Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/ata/libata-core.c
48890 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* libata-core.c - helper library for ATA
4
*
5
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6
* Copyright 2003-2004 Jeff Garzik
7
*
8
* libata documentation is available via 'make {ps|pdf}docs',
9
* as Documentation/driver-api/libata.rst
10
*
11
* Hardware documentation available from http://www.t13.org/ and
12
* http://www.sata-io.org/
13
*
14
* Standards documents from:
15
* http://www.t13.org (ATA standards, PCI DMA IDE spec)
16
* http://www.t10.org (SCSI MMC - for ATAPI MMC)
17
* http://www.sata-io.org (SATA)
18
* http://www.compactflash.org (CF)
19
* http://www.qic.org (QIC157 - Tape and DSC)
20
* http://www.ce-ata.org (CE-ATA: not supported)
21
*
22
* libata is essentially a library of internal helper functions for
23
* low-level ATA host controller drivers. As such, the API/ABI is
24
* likely to change as new drivers are added and updated.
25
* Do not depend on ABI/API stability.
26
*/
27
28
#include <linux/kernel.h>
29
#include <linux/module.h>
30
#include <linux/pci.h>
31
#include <linux/init.h>
32
#include <linux/list.h>
33
#include <linux/mm.h>
34
#include <linux/spinlock.h>
35
#include <linux/blkdev.h>
36
#include <linux/delay.h>
37
#include <linux/timer.h>
38
#include <linux/time.h>
39
#include <linux/interrupt.h>
40
#include <linux/completion.h>
41
#include <linux/suspend.h>
42
#include <linux/workqueue.h>
43
#include <linux/scatterlist.h>
44
#include <linux/io.h>
45
#include <linux/log2.h>
46
#include <linux/slab.h>
47
#include <linux/glob.h>
48
#include <scsi/scsi.h>
49
#include <scsi/scsi_cmnd.h>
50
#include <scsi/scsi_host.h>
51
#include <linux/libata.h>
52
#include <asm/byteorder.h>
53
#include <linux/unaligned.h>
54
#include <linux/cdrom.h>
55
#include <linux/ratelimit.h>
56
#include <linux/leds.h>
57
#include <linux/pm_runtime.h>
58
#include <linux/platform_device.h>
59
#include <asm/setup.h>
60
61
#define CREATE_TRACE_POINTS
62
#include <trace/events/libata.h>
63
64
#include "libata.h"
65
#include "libata-transport.h"
66
67
const struct ata_port_operations ata_base_port_ops = {
68
.reset.prereset = ata_std_prereset,
69
.reset.postreset = ata_std_postreset,
70
.error_handler = ata_std_error_handler,
71
.sched_eh = ata_std_sched_eh,
72
.end_eh = ata_std_end_eh,
73
};
74
75
static unsigned int ata_dev_init_params(struct ata_device *dev,
76
u16 heads, u16 sectors);
77
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78
static void ata_dev_xfermask(struct ata_device *dev);
79
static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81
static DEFINE_IDA(ata_ida);
82
83
#ifdef CONFIG_ATA_FORCE
84
struct ata_force_param {
85
const char *name;
86
u8 cbl;
87
u8 spd_limit;
88
unsigned int xfer_mask;
89
unsigned int quirk_on;
90
unsigned int quirk_off;
91
unsigned int pflags_on;
92
u16 lflags_on;
93
u16 lflags_off;
94
};
95
96
struct ata_force_ent {
97
int port;
98
int device;
99
struct ata_force_param param;
100
};
101
102
static struct ata_force_ent *ata_force_tbl;
103
static int ata_force_tbl_size;
104
105
static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106
/* param_buf is thrown away after initialization, disallow read */
107
module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108
MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109
#endif
110
111
static int atapi_enabled = 1;
112
module_param(atapi_enabled, int, 0444);
113
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115
static int atapi_dmadir = 0;
116
module_param(atapi_dmadir, int, 0444);
117
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119
int atapi_passthru16 = 1;
120
module_param(atapi_passthru16, int, 0444);
121
MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123
int libata_fua = 0;
124
module_param_named(fua, libata_fua, int, 0444);
125
MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127
static int ata_ignore_hpa;
128
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131
static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132
module_param_named(dma, libata_dma_mask, int, 0444);
133
MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135
static int ata_probe_timeout;
136
module_param(ata_probe_timeout, int, 0444);
137
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139
int libata_noacpi = 0;
140
module_param_named(noacpi, libata_noacpi, int, 0444);
141
MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143
int libata_allow_tpm = 0;
144
module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145
MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147
static int atapi_an;
148
module_param(atapi_an, int, 0444);
149
MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151
MODULE_AUTHOR("Jeff Garzik");
152
MODULE_DESCRIPTION("Library module for ATA devices");
153
MODULE_LICENSE("GPL");
154
MODULE_VERSION(DRV_VERSION);
155
156
static inline bool ata_dev_print_info(const struct ata_device *dev)
157
{
158
struct ata_eh_context *ehc = &dev->link->eh_context;
159
160
return ehc->i.flags & ATA_EHI_PRINTINFO;
161
}
162
163
/**
164
* ata_link_next - link iteration helper
165
* @link: the previous link, NULL to start
166
* @ap: ATA port containing links to iterate
167
* @mode: iteration mode, one of ATA_LITER_*
168
*
169
* LOCKING:
170
* Host lock or EH context.
171
*
172
* RETURNS:
173
* Pointer to the next link.
174
*/
175
struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176
enum ata_link_iter_mode mode)
177
{
178
BUG_ON(mode != ATA_LITER_EDGE &&
179
mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181
/* NULL link indicates start of iteration */
182
if (!link)
183
switch (mode) {
184
case ATA_LITER_EDGE:
185
case ATA_LITER_PMP_FIRST:
186
if (sata_pmp_attached(ap))
187
return ap->pmp_link;
188
fallthrough;
189
case ATA_LITER_HOST_FIRST:
190
return &ap->link;
191
}
192
193
/* we just iterated over the host link, what's next? */
194
if (link == &ap->link)
195
switch (mode) {
196
case ATA_LITER_HOST_FIRST:
197
if (sata_pmp_attached(ap))
198
return ap->pmp_link;
199
fallthrough;
200
case ATA_LITER_PMP_FIRST:
201
if (unlikely(ap->slave_link))
202
return ap->slave_link;
203
fallthrough;
204
case ATA_LITER_EDGE:
205
return NULL;
206
}
207
208
/* slave_link excludes PMP */
209
if (unlikely(link == ap->slave_link))
210
return NULL;
211
212
/* we were over a PMP link */
213
if (++link < ap->pmp_link + ap->nr_pmp_links)
214
return link;
215
216
if (mode == ATA_LITER_PMP_FIRST)
217
return &ap->link;
218
219
return NULL;
220
}
221
EXPORT_SYMBOL_GPL(ata_link_next);
222
223
/**
224
* ata_dev_next - device iteration helper
225
* @dev: the previous device, NULL to start
226
* @link: ATA link containing devices to iterate
227
* @mode: iteration mode, one of ATA_DITER_*
228
*
229
* LOCKING:
230
* Host lock or EH context.
231
*
232
* RETURNS:
233
* Pointer to the next device.
234
*/
235
struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236
enum ata_dev_iter_mode mode)
237
{
238
BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239
mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241
/* NULL dev indicates start of iteration */
242
if (!dev)
243
switch (mode) {
244
case ATA_DITER_ENABLED:
245
case ATA_DITER_ALL:
246
dev = link->device;
247
goto check;
248
case ATA_DITER_ENABLED_REVERSE:
249
case ATA_DITER_ALL_REVERSE:
250
dev = link->device + ata_link_max_devices(link) - 1;
251
goto check;
252
}
253
254
next:
255
/* move to the next one */
256
switch (mode) {
257
case ATA_DITER_ENABLED:
258
case ATA_DITER_ALL:
259
if (++dev < link->device + ata_link_max_devices(link))
260
goto check;
261
return NULL;
262
case ATA_DITER_ENABLED_REVERSE:
263
case ATA_DITER_ALL_REVERSE:
264
if (--dev >= link->device)
265
goto check;
266
return NULL;
267
}
268
269
check:
270
if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271
!ata_dev_enabled(dev))
272
goto next;
273
return dev;
274
}
275
EXPORT_SYMBOL_GPL(ata_dev_next);
276
277
/**
278
* ata_dev_phys_link - find physical link for a device
279
* @dev: ATA device to look up physical link for
280
*
281
* Look up physical link which @dev is attached to. Note that
282
* this is different from @dev->link only when @dev is on slave
283
* link. For all other cases, it's the same as @dev->link.
284
*
285
* LOCKING:
286
* Don't care.
287
*
288
* RETURNS:
289
* Pointer to the found physical link.
290
*/
291
struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292
{
293
struct ata_port *ap = dev->link->ap;
294
295
if (!ap->slave_link)
296
return dev->link;
297
if (!dev->devno)
298
return &ap->link;
299
return ap->slave_link;
300
}
301
302
#ifdef CONFIG_ATA_FORCE
303
/**
304
* ata_force_cbl - force cable type according to libata.force
305
* @ap: ATA port of interest
306
*
307
* Force cable type according to libata.force and whine about it.
308
* The last entry which has matching port number is used, so it
309
* can be specified as part of device force parameters. For
310
* example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311
* same effect.
312
*
313
* LOCKING:
314
* EH context.
315
*/
316
void ata_force_cbl(struct ata_port *ap)
317
{
318
int i;
319
320
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321
const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323
if (fe->port != -1 && fe->port != ap->print_id)
324
continue;
325
326
if (fe->param.cbl == ATA_CBL_NONE)
327
continue;
328
329
ap->cbl = fe->param.cbl;
330
ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331
return;
332
}
333
}
334
335
/**
336
* ata_force_pflags - force port flags according to libata.force
337
* @ap: ATA port of interest
338
*
339
* Force port flags according to libata.force and whine about it.
340
*
341
* LOCKING:
342
* EH context.
343
*/
344
static void ata_force_pflags(struct ata_port *ap)
345
{
346
int i;
347
348
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349
const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351
if (fe->port != -1 && fe->port != ap->print_id)
352
continue;
353
354
/* let pflags stack */
355
if (fe->param.pflags_on) {
356
ap->pflags |= fe->param.pflags_on;
357
ata_port_notice(ap,
358
"FORCE: port flag 0x%x forced -> 0x%x\n",
359
fe->param.pflags_on, ap->pflags);
360
}
361
}
362
}
363
364
/**
365
* ata_force_link_limits - force link limits according to libata.force
366
* @link: ATA link of interest
367
*
368
* Force link flags and SATA spd limit according to libata.force
369
* and whine about it. When only the port part is specified
370
* (e.g. 1:), the limit applies to all links connected to both
371
* the host link and all fan-out ports connected via PMP. If the
372
* device part is specified as 0 (e.g. 1.00:), it specifies the
373
* first fan-out link not the host link. Device number 15 always
374
* points to the host link whether PMP is attached or not. If the
375
* controller has slave link, device number 16 points to it.
376
*
377
* LOCKING:
378
* EH context.
379
*/
380
static void ata_force_link_limits(struct ata_link *link)
381
{
382
bool did_spd = false;
383
int linkno = link->pmp;
384
int i;
385
386
if (ata_is_host_link(link))
387
linkno += 15;
388
389
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390
const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392
if (fe->port != -1 && fe->port != link->ap->print_id)
393
continue;
394
395
if (fe->device != -1 && fe->device != linkno)
396
continue;
397
398
/* only honor the first spd limit */
399
if (!did_spd && fe->param.spd_limit) {
400
link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401
ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402
fe->param.name);
403
did_spd = true;
404
}
405
406
/* let lflags stack */
407
if (fe->param.lflags_on) {
408
link->flags |= fe->param.lflags_on;
409
ata_link_notice(link,
410
"FORCE: link flag 0x%x forced -> 0x%x\n",
411
fe->param.lflags_on, link->flags);
412
}
413
if (fe->param.lflags_off) {
414
link->flags &= ~fe->param.lflags_off;
415
ata_link_notice(link,
416
"FORCE: link flag 0x%x cleared -> 0x%x\n",
417
fe->param.lflags_off, link->flags);
418
}
419
}
420
}
421
422
/**
423
* ata_force_xfermask - force xfermask according to libata.force
424
* @dev: ATA device of interest
425
*
426
* Force xfer_mask according to libata.force and whine about it.
427
* For consistency with link selection, device number 15 selects
428
* the first device connected to the host link.
429
*
430
* LOCKING:
431
* EH context.
432
*/
433
static void ata_force_xfermask(struct ata_device *dev)
434
{
435
int devno = dev->link->pmp + dev->devno;
436
int alt_devno = devno;
437
int i;
438
439
/* allow n.15/16 for devices attached to host port */
440
if (ata_is_host_link(dev->link))
441
alt_devno += 15;
442
443
for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444
const struct ata_force_ent *fe = &ata_force_tbl[i];
445
unsigned int pio_mask, mwdma_mask, udma_mask;
446
447
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448
continue;
449
450
if (fe->device != -1 && fe->device != devno &&
451
fe->device != alt_devno)
452
continue;
453
454
if (!fe->param.xfer_mask)
455
continue;
456
457
ata_unpack_xfermask(fe->param.xfer_mask,
458
&pio_mask, &mwdma_mask, &udma_mask);
459
if (udma_mask)
460
dev->udma_mask = udma_mask;
461
else if (mwdma_mask) {
462
dev->udma_mask = 0;
463
dev->mwdma_mask = mwdma_mask;
464
} else {
465
dev->udma_mask = 0;
466
dev->mwdma_mask = 0;
467
dev->pio_mask = pio_mask;
468
}
469
470
ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471
fe->param.name);
472
return;
473
}
474
}
475
476
/**
477
* ata_force_quirks - force quirks according to libata.force
478
* @dev: ATA device of interest
479
*
480
* Force quirks according to libata.force and whine about it.
481
* For consistency with link selection, device number 15 selects
482
* the first device connected to the host link.
483
*
484
* LOCKING:
485
* EH context.
486
*/
487
static void ata_force_quirks(struct ata_device *dev)
488
{
489
int devno = dev->link->pmp + dev->devno;
490
int alt_devno = devno;
491
int i;
492
493
/* allow n.15/16 for devices attached to host port */
494
if (ata_is_host_link(dev->link))
495
alt_devno += 15;
496
497
for (i = 0; i < ata_force_tbl_size; i++) {
498
const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500
if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501
continue;
502
503
if (fe->device != -1 && fe->device != devno &&
504
fe->device != alt_devno)
505
continue;
506
507
if (!(~dev->quirks & fe->param.quirk_on) &&
508
!(dev->quirks & fe->param.quirk_off))
509
continue;
510
511
dev->quirks |= fe->param.quirk_on;
512
dev->quirks &= ~fe->param.quirk_off;
513
514
ata_dev_notice(dev, "FORCE: modified (%s)\n",
515
fe->param.name);
516
}
517
}
518
#else
519
static inline void ata_force_pflags(struct ata_port *ap) { }
520
static inline void ata_force_link_limits(struct ata_link *link) { }
521
static inline void ata_force_xfermask(struct ata_device *dev) { }
522
static inline void ata_force_quirks(struct ata_device *dev) { }
523
#endif
524
525
/**
526
* atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527
* @opcode: SCSI opcode
528
*
529
* Determine ATAPI command type from @opcode.
530
*
531
* LOCKING:
532
* None.
533
*
534
* RETURNS:
535
* ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536
*/
537
int atapi_cmd_type(u8 opcode)
538
{
539
switch (opcode) {
540
case GPCMD_READ_10:
541
case GPCMD_READ_12:
542
return ATAPI_READ;
543
544
case GPCMD_WRITE_10:
545
case GPCMD_WRITE_12:
546
case GPCMD_WRITE_AND_VERIFY_10:
547
return ATAPI_WRITE;
548
549
case GPCMD_READ_CD:
550
case GPCMD_READ_CD_MSF:
551
return ATAPI_READ_CD;
552
553
case ATA_16:
554
case ATA_12:
555
if (atapi_passthru16)
556
return ATAPI_PASS_THRU;
557
fallthrough;
558
default:
559
return ATAPI_MISC;
560
}
561
}
562
EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564
static const u8 ata_rw_cmds[] = {
565
/* pio multi */
566
ATA_CMD_READ_MULTI,
567
ATA_CMD_WRITE_MULTI,
568
ATA_CMD_READ_MULTI_EXT,
569
ATA_CMD_WRITE_MULTI_EXT,
570
0,
571
0,
572
0,
573
0,
574
/* pio */
575
ATA_CMD_PIO_READ,
576
ATA_CMD_PIO_WRITE,
577
ATA_CMD_PIO_READ_EXT,
578
ATA_CMD_PIO_WRITE_EXT,
579
0,
580
0,
581
0,
582
0,
583
/* dma */
584
ATA_CMD_READ,
585
ATA_CMD_WRITE,
586
ATA_CMD_READ_EXT,
587
ATA_CMD_WRITE_EXT,
588
0,
589
0,
590
0,
591
ATA_CMD_WRITE_FUA_EXT
592
};
593
594
/**
595
* ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596
* @dev: target device for the taskfile
597
* @tf: taskfile to examine and configure
598
*
599
* Examine the device configuration and tf->flags to determine
600
* the proper read/write command and protocol to use for @tf.
