_SATA;
3238
}
3239
EXPORT_SYMBOL_GPL(ata_cable_sata);
3240
3241
/**
3242
* sata_print_link_status - Print SATA link status
3243
* @link: SATA link to printk link status about
3244
*
3245
* This function prints link speed and status of a SATA link.
3246
*
3247
* LOCKING:
3248
* None.
3249
*/
3250
static void sata_print_link_status(struct ata_link *link)
3251
{
3252
u32 sstatus, scontrol, tmp;
3253
3254
if (sata_scr_read(link, SCR_STATUS, &sstatus))
3255
return;
3256
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3257
return;
3258
3259
if (ata_phys_link_online(link)) {
3260
tmp = (sstatus >> 4) & 0xf;
3261
ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3262
sata_spd_string(tmp), sstatus, scontrol);
3263
} else {
3264
ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3265
sstatus, scontrol);
3266
}
3267
}
3268
3269
/**
3270
* ata_dev_pair - return other device on cable
3271
* @adev: device
3272
*
3273
* Obtain the other device on the same cable, or if none is
3274
* present NULL is returned
3275
*/
3276
3277
struct ata_device *ata_dev_pair(struct ata_device *adev)
3278
{
3279
struct ata_link *link = adev->link;
3280
struct ata_device *pair = &link->device[1 - adev->devno];
3281
if (!ata_dev_enabled(pair))
3282
return NULL;
3283
return pair;
3284
}
3285
EXPORT_SYMBOL_GPL(ata_dev_pair);
3286
3287
#ifdef CONFIG_ATA_ACPI
3288
/**
3289
* ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3290
* @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3291
* @cycle: cycle duration in ns
3292
*
3293
* Return matching xfer mode for @cycle. The returned mode is of
3294
* the transfer type specified by @xfer_shift. If @cycle is too
3295
* slow for @xfer_shift, 0xff is returned. If @cycle is faster
3296
* than the fastest known mode, the fasted mode is returned.
3297
*
3298
* LOCKING:
3299
* None.
3300
*
3301
* RETURNS:
3302
* Matching xfer_mode, 0xff if no match found.
3303
*/
3304
u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3305
{
3306
u8 base_mode = 0xff, last_mode = 0xff;
3307
const struct ata_xfer_ent *ent;
3308
const struct ata_timing *t;
3309
3310
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3311
if (ent->shift == xfer_shift)
3312
base_mode = ent->base;
3313
3314
for (t = ata_timing_find_mode(base_mode);
3315
t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3316
unsigned short this_cycle;
3317
3318
switch (xfer_shift) {
3319
case ATA_SHIFT_PIO:
3320
case ATA_SHIFT_MWDMA:
3321
this_cycle = t->cycle;
3322
break;
3323
case ATA_SHIFT_UDMA:
3324
this_cycle = t->udma;
3325
break;
3326
default:
3327
return 0xff;
3328
}
3329
3330
if (cycle > this_cycle)
3331
break;
3332
3333
last_mode = t->mode;
3334
}
3335
3336
return last_mode;
3337
}
3338
#endif
3339
3340
/**
3341
* ata_down_xfermask_limit - adjust dev xfer masks downward
3342
* @dev: Device to adjust xfer masks
3343
* @sel: ATA_DNXFER_* selector
3344
*
3345
* Adjust xfer masks of @dev downward. Note that this function
3346
* does not apply the change. Invoking ata_set_mode() afterwards
3347
* will apply the limit.
3348
*
3349
* LOCKING:
3350
* Inherited from caller.
3351
*
3352
* RETURNS:
3353
* 0 on success, negative errno on failure
3354
*/
3355
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3356
{
3357
char buf[32];
3358
unsigned int orig_mask, xfer_mask;
3359
unsigned int pio_mask, mwdma_mask, udma_mask;
3360
int quiet, highbit;
3361
3362
quiet = !!(sel & ATA_DNXFER_QUIET);
3363
sel &= ~ATA_DNXFER_QUIET;
3364
3365
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3366
dev->mwdma_mask,
3367
dev->udma_mask);
3368
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3369
3370
switch (sel) {
3371
case ATA_DNXFER_PIO:
3372
highbit = fls(pio_mask) - 1;
3373
pio_mask &= ~(1 << highbit);
3374
break;
3375
3376
case ATA_DNXFER_DMA:
3377
if (udma_mask) {
3378
highbit = fls(udma_mask) - 1;
3379
udma_mask &= ~(1 << highbit);
3380
if (!udma_mask)
3381
return -ENOENT;
3382
} else if (mwdma_mask) {
3383
highbit = fls(mwdma_mask) - 1;
3384
mwdma_mask &= ~(1 << highbit);
3385
if (!mwdma_mask)
3386
return -ENOENT;
3387
}
3388
break;
3389
3390
case ATA_DNXFER_40C:
3391
udma_mask &= ATA_UDMA_MASK_40C;
3392
break;
3393
3394
case ATA_DNXFER_FORCE_PIO0:
3395
pio_mask &= 1;
3396
fallthrough;
3397
case ATA_DNXFER_FORCE_PIO:
3398
mwdma_mask = 0;
3399
udma_mask = 0;
3400
break;
3401
3402
default:
3403
BUG();
3404
}
3405
3406
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3407
3408
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3409
return -ENOENT;
3410
3411
if (!quiet) {
3412
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3413
snprintf(buf, sizeof(buf), "%s:%s",
3414
ata_mode_string(xfer_mask),
3415
ata_mode_string(xfer_mask & ATA_MASK_PIO));
3416
else
3417
snprintf(buf, sizeof(buf), "%s",
3418
ata_mode_string(xfer_mask));
3419
3420
ata_dev_warn(dev, "limiting speed to %s\n", buf);
3421
}
3422
3423
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3424
&dev->udma_mask);
3425
3426
return 0;
3427
}
3428
3429
static int ata_dev_set_mode(struct ata_device *dev)
3430
{
3431
struct ata_port *ap = dev->link->ap;
3432
struct ata_eh_context *ehc = &dev->link->eh_context;
3433
const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3434
const char *dev_err_whine = "";
3435
int ign_dev_err = 0;
3436
unsigned int err_mask = 0;
3437
int rc;
3438
3439
dev->flags &= ~ATA_DFLAG_PIO;
3440
if (dev->xfer_shift == ATA_SHIFT_PIO)
3441
dev->flags |= ATA_DFLAG_PIO;
3442
3443
if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3444
dev_err_whine = " (SET_XFERMODE skipped)";
3445
else {
3446
if (nosetxfer)
3447
ata_dev_warn(dev,
3448
"NOSETXFER but PATA detected - can't "
3449
"skip SETXFER, might malfunction\n");
3450
err_mask = ata_dev_set_xfermode(dev);
3451
}
3452
3453
if (err_mask & ~AC_ERR_DEV)
3454
goto fail;
3455
3456
/* revalidate */
3457
ehc->i.flags |= ATA_EHI_POST_SETMODE;
3458
rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3459
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3460
if (rc)
3461
return rc;
3462
3463
if (dev->xfer_shift == ATA_SHIFT_PIO) {
3464
/* Old CFA may refuse this command, which is just fine */
3465
if (ata_id_is_cfa(dev->id))
3466
ign_dev_err = 1;
3467
/* Catch several broken garbage emulations plus some pre
3468
ATA devices */
3469
if (ata_id_major_version(dev->id) == 0 &&
3470
dev->pio_mode <= XFER_PIO_2)
3471
ign_dev_err = 1;
3472
/* Some very old devices and some bad newer ones fail
3473
any kind of SET_XFERMODE request but support PIO0-2
3474
timings and no IORDY */
3475
if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3476
ign_dev_err = 1;
3477
}
3478
/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3479
Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3480
if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3481
dev->dma_mode == XFER_MW_DMA_0 &&
3482
(dev->id[63] >> 8) & 1)
3483
ign_dev_err = 1;
3484
3485
/* if the device is actually configured correctly, ignore dev err */
3486
if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3487
ign_dev_err = 1;
3488
3489
if (err_mask & AC_ERR_DEV) {
3490
if (!ign_dev_err)
3491
goto fail;
3492
else
3493
dev_err_whine = " (device error ignored)";
3494
}
3495
3496
ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3497
dev->xfer_shift, (int)dev->xfer_mode);
3498
3499
if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3500
ehc->i.flags & ATA_EHI_DID_HARDRESET)
3501
ata_dev_info(dev, "configured for %s%s\n",
3502
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3503
dev_err_whine);
3504
3505
return 0;
3506
3507
fail:
3508
ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3509
return -EIO;
3510
}
3511
3512
/**
3513
* ata_set_mode - Program timings and issue SET FEATURES - XFER
3514
* @link: link on which timings will be programmed
3515
* @r_failed_dev: out parameter for failed device
3516
*
3517
* Standard implementation of the function used to tune and set
3518
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3519
* ata_dev_set_mode() fails, pointer to the failing device is
3520
* returned in @r_failed_dev.
3521
*
3522
* LOCKING:
3523
* PCI/etc. bus probe sem.
3524
*
3525
* RETURNS:
3526
* 0 on success, negative errno otherwise
3527
*/
3528
3529
int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3530
{
3531
struct ata_port *ap = link->ap;
3532
struct ata_device *dev;
3533
int rc = 0, used_dma = 0, found = 0;
3534
3535
/* step 1: calculate xfer_mask */
3536
ata_for_each_dev(dev, link, ENABLED) {
3537
unsigned int pio_mask, dma_mask;
3538
unsigned int mode_mask;
3539
3540
mode_mask = ATA_DMA_MASK_ATA;
3541
if (dev->class == ATA_DEV_ATAPI)
3542
mode_mask = ATA_DMA_MASK_ATAPI;
3543
else if (ata_id_is_cfa(dev->id))
3544
mode_mask = ATA_DMA_MASK_CFA;
3545
3546
ata_dev_xfermask(dev);
3547
ata_force_xfermask(dev);
3548
3549
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3550
3551
if (libata_dma_mask & mode_mask)
3552
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3553
dev->udma_mask);
3554
else
3555
dma_mask = 0;
3556
3557
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3558
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3559
3560
found = 1;
3561
if (ata_dma_enabled(dev))
3562
used_dma = 1;
3563
}
3564
if (!found)
3565
goto out;
3566
3567
/* step 2: always set host PIO timings */
3568
ata_for_each_dev(dev, link, ENABLED) {
3569
if (dev->pio_mode == 0xff) {
3570
ata_dev_warn(dev, "no PIO support\n");
3571
rc = -EINVAL;
3572
goto out;
3573
}
3574
3575
dev->xfer_mode = dev->pio_mode;
3576
dev->xfer_shift = ATA_SHIFT_PIO;
3577
if (ap->ops->set_piomode)
3578
ap->ops->set_piomode(ap, dev);
3579
}
3580
3581
/* step 3: set host DMA timings */
3582
ata_for_each_dev(dev, link, ENABLED) {
3583
if (!ata_dma_enabled(dev))
3584
continue;
3585
3586
dev->xfer_mode = dev->dma_mode;
3587
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3588
if (ap->ops->set_dmamode)
3589
ap->ops->set_dmamode(ap, dev);
3590
}
3591
3592
/* step 4: update devices' xfer mode */
3593
ata_for_each_dev(dev, link, ENABLED) {
3594
rc = ata_dev_set_mode(dev);
3595
if (rc)
3596
goto out;
3597
}
3598
3599
/* Record simplex status. If we selected DMA then the other
3600
* host channels are not permitted to do so.
3601
*/
3602
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3603
ap->host->simplex_claimed = ap;
3604
3605
out:
3606
if (rc)
3607
*r_failed_dev = dev;
3608
return rc;
3609
}
3610
EXPORT_SYMBOL_GPL(ata_set_mode);
3611
3612
/**
3613
* ata_wait_ready - wait for link to become ready
3614
* @link: link to be waited on
3615
* @deadline: deadline jiffies for the operation
3616
* @check_ready: callback to check link readiness
3617
*
3618
* Wait for @link to become ready. @check_ready should return
3619
* positive number if @link is ready, 0 if it isn't, -ENODEV if
3620
* link doesn't seem to be occupied, other errno for other error
3621
* conditions.
3622
*
3623
* Transient -ENODEV conditions are allowed for
3624
* ATA_TMOUT_FF_WAIT.
3625
*
3626
* LOCKING:
3627
* EH context.
3628
*
3629
* RETURNS:
3630
* 0 if @link is ready before @deadline; otherwise, -errno.
3631
*/
3632
int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3633
int (*check_ready)(struct ata_link *link))
3634
{
3635
unsigned long start = jiffies;
3636
unsigned long nodev_deadline;
3637
int warned = 0;
3638
3639
/* choose which 0xff timeout to use, read comment in libata.h */
3640
if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3641
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3642
else
3643
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3644
3645
/* Slave readiness can't be tested separately from master. On
3646
* M/S emulation configuration, this function should be called
3647
* only on the master and it will handle both master and slave.
3648
*/
3649
WARN_ON(link == link->ap->slave_link);
3650
3651
if (time_after(nodev_deadline, deadline))
3652
nodev_deadline = deadline;
3653
3654
while (1) {
3655
unsigned long now = jiffies;
3656
int ready, tmp;
3657
3658
ready = tmp = check_ready(link);
3659
if (ready > 0)
3660
return 0;
3661
3662
/*
3663
* -ENODEV could be transient. Ignore -ENODEV if link
3664
* is online. Also, some SATA devices take a long
3665
* time to clear 0xff after reset. Wait for
3666
* ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3667
* offline.