601
*
602
* LOCKING:
603
* caller.
604
*/
605
static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606
struct ata_taskfile *tf)
607
{
608
u8 cmd;
609
610
int index, fua, lba48, write;
611
612
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616
if (dev->flags & ATA_DFLAG_PIO) {
617
tf->protocol = ATA_PROT_PIO;
618
index = dev->multi_count ? 0 : 8;
619
} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620
/* Unable to use DMA due to host limitation */
621
tf->protocol = ATA_PROT_PIO;
622
index = dev->multi_count ? 0 : 8;
623
} else {
624
tf->protocol = ATA_PROT_DMA;
625
index = 16;
626
}
627
628
cmd = ata_rw_cmds[index + fua + lba48 + write];
629
if (!cmd)
630
return false;
631
632
tf->command = cmd;
633
634
return true;
635
}
636
637
/**
638
* ata_tf_read_block - Read block address from ATA taskfile
639
* @tf: ATA taskfile of interest
640
* @dev: ATA device @tf belongs to
641
*
642
* LOCKING:
643
* None.
644
*
645
* Read block address from @tf. This function can handle all
646
* three address formats - LBA, LBA48 and CHS. tf->protocol and
647
* flags select the address format to use.
648
*
649
* RETURNS:
650
* Block address read from @tf.
651
*/
652
u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653
{
654
u64 block = 0;
655
656
if (tf->flags & ATA_TFLAG_LBA) {
657
if (tf->flags & ATA_TFLAG_LBA48) {
658
block |= (u64)tf->hob_lbah << 40;
659
block |= (u64)tf->hob_lbam << 32;
660
block |= (u64)tf->hob_lbal << 24;
661
} else
662
block |= (tf->device & 0xf) << 24;
663
664
block |= tf->lbah << 16;
665
block |= tf->lbam << 8;
666
block |= tf->lbal;
667
} else {
668
u32 cyl, head, sect;
669
670
cyl = tf->lbam | (tf->lbah << 8);
671
head = tf->device & 0xf;
672
sect = tf->lbal;
673
674
if (!sect) {
675
ata_dev_warn(dev,
676
"device reported invalid CHS sector 0\n");
677
return U64_MAX;
678
}
679
680
block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681
}
682
683
return block;
684
}
685
686
/*
687
* Set a taskfile command duration limit index.
688
*/
689
static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690
{
691
struct ata_taskfile *tf = &qc->tf;
692
693
if (tf->protocol == ATA_PROT_NCQ)
694
tf->auxiliary |= cdl;
695
else
696
tf->feature |= cdl;
697
698
/*
699
* Mark this command as having a CDL and request the result
700
* task file so that we can inspect the sense data available
701
* bit on completion.
702
*/
703
qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704
}
705
706
/**
707
* ata_build_rw_tf - Build ATA taskfile for given read/write request
708
* @qc: Metadata associated with the taskfile to build
709
* @block: Block address
710
* @n_block: Number of blocks
711
* @tf_flags: RW/FUA etc...
712
* @cdl: Command duration limit index
713
* @class: IO priority class
714
*
715
* LOCKING:
716
* None.
717
*
718
* Build ATA taskfile for the command @qc for read/write request described
719
* by @block, @n_block, @tf_flags and @class.
720
*
721
* RETURNS:
722
*
723
* 0 on success, -ERANGE if the request is too large for @dev,
724
* -EINVAL if the request is invalid.
725
*/
726
int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727
unsigned int tf_flags, int cdl, int class)
728
{
729
struct ata_taskfile *tf = &qc->tf;
730
struct ata_device *dev = qc->dev;
731
732
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733
tf->flags |= tf_flags;
734
735
if (ata_ncq_enabled(dev)) {
736
/* yay, NCQ */
737
if (!lba_48_ok(block, n_block))
738
return -ERANGE;
739
740
tf->protocol = ATA_PROT_NCQ;
741
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743
if (tf->flags & ATA_TFLAG_WRITE)
744
tf->command = ATA_CMD_FPDMA_WRITE;
745
else
746
tf->command = ATA_CMD_FPDMA_READ;
747
748
tf->nsect = qc->hw_tag << 3;
749
tf->hob_feature = (n_block >> 8) & 0xff;
750
tf->feature = n_block & 0xff;
751
752
tf->hob_lbah = (block >> 40) & 0xff;
753
tf->hob_lbam = (block >> 32) & 0xff;
754
tf->hob_lbal = (block >> 24) & 0xff;
755
tf->lbah = (block >> 16) & 0xff;
756
tf->lbam = (block >> 8) & 0xff;
757
tf->lbal = block & 0xff;
758
759
tf->device = ATA_LBA;
760
if (tf->flags & ATA_TFLAG_FUA)
761
tf->device |= 1 << 7;
762
763
if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764
class == IOPRIO_CLASS_RT)
765
tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767
if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768
ata_set_tf_cdl(qc, cdl);
769
770
} else if (dev->flags & ATA_DFLAG_LBA) {
771
tf->flags |= ATA_TFLAG_LBA;
772
773
if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774
ata_set_tf_cdl(qc, cdl);
775
776
/* Both FUA writes and a CDL index require 48-bit commands */
777
if (!(tf->flags & ATA_TFLAG_FUA) &&
778
!(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779
lba_28_ok(block, n_block)) {
780
/* use LBA28 */
781
tf->device |= (block >> 24) & 0xf;
782
} else if (lba_48_ok(block, n_block)) {
783
if (!(dev->flags & ATA_DFLAG_LBA48))
784
return -ERANGE;
785
786
/* use LBA48 */
787
tf->flags |= ATA_TFLAG_LBA48;
788
789
tf->hob_nsect = (n_block >> 8) & 0xff;
790
791
tf->hob_lbah = (block >> 40) & 0xff;
792
tf->hob_lbam = (block >> 32) & 0xff;
793
tf->hob_lbal = (block >> 24) & 0xff;
794
} else {
795
/* request too large even for LBA48 */
796
return -ERANGE;
797
}
798
799
if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800
return -EINVAL;
801
802
tf->nsect = n_block & 0xff;
803
804
tf->lbah = (block >> 16) & 0xff;
805
tf->lbam = (block >> 8) & 0xff;
806
tf->lbal = block & 0xff;
807
808
tf->device |= ATA_LBA;
809
} else {
810
/* CHS */
811
u32 sect, head, cyl, track;
812
813
/* The request -may- be too large for CHS addressing. */
814
if (!lba_28_ok(block, n_block))
815
return -ERANGE;
816
817
if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818
return -EINVAL;
819
820
/* Convert LBA to CHS */
821
track = (u32)block / dev->sectors;
822
cyl = track / dev->heads;
823
head = track % dev->heads;
824
sect = (u32)block % dev->sectors + 1;
825
826
/* Check whether the converted CHS can fit.
827
Cylinder: 0-65535
828
Head: 0-15
829
Sector: 1-255*/
830
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831
return -ERANGE;
832
833
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834
tf->lbal = sect;
835
tf->lbam = cyl;
836
tf->lbah = cyl >> 8;
837
tf->device |= head;
838
}
839
840
return 0;
841
}
842
843
/**
844
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845
* @pio_mask: pio_mask
846
* @mwdma_mask: mwdma_mask
847
* @udma_mask: udma_mask
848
*
849
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850
* unsigned int xfer_mask.
851
*
852
* LOCKING:
853
* None.
854
*
855
* RETURNS:
856
* Packed xfer_mask.
857
*/
858
unsigned int ata_pack_xfermask(unsigned int pio_mask,
859
unsigned int mwdma_mask,
860
unsigned int udma_mask)
861
{
862
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865
}
866
EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868
/**
869
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870
* @xfer_mask: xfer_mask to unpack
871
* @pio_mask: resulting pio_mask
872
* @mwdma_mask: resulting mwdma_mask
873
* @udma_mask: resulting udma_mask
874
*
875
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876
* Any NULL destination masks will be ignored.
877
*/
878
void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879
unsigned int *mwdma_mask, unsigned int *udma_mask)
880
{
881
if (pio_mask)
882
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883
if (mwdma_mask)
884
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885
if (udma_mask)
886
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887
}
888
889
static const struct ata_xfer_ent {
890
int shift, bits;
891
u8 base;
892
} ata_xfer_tbl[] = {
893
{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894
{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895
{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896
{ -1, },
897
};
898
899
/**
900
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901
* @xfer_mask: xfer_mask of interest
902
*
903
* Return matching XFER_* value for @xfer_mask. Only the highest
904
* bit of @xfer_mask is considered.
905
*
906
* LOCKING:
907
* None.
908
*
909
* RETURNS:
910
* Matching XFER_* value, 0xff if no match found.
911
*/
912
u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913
{
914
int highbit = fls(xfer_mask) - 1;
915
const struct ata_xfer_ent *ent;
916
917
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919
return ent->base + highbit - ent->shift;
920
return 0xff;
921
}
922
EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924
/**
925
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926
* @xfer_mode: XFER_* of interest
927
*
928
* Return matching xfer_mask for @xfer_mode.
929
*
930
* LOCKING:
931
* None.
932
*
933
* RETURNS:
934
* Matching xfer_mask, 0 if no match found.
935
*/
936
unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937
{
938
const struct ata_xfer_ent *ent;
939
940
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942
return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943
& ~((1 << ent->shift) - 1);
944
return 0;
945
}
946
EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948
/**
949
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950
* @xfer_mode: XFER_* of interest
951
*
952
* Return matching xfer_shift for @xfer_mode.
953
*
954
* LOCKING:
955
* None.
956
*
957
* RETURNS:
958
* Matching xfer_shift, -1 if no match found.
959
*/
960
int ata_xfer_mode2shift(u8 xfer_mode)
961
{
962
const struct ata_xfer_ent *ent;
963
964
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966
return ent->shift;
967
return -1;
968
}
969
EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971
/**
972
* ata_mode_string - convert xfer_mask to string
973
* @xfer_mask: mask of bits supported; only highest bit counts.
974
*
975
* Determine string which represents the highest speed
976
* (highest bit in @modemask).
977
*
978
* LOCKING:
979
* None.
980
*
981
* RETURNS:
982
* Constant C string representing highest speed listed in
983
* @mode_mask, or the constant C string "<n/a>".
984
*/
985
const char *ata_mode_string(unsigned int xfer_mask)
986
{
987
static const char * const xfer_mode_str[] = {
988
"PIO0",
989
"PIO1",
990
"PIO2",
991
"PIO3",
992
"PIO4",
993
"PIO5",
994
"PIO6",
995
"MWDMA0",
996
"MWDMA1",
997
"MWDMA2",
998
"MWDMA3",
999
"MWDMA4",
1000
"UDMA/16",
1001
"UDMA/25",
1002
"UDMA/33",
1003
"UDMA/44",
1004
"UDMA/66",
1005
"UDMA/100",
1006
"UDMA/133",
1007
"UDMA7",
1008
};
1009
int highbit;
1010
1011
highbit = fls(xfer_mask) - 1;
1012
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013
return xfer_mode_str[highbit];
1014
return "<n/a>";
1015
}
1016
EXPORT_SYMBOL_GPL(ata_mode_string);
1017
1018
const char *sata_spd_string(unsigned int spd)
1019
{
1020
static const char * const spd_str[] = {
1021
"1.5 Gbps",
1022
"3.0 Gbps",
1023
"6.0 Gbps",
1024
};
1025
1026
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027
return "<unknown>";
1028
return spd_str[spd - 1];
1029
}
1030
1031
/**
1032
* ata_dev_classify - determine device type based on ATA-spec signature
1033
* @tf: ATA taskfile register set for device to be identified
1034
*
1035
* Determine from taskfile register contents whether a device is
1036
* ATA or ATAPI, as per "Signature and persistence" section
1037
* of ATA/PI spec (volume 1, sect 5.14).
1038
*
1039
* LOCKING:
1040
* None.
1041
*
1042
* RETURNS:
1043
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044
* %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045
*/
1046
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047
{
1048
/* Apple's open source Darwin code hints that some devices only
1049
* put a proper signature into the LBA mid/high registers,
1050
* So, we only check those. It's sufficient for uniqueness.
1051
*
1052
* ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053
* signatures for ATA and ATAPI devices attached on SerialATA,
1054
* 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055
* spec has never mentioned about using different signatures
1056
* for ATA/ATAPI devices. Then, Serial ATA II: Port
1057
* Multiplier specification began to use 0x69/0x96 to identify
1058
* port multpliers and 0x3c/0xc3 to identify SEMB device.
1059
* ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060
* 0x69/0x96 shortly and described them as reserved for
1061
* SerialATA.
1062
*
1063
* We follow the current spec and consider that 0x69/0x96
1064
* identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065
* Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066
* SEMB signature. This is worked around in
1067
* ata_dev_read_id().
1068
*/
1069
if (tf->lbam == 0 && tf->lbah == 0)
1070
return ATA_DEV_ATA;
1071
1072
if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073
return ATA_DEV_ATAPI;
1074
1075
if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076
return ATA_DEV_PMP;
1077
1078
if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079
return ATA_DEV_SEMB;
1080
1081
if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082
return ATA_DEV_ZAC;
1083
1084
return ATA_DEV_UNKNOWN;
1085
}
1086
EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088
/**
1089
* ata_id_string - Convert IDENTIFY DEVICE page into string
1090
* @id: IDENTIFY DEVICE results we will examine
1091
* @s: string into which data is output
1092
* @ofs: offset into identify device page
1093
* @len: length of string to return. must be an even number.
1094
*
1095
* The strings in the IDENTIFY DEVICE page are broken up into
1096
* 16-bit chunks. Run through the string, and output each
1097
* 8-bit chunk linearly, regardless of platform.
1098
*
1099
* LOCKING:
1100
* caller.
1101
*/
1102
1103
void ata_id_string(const u16 *id, unsigned char *s,
1104
unsigned int ofs, unsigned int len)
1105
{
1106
unsigned int c;
1107
1108
BUG_ON(len & 1);
1109
1110
while (len > 0) {
1111
c = id[ofs] >> 8;
1112
*s = c;
1113
s++;
1114
1115
c = id[ofs] & 0xff;
1116
*s = c;
1117
s++;
1118
1119
ofs++;
1120
len -= 2;
1121
}
1122
}
1123
EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125
/**
1126
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127
* @id: IDENTIFY DEVICE results we will examine
1128
* @s: string into which data is output
1129
* @ofs: offset into identify device page
1130
* @len: length of string to return. must be an odd number.
1131
*
1132
* This function is identical to ata_id_string except that it
1133
* trims trailing spaces and terminates the resulting string with
1134
* null. @len must be actual maximum length (even number) + 1.
1135
*
1136
* LOCKING:
1137
* caller.
1138
*/
1139
void ata_id_c_string(const u16 *id, unsigned char *s,
1140
unsigned int ofs, unsigned int len)
1141
{
1142
unsigned char *p;
1143
1144
ata_id_string(id, s, ofs, len - 1);
1145
1146
p = s + strnlen(s, len - 1);
1147
while (p > s && p[-1] == ' ')
1148
p--;
1149
*p = '\0';
1150
}
1151
EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
1153
static u64 ata_id_n_sectors(const u16 *id)
1154
{
1155
if (ata_id_has_lba(id)) {
1156
if (ata_id_has_lba48(id))
1157
return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159
return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160
}
1161
1162
if (ata_id_current_chs_valid(id))
1163
return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164
(u32)id[ATA_ID_CUR_SECTORS];
1165
1166
return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167
(u32)id[ATA_ID_SECTORS];
1168
}
1169
1170
u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171
{
1172
u64 sectors = 0;
1173
1174
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176
sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177
sectors |= (tf->lbah & 0xff) << 16;
1178
sectors |= (tf->lbam & 0xff) << 8;
1179
sectors |= (tf->lbal & 0xff);
1180
1181
return sectors;
1182
}
1183
1184
u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185
{
1186
u64 sectors = 0;
1187
1188
sectors |= (tf->device & 0x0f) << 24;
1189
sectors |= (tf->lbah & 0xff) << 16;
1190
sectors |= (tf->lbam & 0xff) << 8;
1191
sectors |= (tf->lbal & 0xff);
1192
1193
return sectors;
1194
}
1195
1196
/**
1197
* ata_read_native_max_address - Read native max address
1198
* @dev: target device
1199
* @max_sectors: out parameter for the result native max address
1200
*
1201
* Perform an LBA48 or LBA28 native size query upon the device in
1202
* question.
1203
*
1204
* RETURNS:
1205
* 0 on success, -EACCES if command is aborted by the drive.
1206
* -EIO on other errors.
1207
*/
1208
static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209
{
1210
unsigned int err_mask;
1211
struct ata_taskfile tf;
1212
int lba48 = ata_id_has_lba48(dev->id);
1213
1214
ata_tf_init(dev, &tf);
1215
1216
/* always clear all address registers */
1217
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219
if (lba48) {
1220
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221
tf.flags |= ATA_TFLAG_LBA48;
1222
} else
1223
tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225
tf.protocol = ATA_PROT_NODATA;
1226
tf.device |= ATA_LBA;
1227
1228
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229
if (err_mask) {
1230
ata_dev_warn(dev,
1231
"failed to read native max address (err_mask=0x%x)\n",
1232
err_mask);
1233
if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234
return -EACCES;
1235
return -EIO;
1236
}
1237
1238
if (lba48)
1239
*max_sectors = ata_tf_to_lba48(&tf) + 1;
1240
else
1241
*max_sectors = ata_tf_to_lba(&tf) + 1;
1242
if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243
(*max_sectors)--;
1244
return 0;
1245
}
1246
1247
/**
1248
* ata_set_max_sectors - Set max sectors
1249
* @dev: target device
1250
* @new_sectors: new max sectors value to set for the device
1251
*
1252
* Set max sectors of @dev to @new_sectors.
1253
*
1254
* RETURNS:
1255
* 0 on success, -EACCES if command is aborted or denied (due to
1256
* previous non-volatile SET_MAX) by the drive. -EIO on other
1257
* errors.
1258
*/
1259
static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260
{
1261
unsigned int err_mask;
1262
struct ata_taskfile tf;
1263
int lba48 = ata_id_has_lba48(dev->id);
1264
1265
new_sectors--;
1266
1267
ata_tf_init(dev, &tf);
1268
1269
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271
if (lba48) {
1272
tf.command = ATA_CMD_SET_MAX_EXT;
1273
tf.flags |= ATA_TFLAG_LBA48;
1274
1275
tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276
tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277
tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278
} else {
1279
tf.command = ATA_CMD_SET_MAX;
1280
1281
tf.device |= (new_sectors >> 24) & 0xf;
1282
}
1283
1284
tf.protocol = ATA_PROT_NODATA;
1285
tf.device |= ATA_LBA;
1286
1287
tf.lbal = (new_sectors >> 0) & 0xff;
1288
tf.lbam = (new_sectors >> 8) & 0xff;
1289
tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292
if (err_mask) {
1293
ata_dev_warn(dev,
1294
"failed to set max address (err_mask=0x%x)\n",
1295
err_mask);
1296
if (err_mask == AC_ERR_DEV &&
1297
(tf.error & (ATA_ABORTED | ATA_IDNF)))
1298
return -EACCES;
1299
return -EIO;
1300
}
1301
1302
return 0;
1303
}
1304
1305
/**
1306
* ata_hpa_resize - Resize a device with an HPA set
1307
* @dev: Device to resize
1308
*
1309
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310
* it if required to the full size of the media. The caller must check
1311
* the drive has the HPA feature set enabled.
1312
*
1313
* RETURNS:
1314
* 0 on success, -errno on failure.
1315
*/
1316
static int ata_hpa_resize(struct ata_device *dev)
1317
{
1318
bool print_info = ata_dev_print_info(dev);
1319
bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320
u64 sectors = ata_id_n_sectors(dev->id);
1321
u64 native_sectors;
1322
int rc;
1323
1324
/* do we need to do it? */
1325
if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326
!ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327
(dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328
return 0;
1329
1330
/* read native max address */
1331
rc = ata_read_native_max_address(dev, &native_sectors);
1332
if (rc) {
1333
/* If device aborted the command or HPA isn't going to
1334
* be unlocked, skip HPA resizing.
1335
*/
1336
if (rc == -EACCES || !unlock_hpa) {
1337
ata_dev_warn(dev,
1338
"HPA support seems broken, skipping HPA handling\n");
1339
dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341
/* we can continue if device aborted the command */
1342
if (rc == -EACCES)
1343
rc = 0;
1344
}
1345
1346
return rc;
1347
}
1348
dev->n_native_sectors = native_sectors;
1349
1350
/* nothing to do? */
1351
if (native_sectors <= sectors || !unlock_hpa) {
1352
if (!print_info || native_sectors == sectors)
1353
return 0;
1354
1355
if (native_sectors > sectors)
1356
ata_dev_info(dev,
1357
"HPA detected: current %llu, native %llu\n",
1358
(unsigned long long)sectors,
1359
(unsigned long long)native_sectors);
1360
else if (native_sectors < sectors)
1361
ata_dev_warn(dev,
1362
"native sectors (%llu) is smaller than sectors (%llu)\n",
1363
(unsigned long long)native_sectors,
1364
(unsigned long long)sectors);
1365
return 0;
1366
}
1367
1368
/* let's unlock HPA */
1369
rc = ata_set_max_sectors(dev, native_sectors);
1370
if (rc == -EACCES) {
1371
/* if device aborted the command, skip HPA resizing */
1372
ata_dev_warn(dev,
1373
"device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374
(unsigned long long)sectors,
1375
(unsigned long long)native_sectors);
1376
dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377
return 0;
1378
} else if (rc)
1379
return rc;
1380
1381
/* re-read IDENTIFY data */
1382
rc = ata_dev_reread_id(dev, 0);
1383
if (rc) {
1384
ata_dev_err(dev,
1385
"failed to re-read IDENTIFY data after HPA resizing\n");
1386
return rc;
1387
}
1388
1389
if (print_info) {
1390
u64 new_sectors = ata_id_n_sectors(dev->id);
1391
ata_dev_info(dev,
1392
"HPA unlocked: %llu -> %llu, native %llu\n",
1393
(unsigned long long)sectors,
1394
(unsigned long long)new_sectors,
1395
(unsigned long long)native_sectors);
1396
}
1397
1398
return 0;
1399
}
1400
1401
/**
1402
* ata_dump_id - IDENTIFY DEVICE info debugging output
1403
* @dev: device from which the information is fetched
1404
* @id: IDENTIFY DEVICE page to dump
1405
*
1406
* Dump selected 16-bit words from the given IDENTIFY DEVICE
1407
* page.
1408
*
1409
* LOCKING:
1410
* caller.
1411
*/
1412
1413
static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414
{
1415
ata_dev_dbg(dev,
1416
"49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417
"80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418
"88==0x%04x 93==0x%04x\n",
1419
id[49], id[53], id[63], id[64], id[75], id[80],
1420
id[81], id[82], id[83], id[84], id[88], id[93]);
1421
}
1422
1423
/**
1424
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425
* @id: IDENTIFY data to compute xfer mask from
1426
*
1427
* Compute the xfermask for this device. This is not as trivial
1428
* as it seems if we must consider early devices correctly.
1429
*
1430
* FIXME: pre IDE drive timing (do we care ?).
1431
*
1432
* LOCKING:
1433
* None.
1434
*
1435
* RETURNS:
1436
* Computed xfermask
1437
*/
1438
unsigned int ata_id_xfermask(const u16 *id)
1439
{
1440
unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442
/* Usual case. Word 53 indicates word 64 is valid */
1443
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445
pio_mask <<= 3;
1446
pio_mask |= 0x7;
1447
} else {
1448
/* If word 64 isn't valid then Word 51 high byte holds
1449
* the PIO timing number for the maximum. Turn it into
1450
* a mask.
1451
*/
1452
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453
if (mode < 5) /* Valid PIO range */
1454
pio_mask = (2 << mode) - 1;
1455
else
1456
pio_mask = 1;
1457
1458
/* But wait.. there's more. Design your standards by
1459
* committee and you too can get a free iordy field to
1460
* process. However it is the speeds not the modes that
1461
* are supported... Note drivers using the timing API
1462
* will get this right anyway
1463
*/
1464
}
1465
1466
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468
if (ata_id_is_cfa(id)) {
1469
/*
1470
* Process compact flash extended modes
1471
*/
1472
int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473
int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475
if (pio)
1476
pio_mask |= (1 << 5);
1477
if (pio > 1)
1478
pio_mask |= (1 << 6);
1479
if (dma)
1480
mwdma_mask |= (1 << 3);
1481
if (dma > 1)
1482
mwdma_mask |= (1 << 4);
1483
}
1484
1485
udma_mask = 0;
1486
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490
}
1491
EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
1493
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494
{
1495
struct completion *waiting = qc->private_data;
1496
1497
complete(waiting);
1498
}
1499
1500
/**
1501
* ata_exec_internal - execute libata internal command
1502
* @dev: Device to which the command is sent
1503
* @tf: Taskfile registers for the command and the result
1504
* @cdb: CDB for packet command
1505
* @dma_dir: Data transfer direction of the command
1506
* @buf: Data buffer of the command
1507
* @buflen: Length of data buffer
1508
* @timeout: Timeout in msecs (0 for default)
1509
*
1510
* Executes libata internal command with timeout. @tf contains
1511
* the command on entry and the result on return. Timeout and error
1512
* conditions are reported via the return value. No recovery action
1513
* is taken after a command times out. It is the caller's duty to
1514
* clean up after timeout.
1515
*
1516
* LOCKING:
1517
* None. Should be called with kernel context, might sleep.
1518
*
1519
* RETURNS:
1520
* Zero on success, AC_ERR_* mask on failure
1521
*/
1522
unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523
const u8 *cdb, enum dma_data_direction dma_dir,
1524
void *buf, unsigned int buflen,
1525
unsigned int timeout)
1526
{
1527
struct ata_link *link = dev->link;
1528
struct ata_port *ap = link->ap;
1529
u8 command = tf->command;
1530
struct ata_queued_cmd *qc;
1531
struct scatterlist sgl;
1532
unsigned int preempted_tag;
1533
u32 preempted_sactive;
1534
u64 preempted_qc_active;
1535
int preempted_nr_active_links;
1536
bool auto_timeout = false;
1537
DECLARE_COMPLETION_ONSTACK(wait);
1538
unsigned long flags;
1539
unsigned int err_mask;
1540
int rc;
1541
1542
if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543
return AC_ERR_INVALID;
1544
1545
spin_lock_irqsave(ap->lock, flags);
1546
1547
/* No internal command while frozen */
1548
if (ata_port_is_frozen(ap)) {
1549
spin_unlock_irqrestore(ap->lock, flags);
1550
return AC_ERR_SYSTEM;
1551
}
1552
1553
/* Initialize internal qc */
1554
qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556
qc->tag = ATA_TAG_INTERNAL;
1557
qc->hw_tag = 0;
1558
qc->scsicmd = NULL;
1559
qc->ap = ap;
1560
qc->dev = dev;
1561
ata_qc_reinit(qc);
1562
1563
preempted_tag = link->active_tag;
1564
preempted_sactive = link->sactive;
1565
preempted_qc_active = ap->qc_active;
1566
preempted_nr_active_links = ap->nr_active_links;
1567
link->active_tag = ATA_TAG_POISON;
1568
link->sactive = 0;
1569
ap->qc_active = 0;
1570
ap->nr_active_links = 0;
1571
1572
/* Prepare and issue qc */
1573
qc->tf = *tf;
1574
if (cdb)
1575
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577
/* Some SATA bridges need us to indicate data xfer direction */
1578
if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579
dma_dir == DMA_FROM_DEVICE)
1580
qc->tf.feature |= ATAPI_DMADIR;
1581
1582
qc->flags |= ATA_QCFLAG_RESULT_TF;
1583
qc->dma_dir = dma_dir;
1584
if (dma_dir != DMA_NONE) {
1585
sg_init_one(&sgl, buf, buflen);
1586
ata_sg_init(qc, &sgl, 1);
1587
qc->nbytes = buflen;
1588
}
1589
1590
qc->private_data = &wait;
1591
qc->complete_fn = ata_qc_complete_internal;
1592
1593
ata_qc_issue(qc);
1594
1595
spin_unlock_irqrestore(ap->lock, flags);
1596
1597
if (!timeout) {
1598
if (ata_probe_timeout) {
1599
timeout = ata_probe_timeout * 1000;
1600
} else {
1601
timeout = ata_internal_cmd_timeout(dev, command);
1602
auto_timeout = true;
1603
}
1604
}
1605
1606
ata_eh_release(ap);
1607
1608
rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610
ata_eh_acquire(ap);
1611
1612
ata_sff_flush_pio_task(ap);
1613
1614
if (!rc) {
1615
/*
1616
* We are racing with irq here. If we lose, the following test
1617
* prevents us from completing the qc twice. If we win, the port
1618
* is frozen and will be cleaned up by ->post_internal_cmd().
1619
*/
1620
spin_lock_irqsave(ap->lock, flags);
1621
if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622
qc->err_mask |= AC_ERR_TIMEOUT;
1623
ata_port_freeze(ap);
1624
ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625
timeout, command);
1626
}
1627
spin_unlock_irqrestore(ap->lock, flags);
1628
}
1629
1630
if (ap->ops->post_internal_cmd)
1631
ap->ops->post_internal_cmd(qc);
1632
1633
/* Perform minimal error analysis */
1634
if (qc->flags & ATA_QCFLAG_EH) {
1635
if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636
qc->err_mask |= AC_ERR_DEV;
1637
1638
if (!qc->err_mask)
1639
qc->err_mask |= AC_ERR_OTHER;
1640
1641
if (qc->err_mask & ~AC_ERR_OTHER)
1642
qc->err_mask &= ~AC_ERR_OTHER;
1643
} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644
qc->result_tf.status |= ATA_SENSE;
1645
}
1646
1647
/* Finish up */
1648
spin_lock_irqsave(ap->lock, flags);
1649
1650
*tf = qc->result_tf;
1651
err_mask = qc->err_mask;
1652
1653
ata_qc_free(qc);
1654
link->active_tag = preempted_tag;
1655
link->sactive = preempted_sactive;
1656
ap->qc_active = preempted_qc_active;
1657
ap->nr_active_links = preempted_nr_active_links;
1658
1659
spin_unlock_irqrestore(ap->lock, flags);
1660
1661
if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662
ata_internal_cmd_timed_out(dev, command);
1663
1664
return err_mask;
1665
}
1666
1667
/**
1668
* ata_pio_need_iordy - check if iordy needed
1669
* @adev: ATA device
1670
*
1671
* Check if the current speed of the device requires IORDY. Used
1672
* by various controllers for chip configuration.
1673
*/
1674
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675
{
1676
/* Don't set IORDY if we're preparing for reset. IORDY may
1677
* lead to controller lock up on certain controllers if the
1678
* port is not occupied. See bko#11703 for details.
1679
*/
1680
if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681
return 0;
1682
/* Controller doesn't support IORDY. Probably a pointless
1683
* check as the caller should know this.
1684
*/
1685
if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686
return 0;
1687
/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688
if (ata_id_is_cfa(adev->id)
1689
&& (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690
return 0;
1691
/* PIO3 and higher it is mandatory */
1692
if (adev->pio_mode > XFER_PIO_2)
1693
return 1;
1694
/* We turn it on when possible */
1695
if (ata_id_has_iordy(adev->id))
1696
return 1;
1697
return 0;
1698
}
1699
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701
/**
1702
* ata_pio_mask_no_iordy - Return the non IORDY mask
1703
* @adev: ATA device
1704
*
1705
* Compute the highest mode possible if we are not using iordy. Return
1706
* -1 if no iordy mode is available.
1707
*/
1708
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709
{
1710
/* If we have no drive specific rule, then PIO 2 is non IORDY */
1711
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712
u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713
/* Is the speed faster than the drive allows non IORDY ? */
1714
if (pio) {
1715
/* This is cycle times not frequency - watch the logic! */
1716
if (pio > 240) /* PIO2 is 240nS per cycle */
1717
return 3 << ATA_SHIFT_PIO;
1718
return 7 << ATA_SHIFT_PIO;
1719
}
1720
}
1721
return 3 << ATA_SHIFT_PIO;
1722
}
1723
1724
/**
1725
* ata_do_dev_read_id - default ID read method
1726
* @dev: device
1727
* @tf: proposed taskfile
1728
* @id: data buffer
1729
*
1730
* Issue the identify taskfile and hand back the buffer containing
1731
* identify data. For some RAID controllers and for pre ATA devices
1732
* this function is wrapped or replaced by the driver
1733
*/
1734
unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735
struct ata_taskfile *tf, __le16 *id)
1736
{
1737
return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738
id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739
}
1740
EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742
/**
1743
* ata_dev_read_id - Read ID data from the specified device
1744
* @dev: target device
1745
* @p_class: pointer to class of the target device (may be changed)
1746
* @flags: ATA_READID_* flags
1747
* @id: buffer to read IDENTIFY data into
1748
*
1749
* Read ID data from the specified device. ATA_CMD_ID_ATA is
1750
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752
* for pre-ATA4 drives.