3668
*
3669
* Note that some PATA controllers (pata_ali) explode
3670
* if status register is read more than once when
3671
* there's no device attached.
3672
*/
3673
if (ready == -ENODEV) {
3674
if (ata_link_online(link))
3675
ready = 0;
3676
else if ((link->ap->flags & ATA_FLAG_SATA) &&
3677
!ata_link_offline(link) &&
3678
time_before(now, nodev_deadline))
3679
ready = 0;
3680
}
3681
3682
if (ready)
3683
return ready;
3684
if (time_after(now, deadline))
3685
return -EBUSY;
3686
3687
if (!warned && time_after(now, start + 5 * HZ) &&
3688
(deadline - now > 3 * HZ)) {
3689
ata_link_warn(link,
3690
"link is slow to respond, please be patient "
3691
"(ready=%d)\n", tmp);
3692
warned = 1;
3693
}
3694
3695
ata_msleep(link->ap, 50);
3696
}
3697
}
3698
3699
/**
3700
* ata_wait_after_reset - wait for link to become ready after reset
3701
* @link: link to be waited on
3702
* @deadline: deadline jiffies for the operation
3703
* @check_ready: callback to check link readiness
3704
*
3705
* Wait for @link to become ready after reset.
3706
*
3707
* LOCKING:
3708
* EH context.
3709
*
3710
* RETURNS:
3711
* 0 if @link is ready before @deadline; otherwise, -errno.
3712
*/
3713
int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3714
int (*check_ready)(struct ata_link *link))
3715
{
3716
ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3717
3718
return ata_wait_ready(link, deadline, check_ready);
3719
}
3720
EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3721
3722
/**
3723
* ata_std_prereset - prepare for reset
3724
* @link: ATA link to be reset
3725
* @deadline: deadline jiffies for the operation
3726
*
3727
* @link is about to be reset. Initialize it. Failure from
3728
* prereset makes libata abort whole reset sequence and give up
3729
* that port, so prereset should be best-effort. It does its
3730
* best to prepare for reset sequence but if things go wrong, it
3731
* should just whine, not fail.
3732
*
3733
* LOCKING:
3734
* Kernel thread context (may sleep)
3735
*
3736
* RETURNS:
3737
* Always 0.
3738
*/
3739
int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3740
{
3741
struct ata_port *ap = link->ap;
3742
struct ata_eh_context *ehc = &link->eh_context;
3743
const unsigned int *timing = sata_ehc_deb_timing(ehc);
3744
int rc;
3745
3746
/* if we're about to do hardreset, nothing more to do */
3747
if (ehc->i.action & ATA_EH_HARDRESET)
3748
return 0;
3749
3750
/* if SATA, resume link */
3751
if (ap->flags & ATA_FLAG_SATA) {
3752
rc = sata_link_resume(link, timing, deadline);
3753
/* whine about phy resume failure but proceed */
3754
if (rc && rc != -EOPNOTSUPP)
3755
ata_link_warn(link,
3756
"failed to resume link for reset (errno=%d)\n",
3757
rc);
3758
}
3759
3760
/* no point in trying softreset on offline link */
3761
if (ata_phys_link_offline(link))
3762
ehc->i.action &= ~ATA_EH_SOFTRESET;
3763
3764
return 0;
3765
}
3766
EXPORT_SYMBOL_GPL(ata_std_prereset);
3767
3768
/**
3769
* ata_std_postreset - standard postreset callback
3770
* @link: the target ata_link
3771
* @classes: classes of attached devices
3772
*
3773
* This function is invoked after a successful reset. Note that
3774
* the device might have been reset more than once using
3775
* different reset methods before postreset is invoked.
3776
*
3777
* LOCKING:
3778
* Kernel thread context (may sleep)
3779
*/
3780
void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3781
{
3782
u32 serror;
3783
3784
/* reset complete, clear SError */
3785
if (!sata_scr_read(link, SCR_ERROR, &serror))
3786
sata_scr_write(link, SCR_ERROR, serror);
3787
3788
/* print link status */
3789
sata_print_link_status(link);
3790
}
3791
EXPORT_SYMBOL_GPL(ata_std_postreset);
3792
3793
/**
3794
* ata_dev_same_device - Determine whether new ID matches configured device
3795
* @dev: device to compare against
3796
* @new_class: class of the new device
3797
* @new_id: IDENTIFY page of the new device
3798
*
3799
* Compare @new_class and @new_id against @dev and determine
3800
* whether @dev is the device indicated by @new_class and
3801
* @new_id.
3802
*
3803
* LOCKING:
3804
* None.
3805
*
3806
* RETURNS:
3807
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
3808
*/
3809
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3810
const u16 *new_id)
3811
{
3812
const u16 *old_id = dev->id;
3813
unsigned char model[2][ATA_ID_PROD_LEN + 1];
3814
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3815
3816
if (dev->class != new_class) {
3817
ata_dev_info(dev, "class mismatch %d != %d\n",
3818
dev->class, new_class);
3819
return 0;
3820
}
3821
3822
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3823
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3824
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3825
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3826
3827
if (strcmp(model[0], model[1])) {
3828
ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3829
model[0], model[1]);
3830
return 0;
3831
}
3832
3833
if (strcmp(serial[0], serial[1])) {
3834
ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3835
serial[0], serial[1]);
3836
return 0;
3837
}
3838
3839
return 1;
3840
}
3841
3842
/**
3843
* ata_dev_reread_id - Re-read IDENTIFY data
3844
* @dev: target ATA device
3845
* @readid_flags: read ID flags
3846
*
3847
* Re-read IDENTIFY page and make sure @dev is still attached to
3848
* the port.
3849
*
3850
* LOCKING:
3851
* Kernel thread context (may sleep)
3852
*
3853
* RETURNS:
3854
* 0 on success, negative errno otherwise
3855
*/
3856
int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3857
{
3858
unsigned int class = dev->class;
3859
u16 *id = (void *)dev->sector_buf;
3860
int rc;
3861
3862
/* read ID data */
3863
rc = ata_dev_read_id(dev, &class, readid_flags, id);
3864
if (rc)
3865
return rc;
3866
3867
/* is the device still there? */
3868
if (!ata_dev_same_device(dev, class, id))
3869
return -ENODEV;
3870
3871
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3872
return 0;
3873
}
3874
3875
/**
3876
* ata_dev_revalidate - Revalidate ATA device
3877
* @dev: device to revalidate
3878
* @new_class: new class code
3879
* @readid_flags: read ID flags
3880
*
3881
* Re-read IDENTIFY page, make sure @dev is still attached to the
3882
* port and reconfigure it according to the new IDENTIFY page.
3883
*
3884
* LOCKING:
3885
* Kernel thread context (may sleep)
3886
*
3887
* RETURNS:
3888
* 0 on success, negative errno otherwise
3889
*/
3890
int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3891
unsigned int readid_flags)
3892
{
3893
u64 n_sectors = dev->n_sectors;
3894
u64 n_native_sectors = dev->n_native_sectors;
3895
int rc;
3896
3897
if (!ata_dev_enabled(dev))
3898
return -ENODEV;
3899
3900
/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3901
if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3902
ata_dev_info(dev, "class mismatch %u != %u\n",
3903
dev->class, new_class);
3904
rc = -ENODEV;
3905
goto fail;
3906
}
3907
3908
/* re-read ID */
3909
rc = ata_dev_reread_id(dev, readid_flags);
3910
if (rc)
3911
goto fail;
3912
3913
/* configure device according to the new ID */
3914
rc = ata_dev_configure(dev);
3915
if (rc)
3916
goto fail;
3917
3918
/* verify n_sectors hasn't changed */
3919
if (dev->class != ATA_DEV_ATA || !n_sectors ||
3920
dev->n_sectors == n_sectors)
3921
return 0;
3922
3923
/* n_sectors has changed */
3924
ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3925
(unsigned long long)n_sectors,
3926
(unsigned long long)dev->n_sectors);
3927
3928
/*
3929
* Something could have caused HPA to be unlocked
3930
* involuntarily. If n_native_sectors hasn't changed and the
3931
* new size matches it, keep the device.
3932
*/
3933
if (dev->n_native_sectors == n_native_sectors &&
3934
dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3935
ata_dev_warn(dev,
3936
"new n_sectors matches native, probably "
3937
"late HPA unlock, n_sectors updated\n");
3938
/* use the larger n_sectors */
3939
return 0;
3940
}
3941
3942
/*
3943
* Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3944
* unlocking HPA in those cases.
3945
*
3946
* https://bugzilla.kernel.org/show_bug.cgi?id=15396
3947
*/
3948
if (dev->n_native_sectors == n_native_sectors &&
3949
dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3950
!(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3951
ata_dev_warn(dev,
3952
"old n_sectors matches native, probably "
3953
"late HPA lock, will try to unlock HPA\n");
3954
/* try unlocking HPA */
3955
dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3956
rc = -EIO;
3957
} else
3958
rc = -ENODEV;
3959
3960
/* restore original n_[native_]sectors and fail */
3961
dev->n_native_sectors = n_native_sectors;
3962
dev->n_sectors = n_sectors;
3963
fail:
3964
ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3965
return rc;
3966
}
3967
3968
static const char * const ata_quirk_names[] = {
3969
[__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3970
[__ATA_QUIRK_NODMA] = "nodma",
3971
[__ATA_QUIRK_NONCQ] = "noncq",
3972
[__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3973
[__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3974
[__ATA_QUIRK_DISABLE] = "disable",
3975
[__ATA_QUIRK_HPA_SIZE] = "hpasize",
3976
[__ATA_QUIRK_IVB] = "ivb",
3977
[__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3978
[__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3979
[__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3980
[__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3981
[__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3982
[__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3983
[__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3984
[__ATA_QUIRK_DUMP_ID] = "dumpid",
3985
[__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3986
[__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3987
[__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3988
[__ATA_QUIRK_NOLPM] = "nolpm",
3989
[__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3990
[__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3991
[__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3992
[__ATA_QUIRK_NOTRIM] = "notrim",
3993
[__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3994
[__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3995
[__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3996
[__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
3997
[__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3998
[__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3999
[__ATA_QUIRK_NO_FUA] = "nofua",
4000
};
4001
4002
static void ata_dev_print_quirks(const struct ata_device *dev,
4003
const char *model, const char *rev,
4004
unsigned int quirks)
4005
{
4006
struct ata_eh_context *ehc = &dev->link->eh_context;
4007
int n = 0, i;
4008
size_t sz;
4009
char *str;
4010
4011
if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4012
return;
4013
4014
ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4015
4016
if (!quirks)
4017
return;
4018
4019
sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4020
str = kmalloc(sz, GFP_KERNEL);
4021
if (!str)
4022
return;
4023
4024
n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4025
model, rev);
4026
4027
for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4028
if (quirks & (1U << i))
4029
n += snprintf(str + n, sz - n,
4030
" %s", ata_quirk_names[i]);
4031
}
4032
4033
ata_dev_warn(dev, "%s\n", str);
4034
4035
kfree(str);
4036
}
4037
4038
struct ata_dev_quirks_entry {
4039
const char *model_num;
4040
const char *model_rev;
4041
unsigned int quirks;
4042
};
4043
4044
static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4045
/* Devices with DMA related problems under Linux */
4046
{ "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4047
{ "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4048
{ "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4049
{ "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4050
{ "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4051
{ "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4052
{ "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4053
{ "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4054
{ "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4055
{ "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4056
{ "CRD-84", NULL, ATA_QUIRK_NODMA },
4057
{ "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4058
{ "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4059
{ "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4060
{ "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4061
{ "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4062
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4063
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4064
{ "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4065
{ "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4066
{ "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4067
{ "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4068
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4069
{ "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4070
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4071
{ "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4072
{ "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4073
{ "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4074
{ " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4075
{ "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4076
/* Odd clown on sil3726/4726 PMPs */
4077
{ "Config Disk", NULL, ATA_QUIRK_DISABLE },
4078
/* Similar story with ASMedia 1092 */
4079
{ "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4080
4081
/* Weird ATAPI devices */
4082
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4083
{ "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4084
{ "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4085
{ "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4086
4087
/*
4088
* Causes silent data corruption with higher max sects.
4089
* http://lkml.kernel.org/g/[email protected]
4090
*/
4091
{ "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4092
4093
/*
4094
* These devices time out with higher max sects.
4095
* https://bugzilla.kernel.org/show_bug.cgi?id=121671
4096
*/
4097
{ "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4098
{ "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4099
4100
/* Devices we expect to fail diagnostics */
4101
4102
/* Devices where NCQ should be avoided */
4103
/* NCQ is slow */
4104
{ "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4105
{ "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4106
/* http://thread.gmane.org/gmane.linux.ide/14907 */
4107
{ "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4108
/* NCQ is broken */
4109
{ "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4110
{ "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4111
{ "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4112
{ "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4113
{ "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4114
4115
/* Seagate NCQ + FLUSH CACHE firmware bug */
4116
{ "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4117
ATA_QUIRK_FIRMWARE_WARN },
4118
4119
{ "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4120
ATA_QUIRK_FIRMWARE_WARN },
4121
4122
{ "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4123
ATA_QUIRK_FIRMWARE_WARN },
4124
4125
{ "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4126
ATA_QUIRK_FIRMWARE_WARN },
4127
4128
/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4129
the ST disks also have LPM issues */
4130
{ "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4131
ATA_QUIRK_NOLPM },
4132
{ "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4133
4134
/* Blacklist entries taken from Silicon Image 3124/3132
4135
Windows driver .inf file - also several Linux problem reports */
4136
{ "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4137
{ "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4138
{ "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4139
4140
/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4141
{ "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4142
4143
/* Sandisk SD7/8/9s lock up hard on large trims */
4144
{ "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4145
4146
/* devices which puke on READ_NATIVE_MAX */
4147
{ "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4148
{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4149
{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4150
{ "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4151
4152
/* this one allows HPA unlocking but fails IOs on the area */
4153
{ "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4154
4155
/* Devices which report 1 sector over size HPA */
4156
{ "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4157
{ "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4158
{ "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4159
4160
/* Devices which get the IVB wrong */
4161
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4162
/* Maybe we should just add all TSSTcorp devices... */
4163
{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4164
4165
/* Devices that do not need bridging limits applied */
4166
{ "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4167
{ "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4168
4169
/* Devices which aren't very happy with higher link speeds */
4170
{ "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4171
{ "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4172
4173
/*
4174
* Devices which choke on SETXFER. Applies only if both the
4175
* device and controller are SATA.
4176
*/
4177
{ "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4178
{ "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4179
{ "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4180
{ "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4181
{ "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4182
4183
/* These specific Pioneer models have LPM issues */
4184
{ "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4185
{ "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4186
4187
/* Crucial devices with broken LPM support */
4188
{ "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4189
4190
/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4191
{ "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4192
ATA_QUIRK_ZERO_AFTER_TRIM |
4193
ATA_QUIRK_NOLPM },
4194
/* 512GB MX100 with newer firmware has only LPM issues */
4195
{ "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4196
ATA_QUIRK_NOLPM },
4197
4198
/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4199
{ "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4200
ATA_QUIRK_ZERO_AFTER_TRIM |
4201
ATA_QUIRK_NOLPM },
4202
{ "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4203
ATA_QUIRK_ZERO_AFTER_TRIM |
4204
ATA_QUIRK_NOLPM },
4205
4206
/* AMD Radeon devices with broken LPM support */
4207
{ "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4208
4209
/* Apacer models with LPM issues */
4210
{ "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4211
4212
/* These specific Samsung models/firmware-revs do not handle LPM well */
4213
{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4214
{ "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4215
{ "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4216
{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4217
4218
/* devices that don't properly handle queued TRIM commands */
4219
{ "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4220
ATA_QUIRK_ZERO_AFTER_TRIM },
4221
{ "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4222
ATA_QUIRK_ZERO_AFTER_TRIM },
4223
{ "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4224
ATA_QUIRK_ZERO_AFTER_TRIM },
4225
{ "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4226
ATA_QUIRK_ZERO_AFTER_TRIM, },
4227
{ "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4228
ATA_QUIRK_ZERO_AFTER_TRIM },
4229
{ "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4230
ATA_QUIRK_ZERO_AFTER_TRIM },
4231
{ "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4232
ATA_QUIRK_ZERO_AFTER_TRIM },
4233
{ "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4234
ATA_QUIRK_NO_DMA_LOG |
4235
ATA_QUIRK_ZERO_AFTER_TRIM },
4236
{ "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4237
ATA_QUIRK_ZERO_AFTER_TRIM },
4238
{ "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4239
ATA_QUIRK_ZERO_AFTER_TRIM },
4240
{ "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4241
ATA_QUIRK_ZERO_AFTER_TRIM |
4242
ATA_QUIRK_NO_NCQ_ON_ATI |
4243
ATA_QUIRK_NO_LPM_ON_ATI },
4244
{ "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4245
ATA_QUIRK_ZERO_AFTER_TRIM |
4246
ATA_QUIRK_NO_NCQ_ON_ATI |
4247
ATA_QUIRK_NO_LPM_ON_ATI },
4248
{ "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4249
ATA_QUIRK_ZERO_AFTER_TRIM |
4250
ATA_QUIRK_NO_NCQ_ON_ATI |
4251
ATA_QUIRK_NO_LPM_ON_ATI },
4252
{ "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4253
ATA_QUIRK_ZERO_AFTER_TRIM },
4254
4255
/* devices that don't properly handle TRIM commands */
4256
{ "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4257
{ "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4258
4259
/*
4260
* As defined, the DRAT (Deterministic Read After Trim) and RZAT
4261
* (Return Zero After Trim) flags in the ATA Command Set are
4262
* unreliable in the sense that they only define what happens if
4263
* the device successfully executed the DSM TRIM command. TRIM
4264
* is only advisory, however, and the device is free to silently
4265
* ignore all or parts of the request.
4266
*
4267
* Whitelist drives that are known to reliably return zeroes
4268
* after TRIM.
4269
*/
4270
4271
/*
4272
* The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4273
* that model before whitelisting all other intel SSDs.
4274
*/
4275
{ "INTEL*SSDSC2MH*", NULL, 0 },
4276
4277
{ "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4278
{ "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4279
{ "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4280
{ "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4281
{ "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4282
{ "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4283
{ "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4284
{ "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4285
4286
/*
4287
* Some WD SATA-I drives spin up and down erratically when the link
4288
* is put into the slumber mode. We don't have full list of the
4289
* affected devices. Disable LPM if the device matches one of the
4290
* known prefixes and is SATA-1. As a side effect LPM partial is
4291
* lost too.
4292
*
4293
* https://bugzilla.kernel.org/show_bug.cgi?id=57211
4294
*/
4295
{ "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4296
{ "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4297
{ "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4298
{ "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4299
{ "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4300
{ "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4301
{ "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4302
4303
/*
4304
* This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4305
* log page is accessed. Ensure we never ask for this log page with
4306
* these devices.
4307
*/
4308
{ "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4309
4310
/* Buggy FUA */
4311
{ "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4312
{ "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4313
{ "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4314
{ "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4315
4316
/* End Marker */
4317
{ }
4318
};
4319
4320
static unsigned int ata_dev_quirks(const struct ata_device *dev)
4321
{
4322
unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324
const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4325
4326
/* dev->quirks is an unsigned int. */
4327
BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4328
4329
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4330
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4331
4332
while (ad->model_num) {
4333
if (glob_match(ad->model_num, model_num) &&
4334
(!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4335
ata_dev_print_quirks(dev, model_num, model_rev,
4336
ad->quirks);
4337
return ad->quirks;
4338
}
4339
ad++;
4340
}
4341
return 0;
4342
}
4343
4344
static bool ata_dev_nodma(const struct ata_device *dev)
4345
{
4346
/*
4347
* We do not support polling DMA. Deny DMA for those ATAPI devices
4348
* with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4349
* the HSM_ST_LAST state.
4350
*/
4351
if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4352
(dev->flags & ATA_DFLAG_CDB_INTR))
4353
return true;
4354
return dev->quirks & ATA_QUIRK_NODMA;
4355
}
4356
4357
/**
4358
* ata_is_40wire - check drive side detection
4359
* @dev: device
4360
*
4361
* Perform drive side detection decoding, allowing for device vendors
4362
* who can't follow the documentation.
4363
*/
4364
4365
static int ata_is_40wire(struct ata_device *dev)
4366
{
4367
if (dev->quirks & ATA_QUIRK_IVB)
4368
return ata_drive_40wire_relaxed(dev->id);
4369
return ata_drive_40wire(dev->id);
4370
}
4371
4372
/**
4373
* cable_is_40wire - 40/80/SATA decider
4374
* @ap: port to consider
4375
*
4376
* This function encapsulates the policy for speed management
4377
* in one place. At the moment we don't cache the result but
4378
* there is a good case for setting ap->cbl to the result when
4379
* we are called with unknown cables (and figuring out if it
4380
* impacts hotplug at all).
4381
*
4382
* Return 1 if the cable appears to be 40 wire.
4383
*/
4384
4385
static int cable_is_40wire(struct ata_port *ap)
4386
{
4387
struct ata_link *link;
4388
struct ata_device *dev;
4389
4390
/* If the controller thinks we are 40 wire, we are. */
4391
if (ap->cbl == ATA_CBL_PATA40)
4392
return 1;
4393
4394
/* If the controller thinks we are 80 wire, we are. */
4395
if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4396
return 0;
4397
4398
/* If the system is known to be 40 wire short cable (eg
4399
* laptop), then we allow 80 wire modes even if the drive
4400
* isn't sure.
4401
*/
4402
if (ap->cbl == ATA_CBL_PATA40_SHORT)
4403
return 0;
4404
4405
/* If the controller doesn't know, we scan.
4406
*
4407
* Note: We look for all 40 wire detects at this point. Any
4408
* 80 wire detect is taken to be 80 wire cable because
4409
* - in many setups only the one drive (slave if present) will
4410
* give a valid detect
4411
* - if you have a non detect capable drive you don't want it
4412
* to colour the choice
4413
*/
4414
ata_for_each_link(link, ap, EDGE) {
4415
ata_for_each_dev(dev, link, ENABLED) {
4416
if (!ata_is_40wire(dev))
4417
return 0;
4418
}
4419
}
4420
return 1;
4421
}
4422
4423
/**
4424
* ata_dev_xfermask - Compute supported xfermask of the given device
4425
* @dev: Device to compute xfermask for
4426
*
4427
* Compute supported xfermask of @dev and store it in
4428
* dev->*_mask. This function is responsible for applying all
4429
* known limits including host controller limits, device quirks, etc...
4430
*
4431
* LOCKING:
4432
* None.
4433
*/
4434
static void ata_dev_xfermask(struct ata_device *dev)
4435
{
4436
struct ata_link *link = dev->link;
4437
struct ata_port *ap = link->ap;
4438
struct ata_host *host = ap->host;
4439
unsigned int xfer_mask;
4440
4441
/* controller modes available */
4442
xfer_mask = ata_pack_xfermask(ap->pio_mask,
4443
ap->mwdma_mask, ap->udma_mask);
4444
4445
/* drive modes available */
4446
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4447
dev->mwdma_mask, dev->udma_mask);
4448
xfer_mask &= ata_id_xfermask(dev->id);
4449
4450
/*
4451
* CFA Advanced TrueIDE timings are not allowed on a shared
4452
* cable
4453
*/
4454
if (ata_dev_pair(dev)) {
4455
/* No PIO5 or PIO6 */
4456
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4457
/* No MWDMA3 or MWDMA 4 */
4458
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4459
}
4460
4461
if (ata_dev_nodma(dev)) {
4462
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4463
ata_dev_warn(dev,
4464
"device does not support DMA, disabling DMA\n");
4465
}
4466
4467
if ((host->flags & ATA_HOST_SIMPLEX) &&
4468
host->simplex_claimed && host->simplex_claimed != ap) {
4469
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4470
ata_dev_warn(dev,
4471
"simplex DMA is claimed by other device, disabling DMA\n");
4472
}
4473
4474
if (ap->flags & ATA_FLAG_NO_IORDY)
4475
xfer_mask &= ata_pio_mask_no_iordy(dev);
4476
4477
if (ap->ops->mode_filter)
4478
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4479
4480
/* Apply cable rule here. Don't apply it early because when
4481
* we handle hot plug the cable type can itself change.
4482
* Check this last so that we know if the transfer rate was
4483
* solely limited by the cable.
4484
* Unknown or 80 wire cables reported host side are checked
4485
* drive side as well. Cases where we know a 40wire cable
4486
* is used safely for 80 are not checked here.
4487
*/
4488
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4489
/* UDMA/44 or higher would be available */
4490
if (cable_is_40wire(ap)) {
4491
ata_dev_warn(dev,
4492
"limited to UDMA/33 due to 40-wire cable\n");
4493
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4494
}
4495
4496
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4497
&dev->mwdma_mask, &dev->udma_mask);
4498
}
4499
4500
/**
4501
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4502
* @dev: Device to which command will be sent
4503
*
4504
* Issue SET FEATURES - XFER MODE command to device @dev
4505
* on port @ap.
4506
*
4507
* LOCKING:
4508
* PCI/etc. bus probe sem.
4509
*
4510
* RETURNS:
4511
* 0 on success, AC_ERR_* mask otherwise.
4512
*/
4513
4514
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4515
{
4516
struct ata_taskfile tf;
4517
4518
/* set up set-features taskfile */
4519
ata_dev_dbg(dev, "set features - xfer mode\n");
4520
4521
/* Some controllers and ATAPI devices show flaky interrupt
4522
* behavior after setting xfer mode. Use polling instead.
4523
*/
4524
ata_tf_init(dev, &tf);
4525
tf.command = ATA_CMD_SET_FEATURES;
4526
tf.feature = SETFEATURES_XFER;
4527
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528
tf.protocol = ATA_PROT_NODATA;
4529
/* If we are using IORDY we must send the mode setting command */
4530
if (ata_pio_need_iordy(dev))
4531
tf.nsect = dev->xfer_mode;
4532
/* If the device has IORDY and the controller does not - turn it off */
4533
else if (ata_id_has_iordy(dev->id))
4534
tf.nsect = 0x01;
4535
else /* In the ancient relic department - skip all of this */
4536
return 0;
4537
4538
/*
4539
* On some disks, this command causes spin-up, so we need longer
4540
* timeout.
4541
*/
4542
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4543
}
4544
4545
/**
4546
* ata_dev_set_feature - Issue SET FEATURES
4547
* @dev: Device to which command will be sent
4548
* @subcmd: The SET FEATURES subcommand to be sent
4549
* @action: The sector count represents a subcommand specific action
4550
*
4551
* Issue SET FEATURES command to device @dev on port @ap with sector count
4552
*
4553
* LOCKING:
4554
* PCI/etc. bus probe sem.
4555
*
4556
* RETURNS:
4557
* 0 on success, AC_ERR_* mask otherwise.