1753
*
1754
* FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755
* now we abort if we hit that case.
1756
*
1757
* LOCKING:
1758
* Kernel thread context (may sleep)
1759
*
1760
* RETURNS:
1761
* 0 on success, -errno otherwise.
1762
*/
1763
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764
unsigned int flags, u16 *id)
1765
{
1766
struct ata_port *ap = dev->link->ap;
1767
unsigned int class = *p_class;
1768
struct ata_taskfile tf;
1769
unsigned int err_mask = 0;
1770
const char *reason;
1771
bool is_semb = class == ATA_DEV_SEMB;
1772
int may_fallback = 1, tried_spinup = 0;
1773
int rc;
1774
1775
retry:
1776
ata_tf_init(dev, &tf);
1777
1778
switch (class) {
1779
case ATA_DEV_SEMB:
1780
class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781
fallthrough;
1782
case ATA_DEV_ATA:
1783
case ATA_DEV_ZAC:
1784
tf.command = ATA_CMD_ID_ATA;
1785
break;
1786
case ATA_DEV_ATAPI:
1787
tf.command = ATA_CMD_ID_ATAPI;
1788
break;
1789
default:
1790
rc = -ENODEV;
1791
reason = "unsupported class";
1792
goto err_out;
1793
}
1794
1795
tf.protocol = ATA_PROT_PIO;
1796
1797
/* Some devices choke if TF registers contain garbage. Make
1798
* sure those are properly initialized.
1799
*/
1800
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802
/* Device presence detection is unreliable on some
1803
* controllers. Always poll IDENTIFY if available.
1804
*/
1805
tf.flags |= ATA_TFLAG_POLLING;
1806
1807
if (ap->ops->read_id)
1808
err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809
else
1810
err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812
if (err_mask) {
1813
if (err_mask & AC_ERR_NODEV_HINT) {
1814
ata_dev_dbg(dev, "NODEV after polling detection\n");
1815
return -ENOENT;
1816
}
1817
1818
if (is_semb) {
1819
ata_dev_info(dev,
1820
"IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821
/* SEMB is not supported yet */
1822
*p_class = ATA_DEV_SEMB_UNSUP;
1823
return 0;
1824
}
1825
1826
if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827
/* Device or controller might have reported
1828
* the wrong device class. Give a shot at the
1829
* other IDENTIFY if the current one is
1830
* aborted by the device.
1831
*/
1832
if (may_fallback) {
1833
may_fallback = 0;
1834
1835
if (class == ATA_DEV_ATA)
1836
class = ATA_DEV_ATAPI;
1837
else
1838
class = ATA_DEV_ATA;
1839
goto retry;
1840
}
1841
1842
/* Control reaches here iff the device aborted
1843
* both flavors of IDENTIFYs which happens
1844
* sometimes with phantom devices.
1845
*/
1846
ata_dev_dbg(dev,
1847
"both IDENTIFYs aborted, assuming NODEV\n");
1848
return -ENOENT;
1849
}
1850
1851
rc = -EIO;
1852
reason = "I/O error";
1853
goto err_out;
1854
}
1855
1856
if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857
ata_dev_info(dev, "dumping IDENTIFY data, "
1858
"class=%d may_fallback=%d tried_spinup=%d\n",
1859
class, may_fallback, tried_spinup);
1860
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861
16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862
}
1863
1864
/* Falling back doesn't make sense if ID data was read
1865
* successfully at least once.
1866
*/
1867
may_fallback = 0;
1868
1869
swap_buf_le16(id, ATA_ID_WORDS);
1870
1871
/* sanity check */
1872
rc = -EINVAL;
1873
reason = "device reports invalid type";
1874
1875
if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877
goto err_out;
1878
if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879
ata_id_is_ata(id)) {
1880
ata_dev_dbg(dev,
1881
"host indicates ignore ATA devices, ignored\n");
1882
return -ENOENT;
1883
}
1884
} else {
1885
if (ata_id_is_ata(id))
1886
goto err_out;
1887
}
1888
1889
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890
tried_spinup = 1;
1891
/*
1892
* Drive powered-up in standby mode, and requires a specific
1893
* SET_FEATURES spin-up subcommand before it will accept
1894
* anything other than the original IDENTIFY command.
1895
*/
1896
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897
if (err_mask && id[2] != 0x738c) {
1898
rc = -EIO;
1899
reason = "SPINUP failed";
1900
goto err_out;
1901
}
1902
/*
1903
* If the drive initially returned incomplete IDENTIFY info,
1904
* we now must reissue the IDENTIFY command.
1905
*/
1906
if (id[2] == 0x37c8)
1907
goto retry;
1908
}
1909
1910
if ((flags & ATA_READID_POSTRESET) &&
1911
(class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912
/*
1913
* The exact sequence expected by certain pre-ATA4 drives is:
1914
* SRST RESET
1915
* IDENTIFY (optional in early ATA)
1916
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917
* anything else..
1918
* Some drives were very specific about that exact sequence.
1919
*
1920
* Note that ATA4 says lba is mandatory so the second check
1921
* should never trigger.
1922
*/
1923
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924
err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925
if (err_mask) {
1926
rc = -EIO;
1927
reason = "INIT_DEV_PARAMS failed";
1928
goto err_out;
1929
}
1930
1931
/* current CHS translation info (id[53-58]) might be
1932
* changed. reread the identify device info.
1933
*/
1934
flags &= ~ATA_READID_POSTRESET;
1935
goto retry;
1936
}
1937
}
1938
1939
*p_class = class;
1940
1941
return 0;
1942
1943
err_out:
1944
ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945
reason, err_mask);
1946
return rc;
1947
}
1948
1949
bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950
bool set_active)
1951
{
1952
/* Only applies to ATA and ZAC devices */
1953
if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954
return false;
1955
1956
ata_tf_init(dev, tf);
1957
tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958
tf->protocol = ATA_PROT_NODATA;
1959
1960
if (set_active) {
1961
/* VERIFY for 1 sector at lba=0 */
1962
tf->command = ATA_CMD_VERIFY;
1963
tf->nsect = 1;
1964
if (dev->flags & ATA_DFLAG_LBA) {
1965
tf->flags |= ATA_TFLAG_LBA;
1966
tf->device |= ATA_LBA;
1967
} else {
1968
/* CHS */
1969
tf->lbal = 0x1; /* sect */
1970
}
1971
} else {
1972
tf->command = ATA_CMD_STANDBYNOW1;
1973
}
1974
1975
return true;
1976
}
1977
1978
static bool ata_dev_power_is_active(struct ata_device *dev)
1979
{
1980
struct ata_taskfile tf;
1981
unsigned int err_mask;
1982
1983
ata_tf_init(dev, &tf);
1984
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985
tf.protocol = ATA_PROT_NODATA;
1986
tf.command = ATA_CMD_CHK_POWER;
1987
1988
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989
if (err_mask) {
1990
ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991
err_mask);
1992
/*
1993
* Assume we are in standby mode so that we always force a
1994
* spinup in ata_dev_power_set_active().
1995
*/
1996
return false;
1997
}
1998
1999
ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001
/* Active or idle */
2002
return tf.nsect == 0xff;
2003
}
2004
2005
/**
2006
* ata_dev_power_set_standby - Set a device power mode to standby
2007
* @dev: target device
2008
*
2009
* Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010
* For an HDD device, this spins down the disks.
2011
*
2012
* LOCKING:
2013
* Kernel thread context (may sleep).
2014
*/
2015
void ata_dev_power_set_standby(struct ata_device *dev)
2016
{
2017
unsigned long ap_flags = dev->link->ap->flags;
2018
struct ata_taskfile tf;
2019
unsigned int err_mask;
2020
2021
/* If the device is already sleeping or in standby, do nothing. */
2022
if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023
!ata_dev_power_is_active(dev))
2024
return;
2025
2026
/*
2027
* Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028
* causing some drives to spin up and down again. For these, do nothing
2029
* if we are being called on shutdown.
2030
*/
2031
if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032
system_state == SYSTEM_POWER_OFF)
2033
return;
2034
2035
if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036
system_entering_hibernation())
2037
return;
2038
2039
/* Issue STANDBY IMMEDIATE command only if supported by the device */
2040
if (!ata_dev_power_init_tf(dev, &tf, false))
2041
return;
2042
2043
ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046
if (err_mask)
2047
ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048
err_mask);
2049
}
2050
2051
/**
2052
* ata_dev_power_set_active - Set a device power mode to active
2053
* @dev: target device
2054
*
2055
* Issue a VERIFY command to enter to ensure that the device is in the
2056
* active power mode. For a spun-down HDD (standby or idle power mode),
2057
* the VERIFY command will complete after the disk spins up.
2058
*
2059
* LOCKING:
2060
* Kernel thread context (may sleep).
2061
*/
2062
void ata_dev_power_set_active(struct ata_device *dev)
2063
{
2064
struct ata_taskfile tf;
2065
unsigned int err_mask;
2066
2067
/*
2068
* Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069
* if supported by the device.
2070
*/
2071
if (!ata_dev_power_init_tf(dev, &tf, true))
2072
return;
2073
2074
/*
2075
* Check the device power state & condition and force a spinup with
2076
* VERIFY command only if the drive is not already ACTIVE or IDLE.
2077
*/
2078
if (ata_dev_power_is_active(dev))
2079
return;
2080
2081
ata_dev_notice(dev, "Entering active power mode\n");
2082
2083
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084
if (err_mask)
2085
ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086
err_mask);
2087
}
2088
2089
/**
2090
* ata_read_log_page - read a specific log page
2091
* @dev: target device
2092
* @log: log to read
2093
* @page: page to read
2094
* @buf: buffer to store read page
2095
* @sectors: number of sectors to read
2096
*
2097
* Read log page using READ_LOG_EXT command.
2098
*
2099
* LOCKING:
2100
* Kernel thread context (may sleep).
2101
*
2102
* RETURNS:
2103
* 0 on success, AC_ERR_* mask otherwise.
2104
*/
2105
unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106
u8 page, void *buf, unsigned int sectors)
2107
{
2108
unsigned long ap_flags = dev->link->ap->flags;
2109
struct ata_taskfile tf;
2110
unsigned int err_mask;
2111
bool dma = false;
2112
2113
ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115
/*
2116
* Return error without actually issuing the command on controllers
2117
* which e.g. lockup on a read log page.
2118
*/
2119
if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120
return AC_ERR_DEV;
2121
2122
retry:
2123
ata_tf_init(dev, &tf);
2124
if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125
!(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126
tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127
tf.protocol = ATA_PROT_DMA;
2128
dma = true;
2129
} else {
2130
tf.command = ATA_CMD_READ_LOG_EXT;
2131
tf.protocol = ATA_PROT_PIO;
2132
dma = false;
2133
}
2134
tf.lbal = log;
2135
tf.lbam = page;
2136
tf.nsect = sectors;
2137
tf.hob_nsect = sectors >> 8;
2138
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141
buf, sectors * ATA_SECT_SIZE, 0);
2142
2143
if (err_mask) {
2144
if (dma) {
2145
dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146
if (!ata_port_is_frozen(dev->link->ap))
2147
goto retry;
2148
}
2149
ata_dev_err(dev,
2150
"Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151
(unsigned int)log, (unsigned int)page, err_mask);
2152
}
2153
2154
return err_mask;
2155
}
2156
2157
static inline void ata_clear_log_directory(struct ata_device *dev)
2158
{
2159
memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160
}
2161
2162
static int ata_read_log_directory(struct ata_device *dev)
2163
{
2164
u16 version;
2165
2166
/* If the log page is already cached, do nothing. */
2167
version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168
if (version == 0x0001)
2169
return 0;
2170
2171
if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172
ata_clear_log_directory(dev);
2173
return -EIO;
2174
}
2175
2176
version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177
if (version != 0x0001)
2178
ata_dev_warn_once(dev,
2179
"Invalid log directory version 0x%04x\n",
2180
version);
2181
2182
return 0;
2183
}
2184
2185
static int ata_log_supported(struct ata_device *dev, u8 log)
2186
{
2187
if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2188
return 0;
2189
2190
if (ata_read_log_directory(dev))
2191
return 0;
2192
2193
return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2194
}
2195
2196
static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2197
{
2198
unsigned int err, i;
2199
2200
if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2201
return false;
2202
2203
if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204
/*
2205
* IDENTIFY DEVICE data log is defined as mandatory starting
2206
* with ACS-3 (ATA version 10). Warn about the missing log
2207
* for drives which implement this ATA level or above.
2208
*/
2209
if (ata_id_major_version(dev->id) >= 10)
2210
ata_dev_warn(dev,
2211
"ATA Identify Device Log not supported\n");
2212
dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2213
return false;
2214
}
2215
2216
/*
2217
* Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218
* supported.
2219
*/
2220
err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2221
dev->sector_buf, 1);
2222
if (err)
2223
return false;
2224
2225
for (i = 0; i < dev->sector_buf[8]; i++) {
2226
if (dev->sector_buf[9 + i] == page)
2227
return true;
2228
}
2229
2230
return false;
2231
}
2232
2233
static int ata_do_link_spd_quirk(struct ata_device *dev)
2234
{
2235
struct ata_link *plink = ata_dev_phys_link(dev);
2236
u32 target, target_limit;
2237
2238
if (!sata_scr_valid(plink))
2239
return 0;
2240
2241
if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2242
target = 1;
2243
else
2244
return 0;
2245
2246
target_limit = (1 << target) - 1;
2247
2248
/* if already on stricter limit, no need to push further */
2249
if (plink->sata_spd_limit <= target_limit)
2250
return 0;
2251
2252
plink->sata_spd_limit = target_limit;
2253
2254
/* Request another EH round by returning -EAGAIN if link is
2255
* going faster than the target speed. Forward progress is
2256
* guaranteed by setting sata_spd_limit to target_limit above.