4558
*/
4559
unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4560
{
4561
struct ata_taskfile tf;
4562
unsigned int timeout = 0;
4563
4564
/* set up set-features taskfile */
4565
ata_dev_dbg(dev, "set features\n");
4566
4567
ata_tf_init(dev, &tf);
4568
tf.command = ATA_CMD_SET_FEATURES;
4569
tf.feature = subcmd;
4570
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571
tf.protocol = ATA_PROT_NODATA;
4572
tf.nsect = action;
4573
4574
if (subcmd == SETFEATURES_SPINUP)
4575
timeout = ata_probe_timeout ?
4576
ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4577
4578
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4579
}
4580
EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4581
4582
/**
4583
* ata_dev_init_params - Issue INIT DEV PARAMS command
4584
* @dev: Device to which command will be sent
4585
* @heads: Number of heads (taskfile parameter)
4586
* @sectors: Number of sectors (taskfile parameter)
4587
*
4588
* LOCKING:
4589
* Kernel thread context (may sleep)
4590
*
4591
* RETURNS:
4592
* 0 on success, AC_ERR_* mask otherwise.
4593
*/
4594
static unsigned int ata_dev_init_params(struct ata_device *dev,
4595
u16 heads, u16 sectors)
4596
{
4597
struct ata_taskfile tf;
4598
unsigned int err_mask;
4599
4600
/* Number of sectors per track 1-255. Number of heads 1-16 */
4601
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4602
return AC_ERR_INVALID;
4603
4604
/* set up init dev params taskfile */
4605
ata_dev_dbg(dev, "init dev params\n");
4606
4607
ata_tf_init(dev, &tf);
4608
tf.command = ATA_CMD_INIT_DEV_PARAMS;
4609
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4610
tf.protocol = ATA_PROT_NODATA;
4611
tf.nsect = sectors;
4612
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4613
4614
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4615
/* A clean abort indicates an original or just out of spec drive
4616
and we should continue as we issue the setup based on the
4617
drive reported working geometry */
4618
if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4619
err_mask = 0;
4620
4621
return err_mask;
4622
}
4623
4624
/**
4625
* atapi_check_dma - Check whether ATAPI DMA can be supported
4626
* @qc: Metadata associated with taskfile to check
4627
*
4628
* Allow low-level driver to filter ATA PACKET commands, returning
4629
* a status indicating whether or not it is OK to use DMA for the
4630
* supplied PACKET command.
4631
*
4632
* LOCKING:
4633
* spin_lock_irqsave(host lock)
4634
*
4635
* RETURNS: 0 when ATAPI DMA can be used
4636
* nonzero otherwise
4637
*/
4638
int atapi_check_dma(struct ata_queued_cmd *qc)
4639
{
4640
struct ata_port *ap = qc->ap;
4641
4642
/* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4643
* few ATAPI devices choke on such DMA requests.
4644
*/
4645
if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4646
unlikely(qc->nbytes & 15))
4647
return -EOPNOTSUPP;
4648
4649
if (ap->ops->check_atapi_dma)
4650
return ap->ops->check_atapi_dma(qc);
4651
4652
return 0;
4653
}
4654
4655
/**
4656
* ata_std_qc_defer - Check whether a qc needs to be deferred
4657
* @qc: ATA command in question
4658
*
4659
* Non-NCQ commands cannot run with any other command, NCQ or
4660
* not. As upper layer only knows the queue depth, we are
4661
* responsible for maintaining exclusion. This function checks
4662
* whether a new command @qc can be issued.
4663
*
4664
* LOCKING:
4665
* spin_lock_irqsave(host lock)
4666
*
4667
* RETURNS:
4668
* ATA_DEFER_* if deferring is needed, 0 otherwise.
4669
*/
4670
int ata_std_qc_defer(struct ata_queued_cmd *qc)
4671
{
4672
struct ata_link *link = qc->dev->link;
4673
4674
if (ata_is_ncq(qc->tf.protocol)) {
4675
if (!ata_tag_valid(link->active_tag))
4676
return 0;
4677
} else {
4678
if (!ata_tag_valid(link->active_tag) && !link->sactive)
4679
return 0;
4680
}
4681
4682
return ATA_DEFER_LINK;
4683
}
4684
EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4685
4686
/**
4687
* ata_sg_init - Associate command with scatter-gather table.
4688
* @qc: Command to be associated
4689
* @sg: Scatter-gather table.
4690
* @n_elem: Number of elements in s/g table.
4691
*
4692
* Initialize the data-related elements of queued_cmd @qc
4693
* to point to a scatter-gather table @sg, containing @n_elem
4694
* elements.
4695
*
4696
* LOCKING:
4697
* spin_lock_irqsave(host lock)
4698
*/
4699
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4700
unsigned int n_elem)
4701
{
4702
qc->sg = sg;
4703
qc->n_elem = n_elem;
4704
qc->cursg = qc->sg;
4705
}
4706
4707
#ifdef CONFIG_HAS_DMA
4708
4709
/**
4710
* ata_sg_clean - Unmap DMA memory associated with command
4711
* @qc: Command containing DMA memory to be released
4712
*
4713
* Unmap all mapped DMA memory associated with this command.
4714
*
4715
* LOCKING:
4716
* spin_lock_irqsave(host lock)
4717
*/
4718
static void ata_sg_clean(struct ata_queued_cmd *qc)
4719
{
4720
struct ata_port *ap = qc->ap;
4721
struct scatterlist *sg = qc->sg;
4722
int dir = qc->dma_dir;
4723
4724
WARN_ON_ONCE(sg == NULL);
4725
4726
if (qc->n_elem)
4727
dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4728
4729
qc->flags &= ~ATA_QCFLAG_DMAMAP;
4730
qc->sg = NULL;
4731
}
4732
4733
/**
4734
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735
* @qc: Command with scatter-gather table to be mapped.
4736
*
4737
* DMA-map the scatter-gather table associated with queued_cmd @qc.
4738
*
4739
* LOCKING:
4740
* spin_lock_irqsave(host lock)
4741
*
4742
* RETURNS:
4743
* Zero on success, negative on error.
4744
*
4745
*/
4746
static int ata_sg_setup(struct ata_queued_cmd *qc)
4747
{
4748
struct ata_port *ap = qc->ap;
4749
unsigned int n_elem;
4750
4751
n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4752
if (n_elem < 1)
4753
return -1;
4754
4755
qc->orig_n_elem = qc->n_elem;
4756
qc->n_elem = n_elem;
4757
qc->flags |= ATA_QCFLAG_DMAMAP;
4758
4759
return 0;
4760
}
4761
4762
#else /* !CONFIG_HAS_DMA */
4763
4764
static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4765
static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4766
4767
#endif /* !CONFIG_HAS_DMA */
4768
4769
/**
4770
* swap_buf_le16 - swap halves of 16-bit words in place
4771
* @buf: Buffer to swap
4772
* @buf_words: Number of 16-bit words in buffer.
4773
*
4774
* Swap halves of 16-bit words if needed to convert from
4775
* little-endian byte order to native cpu byte order, or
4776
* vice-versa.
4777
*
4778
* LOCKING:
4779
* Inherited from caller.
4780
*/
4781
void swap_buf_le16(u16 *buf, unsigned int buf_words)
4782
{
4783
#ifdef __BIG_ENDIAN
4784
unsigned int i;
4785
4786
for (i = 0; i < buf_words; i++)
4787
buf[i] = le16_to_cpu(buf[i]);
4788
#endif /* __BIG_ENDIAN */
4789
}
4790
4791
/**
4792
* ata_qc_free - free unused ata_queued_cmd
4793
* @qc: Command to complete
4794
*
4795
* Designed to free unused ata_queued_cmd object
4796
* in case something prevents using it.
4797
*
4798
* LOCKING:
4799
* spin_lock_irqsave(host lock)
4800
*/
4801
void ata_qc_free(struct ata_queued_cmd *qc)
4802
{
4803
qc->flags = 0;
4804
if (ata_tag_valid(qc->tag))
4805
qc->tag = ATA_TAG_POISON;
4806
}
4807
4808
void __ata_qc_complete(struct ata_queued_cmd *qc)
4809
{
4810
struct ata_port *ap;
4811
struct ata_link *link;
4812
4813
if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4814
return;
4815
4816
ap = qc->ap;
4817
link = qc->dev->link;
4818
4819
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4820
ata_sg_clean(qc);
4821
4822
/* command should be marked inactive atomically with qc completion */
4823
if (ata_is_ncq(qc->tf.protocol)) {
4824
link->sactive &= ~(1 << qc->hw_tag);
4825
if (!link->sactive)
4826
ap->nr_active_links--;
4827
} else {
4828
link->active_tag = ATA_TAG_POISON;
4829
ap->nr_active_links--;
4830
}
4831
4832
/* clear exclusive status */
4833
if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4834
ap->excl_link == link))
4835
ap->excl_link = NULL;
4836
4837
/*
4838
* Mark qc as inactive to prevent the port interrupt handler from
4839
* completing the command twice later, before the error handler is
4840
* called.
4841
*/
4842
qc->flags &= ~ATA_QCFLAG_ACTIVE;
4843
ap->qc_active &= ~(1ULL << qc->tag);
4844
4845
/* call completion callback */
4846
qc->complete_fn(qc);
4847
}
4848
4849
static void fill_result_tf(struct ata_queued_cmd *qc)
4850
{
4851
struct ata_port *ap = qc->ap;
4852
4853
/*
4854
* rtf may already be filled (e.g. for successful NCQ commands).
4855
* If that is the case, we have nothing to do.
4856
*/
4857
if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4858
return;
4859
4860
qc->result_tf.flags = qc->tf.flags;
4861
ap->ops->qc_fill_rtf(qc);
4862
qc->flags |= ATA_QCFLAG_RTF_FILLED;
4863
}
4864
4865
static void ata_verify_xfer(struct ata_queued_cmd *qc)
4866
{
4867
struct ata_device *dev = qc->dev;
4868
4869
if (!ata_is_data(qc->tf.protocol))
4870
return;
4871
4872
if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4873
return;
4874
4875
dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4876
}
4877
4878
/**
4879
* ata_qc_complete - Complete an active ATA command
4880
* @qc: Command to complete
4881
*
4882
* Indicate to the mid and upper layers that an ATA command has
4883
* completed, with either an ok or not-ok status.
4884
*
4885
* Refrain from calling this function multiple times when
4886
* successfully completing multiple NCQ commands.
4887
* ata_qc_complete_multiple() should be used instead, which will
4888
* properly update IRQ expect state.
4889
*
4890
* LOCKING:
4891
* spin_lock_irqsave(host lock)
4892
*/
4893
void ata_qc_complete(struct ata_queued_cmd *qc)
4894
{
4895
struct ata_port *ap = qc->ap;
4896
struct ata_device *dev = qc->dev;
4897
struct ata_eh_info *ehi = &dev->link->eh_info;
4898
4899
/* Trigger the LED (if available) */
4900
ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4901
4902
/*
4903
* In order to synchronize EH with the regular execution path, a qc that
4904
* is owned by EH is marked with ATA_QCFLAG_EH.
4905
*
4906
* The normal execution path is responsible for not accessing a qc owned
4907
* by EH. libata core enforces the rule by returning NULL from
4908
* ata_qc_from_tag() for qcs owned by EH.
4909
*/
4910
if (unlikely(qc->err_mask))
4911
qc->flags |= ATA_QCFLAG_EH;
4912
4913
/*
4914
* Finish internal commands without any further processing and always
4915
* with the result TF filled.
4916
*/
4917
if (unlikely(ata_tag_internal(qc->tag))) {
4918
fill_result_tf(qc);
4919
trace_ata_qc_complete_internal(qc);
4920
__ata_qc_complete(qc);
4921
return;
4922
}
4923
4924
/* Non-internal qc has failed. Fill the result TF and summon EH. */
4925
if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4926
fill_result_tf(qc);
4927
trace_ata_qc_complete_failed(qc);
4928
ata_qc_schedule_eh(qc);
4929
return;
4930
}
4931
4932
WARN_ON_ONCE(ata_port_is_frozen(ap));
4933
4934
/* read result TF if requested */
4935
if (qc->flags & ATA_QCFLAG_RESULT_TF)
4936
fill_result_tf(qc);
4937
4938
trace_ata_qc_complete_done(qc);
4939
4940
/*
4941
* For CDL commands that completed without an error, check if we have
4942
* sense data (ATA_SENSE is set). If we do, then the command may have
4943
* been aborted by the device due to a limit timeout using the policy
4944
* 0xD. For these commands, invoke EH to get the command sense data.
4945
*/
4946
if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4947
qc->result_tf.status & ATA_SENSE) {
4948
/*
4949
* Tell SCSI EH to not overwrite scmd->result even if this
4950
* command is finished with result SAM_STAT_GOOD.
4951
*/
4952
qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4953
qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4954
ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4955
4956
/*
4957
* set pending so that ata_qc_schedule_eh() does not trigger
4958
* fast drain, and freeze the port.
4959
*/
4960
ap->pflags |= ATA_PFLAG_EH_PENDING;
4961
ata_qc_schedule_eh(qc);
4962
return;
4963
}
4964
4965
/* Some commands need post-processing after successful completion. */
4966
switch (qc->tf.command) {
4967
case ATA_CMD_SET_FEATURES:
4968
if (qc->tf.feature != SETFEATURES_WC_ON &&
4969
qc->tf.feature != SETFEATURES_WC_OFF &&
4970
qc->tf.feature != SETFEATURES_RA_ON &&
4971
qc->tf.feature != SETFEATURES_RA_OFF)
4972
break;
4973
fallthrough;
4974
case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4975
case ATA_CMD_SET_MULTI: /* multi_count changed */
4976
/* revalidate device */
4977
ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4978
ata_port_schedule_eh(ap);
4979
break;
4980
4981
case ATA_CMD_SLEEP:
4982
dev->flags |= ATA_DFLAG_SLEEPING;
4983
break;
4984
}
4985
4986
if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4987
ata_verify_xfer(qc);
4988
4989
__ata_qc_complete(qc);
4990
}
4991
EXPORT_SYMBOL_GPL(ata_qc_complete);
4992
4993
/**
4994
* ata_qc_get_active - get bitmask of active qcs
4995
* @ap: port in question
4996
*
4997
* LOCKING:
4998
* spin_lock_irqsave(host lock)
4999
*
5000
* RETURNS:
5001
* Bitmask of active qcs
5002
*/
5003
u64 ata_qc_get_active(struct ata_port *ap)
5004
{
5005
u64 qc_active = ap->qc_active;
5006
5007
/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5008
if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5009
qc_active |= (1 << 0);
5010
qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5011
}
5012
5013
return qc_active;
5014
}
5015
EXPORT_SYMBOL_GPL(ata_qc_get_active);
5016
5017
/**
5018
* ata_qc_issue - issue taskfile to device
5019
* @qc: command to issue to device
5020
*
5021
* Prepare an ATA command to submission to device.
5022
* This includes mapping the data into a DMA-able
5023
* area, filling in the S/G table, and finally
5024
* writing the taskfile to hardware, starting the command.
5025
*
5026
* LOCKING:
5027
* spin_lock_irqsave(host lock)
5028
*/
5029
void ata_qc_issue(struct ata_queued_cmd *qc)
5030
{
5031
struct ata_port *ap = qc->ap;
5032
struct ata_link *link = qc->dev->link;
5033
u8 prot = qc->tf.protocol;
5034
5035
/* Make sure only one non-NCQ command is outstanding. */
5036
WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5037
5038
if (ata_is_ncq(prot)) {
5039
WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5040
5041
if (!link->sactive)
5042
ap->nr_active_links++;
5043
link->sactive |= 1 << qc->hw_tag;
5044
} else {
5045
WARN_ON_ONCE(link->sactive);
5046
5047
ap->nr_active_links++;
5048
link->active_tag = qc->tag;
5049
}
5050
5051
qc->flags |= ATA_QCFLAG_ACTIVE;
5052
ap->qc_active |= 1ULL << qc->tag;
5053
5054
/*
5055
* We guarantee to LLDs that they will have at least one
5056
* non-zero sg if the command is a data command.
5057
*/
5058
if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5059
goto sys_err;
5060
5061
if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5062
(ap->flags & ATA_FLAG_PIO_DMA)))
5063
if (ata_sg_setup(qc))
5064
goto sys_err;
5065
5066
/* if device is sleeping, schedule reset and abort the link */
5067
if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5068
link->eh_info.action |= ATA_EH_RESET;
5069
ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5070
ata_link_abort(link);
5071
return;
5072
}
5073
5074
if (ap->ops->qc_prep) {
5075
trace_ata_qc_prep(qc);
5076
qc->err_mask |= ap->ops->qc_prep(qc);
5077
if (unlikely(qc->err_mask))
5078
goto err;
5079
}
5080
5081
trace_ata_qc_issue(qc);
5082
qc->err_mask |= ap->ops->qc_issue(qc);
5083
if (unlikely(qc->err_mask))
5084
goto err;
5085
return;
5086
5087
sys_err:
5088
qc->err_mask |= AC_ERR_SYSTEM;
5089
err:
5090
ata_qc_complete(qc);
5091
}
5092
5093
/**
5094
* ata_phys_link_online - test whether the given link is online
5095
* @link: ATA link to test
5096
*
5097
* Test whether @link is online. Note that this function returns
5098
* 0 if online status of @link cannot be obtained, so
5099
* ata_link_online(link) != !ata_link_offline(link).
5100
*
5101
* LOCKING:
5102
* None.
5103
*
5104
* RETURNS:
5105
* True if the port online status is available and online.
5106
*/
5107
bool ata_phys_link_online(struct ata_link *link)
5108
{
5109
u32 sstatus;
5110
5111
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5112
ata_sstatus_online(sstatus))
5113
return true;
5114
return false;
5115
}
5116
5117
/**
5118
* ata_phys_link_offline - test whether the given link is offline
5119
* @link: ATA link to test
5120
*
5121
* Test whether @link is offline. Note that this function
5122
* returns 0 if offline status of @link cannot be obtained, so
5123
* ata_link_online(link) != !ata_link_offline(link).
5124
*
5125
* LOCKING:
5126
* None.
5127
*
5128
* RETURNS:
5129
* True if the port offline status is available and offline.
5130
*/
5131
bool ata_phys_link_offline(struct ata_link *link)
5132
{
5133
u32 sstatus;
5134
5135
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5136
!ata_sstatus_online(sstatus))
5137
return true;
5138
return false;
5139
}
5140
5141
/**
5142
* ata_link_online - test whether the given link is online
5143
* @link: ATA link to test
5144
*
5145
* Test whether @link is online. This is identical to
5146
* ata_phys_link_online() when there's no slave link. When
5147
* there's a slave link, this function should only be called on
5148
* the master link and will return true if any of M/S links is
5149
* online.
5150
*
5151
* LOCKING:
5152
* None.
5153
*
5154
* RETURNS:
5155
* True if the port online status is available and online.
5156
*/
5157
bool ata_link_online(struct ata_link *link)
5158
{
5159
struct ata_link *slave = link->ap->slave_link;
5160
5161
WARN_ON(link == slave); /* shouldn't be called on slave link */
5162
5163
return ata_phys_link_online(link) ||
5164
(slave && ata_phys_link_online(slave));
5165
}
5166
EXPORT_SYMBOL_GPL(ata_link_online);
5167
5168
/**
5169
* ata_link_offline - test whether the given link is offline
5170
* @link: ATA link to test
5171
*
5172
* Test whether @link is offline. This is identical to
5173
* ata_phys_link_offline() when there's no slave link. When
5174
* there's a slave link, this function should only be called on
5175
* the master link and will return true if both M/S links are
5176
* offline.
5177
*
5178
* LOCKING:
5179
* None.
5180
*
5181
* RETURNS:
5182
* True if the port offline status is available and offline.
5183
*/
5184
bool ata_link_offline(struct ata_link *link)
5185
{
5186
struct ata_link *slave = link->ap->slave_link;
5187
5188
WARN_ON(link == slave); /* shouldn't be called on slave link */
5189
5190
return ata_phys_link_offline(link) &&
5191
(!slave || ata_phys_link_offline(slave));
5192
}
5193
EXPORT_SYMBOL_GPL(ata_link_offline);
5194
5195
#ifdef CONFIG_PM
5196
static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5197
unsigned int action, unsigned int ehi_flags,
5198
bool async)
5199
{
5200
struct ata_link *link;
5201
unsigned long flags;
5202
5203
spin_lock_irqsave(ap->lock, flags);
5204
5205
/*
5206
* A previous PM operation might still be in progress. Wait for
5207
* ATA_PFLAG_PM_PENDING to clear.
5208
*/
5209
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5210
spin_unlock_irqrestore(ap->lock, flags);
5211
ata_port_wait_eh(ap);
5212
spin_lock_irqsave(ap->lock, flags);
5213
}
5214
5215
/* Request PM operation to EH */
5216
ap->pm_mesg = mesg;
5217
ap->pflags |= ATA_PFLAG_PM_PENDING;
5218
ata_for_each_link(link, ap, HOST_FIRST) {
5219
link->eh_info.action |= action;
5220
link->eh_info.flags |= ehi_flags;
5221
}
5222
5223
ata_port_schedule_eh(ap);
5224
5225
spin_unlock_irqrestore(ap->lock, flags);
5226
5227
if (!async)
5228
ata_port_wait_eh(ap);
5229
}
5230
5231
static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5232
bool async)
5233
{
5234
/*
5235
* We are about to suspend the port, so we do not care about
5236
* scsi_rescan_device() calls scheduled by previous resume operations.
5237
* The next resume will schedule the rescan again. So cancel any rescan
5238
* that is not done yet.
5239
*/
5240
cancel_delayed_work_sync(&ap->scsi_rescan_task);
5241
5242
/*
5243
* On some hardware, device fails to respond after spun down for
5244
* suspend. As the device will not be used until being resumed, we
5245
* do not need to touch the device. Ask EH to skip the usual stuff
5246
* and proceed directly to suspend.
5247
*
5248
* http://thread.gmane.org/gmane.linux.ide/46764
5249
*/
5250
ata_port_request_pm(ap, mesg, 0,
5251
ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5252
ATA_EHI_NO_RECOVERY,
5253
async);
5254
}
5255
5256
static int ata_port_pm_suspend(struct device *dev)
5257
{
5258
struct ata_port *ap = to_ata_port(dev);
5259
5260
if (pm_runtime_suspended(dev))
5261
return 0;
5262
5263
ata_port_suspend(ap, PMSG_SUSPEND, false);
5264
return 0;
5265
}
5266
5267
static int ata_port_pm_freeze(struct device *dev)
5268
{
5269
struct ata_port *ap = to_ata_port(dev);
5270
5271
if (pm_runtime_suspended(dev))
5272
return 0;
5273
5274
ata_port_suspend(ap, PMSG_FREEZE, false);
5275
return 0;
5276
}
5277
5278
static int ata_port_pm_poweroff(struct device *dev)
5279
{
5280
if (!pm_runtime_suspended(dev))
5281
ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5282
return 0;
5283
}
5284
5285
static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5286
bool async)
5287
{
5288
ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5289
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5290
async);
5291
}
5292
5293
static int ata_port_pm_resume(struct device *dev)
5294
{
5295
if (!pm_runtime_suspended(dev))
5296
ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5297
return 0;
5298
}
5299
5300
/*
5301
* For ODDs, the upper layer will poll for media change every few seconds,
5302
* which will make it enter and leave suspend state every few seconds. And
5303
* as each suspend will cause a hard/soft reset, the gain of runtime suspend
5304
* is very little and the ODD may malfunction after constantly being reset.
5305
* So the idle callback here will not proceed to suspend if a non-ZPODD capable
5306
* ODD is attached to the port.
5307
*/
5308
static int ata_port_runtime_idle(struct device *dev)
5309
{
5310
struct ata_port *ap = to_ata_port(dev);
5311
struct ata_link *link;
5312
struct ata_device *adev;
5313
5314
ata_for_each_link(link, ap, HOST_FIRST) {
5315
ata_for_each_dev(adev, link, ENABLED)
5316
if (adev->class == ATA_DEV_ATAPI &&
5317
!zpodd_dev_enabled(adev))
5318
return -EBUSY;
5319
}
5320
5321
return 0;
5322
}
5323
5324
static int ata_port_runtime_suspend(struct device *dev)
5325
{
5326
ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5327
return 0;
5328
}
5329
5330
static int ata_port_runtime_resume(struct device *dev)
5331
{
5332
ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5333
return 0;
5334
}
5335
5336
static const struct dev_pm_ops ata_port_pm_ops = {
5337
.suspend = ata_port_pm_suspend,
5338
.resume = ata_port_pm_resume,
5339
.freeze = ata_port_pm_freeze,
5340
.thaw = ata_port_pm_resume,
5341
.poweroff = ata_port_pm_poweroff,
5342
.restore = ata_port_pm_resume,
5343
5344
.runtime_suspend = ata_port_runtime_suspend,
5345
.runtime_resume = ata_port_runtime_resume,
5346
.runtime_idle = ata_port_runtime_idle,
5347
};
5348
5349
/* sas ports don't participate in pm runtime management of ata_ports,
5350
* and need to resume ata devices at the domain level, not the per-port
5351
* level. sas suspend/resume is async to allow parallel port recovery
5352
* since sas has multiple ata_port instances per Scsi_Host.
5353
*/
5354
void ata_sas_port_suspend(struct ata_port *ap)
5355
{
5356
ata_port_suspend(ap, PMSG_SUSPEND, true);
5357
}
5358
EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5359
5360
void ata_sas_port_resume(struct ata_port *ap)
5361
{
5362
ata_port_resume(ap, PMSG_RESUME, true);
5363
}
5364
EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5365
5366
/**
5367
* ata_host_suspend - suspend host
5368
* @host: host to suspend
5369
* @mesg: PM message
5370
*
5371
* Suspend @host. Actual operation is performed by port suspend.
5372
*/
5373
void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5374
{
5375
host->dev->power.power_state = mesg;
5376
}
5377
EXPORT_SYMBOL_GPL(ata_host_suspend);
5378
5379
/**
5380
* ata_host_resume - resume host
5381
* @host: host to resume
5382
*
5383
* Resume @host. Actual operation is performed by port resume.
5384
*/
5385
void ata_host_resume(struct ata_host *host)
5386
{
5387
host->dev->power.power_state = PMSG_ON;
5388
}
5389
EXPORT_SYMBOL_GPL(ata_host_resume);
5390
#endif
5391
5392
const struct device_type ata_port_type = {
5393
.name = ATA_PORT_TYPE_NAME,
5394
#ifdef CONFIG_PM
5395
.pm = &ata_port_pm_ops,
5396
#endif
5397
};
5398
5399
/**
5400
* ata_dev_init - Initialize an ata_device structure
5401
* @dev: Device structure to initialize
5402
*
5403
* Initialize @dev in preparation for probing.
5404
*
5405
* LOCKING:
5406
* Inherited from caller.