2257
*/
2258
if (plink->sata_spd > target) {
2259
ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2260
sata_spd_string(target));
2261
return -EAGAIN;
2262
}
2263
return 0;
2264
}
2265
2266
static inline bool ata_dev_knobble(struct ata_device *dev)
2267
{
2268
struct ata_port *ap = dev->link->ap;
2269
2270
if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2271
return false;
2272
2273
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274
}
2275
2276
static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277
{
2278
unsigned int err_mask;
2279
2280
if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2281
ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2282
return;
2283
}
2284
err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2285
0, dev->sector_buf, 1);
2286
if (!err_mask) {
2287
u8 *cmds = dev->ncq_send_recv_cmds;
2288
2289
dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2290
memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2291
2292
if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2293
ata_dev_dbg(dev, "disabling queued TRIM support\n");
2294
cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2295
~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2296
}
2297
}
2298
}
2299
2300
static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2301
{
2302
unsigned int err_mask;
2303
2304
if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2305
ata_dev_warn(dev,
2306
"NCQ Non-Data Log not supported\n");
2307
return;
2308
}
2309
err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2310
0, dev->sector_buf, 1);
2311
if (!err_mask)
2312
memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2313
ATA_LOG_NCQ_NON_DATA_SIZE);
2314
}
2315
2316
static void ata_dev_config_ncq_prio(struct ata_device *dev)
2317
{
2318
unsigned int err_mask;
2319
2320
if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2321
return;
2322
2323
err_mask = ata_read_log_page(dev,
2324
ATA_LOG_IDENTIFY_DEVICE,
2325
ATA_LOG_SATA_SETTINGS,
2326
dev->sector_buf, 1);
2327
if (err_mask)
2328
goto not_supported;
2329
2330
if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2331
goto not_supported;
2332
2333
dev->flags |= ATA_DFLAG_NCQ_PRIO;
2334
2335
return;
2336
2337
not_supported:
2338
dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2339
dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2340
}
2341
2342
static bool ata_dev_check_adapter(struct ata_device *dev,
2343
unsigned short vendor_id)
2344
{
2345
struct pci_dev *pcidev = NULL;
2346
struct device *parent_dev = NULL;
2347
2348
for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2349
parent_dev = parent_dev->parent) {
2350
if (dev_is_pci(parent_dev)) {
2351
pcidev = to_pci_dev(parent_dev);
2352
if (pcidev->vendor == vendor_id)
2353
return true;
2354
break;
2355
}
2356
}
2357
2358
return false;
2359
}
2360
2361
static int ata_dev_config_ncq(struct ata_device *dev,
2362
char *desc, size_t desc_sz)
2363
{
2364
struct ata_port *ap = dev->link->ap;
2365
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2366
unsigned int err_mask;
2367
char *aa_desc = "";
2368
2369
if (!ata_id_has_ncq(dev->id)) {
2370
desc[0] = '\0';
2371
return 0;
2372
}
2373
if (!IS_ENABLED(CONFIG_SATA_HOST))
2374
return 0;
2375
if (dev->quirks & ATA_QUIRK_NONCQ) {
2376
snprintf(desc, desc_sz, "NCQ (not used)");
2377
return 0;
2378
}
2379
2380
if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2381
ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2382
snprintf(desc, desc_sz, "NCQ (not used)");
2383
return 0;
2384
}
2385
2386
if (ap->flags & ATA_FLAG_NCQ) {
2387
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2388
dev->flags |= ATA_DFLAG_NCQ;
2389
}
2390
2391
if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2392
(ap->flags & ATA_FLAG_FPDMA_AA) &&
2393
ata_id_has_fpdma_aa(dev->id)) {
2394
err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2395
SATA_FPDMA_AA);
2396
if (err_mask) {
2397
ata_dev_err(dev,
2398
"failed to enable AA (error_mask=0x%x)\n",
2399
err_mask);
2400
if (err_mask != AC_ERR_DEV) {
2401
dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2402
return -EIO;
2403
}
2404
} else
2405
aa_desc = ", AA";
2406
}
2407
2408
if (hdepth >= ddepth)
2409
snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2410
else
2411
snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2412
ddepth, aa_desc);
2413
2414
if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2415
if (ata_id_has_ncq_send_and_recv(dev->id))
2416
ata_dev_config_ncq_send_recv(dev);
2417
if (ata_id_has_ncq_non_data(dev->id))
2418
ata_dev_config_ncq_non_data(dev);
2419
if (ata_id_has_ncq_prio(dev->id))
2420
ata_dev_config_ncq_prio(dev);
2421
}
2422
2423
return 0;
2424
}
2425
2426
static void ata_dev_config_sense_reporting(struct ata_device *dev)
2427
{
2428
unsigned int err_mask;
2429
2430
if (!ata_id_has_sense_reporting(dev->id))
2431
return;
2432
2433
if (ata_id_sense_reporting_enabled(dev->id))
2434
return;
2435
2436
err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2437
if (err_mask) {
2438
ata_dev_dbg(dev,
2439
"failed to enable Sense Data Reporting, Emask 0x%x\n",
2440
err_mask);
2441
}
2442
}
2443
2444
static void ata_dev_config_zac(struct ata_device *dev)
2445
{
2446
unsigned int err_mask;
2447
u8 *identify_buf = dev->sector_buf;
2448
2449
dev->zac_zones_optimal_open = U32_MAX;
2450
dev->zac_zones_optimal_nonseq = U32_MAX;
2451
dev->zac_zones_max_open = U32_MAX;
2452
2453
if (!ata_dev_is_zac(dev))
2454
return;
2455
2456
if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2457
ata_dev_warn(dev,
2458
"ATA Zoned Information Log not supported\n");
2459
return;
2460
}
2461
2462
/*
2463
* Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2464
*/
2465
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2466
ATA_LOG_ZONED_INFORMATION,
2467
identify_buf, 1);
2468
if (!err_mask) {
2469
u64 zoned_cap, opt_open, opt_nonseq, max_open;
2470
2471
zoned_cap = get_unaligned_le64(&identify_buf[8]);
2472
if ((zoned_cap >> 63))
2473
dev->zac_zoned_cap = (zoned_cap & 1);
2474
opt_open = get_unaligned_le64(&identify_buf[24]);
2475
if ((opt_open >> 63))
2476
dev->zac_zones_optimal_open = (u32)opt_open;
2477
opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2478
if ((opt_nonseq >> 63))
2479
dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2480
max_open = get_unaligned_le64(&identify_buf[40]);
2481
if ((max_open >> 63))
2482
dev->zac_zones_max_open = (u32)max_open;
2483
}
2484
}
2485
2486
static void ata_dev_config_trusted(struct ata_device *dev)
2487
{
2488
u64 trusted_cap;
2489
unsigned int err;
2490
2491
if (!ata_id_has_trusted(dev->id))
2492
return;
2493
2494
if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2495
ata_dev_warn(dev,
2496
"Security Log not supported\n");
2497
return;
2498
}
2499
2500
err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2501
dev->sector_buf, 1);
2502
if (err)
2503
return;
2504
2505
trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2506
if (!(trusted_cap & (1ULL << 63))) {
2507
ata_dev_dbg(dev,
2508
"Trusted Computing capability qword not valid!\n");
2509
return;
2510
}
2511
2512
if (trusted_cap & (1 << 0))
2513
dev->flags |= ATA_DFLAG_TRUSTED;
2514
}
2515
2516
static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2517
{
2518
kfree(dev->cdl);
2519
dev->cdl = NULL;
2520
}
2521
2522
static int ata_dev_init_cdl_resources(struct ata_device *dev)
2523
{
2524
struct ata_cdl *cdl = dev->cdl;
2525
unsigned int err_mask;
2526
2527
if (!cdl) {
2528
cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2529
if (!cdl)
2530
return -ENOMEM;
2531
dev->cdl = cdl;
2532
}
2533
2534
err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2535
ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2536
if (err_mask) {
2537
ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2538
ata_dev_cleanup_cdl_resources(dev);
2539
return -EIO;
2540
}
2541
2542
return 0;
2543
}
2544
2545
static void ata_dev_config_cdl(struct ata_device *dev)
2546
{
2547
unsigned int err_mask;
2548
bool cdl_enabled;
2549
u64 val;
2550
int ret;
2551
2552
if (ata_id_major_version(dev->id) < 11)
2553
goto not_supported;
2554
2555
if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2556
!ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2557
!ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2558
goto not_supported;
2559
2560
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2561
ATA_LOG_SUPPORTED_CAPABILITIES,
2562
dev->sector_buf, 1);
2563
if (err_mask)
2564
goto not_supported;
2565
2566
/* Check Command Duration Limit Supported bits */
2567
val = get_unaligned_le64(&dev->sector_buf[168]);
2568
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2569
goto not_supported;
2570
2571
/* Warn the user if command duration guideline is not supported */
2572
if (!(val & BIT_ULL(1)))
2573
ata_dev_warn(dev,
2574
"Command duration guideline is not supported\n");
2575
2576
/*
2577
* We must have support for the sense data for successful NCQ commands
2578
* log indicated by the successful NCQ command sense data supported bit.
2579
*/
2580
val = get_unaligned_le64(&dev->sector_buf[8]);
2581
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2582
ata_dev_warn(dev,
2583
"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2584
goto not_supported;
2585
}
2586
2587
/* Without NCQ autosense, the successful NCQ commands log is useless. */
2588
if (!ata_id_has_ncq_autosense(dev->id)) {
2589
ata_dev_warn(dev,
2590
"CDL supported but NCQ autosense is not supported\n");
2591
goto not_supported;
2592
}
2593
2594
/*
2595
* If CDL is marked as enabled, make sure the feature is enabled too.
2596
* Conversely, if CDL is disabled, make sure the feature is turned off.
2597
*/
2598
err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2599
ATA_LOG_CURRENT_SETTINGS,
2600
dev->sector_buf, 1);
2601
if (err_mask)
2602
goto not_supported;
2603
2604
val = get_unaligned_le64(&dev->sector_buf[8]);
2605
cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2606
if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2607
if (!cdl_enabled) {
2608
/* Enable CDL on the device */
2609
err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2610
if (err_mask) {
2611
ata_dev_err(dev,
2612
"Enable CDL feature failed\n");
2613
goto not_supported;
2614
}
2615
}
2616
} else {
2617
if (cdl_enabled) {
2618
/* Disable CDL on the device */
2619
err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2620
if (err_mask) {
2621
ata_dev_err(dev,
2622
"Disable CDL feature failed\n");
2623
goto not_supported;
2624
}
2625
}
2626
}
2627
2628
/*
2629
* While CDL itself has to be enabled using sysfs, CDL requires that
2630
* sense data for successful NCQ commands is enabled to work properly.
2631
* Just like ata_dev_config_sense_reporting(), enable it unconditionally
2632
* if supported.
2633
*/
2634
if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2635
err_mask = ata_dev_set_feature(dev,
2636
SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2637
if (err_mask) {
2638
ata_dev_warn(dev,
2639
"failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2640
err_mask);
2641
goto not_supported;
2642
}
2643
}
2644
2645
/* CDL is supported: allocate and initialize needed resources. */
2646
ret = ata_dev_init_cdl_resources(dev);
2647
if (ret) {
2648
ata_dev_warn(dev, "Initialize CDL resources failed\n");
2649
goto not_supported;
2650
}
2651
2652
dev->flags |= ATA_DFLAG_CDL;
2653
2654
return;
2655
2656
not_supported:
2657
dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2658
ata_dev_cleanup_cdl_resources(dev);
2659
}
2660
2661
static int ata_dev_config_lba(struct ata_device *dev)
2662
{
2663
const u16 *id = dev->id;
2664
const char *lba_desc;
2665
char ncq_desc[32];
2666
int ret;
2667
2668
dev->flags |= ATA_DFLAG_LBA;
2669
2670
if (ata_id_has_lba48(id)) {
2671
lba_desc = "LBA48";
2672
dev->flags |= ATA_DFLAG_LBA48;
2673
if (dev->n_sectors >= (1UL << 28) &&
2674
ata_id_has_flush_ext(id))
2675
dev->flags |= ATA_DFLAG_FLUSH_EXT;
2676
} else {
2677
lba_desc = "LBA";
2678
}
2679
2680
/* config NCQ */
2681
ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2682
2683
/* print device info to dmesg */
2684
if (ata_dev_print_info(dev))
2685
ata_dev_info(dev,
2686
"%llu sectors, multi %u: %s %s\n",
2687
(unsigned long long)dev->n_sectors,
2688
dev->multi_count, lba_desc, ncq_desc);
2689
2690
return ret;
2691
}
2692
2693
static void ata_dev_config_chs(struct ata_device *dev)
2694
{
2695
const u16 *id = dev->id;
2696
2697
if (ata_id_current_chs_valid(id)) {
2698
/* Current CHS translation is valid. */
2699
dev->cylinders = id[54];
2700
dev->heads = id[55];
2701
dev->sectors = id[56];
2702
} else {
2703
/* Default translation */
2704
dev->cylinders = id[1];
2705
dev->heads = id[3];
2706
dev->sectors = id[6];
2707
}
2708
2709
/* print device info to dmesg */
2710
if (ata_dev_print_info(dev))
2711
ata_dev_info(dev,
2712
"%llu sectors, multi %u, CHS %u/%u/%u\n",
2713
(unsigned long long)dev->n_sectors,
2714
dev->multi_count, dev->cylinders,
2715
dev->heads, dev->sectors);
2716
}
2717
2718
static void ata_dev_config_fua(struct ata_device *dev)
2719
{
2720
/* Ignore FUA support if its use is disabled globally */
2721
if (!libata_fua)
2722
goto nofua;
2723
2724
/* Ignore devices without support for WRITE DMA FUA EXT */
2725
if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2726
goto nofua;
2727
2728
/* Ignore known bad devices and devices that lack NCQ support */
2729
if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2730
goto nofua;
2731
2732
dev->flags |= ATA_DFLAG_FUA;
2733
2734
return;
2735
2736
nofua:
2737
dev->flags &= ~ATA_DFLAG_FUA;
2738
}
2739
2740
static void ata_dev_config_devslp(struct ata_device *dev)
2741
{
2742
u8 *sata_setting = dev->sector_buf;
2743
unsigned int err_mask;
2744
int i, j;
2745
2746
/*
2747
* Check device sleep capability. Get DevSlp timing variables
2748
* from SATA Settings page of Identify Device Data Log.
2749
*/
2750
if (!ata_id_has_devslp(dev->id) ||
2751
!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2752
return;
2753
2754
err_mask = ata_read_log_page(dev,
2755
ATA_LOG_IDENTIFY_DEVICE,
2756
ATA_LOG_SATA_SETTINGS,
2757
sata_setting, 1);
2758
if (err_mask)
2759
return;
2760
2761
dev->flags |= ATA_DFLAG_DEVSLP;
2762
for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2763
j = ATA_LOG_DEVSLP_OFFSET + i;
2764
dev->devslp_timing[i] = sata_setting[j];
2765
}
2766
}
2767
2768
static void ata_dev_config_cpr(struct ata_device *dev)
2769
{
2770
unsigned int err_mask;
2771
size_t buf_len;
2772
int i, nr_cpr = 0;
2773
struct ata_cpr_log *cpr_log = NULL;
2774
u8 *desc, *buf = NULL;
2775
2776
if (ata_id_major_version(dev->id) < 11)
2777
goto out;
2778
2779
buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2780
if (buf_len == 0)
2781
goto out;
2782
2783
/*
2784
* Read the concurrent positioning ranges log (0x47). We can have at
2785
* most 255 32B range descriptors plus a 64B header. This log varies in
2786
* size, so use the size reported in the GPL directory. Reading beyond
2787
* the supported length will result in an error.
2788
*/
2789
buf_len <<= 9;
2790
buf = kzalloc(buf_len, GFP_KERNEL);
2791
if (!buf)
2792
goto out;
2793
2794
err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2795
0, buf, buf_len >> 9);
2796
if (err_mask)
2797
goto out;
2798
2799
nr_cpr = buf[0];
2800
if (!nr_cpr)
2801
goto out;
2802
2803
cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2804
if (!cpr_log)
2805
goto out;
2806
2807
cpr_log->nr_cpr = nr_cpr;
2808
desc = &buf[64];
2809
for (i = 0; i < nr_cpr; i++, desc += 32) {
2810
cpr_log->cpr[i].num = desc[0];
2811
cpr_log->cpr[i].num_storage_elements = desc[1];
2812
cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2813
cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2814
}
2815
2816
out:
2817
swap(dev->cpr_log, cpr_log);
2818
kfree(cpr_log);
2819
kfree(buf);
2820
}
2821
2822
/*
2823
* Configure features related to link power management.
2824
*/
2825
static void ata_dev_config_lpm(struct ata_device *dev)
2826
{
2827
struct ata_port *ap = dev->link->ap;
2828
unsigned int err_mask;
2829
2830
if (ap->flags & ATA_FLAG_NO_LPM) {
2831
/*
2832
* When the port does not support LPM, we cannot support it on
2833
* the device either.
2834
*/
2835
dev->quirks |= ATA_QUIRK_NOLPM;
2836
} else {
2837
/*
2838
* Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2839
* them.
2840
*/
2841
if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2842
(dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2843
dev->quirks |= ATA_QUIRK_NOLPM;
2844
2845
/* ATI specific quirk */
2846
if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2847
ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2848
dev->quirks |= ATA_QUIRK_NOLPM;
2849
}
2850
2851
if (dev->quirks & ATA_QUIRK_NOLPM &&
2852
ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2853
ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2854
ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2855
}
2856
2857
/*
2858
* Device Initiated Power Management (DIPM) is normally disabled by
2859
* default on a device. However, DIPM may have been enabled and that
2860
* setting kept even after COMRESET because of the Software Settings
2861
* Preservation feature. So if the port does not support DIPM and the
2862
* device does, disable DIPM on the device.
2863
*/
2864
if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2865
err_mask = ata_dev_set_feature(dev,
2866
SETFEATURES_SATA_DISABLE, SATA_DIPM);
2867
if (err_mask && err_mask != AC_ERR_DEV)
2868
ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2869
err_mask);
2870
}
2871
}
2872
2873
static void ata_dev_print_features(struct ata_device *dev)
2874
{
2875
if (!(dev->flags & ATA_DFLAG_FEATURES_MASK) && !dev->cpr_log &&
2876
!ata_id_has_hipm(dev->id) && !ata_id_has_dipm(dev->id))
2877
return;
2878
2879
ata_dev_info(dev,
2880
"Features:%s%s%s%s%s%s%s%s%s%s\n",
2881
dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2882
dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2883
dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2884
dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2885
ata_id_has_hipm(dev->id) ? " HIPM" : "",
2886
ata_id_has_dipm(dev->id) ? " DIPM" : "",
2887
dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2888
dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2889
dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2890
dev->cpr_log ? " CPR" : "");
2891
}
2892
2893
/**
2894
* ata_dev_configure - Configure the specified ATA/ATAPI device
2895
* @dev: Target device to configure
2896
*
2897
* Configure @dev according to @dev->id. Generic and low-level
2898
* driver specific fixups are also applied.