5407
*/
5408
void ata_dev_init(struct ata_device *dev)
5409
{
5410
struct ata_link *link = ata_dev_phys_link(dev);
5411
struct ata_port *ap = link->ap;
5412
unsigned long flags;
5413
5414
/* SATA spd limit is bound to the attached device, reset together */
5415
link->sata_spd_limit = link->hw_sata_spd_limit;
5416
link->sata_spd = 0;
5417
5418
/* High bits of dev->flags are used to record warm plug
5419
* requests which occur asynchronously. Synchronize using
5420
* host lock.
5421
*/
5422
spin_lock_irqsave(ap->lock, flags);
5423
dev->flags &= ~ATA_DFLAG_INIT_MASK;
5424
dev->quirks = 0;
5425
spin_unlock_irqrestore(ap->lock, flags);
5426
5427
memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5428
ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5429
dev->pio_mask = UINT_MAX;
5430
dev->mwdma_mask = UINT_MAX;
5431
dev->udma_mask = UINT_MAX;
5432
}
5433
5434
/**
5435
* ata_link_init - Initialize an ata_link structure
5436
* @ap: ATA port link is attached to
5437
* @link: Link structure to initialize
5438
* @pmp: Port multiplier port number
5439
*
5440
* Initialize @link.
5441
*
5442
* LOCKING:
5443
* Kernel thread context (may sleep)
5444
*/
5445
void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5446
{
5447
int i;
5448
5449
/* clear everything except for devices */
5450
memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5451
ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5452
5453
link->ap = ap;
5454
link->pmp = pmp;
5455
link->active_tag = ATA_TAG_POISON;
5456
link->hw_sata_spd_limit = UINT_MAX;
5457
5458
/* can't use iterator, ap isn't initialized yet */
5459
for (i = 0; i < ATA_MAX_DEVICES; i++) {
5460
struct ata_device *dev = &link->device[i];
5461
5462
dev->link = link;
5463
dev->devno = dev - link->device;
5464
#ifdef CONFIG_ATA_ACPI
5465
dev->gtf_filter = ata_acpi_gtf_filter;
5466
#endif
5467
ata_dev_init(dev);
5468
}
5469
}
5470
5471
/**
5472
* sata_link_init_spd - Initialize link->sata_spd_limit
5473
* @link: Link to configure sata_spd_limit for
5474
*
5475
* Initialize ``link->[hw_]sata_spd_limit`` to the currently
5476
* configured value.
5477
*
5478
* LOCKING:
5479
* Kernel thread context (may sleep).
5480
*
5481
* RETURNS:
5482
* 0 on success, -errno on failure.
5483
*/
5484
int sata_link_init_spd(struct ata_link *link)
5485
{
5486
u8 spd;
5487
int rc;
5488
5489
rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5490
if (rc)
5491
return rc;
5492
5493
spd = (link->saved_scontrol >> 4) & 0xf;
5494
if (spd)
5495
link->hw_sata_spd_limit &= (1 << spd) - 1;
5496
5497
ata_force_link_limits(link);
5498
5499
link->sata_spd_limit = link->hw_sata_spd_limit;
5500
5501
return 0;
5502
}
5503
5504
/**
5505
* ata_port_alloc - allocate and initialize basic ATA port resources
5506
* @host: ATA host this allocated port belongs to
5507
*
5508
* Allocate and initialize basic ATA port resources.
5509
*
5510
* RETURNS:
5511
* Allocate ATA port on success, NULL on failure.
5512
*
5513
* LOCKING:
5514
* Inherited from calling layer (may sleep).
5515
*/
5516
struct ata_port *ata_port_alloc(struct ata_host *host)
5517
{
5518
struct ata_port *ap;
5519
int id;
5520
5521
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5522
if (!ap)
5523
return NULL;
5524
5525
ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5526
ap->lock = &host->lock;
5527
id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5528
if (id < 0) {
5529
kfree(ap);
5530
return NULL;
5531
}
5532
ap->print_id = id;
5533
ap->host = host;
5534
ap->dev = host->dev;
5535
5536
mutex_init(&ap->scsi_scan_mutex);
5537
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5538
INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5539
INIT_LIST_HEAD(&ap->eh_done_q);
5540
init_waitqueue_head(&ap->eh_wait_q);
5541
init_completion(&ap->park_req_pending);
5542
timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5543
TIMER_DEFERRABLE);
5544
5545
ap->cbl = ATA_CBL_NONE;
5546
5547
ata_link_init(ap, &ap->link, 0);
5548
5549
#ifdef ATA_IRQ_TRAP
5550
ap->stats.unhandled_irq = 1;
5551
ap->stats.idle_irq = 1;
5552
#endif
5553
ata_sff_port_init(ap);
5554
5555
ata_force_pflags(ap);
5556
5557
return ap;
5558
}
5559
EXPORT_SYMBOL_GPL(ata_port_alloc);
5560
5561
void ata_port_free(struct ata_port *ap)
5562
{
5563
if (!ap)
5564
return;
5565
5566
kfree(ap->pmp_link);
5567
kfree(ap->slave_link);
5568
ida_free(&ata_ida, ap->print_id);
5569
kfree(ap);
5570
}
5571
EXPORT_SYMBOL_GPL(ata_port_free);
5572
5573
static void ata_devres_release(struct device *gendev, void *res)
5574
{
5575
struct ata_host *host = dev_get_drvdata(gendev);
5576
int i;
5577
5578
for (i = 0; i < host->n_ports; i++) {
5579
struct ata_port *ap = host->ports[i];
5580
5581
if (!ap)
5582
continue;
5583
5584
if (ap->scsi_host)
5585
scsi_host_put(ap->scsi_host);
5586
5587
}
5588
5589
dev_set_drvdata(gendev, NULL);
5590
ata_host_put(host);
5591
}
5592
5593
static void ata_host_release(struct kref *kref)
5594
{
5595
struct ata_host *host = container_of(kref, struct ata_host, kref);
5596
int i;
5597
5598
for (i = 0; i < host->n_ports; i++) {
5599
ata_port_free(host->ports[i]);
5600
host->ports[i] = NULL;
5601
}
5602
kfree(host);
5603
}
5604
5605
void ata_host_get(struct ata_host *host)
5606
{
5607
kref_get(&host->kref);
5608
}
5609
5610
void ata_host_put(struct ata_host *host)
5611
{
5612
kref_put(&host->kref, ata_host_release);
5613
}
5614
EXPORT_SYMBOL_GPL(ata_host_put);
5615
5616
/**
5617
* ata_host_alloc - allocate and init basic ATA host resources
5618
* @dev: generic device this host is associated with
5619
* @n_ports: the number of ATA ports associated with this host
5620
*
5621
* Allocate and initialize basic ATA host resources. LLD calls
5622
* this function to allocate a host, initializes it fully and
5623
* attaches it using ata_host_register().
5624
*
5625
* RETURNS:
5626
* Allocate ATA host on success, NULL on failure.
5627
*
5628
* LOCKING:
5629
* Inherited from calling layer (may sleep).
5630
*/
5631
struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5632
{
5633
struct ata_host *host;
5634
size_t sz;
5635
int i;
5636
void *dr;
5637
5638
/* alloc a container for our list of ATA ports (buses) */
5639
sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5640
host = kzalloc(sz, GFP_KERNEL);
5641
if (!host)
5642
return NULL;
5643
5644
if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5645
kfree(host);
5646
return NULL;
5647
}
5648
5649
dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5650
if (!dr) {
5651
kfree(host);
5652
goto err_out;
5653
}
5654
5655
devres_add(dev, dr);
5656
dev_set_drvdata(dev, host);
5657
5658
spin_lock_init(&host->lock);
5659
mutex_init(&host->eh_mutex);
5660
host->dev = dev;
5661
host->n_ports = n_ports;
5662
kref_init(&host->kref);
5663
5664
/* allocate ports bound to this host */
5665
for (i = 0; i < n_ports; i++) {
5666
struct ata_port *ap;
5667
5668
ap = ata_port_alloc(host);
5669
if (!ap)
5670
goto err_out;
5671
5672
ap->port_no = i;
5673
host->ports[i] = ap;
5674
}
5675
5676
devres_remove_group(dev, NULL);
5677
return host;
5678
5679
err_out:
5680
devres_release_group(dev, NULL);
5681
return NULL;
5682
}
5683
EXPORT_SYMBOL_GPL(ata_host_alloc);
5684
5685
/**
5686
* ata_host_alloc_pinfo - alloc host and init with port_info array
5687
* @dev: generic device this host is associated with
5688
* @ppi: array of ATA port_info to initialize host with
5689
* @n_ports: number of ATA ports attached to this host
5690
*
5691
* Allocate ATA host and initialize with info from @ppi. If NULL
5692
* terminated, @ppi may contain fewer entries than @n_ports. The
5693
* last entry will be used for the remaining ports.
5694
*
5695
* RETURNS:
5696
* Allocate ATA host on success, NULL on failure.
5697
*
5698
* LOCKING:
5699
* Inherited from calling layer (may sleep).
5700
*/
5701
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5702
const struct ata_port_info * const * ppi,
5703
int n_ports)
5704
{
5705
const struct ata_port_info *pi = &ata_dummy_port_info;
5706
struct ata_host *host;
5707
int i, j;
5708
5709
host = ata_host_alloc(dev, n_ports);
5710
if (!host)
5711
return NULL;
5712
5713
for (i = 0, j = 0; i < host->n_ports; i++) {
5714
struct ata_port *ap = host->ports[i];
5715
5716
if (ppi[j])
5717
pi = ppi[j++];
5718
5719
ap->pio_mask = pi->pio_mask;
5720
ap->mwdma_mask = pi->mwdma_mask;
5721
ap->udma_mask = pi->udma_mask;
5722
ap->flags |= pi->flags;
5723
ap->link.flags |= pi->link_flags;
5724
ap->ops = pi->port_ops;
5725
5726
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5727
host->ops = pi->port_ops;
5728
}
5729
5730
return host;
5731
}
5732
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5733
5734
static void ata_host_stop(struct device *gendev, void *res)
5735
{
5736
struct ata_host *host = dev_get_drvdata(gendev);
5737
int i;
5738
5739
WARN_ON(!(host->flags & ATA_HOST_STARTED));
5740
5741
for (i = 0; i < host->n_ports; i++) {
5742
struct ata_port *ap = host->ports[i];
5743
5744
if (ap->ops->port_stop)
5745
ap->ops->port_stop(ap);
5746
}
5747
5748
if (host->ops->host_stop)
5749
host->ops->host_stop(host);
5750
}
5751
5752
/**
5753
* ata_finalize_port_ops - finalize ata_port_operations
5754
* @ops: ata_port_operations to finalize
5755
*
5756
* An ata_port_operations can inherit from another ops and that
5757
* ops can again inherit from another. This can go on as many
5758
* times as necessary as long as there is no loop in the
5759
* inheritance chain.
5760
*
5761
* Ops tables are finalized when the host is started. NULL or
5762
* unspecified entries are inherited from the closet ancestor
5763
* which has the method and the entry is populated with it.
5764
* After finalization, the ops table directly points to all the
5765
* methods and ->inherits is no longer necessary and cleared.
5766
*
5767
* Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5768
*
5769
* LOCKING:
5770
* None.
5771
*/
5772
static void ata_finalize_port_ops(struct ata_port_operations *ops)
5773
{
5774
static DEFINE_SPINLOCK(lock);
5775
const struct ata_port_operations *cur;
5776
void **begin = (void **)ops;
5777
void **end = (void **)&ops->inherits;
5778
void **pp;
5779
5780
if (!ops || !ops->inherits)
5781
return;
5782
5783
spin_lock(&lock);
5784
5785
for (cur = ops->inherits; cur; cur = cur->inherits) {
5786
void **inherit = (void **)cur;
5787
5788
for (pp = begin; pp < end; pp++, inherit++)
5789
if (!*pp)
5790
*pp = *inherit;
5791
}
5792
5793
for (pp = begin; pp < end; pp++)
5794
if (IS_ERR(*pp))
5795
*pp = NULL;
5796
5797
ops->inherits = NULL;
5798
5799
spin_unlock(&lock);
5800
}
5801
5802
/**
5803
* ata_host_start - start and freeze ports of an ATA host
5804
* @host: ATA host to start ports for
5805
*
5806
* Start and then freeze ports of @host. Started status is
5807
* recorded in host->flags, so this function can be called
5808
* multiple times. Ports are guaranteed to get started only
5809
* once. If host->ops is not initialized yet, it is set to the
5810
* first non-dummy port ops.
5811
*
5812
* LOCKING:
5813
* Inherited from calling layer (may sleep).
5814
*
5815
* RETURNS:
5816
* 0 if all ports are started successfully, -errno otherwise.