2899
*
2900
* LOCKING:
2901
* Kernel thread context (may sleep)
2902
*
2903
* RETURNS:
2904
* 0 on success, -errno otherwise
2905
*/
2906
int ata_dev_configure(struct ata_device *dev)
2907
{
2908
struct ata_port *ap = dev->link->ap;
2909
bool print_info = ata_dev_print_info(dev);
2910
const u16 *id = dev->id;
2911
unsigned int xfer_mask;
2912
unsigned int err_mask;
2913
char revbuf[7]; /* XYZ-99\0 */
2914
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2915
char modelbuf[ATA_ID_PROD_LEN+1];
2916
int rc;
2917
2918
if (!ata_dev_enabled(dev)) {
2919
ata_dev_dbg(dev, "no device\n");
2920
return 0;
2921
}
2922
2923
/* Clear the general purpose log directory cache. */
2924
ata_clear_log_directory(dev);
2925
2926
/* Set quirks */
2927
dev->quirks |= ata_dev_quirks(dev);
2928
ata_force_quirks(dev);
2929
2930
if (dev->quirks & ATA_QUIRK_DISABLE) {
2931
ata_dev_info(dev, "unsupported device, disabling\n");
2932
ata_dev_disable(dev);
2933
return 0;
2934
}
2935
2936
if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2937
dev->class == ATA_DEV_ATAPI) {
2938
ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2939
atapi_enabled ? "not supported with this driver"
2940
: "disabled");
2941
ata_dev_disable(dev);
2942
return 0;
2943
}
2944
2945
rc = ata_do_link_spd_quirk(dev);
2946
if (rc)
2947
return rc;
2948
2949
/* let ACPI work its magic */
2950
rc = ata_acpi_on_devcfg(dev);
2951
if (rc)
2952
return rc;
2953
2954
/* massage HPA, do it early as it might change IDENTIFY data */
2955
rc = ata_hpa_resize(dev);
2956
if (rc)
2957
return rc;
2958
2959
/* print device capabilities */
2960
ata_dev_dbg(dev,
2961
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2962
"85:%04x 86:%04x 87:%04x 88:%04x\n",
2963
__func__,
2964
id[49], id[82], id[83], id[84],
2965
id[85], id[86], id[87], id[88]);
2966
2967
/* initialize to-be-configured parameters */
2968
dev->flags &= ~ATA_DFLAG_CFG_MASK;
2969
dev->max_sectors = 0;
2970
dev->cdb_len = 0;
2971
dev->n_sectors = 0;
2972
dev->cylinders = 0;
2973
dev->heads = 0;
2974
dev->sectors = 0;
2975
dev->multi_count = 0;
2976
2977
/*
2978
* common ATA, ATAPI feature tests
2979
*/
2980
2981
/* find max transfer mode; for printk only */
2982
xfer_mask = ata_id_xfermask(id);
2983
2984
ata_dump_id(dev, id);
2985
2986
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2987
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2988
sizeof(fwrevbuf));
2989
2990
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2991
sizeof(modelbuf));
2992
2993
/* ATA-specific feature tests */
2994
if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2995
if (ata_id_is_cfa(id)) {
2996
/* CPRM may make this media unusable */
2997
if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2998
ata_dev_warn(dev,
2999
"supports DRM functions and may not be fully accessible\n");
3000
snprintf(revbuf, 7, "CFA");
3001
} else {
3002
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3003
/* Warn the user if the device has TPM extensions */
3004
if (ata_id_has_tpm(id))
3005
ata_dev_warn(dev,
3006
"supports DRM functions and may not be fully accessible\n");
3007
}
3008
3009
dev->n_sectors = ata_id_n_sectors(id);
3010
if (ata_id_is_locked(id)) {
3011
/*
3012
* If Security locked, set capacity to zero to prevent
3013
* any I/O, e.g. partition scanning, as any I/O to a
3014
* locked drive will result in user visible errors.
3015
*/
3016
ata_dev_info(dev,
3017
"Security locked, setting capacity to zero\n");
3018
dev->n_sectors = 0;
3019
}
3020
3021
/* get current R/W Multiple count setting */
3022
if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3023
unsigned int max = dev->id[47] & 0xff;
3024
unsigned int cnt = dev->id[59] & 0xff;
3025
/* only recognize/allow powers of two here */
3026
if (is_power_of_2(max) && is_power_of_2(cnt))
3027
if (cnt <= max)
3028
dev->multi_count = cnt;
3029
}
3030
3031
/* print device info to dmesg */
3032
if (print_info)
3033
ata_dev_info(dev, "%s: %s, %s, max %s\n",
3034
revbuf, modelbuf, fwrevbuf,
3035
ata_mode_string(xfer_mask));
3036
3037
if (ata_id_has_lba(id)) {
3038
rc = ata_dev_config_lba(dev);
3039
if (rc)
3040
return rc;
3041
} else {
3042
ata_dev_config_chs(dev);
3043
}
3044
3045
ata_dev_config_lpm(dev);
3046
ata_dev_config_fua(dev);
3047
ata_dev_config_devslp(dev);
3048
ata_dev_config_sense_reporting(dev);
3049
ata_dev_config_zac(dev);
3050
ata_dev_config_trusted(dev);
3051
ata_dev_config_cpr(dev);
3052
ata_dev_config_cdl(dev);
3053
dev->cdb_len = 32;
3054
3055
if (print_info)
3056
ata_dev_print_features(dev);
3057
}
3058
3059
/* ATAPI-specific feature tests */
3060
else if (dev->class == ATA_DEV_ATAPI) {
3061
const char *cdb_intr_string = "";
3062
const char *atapi_an_string = "";
3063
const char *dma_dir_string = "";
3064
u32 sntf;
3065
3066
rc = atapi_cdb_len(id);
3067
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3068
ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3069
rc = -EINVAL;
3070
goto err_out_nosup;
3071
}
3072
dev->cdb_len = (unsigned int) rc;
3073
3074
/* Enable ATAPI AN if both the host and device have
3075
* the support. If PMP is attached, SNTF is required
3076
* to enable ATAPI AN to discern between PHY status
3077
* changed notifications and ATAPI ANs.
3078
*/
3079
if (atapi_an &&
3080
(ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3081
(!sata_pmp_attached(ap) ||
3082
sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3083
/* issue SET feature command to turn this on */
3084
err_mask = ata_dev_set_feature(dev,
3085
SETFEATURES_SATA_ENABLE, SATA_AN);
3086
if (err_mask)
3087
ata_dev_err(dev,
3088
"failed to enable ATAPI AN (err_mask=0x%x)\n",
3089
err_mask);
3090
else {
3091
dev->flags |= ATA_DFLAG_AN;
3092
atapi_an_string = ", ATAPI AN";
3093
}
3094
}
3095
3096
if (ata_id_cdb_intr(dev->id)) {
3097
dev->flags |= ATA_DFLAG_CDB_INTR;
3098
cdb_intr_string = ", CDB intr";
3099
}
3100
3101
if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3102
atapi_id_dmadir(dev->id)) {
3103
dev->flags |= ATA_DFLAG_DMADIR;
3104
dma_dir_string = ", DMADIR";
3105
}
3106
3107
if (ata_id_has_da(dev->id)) {
3108
dev->flags |= ATA_DFLAG_DA;
3109
zpodd_init(dev);
3110
}
3111
3112
/* print device info to dmesg */
3113
if (print_info)
3114
ata_dev_info(dev,
3115
"ATAPI: %s, %s, max %s%s%s%s\n",
3116
modelbuf, fwrevbuf,
3117
ata_mode_string(xfer_mask),
3118
cdb_intr_string, atapi_an_string,
3119
dma_dir_string);
3120
3121
ata_dev_config_lpm(dev);
3122
3123
if (print_info)
3124
ata_dev_print_features(dev);
3125
}
3126
3127
/* determine max_sectors */
3128
dev->max_sectors = ATA_MAX_SECTORS;
3129
if (dev->flags & ATA_DFLAG_LBA48)
3130
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3131
3132
/* Limit PATA drive on SATA cable bridge transfers to udma5,
3133
200 sectors */
3134
if (ata_dev_knobble(dev)) {
3135
if (print_info)
3136
ata_dev_info(dev, "applying bridge limits\n");
3137
dev->udma_mask &= ATA_UDMA5;
3138
dev->max_sectors = ATA_MAX_SECTORS;
3139
}
3140
3141
if ((dev->class == ATA_DEV_ATAPI) &&
3142
(atapi_command_packet_set(id) == TYPE_TAPE)) {
3143
dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3144
dev->quirks |= ATA_QUIRK_STUCK_ERR;
3145
}
3146
3147
if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3148
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3149
dev->max_sectors);
3150
3151
if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3152
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3153
dev->max_sectors);
3154
3155
if (dev->quirks & ATA_QUIRK_MAX_SEC_8191)
3156
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_8191,
3157
dev->max_sectors);
3158
3159
if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3160
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3161
3162
if (ap->ops->dev_config)
3163
ap->ops->dev_config(dev);
3164
3165
if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3166
/* Let the user know. We don't want to disallow opens for
3167
rescue purposes, or in case the vendor is just a blithering
3168
idiot. Do this after the dev_config call as some controllers
3169
with buggy firmware may want to avoid reporting false device
3170
bugs */
3171
3172
if (print_info) {
3173
ata_dev_warn(dev,
3174
"Drive reports diagnostics failure. This may indicate a drive\n");
3175
ata_dev_warn(dev,
3176
"fault or invalid emulation. Contact drive vendor for information.\n");
3177
}
3178
}
3179
3180
if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3181
ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3182
ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3183
}
3184
3185
return 0;
3186
3187
err_out_nosup:
3188
return rc;
3189
}
3190
3191
/**
3192
* ata_cable_40wire - return 40 wire cable type
3193
* @ap: port
3194
*
3195
* Helper method for drivers which want to hardwire 40 wire cable
3196
* detection.
3197
*/
3198
3199
int ata_cable_40wire(struct ata_port *ap)
3200
{
3201
return ATA_CBL_PATA40;
3202
}
3203
EXPORT_SYMBOL_GPL(ata_cable_40wire);
3204
3205
/**
3206
* ata_cable_80wire - return 80 wire cable type
3207
* @ap: port
3208
*
3209
* Helper method for drivers which want to hardwire 80 wire cable
3210
* detection.
3211
*/
3212
3213
int ata_cable_80wire(struct ata_port *ap)
3214
{
3215
return ATA_CBL_PATA80;
3216
}
3217
EXPORT_SYMBOL_GPL(ata_cable_80wire);
3218
3219
/**
3220
* ata_cable_unknown - return unknown PATA cable.
3221
* @ap: port
3222
*
3223
* Helper method for drivers which have no PATA cable detection.
3224
*/
3225
3226
int ata_cable_unknown(struct ata_port *ap)
3227
{
3228
return ATA_CBL_PATA_UNK;
3229
}
3230
EXPORT_SYMBOL_GPL(ata_cable_unknown);
3231
3232
/**
3233
* ata_cable_ignore - return ignored PATA cable.
3234
* @ap: port
3235
*
3236
* Helper method for drivers which don't use cable type to limit
3237
* transfer mode.
3238
*/
3239
int ata_cable_ignore(struct ata_port *ap)
3240
{
3241
return ATA_CBL_PATA_IGN;
3242
}
3243
EXPORT_SYMBOL_GPL(ata_cable_ignore);
3244
3245
/**
3246
* ata_cable_sata - return SATA cable type
3247
* @ap: port
3248
*
3249
* Helper method for drivers which have SATA cables
3250
*/
3251
3252
int ata_cable_sata(struct ata_port *ap)
3253
{
3254
return ATA_CBL_SATA;
3255
}
3256
EXPORT_SYMBOL_GPL(ata_cable_sata);
3257
3258
/**
3259
* sata_print_link_status - Print SATA link status
3260
* @link: SATA link to printk link status about
3261
*
3262
* This function prints link speed and status of a SATA link.
3263
*
3264
* LOCKING:
3265
* None.
3266
*/
3267
static void sata_print_link_status(struct ata_link *link)
3268
{
3269
u32 sstatus, scontrol, tmp;
3270
3271
if (sata_scr_read(link, SCR_STATUS, &sstatus))
3272
return;
3273
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3274
return;
3275
3276
if (ata_phys_link_online(link)) {
3277
tmp = (sstatus >> 4) & 0xf;
3278
ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3279
sata_spd_string(tmp), sstatus, scontrol);
3280
} else {
3281
ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3282
sstatus, scontrol);
3283
}
3284
}
3285
3286
/**
3287
* ata_dev_pair - return other device on cable
3288
* @adev: device
3289
*
3290
* Obtain the other device on the same cable, or if none is
3291
* present NULL is returned
3292
*/
3293
3294
struct ata_device *ata_dev_pair(struct ata_device *adev)
3295
{
3296
struct ata_link *link = adev->link;
3297
struct ata_device *pair = &link->device[1 - adev->devno];
3298
if (!ata_dev_enabled(pair))
3299
return NULL;
3300
return pair;
3301
}
3302
EXPORT_SYMBOL_GPL(ata_dev_pair);
3303
3304
#ifdef CONFIG_ATA_ACPI
3305
/**
3306
* ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3307
* @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3308
* @cycle: cycle duration in ns
3309
*
3310
* Return matching xfer mode for @cycle. The returned mode is of
3311
* the transfer type specified by @xfer_shift. If @cycle is too
3312
* slow for @xfer_shift, 0xff is returned. If @cycle is faster
3313
* than the fastest known mode, the fasted mode is returned.
3314
*
3315
* LOCKING:
3316
* None.
3317
*
3318
* RETURNS:
3319
* Matching xfer_mode, 0xff if no match found.
3320
*/
3321
u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3322
{
3323
u8 base_mode = 0xff, last_mode = 0xff;
3324
const struct ata_xfer_ent *ent;
3325
const struct ata_timing *t;
3326
3327
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3328
if (ent->shift == xfer_shift)
3329
base_mode = ent->base;
3330
3331
for (t = ata_timing_find_mode(base_mode);
3332
t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3333
unsigned short this_cycle;
3334
3335
switch (xfer_shift) {
3336
case ATA_SHIFT_PIO:
3337
case ATA_SHIFT_MWDMA:
3338
this_cycle = t->cycle;
3339
break;
3340
case ATA_SHIFT_UDMA:
3341
this_cycle = t->udma;
3342
break;
3343
default:
3344
return 0xff;
3345
}
3346
3347
if (cycle > this_cycle)
3348
break;
3349
3350
last_mode = t->mode;
3351
}
3352
3353
return last_mode;
3354
}
3355
#endif
3356
3357
/**
3358
* ata_down_xfermask_limit - adjust dev xfer masks downward
3359
* @dev: Device to adjust xfer masks
3360
* @sel: ATA_DNXFER_* selector
3361
*
3362
* Adjust xfer masks of @dev downward. Note that this function
3363
* does not apply the change. Invoking ata_set_mode() afterwards
3364
* will apply the limit.
3365
*
3366
* LOCKING:
3367
* Inherited from caller.