5817
*/
5818
int ata_host_start(struct ata_host *host)
5819
{
5820
int have_stop = 0;
5821
void *start_dr = NULL;
5822
int i, rc;
5823
5824
if (host->flags & ATA_HOST_STARTED)
5825
return 0;
5826
5827
ata_finalize_port_ops(host->ops);
5828
5829
for (i = 0; i < host->n_ports; i++) {
5830
struct ata_port *ap = host->ports[i];
5831
5832
ata_finalize_port_ops(ap->ops);
5833
5834
if (!host->ops && !ata_port_is_dummy(ap))
5835
host->ops = ap->ops;
5836
5837
if (ap->ops->port_stop)
5838
have_stop = 1;
5839
}
5840
5841
if (host->ops && host->ops->host_stop)
5842
have_stop = 1;
5843
5844
if (have_stop) {
5845
start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5846
if (!start_dr)
5847
return -ENOMEM;
5848
}
5849
5850
for (i = 0; i < host->n_ports; i++) {
5851
struct ata_port *ap = host->ports[i];
5852
5853
if (ap->ops->port_start) {
5854
rc = ap->ops->port_start(ap);
5855
if (rc) {
5856
if (rc != -ENODEV)
5857
dev_err(host->dev,
5858
"failed to start port %d (errno=%d)\n",
5859
i, rc);
5860
goto err_out;
5861
}
5862
}
5863
ata_eh_freeze_port(ap);
5864
}
5865
5866
if (start_dr)
5867
devres_add(host->dev, start_dr);
5868
host->flags |= ATA_HOST_STARTED;
5869
return 0;
5870
5871
err_out:
5872
while (--i >= 0) {
5873
struct ata_port *ap = host->ports[i];
5874
5875
if (ap->ops->port_stop)
5876
ap->ops->port_stop(ap);
5877
}
5878
devres_free(start_dr);
5879
return rc;
5880
}
5881
EXPORT_SYMBOL_GPL(ata_host_start);
5882
5883
/**
5884
* ata_host_init - Initialize a host struct for sas (ipr, libsas)
5885
* @host: host to initialize
5886
* @dev: device host is attached to
5887
* @ops: port_ops
5888
*
5889
*/
5890
void ata_host_init(struct ata_host *host, struct device *dev,
5891
struct ata_port_operations *ops)
5892
{
5893
spin_lock_init(&host->lock);
5894
mutex_init(&host->eh_mutex);
5895
host->n_tags = ATA_MAX_QUEUE;
5896
host->dev = dev;
5897
host->ops = ops;
5898
kref_init(&host->kref);
5899
}
5900
EXPORT_SYMBOL_GPL(ata_host_init);
5901
5902
void ata_port_probe(struct ata_port *ap)
5903
{
5904
struct ata_eh_info *ehi = &ap->link.eh_info;
5905
unsigned long flags;
5906
5907
/* kick EH for boot probing */
5908
spin_lock_irqsave(ap->lock, flags);
5909
5910
ehi->probe_mask |= ATA_ALL_DEVICES;
5911
ehi->action |= ATA_EH_RESET;
5912
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5913
5914
ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5915
ap->pflags |= ATA_PFLAG_LOADING;
5916
ata_port_schedule_eh(ap);
5917
5918
spin_unlock_irqrestore(ap->lock, flags);
5919
}
5920
EXPORT_SYMBOL_GPL(ata_port_probe);
5921
5922
static void async_port_probe(void *data, async_cookie_t cookie)
5923
{
5924
struct ata_port *ap = data;
5925
5926
/*
5927
* If we're not allowed to scan this host in parallel,
5928
* we need to wait until all previous scans have completed
5929
* before going further.
5930
* Jeff Garzik says this is only within a controller, so we
5931
* don't need to wait for port 0, only for later ports.
5932
*/
5933
if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5934
async_synchronize_cookie(cookie);
5935
5936
ata_port_probe(ap);
5937
ata_port_wait_eh(ap);
5938
5939
/* in order to keep device order, we need to synchronize at this point */
5940
async_synchronize_cookie(cookie);
5941
5942
ata_scsi_scan_host(ap, 1);
5943
}
5944
5945
/**
5946
* ata_host_register - register initialized ATA host
5947
* @host: ATA host to register
5948
* @sht: template for SCSI host
5949
*
5950
* Register initialized ATA host. @host is allocated using
5951
* ata_host_alloc() and fully initialized by LLD. This function
5952
* starts ports, registers @host with ATA and SCSI layers and
5953
* probe registered devices.
5954
*
5955
* LOCKING:
5956
* Inherited from calling layer (may sleep).
5957
*
5958
* RETURNS:
5959
* 0 on success, -errno otherwise.
5960
*/
5961
int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5962
{
5963
int i, rc;
5964
5965
host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5966
5967
/* host must have been started */
5968
if (!(host->flags & ATA_HOST_STARTED)) {
5969
dev_err(host->dev, "BUG: trying to register unstarted host\n");
5970
WARN_ON(1);
5971
return -EINVAL;
5972
}
5973
5974
/* Create associated sysfs transport objects */
5975
for (i = 0; i < host->n_ports; i++) {
5976
rc = ata_tport_add(host->dev,host->ports[i]);
5977
if (rc) {
5978
goto err_tadd;
5979
}
5980
}
5981
5982
rc = ata_scsi_add_hosts(host, sht);
5983
if (rc)
5984
goto err_tadd;
5985
5986
/* set cable, sata_spd_limit and report */
5987
for (i = 0; i < host->n_ports; i++) {
5988
struct ata_port *ap = host->ports[i];
5989
unsigned int xfer_mask;
5990
5991
/* set SATA cable type if still unset */
5992
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993
ap->cbl = ATA_CBL_SATA;
5994
5995
/* init sata_spd_limit to the current value */
5996
sata_link_init_spd(&ap->link);
5997
if (ap->slave_link)
5998
sata_link_init_spd(ap->slave_link);
5999
6000
/* print per-port info to dmesg */
6001
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002
ap->udma_mask);
6003
6004
if (!ata_port_is_dummy(ap)) {
6005
ata_port_info(ap, "%cATA max %s %s\n",
6006
(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007
ata_mode_string(xfer_mask),
6008
ap->link.eh_info.desc);
6009
ata_ehi_clear_desc(&ap->link.eh_info);
6010
} else
6011
ata_port_info(ap, "DUMMY\n");
6012
}
6013
6014
/* perform each probe asynchronously */
6015
for (i = 0; i < host->n_ports; i++) {
6016
struct ata_port *ap = host->ports[i];
6017
ap->cookie = async_schedule(async_port_probe, ap);
6018
}
6019
6020
return 0;
6021
6022
err_tadd:
6023
while (--i >= 0) {
6024
ata_tport_delete(host->ports[i]);
6025
}
6026
return rc;
6027
6028
}
6029
EXPORT_SYMBOL_GPL(ata_host_register);
6030
6031
/**
6032
* ata_host_activate - start host, request IRQ and register it
6033
* @host: target ATA host
6034
* @irq: IRQ to request
6035
* @irq_handler: irq_handler used when requesting IRQ
6036
* @irq_flags: irq_flags used when requesting IRQ
6037
* @sht: scsi_host_template to use when registering the host
6038
*
6039
* After allocating an ATA host and initializing it, most libata
6040
* LLDs perform three steps to activate the host - start host,
6041
* request IRQ and register it. This helper takes necessary
6042
* arguments and performs the three steps in one go.
6043
*
6044
* An invalid IRQ skips the IRQ registration and expects the host to
6045
* have set polling mode on the port. In this case, @irq_handler
6046
* should be NULL.
6047
*
6048
* LOCKING:
6049
* Inherited from calling layer (may sleep).
6050
*
6051
* RETURNS:
6052
* 0 on success, -errno otherwise.
6053
*/
6054
int ata_host_activate(struct ata_host *host, int irq,
6055
irq_handler_t irq_handler, unsigned long irq_flags,
6056
const struct scsi_host_template *sht)
6057
{
6058
int i, rc;
6059
char *irq_desc;
6060
6061
rc = ata_host_start(host);
6062
if (rc)
6063
return rc;
6064
6065
/* Special case for polling mode */
6066
if (!irq) {
6067
WARN_ON(irq_handler);
6068
return ata_host_register(host, sht);
6069
}
6070
6071
irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6072
dev_driver_string(host->dev),
6073
dev_name(host->dev));
6074
if (!irq_desc)
6075
return -ENOMEM;
6076
6077
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6078
irq_desc, host);
6079
if (rc)
6080
return rc;
6081
6082
for (i = 0; i < host->n_ports; i++)
6083
ata_port_desc_misc(host->ports[i], irq);
6084
6085
rc = ata_host_register(host, sht);
6086
/* if failed, just free the IRQ and leave ports alone */
6087
if (rc)
6088
devm_free_irq(host->dev, irq, host);
6089
6090
return rc;
6091
}
6092
EXPORT_SYMBOL_GPL(ata_host_activate);
6093
6094
/**
6095
* ata_dev_free_resources - Free a device resources
6096
* @dev: Target ATA device
6097
*
6098
* Free resources allocated to support a device features.
6099
*
6100
* LOCKING:
6101
* Kernel thread context (may sleep).
6102
*/
6103
void ata_dev_free_resources(struct ata_device *dev)
6104
{
6105
if (zpodd_dev_enabled(dev))
6106
zpodd_exit(dev);
6107
6108
ata_dev_cleanup_cdl_resources(dev);
6109
}
6110
6111
/**
6112
* ata_port_detach - Detach ATA port in preparation of device removal
6113
* @ap: ATA port to be detached
6114
*
6115
* Detach all ATA devices and the associated SCSI devices of @ap;
6116
* then, remove the associated SCSI host. @ap is guaranteed to
6117
* be quiescent on return from this function.
6118
*
6119
* LOCKING:
6120
* Kernel thread context (may sleep).
6121
*/
6122
static void ata_port_detach(struct ata_port *ap)
6123
{
6124
unsigned long flags;
6125
struct ata_link *link;
6126
struct ata_device *dev;
6127
6128
/* Ensure ata_port probe has completed */
6129
async_synchronize_cookie(ap->cookie + 1);
6130
6131
/* Wait for any ongoing EH */
6132
ata_port_wait_eh(ap);
6133
6134
mutex_lock(&ap->scsi_scan_mutex);
6135
spin_lock_irqsave(ap->lock, flags);
6136
6137
/* Remove scsi devices */
6138
ata_for_each_link(link, ap, HOST_FIRST) {
6139
ata_for_each_dev(dev, link, ALL) {
6140
if (dev->sdev) {
6141
spin_unlock_irqrestore(ap->lock, flags);
6142
scsi_remove_device(dev->sdev);
6143
spin_lock_irqsave(ap->lock, flags);
6144
dev->sdev = NULL;
6145
}
6146
}
6147
}
6148
6149
/* Tell EH to disable all devices */
6150
ap->pflags |= ATA_PFLAG_UNLOADING;
6151
ata_port_schedule_eh(ap);
6152
6153
spin_unlock_irqrestore(ap->lock, flags);
6154
mutex_unlock(&ap->scsi_scan_mutex);
6155
6156
/* wait till EH commits suicide */
6157
ata_port_wait_eh(ap);
6158
6159
/* it better be dead now */
6160
WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6161
6162
cancel_delayed_work_sync(&ap->hotplug_task);
6163
cancel_delayed_work_sync(&ap->scsi_rescan_task);
6164
6165
/* Delete port multiplier link transport devices */
6166
if (ap->pmp_link) {
6167
int i;
6168
6169
for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6170
ata_tlink_delete(&ap->pmp_link[i]);
6171
}
6172
6173
/* Remove the associated SCSI host */
6174
scsi_remove_host(ap->scsi_host);
6175
ata_tport_delete(ap);
6176
}
6177
6178
/**
6179
* ata_host_detach - Detach all ports of an ATA host
6180
* @host: Host to detach
6181
*
6182
* Detach all ports of @host.
6183
*
6184
* LOCKING:
6185
* Kernel thread context (may sleep).
6186
*/
6187
void ata_host_detach(struct ata_host *host)
6188
{
6189
int i;
6190
6191
for (i = 0; i < host->n_ports; i++)
6192
ata_port_detach(host->ports[i]);
6193
6194
/* the host is dead now, dissociate ACPI */
6195
ata_acpi_dissociate(host);
6196
}
6197
EXPORT_SYMBOL_GPL(ata_host_detach);
6198
6199
#ifdef CONFIG_PCI
6200
6201
/**
6202
* ata_pci_remove_one - PCI layer callback for device removal
6203
* @pdev: PCI device that was removed
6204
*
6205
* PCI layer indicates to libata via this hook that hot-unplug or
6206
* module unload event has occurred. Detach all ports. Resource
6207
* release is handled via devres.
6208
*
6209
* LOCKING:
6210
* Inherited from PCI layer (may sleep).