3368
*
3369
* RETURNS:
3370
* 0 on success, negative errno on failure
3371
*/
3372
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3373
{
3374
char buf[32];
3375
unsigned int orig_mask, xfer_mask;
3376
unsigned int pio_mask, mwdma_mask, udma_mask;
3377
int quiet, highbit;
3378
3379
quiet = !!(sel & ATA_DNXFER_QUIET);
3380
sel &= ~ATA_DNXFER_QUIET;
3381
3382
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3383
dev->mwdma_mask,
3384
dev->udma_mask);
3385
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3386
3387
switch (sel) {
3388
case ATA_DNXFER_PIO:
3389
highbit = fls(pio_mask) - 1;
3390
pio_mask &= ~(1 << highbit);
3391
break;
3392
3393
case ATA_DNXFER_DMA:
3394
if (udma_mask) {
3395
highbit = fls(udma_mask) - 1;
3396
udma_mask &= ~(1 << highbit);
3397
if (!udma_mask)
3398
return -ENOENT;
3399
} else if (mwdma_mask) {
3400
highbit = fls(mwdma_mask) - 1;
3401
mwdma_mask &= ~(1 << highbit);
3402
if (!mwdma_mask)
3403
return -ENOENT;
3404
}
3405
break;
3406
3407
case ATA_DNXFER_40C:
3408
udma_mask &= ATA_UDMA_MASK_40C;
3409
break;
3410
3411
case ATA_DNXFER_FORCE_PIO0:
3412
pio_mask &= 1;
3413
fallthrough;
3414
case ATA_DNXFER_FORCE_PIO:
3415
mwdma_mask = 0;
3416
udma_mask = 0;
3417
break;
3418
3419
default:
3420
BUG();
3421
}
3422
3423
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3424
3425
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3426
return -ENOENT;
3427
3428
if (!quiet) {
3429
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3430
snprintf(buf, sizeof(buf), "%s:%s",
3431
ata_mode_string(xfer_mask),
3432
ata_mode_string(xfer_mask & ATA_MASK_PIO));
3433
else
3434
snprintf(buf, sizeof(buf), "%s",
3435
ata_mode_string(xfer_mask));
3436
3437
ata_dev_warn(dev, "limiting speed to %s\n", buf);
3438
}
3439
3440
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3441
&dev->udma_mask);
3442
3443
return 0;
3444
}
3445
3446
static int ata_dev_set_mode(struct ata_device *dev)
3447
{
3448
struct ata_port *ap = dev->link->ap;
3449
struct ata_eh_context *ehc = &dev->link->eh_context;
3450
const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3451
const char *dev_err_whine = "";
3452
int ign_dev_err = 0;
3453
unsigned int err_mask = 0;
3454
int rc;
3455
3456
dev->flags &= ~ATA_DFLAG_PIO;
3457
if (dev->xfer_shift == ATA_SHIFT_PIO)
3458
dev->flags |= ATA_DFLAG_PIO;
3459
3460
if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3461
dev_err_whine = " (SET_XFERMODE skipped)";
3462
else {
3463
if (nosetxfer)
3464
ata_dev_warn(dev,
3465
"NOSETXFER but PATA detected - can't "
3466
"skip SETXFER, might malfunction\n");
3467
err_mask = ata_dev_set_xfermode(dev);
3468
}
3469
3470
if (err_mask & ~AC_ERR_DEV)
3471
goto fail;
3472
3473
/* revalidate */
3474
ehc->i.flags |= ATA_EHI_POST_SETMODE;
3475
rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3476
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3477
if (rc)
3478
return rc;
3479
3480
if (dev->xfer_shift == ATA_SHIFT_PIO) {
3481
/* Old CFA may refuse this command, which is just fine */
3482
if (ata_id_is_cfa(dev->id))
3483
ign_dev_err = 1;
3484
/* Catch several broken garbage emulations plus some pre
3485
ATA devices */
3486
if (ata_id_major_version(dev->id) == 0 &&
3487
dev->pio_mode <= XFER_PIO_2)
3488
ign_dev_err = 1;
3489
/* Some very old devices and some bad newer ones fail
3490
any kind of SET_XFERMODE request but support PIO0-2
3491
timings and no IORDY */
3492
if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3493
ign_dev_err = 1;
3494
}
3495
/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3496
Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3497
if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3498
dev->dma_mode == XFER_MW_DMA_0 &&
3499
(dev->id[63] >> 8) & 1)
3500
ign_dev_err = 1;
3501
3502
/* if the device is actually configured correctly, ignore dev err */
3503
if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3504
ign_dev_err = 1;
3505
3506
if (err_mask & AC_ERR_DEV) {
3507
if (!ign_dev_err)
3508
goto fail;
3509
else
3510
dev_err_whine = " (device error ignored)";
3511
}
3512
3513
ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3514
dev->xfer_shift, (int)dev->xfer_mode);
3515
3516
if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3517
ehc->i.flags & ATA_EHI_DID_HARDRESET)
3518
ata_dev_info(dev, "configured for %s%s\n",
3519
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3520
dev_err_whine);
3521
3522
return 0;
3523
3524
fail:
3525
ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3526
return -EIO;
3527
}
3528
3529
/**
3530
* ata_set_mode - Program timings and issue SET FEATURES - XFER
3531
* @link: link on which timings will be programmed
3532
* @r_failed_dev: out parameter for failed device
3533
*
3534
* Standard implementation of the function used to tune and set
3535
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3536
* ata_dev_set_mode() fails, pointer to the failing device is
3537
* returned in @r_failed_dev.
3538
*
3539
* LOCKING:
3540
* PCI/etc. bus probe sem.
3541
*
3542
* RETURNS:
3543
* 0 on success, negative errno otherwise
3544
*/
3545
3546
int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3547
{
3548
struct ata_port *ap = link->ap;
3549
struct ata_device *dev;
3550
int rc = 0, used_dma = 0, found = 0;
3551
3552
/* step 1: calculate xfer_mask */
3553
ata_for_each_dev(dev, link, ENABLED) {
3554
unsigned int pio_mask, dma_mask;
3555
unsigned int mode_mask;
3556
3557
mode_mask = ATA_DMA_MASK_ATA;
3558
if (dev->class == ATA_DEV_ATAPI)
3559
mode_mask = ATA_DMA_MASK_ATAPI;
3560
else if (ata_id_is_cfa(dev->id))
3561
mode_mask = ATA_DMA_MASK_CFA;
3562
3563
ata_dev_xfermask(dev);
3564
ata_force_xfermask(dev);
3565
3566
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3567
3568
if (libata_dma_mask & mode_mask)
3569
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3570
dev->udma_mask);
3571
else
3572
dma_mask = 0;
3573
3574
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3575
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3576
3577
found = 1;
3578
if (ata_dma_enabled(dev))
3579
used_dma = 1;
3580
}
3581
if (!found)
3582
goto out;
3583
3584
/* step 2: always set host PIO timings */
3585
ata_for_each_dev(dev, link, ENABLED) {
3586
if (dev->pio_mode == 0xff) {
3587
ata_dev_warn(dev, "no PIO support\n");
3588
rc = -EINVAL;
3589
goto out;
3590
}
3591
3592
dev->xfer_mode = dev->pio_mode;
3593
dev->xfer_shift = ATA_SHIFT_PIO;
3594
if (ap->ops->set_piomode)
3595
ap->ops->set_piomode(ap, dev);
3596
}
3597
3598
/* step 3: set host DMA timings */
3599
ata_for_each_dev(dev, link, ENABLED) {
3600
if (!ata_dma_enabled(dev))
3601
continue;
3602
3603
dev->xfer_mode = dev->dma_mode;
3604
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3605
if (ap->ops->set_dmamode)
3606
ap->ops->set_dmamode(ap, dev);
3607
}
3608
3609
/* step 4: update devices' xfer mode */
3610
ata_for_each_dev(dev, link, ENABLED) {
3611
rc = ata_dev_set_mode(dev);
3612
if (rc)
3613
goto out;
3614
}
3615
3616
/* Record simplex status. If we selected DMA then the other
3617
* host channels are not permitted to do so.
3618
*/
3619
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3620
ap->host->simplex_claimed = ap;
3621
3622
out:
3623
if (rc)
3624
*r_failed_dev = dev;
3625
return rc;
3626
}
3627
EXPORT_SYMBOL_GPL(ata_set_mode);
3628
3629
/**
3630
* ata_wait_ready - wait for link to become ready
3631
* @link: link to be waited on
3632
* @deadline: deadline jiffies for the operation
3633
* @check_ready: callback to check link readiness
3634
*
3635
* Wait for @link to become ready. @check_ready should return
3636
* positive number if @link is ready, 0 if it isn't, -ENODEV if
3637
* link doesn't seem to be occupied, other errno for other error
3638
* conditions.
3639
*
3640
* Transient -ENODEV conditions are allowed for
3641
* ATA_TMOUT_FF_WAIT.
3642
*
3643
* LOCKING:
3644
* EH context.
3645
*
3646
* RETURNS:
3647
* 0 if @link is ready before @deadline; otherwise, -errno.
3648
*/
3649
int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3650
int (*check_ready)(struct ata_link *link))
3651
{
3652
unsigned long start = jiffies;
3653
unsigned long nodev_deadline;
3654
int warned = 0;
3655
3656
/* choose which 0xff timeout to use, read comment in libata.h */
3657
if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3658
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3659
else
3660
nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3661
3662
/* Slave readiness can't be tested separately from master. On
3663
* M/S emulation configuration, this function should be called
3664
* only on the master and it will handle both master and slave.
3665
*/
3666
WARN_ON(link == link->ap->slave_link);
3667
3668
if (time_after(nodev_deadline, deadline))
3669
nodev_deadline = deadline;
3670
3671
while (1) {
3672
unsigned long now = jiffies;
3673
int ready, tmp;
3674
3675
ready = tmp = check_ready(link);
3676
if (ready > 0)
3677
return 0;
3678
3679
/*
3680
* -ENODEV could be transient. Ignore -ENODEV if link
3681
* is online. Also, some SATA devices take a long
3682
* time to clear 0xff after reset. Wait for
3683
* ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3684
* offline.
3685
*
3686
* Note that some PATA controllers (pata_ali) explode
3687
* if status register is read more than once when
3688
* there's no device attached.
3689
*/
3690
if (ready == -ENODEV) {
3691
if (ata_link_online(link))
3692
ready = 0;
3693
else if ((link->ap->flags & ATA_FLAG_SATA) &&
3694
!ata_link_offline(link) &&
3695
time_before(now, nodev_deadline))
3696
ready = 0;
3697
}
3698
3699
if (ready)
3700
return ready;
3701
if (time_after(now, deadline))
3702
return -EBUSY;
3703
3704
if (!warned && time_after(now, start + 5 * HZ) &&
3705
(deadline - now > 3 * HZ)) {
3706
ata_link_warn(link,
3707
"link is slow to respond, please be patient "
3708
"(ready=%d)\n", tmp);
3709
warned = 1;
3710
}
3711
3712
ata_msleep(link->ap, 50);
3713
}
3714
}
3715
3716
/**
3717
* ata_wait_after_reset - wait for link to become ready after reset
3718
* @link: link to be waited on
3719
* @deadline: deadline jiffies for the operation
3720
* @check_ready: callback to check link readiness
3721
*
3722
* Wait for @link to become ready after reset.
3723
*
3724
* LOCKING:
3725
* EH context.
3726
*
3727
* RETURNS:
3728
* 0 if @link is ready before @deadline; otherwise, -errno.
3729
*/
3730
int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3731
int (*check_ready)(struct ata_link *link))
3732
{
3733
ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3734
3735
return ata_wait_ready(link, deadline, check_ready);
3736
}
3737
EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3738
3739
/**
3740
* ata_std_prereset - prepare for reset
3741
* @link: ATA link to be reset
3742
* @deadline: deadline jiffies for the operation
3743
*
3744
* @link is about to be reset. Initialize it. Failure from
3745
* prereset makes libata abort whole reset sequence and give up
3746
* that port, so prereset should be best-effort. It does its
3747
* best to prepare for reset sequence but if things go wrong, it
3748
* should just whine, not fail.
3749
*
3750
* LOCKING:
3751
* Kernel thread context (may sleep)
3752
*
3753
* RETURNS:
3754
* Always 0.
3755
*/
3756
int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3757
{
3758
struct ata_port *ap = link->ap;
3759
struct ata_eh_context *ehc = &link->eh_context;
3760
const unsigned int *timing = sata_ehc_deb_timing(ehc);
3761
int rc;
3762
3763
/* if we're about to do hardreset, nothing more to do */
3764
if (ehc->i.action & ATA_EH_HARDRESET)
3765
return 0;
3766
3767
/* if SATA, resume link */
3768
if (ap->flags & ATA_FLAG_SATA) {
3769
rc = sata_link_resume(link, timing, deadline);
3770
/* whine about phy resume failure but proceed */
3771
if (rc && rc != -EOPNOTSUPP)
3772
ata_link_warn(link,
3773
"failed to resume link for reset (errno=%d)\n",
3774
rc);
3775
}
3776
3777
/* no point in trying softreset on offline link */
3778
if (ata_phys_link_offline(link))
3779
ehc->i.action &= ~ATA_EH_SOFTRESET;
3780
3781
return 0;
3782
}
3783
EXPORT_SYMBOL_GPL(ata_std_prereset);
3784
3785
/**
3786
* ata_std_postreset - standard postreset callback
3787
* @link: the target ata_link
3788
* @classes: classes of attached devices
3789
*
3790
* This function is invoked after a successful reset. Note that
3791
* the device might have been reset more than once using
3792
* different reset methods before postreset is invoked.
3793
*
3794
* LOCKING:
3795
* Kernel thread context (may sleep)
3796
*/
3797
void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3798
{
3799
u32 serror;
3800
3801
/* reset complete, clear SError */
3802
if (!sata_scr_read(link, SCR_ERROR, &serror))
3803
sata_scr_write(link, SCR_ERROR, serror);
3804
3805
/* print link status */
3806
sata_print_link_status(link);
3807
}
3808
EXPORT_SYMBOL_GPL(ata_std_postreset);
3809
3810
/**
3811
* ata_dev_same_device - Determine whether new ID matches configured device
3812
* @dev: device to compare against
3813
* @new_class: class of the new device
3814
* @new_id: IDENTIFY page of the new device
3815
*
3816
* Compare @new_class and @new_id against @dev and determine
3817
* whether @dev is the device indicated by @new_class and
3818
* @new_id.
3819
*
3820
* LOCKING:
3821
* None.
3822
*
3823
* RETURNS:
3824
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
3825
*/
3826
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3827
const u16 *new_id)
3828
{
3829
const u16 *old_id = dev->id;
3830
unsigned char model[2][ATA_ID_PROD_LEN + 1];
3831
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3832
3833
if (dev->class != new_class) {
3834
ata_dev_info(dev, "class mismatch %d != %d\n",
3835
dev->class, new_class);
3836
return 0;
3837
}
3838
3839
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3840
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3841
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3842
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3843
3844
if (strcmp(model[0], model[1])) {
3845
ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3846
model[0], model[1]);
3847
return 0;
3848
}
3849
3850
if (strcmp(serial[0], serial[1])) {
3851
ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3852
serial[0], serial[1]);
3853
return 0;
3854
}
3855
3856
return 1;
3857
}
3858
3859
/**
3860
* ata_dev_reread_id - Re-read IDENTIFY data
3861
* @dev: target ATA device
3862
* @readid_flags: read ID flags
3863
*
3864
* Re-read IDENTIFY page and make sure @dev is still attached to
3865
* the port.
3866
*
3867
* LOCKING:
3868
* Kernel thread context (may sleep)
3869
*
3870
* RETURNS:
3871
* 0 on success, negative errno otherwise
3872
*/
3873
int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3874
{
3875
unsigned int class = dev->class;
3876
u16 *id = (void *)dev->sector_buf;
3877
int rc;
3878
3879
/* read ID data */
3880
rc = ata_dev_read_id(dev, &class, readid_flags, id);
3881
if (rc)
3882
return rc;
3883
3884
/* is the device still there? */
3885
if (!ata_dev_same_device(dev, class, id))
3886
return -ENODEV;
3887
3888
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3889
return 0;
3890
}
3891
3892
/**
3893
* ata_dev_revalidate - Revalidate ATA device
3894
* @dev: device to revalidate
3895
* @new_class: new class code
3896
* @readid_flags: read ID flags
3897
*
3898
* Re-read IDENTIFY page, make sure @dev is still attached to the
3899
* port and reconfigure it according to the new IDENTIFY page.
3900
*
3901
* LOCKING:
3902
* Kernel thread context (may sleep)
3903
*
3904
* RETURNS:
3905
* 0 on success, negative errno otherwise
3906
*/
3907
int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3908
unsigned int readid_flags)
3909
{
3910
u64 n_sectors = dev->n_sectors;
3911
u64 n_native_sectors = dev->n_native_sectors;
3912
int rc;
3913
3914
if (!ata_dev_enabled(dev))
3915
return -ENODEV;
3916
3917
/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3918
if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3919
ata_dev_info(dev, "class mismatch %u != %u\n",
3920
dev->class, new_class);
3921
rc = -ENODEV;
3922
goto fail;
3923
}
3924
3925
/* re-read ID */
3926
rc = ata_dev_reread_id(dev, readid_flags);
3927
if (rc)
3928
goto fail;
3929
3930
/* configure device according to the new ID */
3931
rc = ata_dev_configure(dev);
3932
if (rc)
3933
goto fail;
3934
3935
/* verify n_sectors hasn't changed */
3936
if (dev->class != ATA_DEV_ATA || !n_sectors ||
3937
dev->n_sectors == n_sectors)
3938
return 0;
3939
3940
/* n_sectors has changed */
3941
ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3942
(unsigned long long)n_sectors,
3943
(unsigned long long)dev->n_sectors);
3944
3945
/*
3946
* Something could have caused HPA to be unlocked
3947
* involuntarily. If n_native_sectors hasn't changed and the
3948
* new size matches it, keep the device.
3949
*/
3950
if (dev->n_native_sectors == n_native_sectors &&
3951
dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3952
ata_dev_warn(dev,
3953
"new n_sectors matches native, probably "
3954
"late HPA unlock, n_sectors updated\n");
3955
/* use the larger n_sectors */
3956
return 0;
3957
}
3958
3959
/*
3960
* Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3961
* unlocking HPA in those cases.