6211
*/
6212
void ata_pci_remove_one(struct pci_dev *pdev)
6213
{
6214
struct ata_host *host = pci_get_drvdata(pdev);
6215
6216
ata_host_detach(host);
6217
}
6218
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6219
6220
void ata_pci_shutdown_one(struct pci_dev *pdev)
6221
{
6222
struct ata_host *host = pci_get_drvdata(pdev);
6223
int i;
6224
6225
for (i = 0; i < host->n_ports; i++) {
6226
struct ata_port *ap = host->ports[i];
6227
6228
ap->pflags |= ATA_PFLAG_FROZEN;
6229
6230
/* Disable port interrupts */
6231
if (ap->ops->freeze)
6232
ap->ops->freeze(ap);
6233
6234
/* Stop the port DMA engines */
6235
if (ap->ops->port_stop)
6236
ap->ops->port_stop(ap);
6237
}
6238
}
6239
EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6240
6241
/* move to PCI subsystem */
6242
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243
{
6244
unsigned long tmp = 0;
6245
6246
switch (bits->width) {
6247
case 1: {
6248
u8 tmp8 = 0;
6249
pci_read_config_byte(pdev, bits->reg, &tmp8);
6250
tmp = tmp8;
6251
break;
6252
}
6253
case 2: {
6254
u16 tmp16 = 0;
6255
pci_read_config_word(pdev, bits->reg, &tmp16);
6256
tmp = tmp16;
6257
break;
6258
}
6259
case 4: {
6260
u32 tmp32 = 0;
6261
pci_read_config_dword(pdev, bits->reg, &tmp32);
6262
tmp = tmp32;
6263
break;
6264
}
6265
6266
default:
6267
return -EINVAL;
6268
}
6269
6270
tmp &= bits->mask;
6271
6272
return (tmp == bits->val) ? 1 : 0;
6273
}
6274
EXPORT_SYMBOL_GPL(pci_test_config_bits);
6275
6276
#ifdef CONFIG_PM
6277
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278
{
6279
pci_save_state(pdev);
6280
pci_disable_device(pdev);
6281
6282
if (mesg.event & PM_EVENT_SLEEP)
6283
pci_set_power_state(pdev, PCI_D3hot);
6284
}
6285
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6286
6287
int ata_pci_device_do_resume(struct pci_dev *pdev)
6288
{
6289
int rc;
6290
6291
pci_set_power_state(pdev, PCI_D0);
6292
pci_restore_state(pdev);
6293
6294
rc = pcim_enable_device(pdev);
6295
if (rc) {
6296
dev_err(&pdev->dev,
6297
"failed to enable device after resume (%d)\n", rc);
6298
return rc;
6299
}
6300
6301
pci_set_master(pdev);
6302
return 0;
6303
}
6304
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6305
6306
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6307
{
6308
struct ata_host *host = pci_get_drvdata(pdev);
6309
6310
ata_host_suspend(host, mesg);
6311
6312
ata_pci_device_do_suspend(pdev, mesg);
6313
6314
return 0;
6315
}
6316
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6317
6318
int ata_pci_device_resume(struct pci_dev *pdev)
6319
{
6320
struct ata_host *host = pci_get_drvdata(pdev);
6321
int rc;
6322
6323
rc = ata_pci_device_do_resume(pdev);
6324
if (rc == 0)
6325
ata_host_resume(host);
6326
return rc;
6327
}
6328
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6329
#endif /* CONFIG_PM */
6330
#endif /* CONFIG_PCI */
6331
6332
/**
6333
* ata_platform_remove_one - Platform layer callback for device removal
6334
* @pdev: Platform device that was removed
6335
*
6336
* Platform layer indicates to libata via this hook that hot-unplug or
6337
* module unload event has occurred. Detach all ports. Resource
6338
* release is handled via devres.
6339
*
6340
* LOCKING:
6341
* Inherited from platform layer (may sleep).
6342
*/
6343
void ata_platform_remove_one(struct platform_device *pdev)
6344
{
6345
struct ata_host *host = platform_get_drvdata(pdev);
6346
6347
ata_host_detach(host);
6348
}
6349
EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6350
6351
#ifdef CONFIG_ATA_FORCE
6352
6353
#define force_cbl(name, flag) \
6354
{ #name, .cbl = (flag) }
6355
6356
#define force_spd_limit(spd, val) \
6357
{ #spd, .spd_limit = (val) }
6358
6359
#define force_xfer(mode, shift) \
6360
{ #mode, .xfer_mask = (1UL << (shift)) }
6361
6362
#define force_lflag_on(name, flags) \
6363
{ #name, .lflags_on = (flags) }
6364
6365
#define force_lflag_onoff(name, flags) \
6366
{ "no" #name, .lflags_on = (flags) }, \
6367
{ #name, .lflags_off = (flags) }
6368
6369
#define force_pflag_on(name, flags) \
6370
{ #name, .pflags_on = (flags) }
6371
6372
#define force_quirk_on(name, flag) \
6373
{ #name, .quirk_on = (flag) }
6374
6375
#define force_quirk_onoff(name, flag) \
6376
{ "no" #name, .quirk_on = (flag) }, \
6377
{ #name, .quirk_off = (flag) }
6378
6379
static const struct ata_force_param force_tbl[] __initconst = {
6380
force_cbl(40c, ATA_CBL_PATA40),
6381
force_cbl(80c, ATA_CBL_PATA80),
6382
force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6383
force_cbl(unk, ATA_CBL_PATA_UNK),
6384
force_cbl(ign, ATA_CBL_PATA_IGN),
6385
force_cbl(sata, ATA_CBL_SATA),
6386
6387
force_spd_limit(1.5Gbps, 1),
6388
force_spd_limit(3.0Gbps, 2),
6389
6390
force_xfer(pio0, ATA_SHIFT_PIO + 0),
6391
force_xfer(pio1, ATA_SHIFT_PIO + 1),
6392
force_xfer(pio2, ATA_SHIFT_PIO + 2),
6393
force_xfer(pio3, ATA_SHIFT_PIO + 3),
6394
force_xfer(pio4, ATA_SHIFT_PIO + 4),
6395
force_xfer(pio5, ATA_SHIFT_PIO + 5),
6396
force_xfer(pio6, ATA_SHIFT_PIO + 6),
6397
force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6398
force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6399
force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6400
force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6401
force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6402
force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6403
force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6404
force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6405
force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6406
force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6407
force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6408
force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6409
force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6410
force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6411
force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6412
force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6413
force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6414
force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6415
force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6416
force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6417
force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6418
force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6419
force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6420
force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6421
force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6422
force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6423
force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6424
6425
force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6426
force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6427
force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6428
force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6429
force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6430
6431
force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6432
6433
force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6434
force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6435
force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6436
6437
force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6438
force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6439
force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6440
6441
force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6442
force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6443
force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6444
6445
force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6446
force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6447
force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6448
6449
force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6450
force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6451
force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6452
6453
force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6454
force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6455
force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6456
force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6457
6458
force_quirk_on(disable, ATA_QUIRK_DISABLE),
6459
};
6460
6461
static int __init ata_parse_force_one(char **cur,
6462
struct ata_force_ent *force_ent,
6463
const char **reason)
6464
{
6465
char *start = *cur, *p = *cur;
6466
char *id, *val, *endp;
6467
const struct ata_force_param *match_fp = NULL;
6468
int nr_matches = 0, i;
6469
6470
/* find where this param ends and update *cur */
6471
while (*p != '\0' && *p != ',')
6472
p++;
6473
6474
if (*p == '\0')
6475
*cur = p;
6476
else
6477
*cur = p + 1;
6478
6479
*p = '\0';
6480
6481
/* parse */
6482
p = strchr(start, ':');
6483
if (!p) {
6484
val = strstrip(start);
6485
goto parse_val;
6486
}
6487
*p = '\0';
6488
6489
id = strstrip(start);
6490
val = strstrip(p + 1);
6491
6492
/* parse id */
6493
p = strchr(id, '.');
6494
if (p) {
6495
*p++ = '\0';
6496
force_ent->device = simple_strtoul(p, &endp, 10);
6497
if (p == endp || *endp != '\0') {
6498
*reason = "invalid device";
6499
return -EINVAL;
6500
}
6501
}
6502
6503
force_ent->port = simple_strtoul(id, &endp, 10);
6504
if (id == endp || *endp != '\0') {
6505
*reason = "invalid port/link";
6506
return -EINVAL;
6507
}
6508
6509
parse_val:
6510
/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6511
for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6512
const struct ata_force_param *fp = &force_tbl[i];
6513
6514
if (strncasecmp(val, fp->name, strlen(val)))
6515
continue;
6516
6517
nr_matches++;
6518
match_fp = fp;
6519
6520
if (strcasecmp(val, fp->name) == 0) {
6521
nr_matches = 1;
6522
break;
6523
}
6524
}
6525
6526
if (!nr_matches) {
6527
*reason = "unknown value";
6528
return -EINVAL;
6529
}
6530
if (nr_matches > 1) {
6531
*reason = "ambiguous value";
6532
return -EINVAL;
6533
}
6534
6535
force_ent->param = *match_fp;
6536
6537
return 0;
6538
}
6539
6540
static void __init ata_parse_force_param(void)
6541
{
6542
int idx = 0, size = 1;
6543
int last_port = -1, last_device = -1;
6544
char *p, *cur, *next;
6545
6546
/* Calculate maximum number of params and allocate ata_force_tbl */
6547
for (p = ata_force_param_buf; *p; p++)
6548
if (*p == ',')
6549
size++;
6550
6551
ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6552
if (!ata_force_tbl) {
6553
printk(KERN_WARNING "ata: failed to extend force table, "
6554
"libata.force ignored\n");
6555
return;
6556
}
6557
6558
/* parse and populate the table */
6559
for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6560
const char *reason = "";
6561
struct ata_force_ent te = { .port = -1, .device = -1 };
6562
6563
next = cur;
6564
if (ata_parse_force_one(&next, &te, &reason)) {
6565
printk(KERN_WARNING "ata: failed to parse force "
6566
"parameter \"%s\" (%s)\n",
6567
cur, reason);
6568
continue;
6569
}
6570
6571
if (te.port == -1) {
6572
te.port = last_port;
6573
te.device = last_device;
6574
}
6575
6576
ata_force_tbl[idx++] = te;
6577
6578
last_port = te.port;
6579
last_device = te.device;
6580
}
6581
6582
ata_force_tbl_size = idx;
6583
}
6584
6585
static void ata_free_force_param(void)
6586
{
6587
kfree(ata_force_tbl);
6588
}
6589
#else
6590
static inline void ata_parse_force_param(void) { }
6591
static inline void ata_free_force_param(void) { }
6592
#endif
6593
6594
static int __init ata_init(void)
6595
{
6596
int rc;
6597
6598
ata_parse_force_param();
6599
6600
rc = ata_sff_init();
6601
if (rc) {
6602
ata_free_force_param();
6603
return rc;
6604
}
6605
6606
libata_transport_init();
6607
ata_scsi_transport_template = ata_attach_transport();
6608
if (!ata_scsi_transport_template) {
6609
ata_sff_exit();
6610
rc = -ENOMEM;
6611
goto err_out;
6612
}
6613
6614
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6615
return 0;
6616
6617
err_out:
6618
return rc;
6619
}
6620
6621
static void __exit ata_exit(void)
6622
{
6623
ata_release_transport(ata_scsi_transport_template);
6624
libata_transport_exit();
6625
ata_sff_exit();
6626
ata_free_force_param();
6627
}
6628
6629
subsys_initcall(ata_init);
6630
module_exit(ata_exit);
6631
6632
static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6633
6634
int ata_ratelimit(void)
6635
{
6636
return __ratelimit(&ratelimit);
6637
}
6638
EXPORT_SYMBOL_GPL(ata_ratelimit);
6639
6640
/**
6641
* ata_msleep - ATA EH owner aware msleep
6642
* @ap: ATA port to attribute the sleep to
6643
* @msecs: duration to sleep in milliseconds
6644
*
6645
* Sleeps @msecs. If the current task is owner of @ap's EH, the
6646
* ownership is released before going to sleep and reacquired
6647
* after the sleep is complete. IOW, other ports sharing the
6648
* @ap->host will be allowed to own the EH while this task is
6649
* sleeping.
6650
*
6651
* LOCKING:
6652
* Might sleep.
6653
*/
6654
void ata_msleep(struct ata_port *ap, unsigned int msecs)
6655
{
6656
bool owns_eh = ap && ap->host->eh_owner == current;
6657
6658
if (owns_eh)
6659
ata_eh_release(ap);
6660
6661
if (msecs < 20) {
6662
unsigned long usecs = msecs * USEC_PER_MSEC;
6663
usleep_range(usecs, usecs + 50);
6664
} else {
6665
msleep(msecs);
6666
}
6667
6668
if (owns_eh)
6669
ata_eh_acquire(ap);
6670
}
6671
EXPORT_SYMBOL_GPL(ata_msleep);
6672
6673
/**
6674
* ata_wait_register - wait until register value changes
6675
* @ap: ATA port to wait register for, can be NULL
6676
* @reg: IO-mapped register
6677
* @mask: Mask to apply to read register value
6678
* @val: Wait condition
6679
* @interval: polling interval in milliseconds
6680
* @timeout: timeout in milliseconds
6681
*
6682
* Waiting for some bits of register to change is a common
6683
* operation for ATA controllers. This function reads 32bit LE
6684
* IO-mapped register @reg and tests for the following condition.
6685
*
6686
* (*@reg & mask) != val
6687
*
6688
* If the condition is met, it returns; otherwise, the process is
6689
* repeated after @interval_msec until timeout.
6690
*
6691
* LOCKING:
6692
* Kernel thread context (may sleep)
6693
*
6694
* RETURNS:
6695
* The final register value.
6696
*/
6697
u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6698
unsigned int interval, unsigned int timeout)
6699
{
6700
unsigned long deadline;
6701
u32 tmp;
6702
6703
tmp = ioread32(reg);
6704
6705
/* Calculate timeout _after_ the first read to make sure
6706
* preceding writes reach the controller before starting to
6707
* eat away the timeout.
6708
*/
6709
deadline = ata_deadline(jiffies, timeout);
6710
6711
while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6712
ata_msleep(ap, interval);
6713
tmp = ioread32(reg);
6714
}
6715
6716
return tmp;
6717
}
6718
EXPORT_SYMBOL_GPL(ata_wait_register);
6719
6720
/*
6721
* Dummy port_ops
6722
*/
6723
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6724
{
6725
return AC_ERR_SYSTEM;
6726
}
6727
6728
static void ata_dummy_error_handler(struct ata_port *ap)
6729
{
6730
/* truly dummy */
6731
}
6732
6733
struct ata_port_operations ata_dummy_port_ops = {
6734
.qc_issue = ata_dummy_qc_issue,
6735
.error_handler = ata_dummy_error_handler,
6736
.sched_eh = ata_std_sched_eh,
6737
.end_eh = ata_std_end_eh,
6738
};
6739
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6740
6741
const struct ata_port_info ata_dummy_port_info = {
6742
.port_ops = &ata_dummy_port_ops,
6743
};
6744
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6745
6746
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6747
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6748
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6749
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6750
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6751
6752