3962
*
3963
* https://bugzilla.kernel.org/show_bug.cgi?id=15396
3964
*/
3965
if (dev->n_native_sectors == n_native_sectors &&
3966
dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3967
!(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3968
ata_dev_warn(dev,
3969
"old n_sectors matches native, probably "
3970
"late HPA lock, will try to unlock HPA\n");
3971
/* try unlocking HPA */
3972
dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3973
rc = -EIO;
3974
} else
3975
rc = -ENODEV;
3976
3977
/* restore original n_[native_]sectors and fail */
3978
dev->n_native_sectors = n_native_sectors;
3979
dev->n_sectors = n_sectors;
3980
fail:
3981
ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3982
return rc;
3983
}
3984
3985
static const char * const ata_quirk_names[] = {
3986
[__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3987
[__ATA_QUIRK_NODMA] = "nodma",
3988
[__ATA_QUIRK_NONCQ] = "noncq",
3989
[__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3990
[__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3991
[__ATA_QUIRK_DISABLE] = "disable",
3992
[__ATA_QUIRK_HPA_SIZE] = "hpasize",
3993
[__ATA_QUIRK_IVB] = "ivb",
3994
[__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3995
[__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3996
[__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3997
[__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3998
[__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3999
[__ATA_QUIRK_NOSETXFER] = "nosetxfer",
4000
[__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
4001
[__ATA_QUIRK_DUMP_ID] = "dumpid",
4002
[__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
4003
[__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
4004
[__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
4005
[__ATA_QUIRK_NOLPM] = "nolpm",
4006
[__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
4007
[__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
4008
[__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
4009
[__ATA_QUIRK_NOTRIM] = "notrim",
4010
[__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
4011
[__ATA_QUIRK_MAX_SEC_8191] = "maxsec8191",
4012
[__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
4013
[__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
4014
[__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
4015
[__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
4016
[__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
4017
[__ATA_QUIRK_NO_FUA] = "nofua",
4018
};
4019
4020
static void ata_dev_print_quirks(const struct ata_device *dev,
4021
const char *model, const char *rev,
4022
unsigned int quirks)
4023
{
4024
struct ata_eh_context *ehc = &dev->link->eh_context;
4025
int n = 0, i;
4026
size_t sz;
4027
char *str;
4028
4029
if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4030
return;
4031
4032
ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4033
4034
if (!quirks)
4035
return;
4036
4037
sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4038
str = kmalloc(sz, GFP_KERNEL);
4039
if (!str)
4040
return;
4041
4042
n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4043
model, rev);
4044
4045
for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4046
if (quirks & (1U << i))
4047
n += snprintf(str + n, sz - n,
4048
" %s", ata_quirk_names[i]);
4049
}
4050
4051
ata_dev_warn(dev, "%s\n", str);
4052
4053
kfree(str);
4054
}
4055
4056
struct ata_dev_quirks_entry {
4057
const char *model_num;
4058
const char *model_rev;
4059
unsigned int quirks;
4060
};
4061
4062
static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4063
/* Devices with DMA related problems under Linux */
4064
{ "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4065
{ "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4066
{ "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4067
{ "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4068
{ "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4069
{ "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4070
{ "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4071
{ "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4072
{ "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4073
{ "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4074
{ "CRD-84", NULL, ATA_QUIRK_NODMA },
4075
{ "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4076
{ "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4077
{ "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4078
{ "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4079
{ "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4080
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4081
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4082
{ "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4083
{ "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4084
{ "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4085
{ "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4086
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4087
{ "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4088
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4089
{ "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4090
{ "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4091
{ "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4092
{ " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4093
{ "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4094
/* Odd clown on sil3726/4726 PMPs */
4095
{ "Config Disk", NULL, ATA_QUIRK_DISABLE },
4096
/* Similar story with ASMedia 1092 */
4097
{ "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4098
4099
/* Weird ATAPI devices */
4100
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4101
{ "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4102
{ "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4103
{ "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4104
4105
/*
4106
* Causes silent data corruption with higher max sects.
4107
* http://lkml.kernel.org/g/[email protected]
4108
*/
4109
{ "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4110
4111
/*
4112
* These devices time out with higher max sects.
4113
* https://bugzilla.kernel.org/show_bug.cgi?id=121671
4114
*/
4115
{ "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4116
{ "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4117
4118
/*
4119
* These devices time out with higher max sects.
4120
* https://bugzilla.kernel.org/show_bug.cgi?id=220693
4121
*/
4122
{ "DELLBOSS VD", "MV.R00-0", ATA_QUIRK_MAX_SEC_8191 },
4123
4124
/* Devices we expect to fail diagnostics */
4125
4126
/* Devices where NCQ should be avoided */
4127
/* NCQ is slow */
4128
{ "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4129
{ "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4130
/* http://thread.gmane.org/gmane.linux.ide/14907 */
4131
{ "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4132
/* NCQ is broken */
4133
{ "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4134
{ "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4135
{ "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4136
{ "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4137
{ "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4138
4139
/* Seagate NCQ + FLUSH CACHE firmware bug */
4140
{ "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4141
ATA_QUIRK_FIRMWARE_WARN },
4142
4143
{ "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4144
ATA_QUIRK_FIRMWARE_WARN },
4145
4146
{ "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4147
ATA_QUIRK_FIRMWARE_WARN },
4148
4149
{ "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4150
ATA_QUIRK_FIRMWARE_WARN },
4151
4152
/* Seagate disks with LPM issues */
4153
{ "ST2000DM008-2FR102", NULL, ATA_QUIRK_NOLPM },
4154
4155
/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4156
the ST disks also have LPM issues */
4157
{ "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4158
ATA_QUIRK_NOLPM },
4159
{ "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4160
4161
/* Blacklist entries taken from Silicon Image 3124/3132
4162
Windows driver .inf file - also several Linux problem reports */
4163
{ "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4164
{ "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4165
{ "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4166
4167
/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4168
{ "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4169
4170
/* Sandisk SD7/8/9s lock up hard on large trims */
4171
{ "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4172
4173
/* devices which puke on READ_NATIVE_MAX */
4174
{ "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4175
{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4176
{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4177
{ "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4178
4179
/* this one allows HPA unlocking but fails IOs on the area */
4180
{ "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4181
4182
/* Devices which report 1 sector over size HPA */
4183
{ "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4184
{ "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4185
{ "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4186
4187
/* Devices which get the IVB wrong */
4188
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4189
/* Maybe we should just add all TSSTcorp devices... */
4190
{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4191
4192
/* Devices that do not need bridging limits applied */
4193
{ "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4194
{ "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4195
4196
/* Devices which aren't very happy with higher link speeds */
4197
{ "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4198
{ "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4199
4200
/*
4201
* Devices which choke on SETXFER. Applies only if both the
4202
* device and controller are SATA.
4203
*/
4204
{ "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4205
{ "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4206
{ "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4207
{ "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4208
{ "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4209
4210
/* These specific Pioneer models have LPM issues */
4211
{ "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4212
{ "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4213
4214
/* Crucial devices with broken LPM support */
4215
{ "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4216
4217
/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4218
{ "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4219
ATA_QUIRK_ZERO_AFTER_TRIM |
4220
ATA_QUIRK_NOLPM },
4221
/* 512GB MX100 with newer firmware has only LPM issues */
4222
{ "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4223
ATA_QUIRK_NOLPM },
4224
4225
/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4226
{ "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4227
ATA_QUIRK_ZERO_AFTER_TRIM |
4228
ATA_QUIRK_NOLPM },
4229
{ "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4230
ATA_QUIRK_ZERO_AFTER_TRIM |
4231
ATA_QUIRK_NOLPM },
4232
4233
/* AMD Radeon devices with broken LPM support */
4234
{ "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4235
4236
/* Apacer models with LPM issues */
4237
{ "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4238
4239
/* Silicon Motion models with LPM issues */
4240
{ "MD619HXCLDE3TC", "TCVAID", ATA_QUIRK_NOLPM },
4241
{ "MD619GXCLDE3TC", "TCV35D", ATA_QUIRK_NOLPM },
4242
4243
/* These specific Samsung models/firmware-revs do not handle LPM well */
4244
{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4245
{ "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4246
{ "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4247
{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4248
4249
/* devices that don't properly handle queued TRIM commands */
4250
{ "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4251
ATA_QUIRK_ZERO_AFTER_TRIM },
4252
{ "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4253
ATA_QUIRK_ZERO_AFTER_TRIM },
4254
{ "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4255
ATA_QUIRK_ZERO_AFTER_TRIM },
4256
{ "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4257
ATA_QUIRK_ZERO_AFTER_TRIM, },
4258
{ "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4259
ATA_QUIRK_ZERO_AFTER_TRIM },
4260
{ "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4261
ATA_QUIRK_ZERO_AFTER_TRIM },
4262
{ "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4263
ATA_QUIRK_ZERO_AFTER_TRIM },
4264
{ "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4265
ATA_QUIRK_NO_DMA_LOG |
4266
ATA_QUIRK_ZERO_AFTER_TRIM },
4267
{ "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4268
ATA_QUIRK_ZERO_AFTER_TRIM },
4269
{ "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4270
ATA_QUIRK_ZERO_AFTER_TRIM },
4271
{ "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4272
ATA_QUIRK_ZERO_AFTER_TRIM |
4273
ATA_QUIRK_NO_NCQ_ON_ATI |
4274
ATA_QUIRK_NO_LPM_ON_ATI },
4275
{ "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4276
ATA_QUIRK_ZERO_AFTER_TRIM |
4277
ATA_QUIRK_NO_NCQ_ON_ATI |
4278
ATA_QUIRK_NO_LPM_ON_ATI },
4279
{ "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4280
ATA_QUIRK_ZERO_AFTER_TRIM |
4281
ATA_QUIRK_NO_NCQ_ON_ATI |
4282
ATA_QUIRK_NO_LPM_ON_ATI },
4283
{ "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4284
ATA_QUIRK_ZERO_AFTER_TRIM },
4285
4286
/* devices that don't properly handle TRIM commands */
4287
{ "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4288
{ "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4289
4290
/*
4291
* As defined, the DRAT (Deterministic Read After Trim) and RZAT
4292
* (Return Zero After Trim) flags in the ATA Command Set are
4293
* unreliable in the sense that they only define what happens if
4294
* the device successfully executed the DSM TRIM command. TRIM
4295
* is only advisory, however, and the device is free to silently
4296
* ignore all or parts of the request.
4297
*
4298
* Whitelist drives that are known to reliably return zeroes
4299
* after TRIM.
4300
*/
4301
4302
/*
4303
* The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4304
* that model before whitelisting all other intel SSDs.
4305
*/
4306
{ "INTEL*SSDSC2MH*", NULL, 0 },
4307
4308
{ "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4309
{ "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4310
{ "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4311
{ "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4312
{ "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4313
{ "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4314
{ "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4315
{ "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4316
4317
/*
4318
* Some WD SATA-I drives spin up and down erratically when the link
4319
* is put into the slumber mode. We don't have full list of the
4320
* affected devices. Disable LPM if the device matches one of the
4321
* known prefixes and is SATA-1. As a side effect LPM partial is
4322
* lost too.
4323
*
4324
* https://bugzilla.kernel.org/show_bug.cgi?id=57211
4325
*/
4326
{ "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4327
{ "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4328
{ "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4329
{ "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4330
{ "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4331
{ "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4332
{ "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4333
4334
/*
4335
* This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4336
* log page is accessed. Ensure we never ask for this log page with
4337
* these devices.
4338
*/
4339
{ "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4340
4341
/* Buggy FUA */
4342
{ "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4343
{ "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4344
{ "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4345
{ "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4346
4347
/* End Marker */
4348
{ }
4349
};
4350
4351
static unsigned int ata_dev_quirks(const struct ata_device *dev)
4352
{
4353
unsigned char model_num[ATA_ID_PROD_LEN + 1];
4354
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4355
const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4356
4357
/* dev->quirks is an unsigned int. */
4358
BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4359
4360
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4361
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4362
4363
while (ad->model_num) {
4364
if (glob_match(ad->model_num, model_num) &&
4365
(!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4366
ata_dev_print_quirks(dev, model_num, model_rev,
4367
ad->quirks);
4368
return ad->quirks;
4369
}
4370
ad++;
4371
}
4372
return 0;
4373
}
4374
4375
static bool ata_dev_nodma(const struct ata_device *dev)
4376
{
4377
/*
4378
* We do not support polling DMA. Deny DMA for those ATAPI devices
4379
* with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4380
* the HSM_ST_LAST state.
4381
*/
4382
if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4383
(dev->flags & ATA_DFLAG_CDB_INTR))
4384
return true;
4385
return dev->quirks & ATA_QUIRK_NODMA;
4386
}
4387
4388
/**
4389
* ata_is_40wire - check drive side detection
4390
* @dev: device
4391
*
4392
* Perform drive side detection decoding, allowing for device vendors
4393
* who can't follow the documentation.
4394
*/
4395
4396
static int ata_is_40wire(struct ata_device *dev)
4397
{
4398
if (dev->quirks & ATA_QUIRK_IVB)
4399
return ata_drive_40wire_relaxed(dev->id);
4400
return ata_drive_40wire(dev->id);
4401
}
4402
4403
/**
4404
* cable_is_40wire - 40/80/SATA decider
4405
* @ap: port to consider
4406
*
4407
* This function encapsulates the policy for speed management
4408
* in one place. At the moment we don't cache the result but
4409
* there is a good case for setting ap->cbl to the result when
4410
* we are called with unknown cables (and figuring out if it
4411
* impacts hotplug at all).
4412
*
4413
* Return 1 if the cable appears to be 40 wire.
4414
*/
4415
4416
static int cable_is_40wire(struct ata_port *ap)
4417
{
4418
struct ata_link *link;
4419
struct ata_device *dev;
4420
4421
/* If the controller thinks we are 40 wire, we are. */
4422
if (ap->cbl == ATA_CBL_PATA40)
4423
return 1;
4424
4425
/* If the controller thinks we are 80 wire, we are. */
4426
if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4427
return 0;
4428
4429
/* If the system is known to be 40 wire short cable (eg
4430
* laptop), then we allow 80 wire modes even if the drive
4431
* isn't sure.
4432
*/
4433
if (ap->cbl == ATA_CBL_PATA40_SHORT)
4434
return 0;
4435
4436
/* If the controller doesn't know, we scan.
4437
*
4438
* Note: We look for all 40 wire detects at this point. Any
4439
* 80 wire detect is taken to be 80 wire cable because
4440
* - in many setups only the one drive (slave if present) will
4441
* give a valid detect
4442
* - if you have a non detect capable drive you don't want it
4443
* to colour the choice
4444
*/
4445
ata_for_each_link(link, ap, EDGE) {
4446
ata_for_each_dev(dev, link, ENABLED) {
4447
if (!ata_is_40wire(dev))
4448
return 0;
4449
}
4450
}
4451
return 1;
4452
}
4453
4454
/**
4455
* ata_dev_xfermask - Compute supported xfermask of the given device
4456
* @dev: Device to compute xfermask for
4457
*
4458
* Compute supported xfermask of @dev and store it in
4459
* dev->*_mask. This function is responsible for applying all
4460
* known limits including host controller limits, device quirks, etc...
4461
*
4462
* LOCKING:
4463
* None.
4464
*/
4465
static void ata_dev_xfermask(struct ata_device *dev)
4466
{
4467
struct ata_link *link = dev->link;
4468
struct ata_port *ap = link->ap;
4469
struct ata_host *host = ap->host;
4470
unsigned int xfer_mask;
4471
4472
/* controller modes available */
4473
xfer_mask = ata_pack_xfermask(ap->pio_mask,
4474
ap->mwdma_mask, ap->udma_mask);
4475
4476
/* drive modes available */
4477
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4478
dev->mwdma_mask, dev->udma_mask);
4479
xfer_mask &= ata_id_xfermask(dev->id);
4480
4481
/*
4482
* CFA Advanced TrueIDE timings are not allowed on a shared
4483
* cable
4484
*/
4485
if (ata_dev_pair(dev)) {
4486
/* No PIO5 or PIO6 */
4487
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4488
/* No MWDMA3 or MWDMA 4 */
4489
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4490
}
4491
4492
if (ata_dev_nodma(dev)) {
4493
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4494
ata_dev_warn(dev,
4495
"device does not support DMA, disabling DMA\n");
4496
}
4497
4498
if ((host->flags & ATA_HOST_SIMPLEX) &&
4499
host->simplex_claimed && host->simplex_claimed != ap) {
4500
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4501
ata_dev_warn(dev,
4502
"simplex DMA is claimed by other device, disabling DMA\n");
4503
}
4504
4505
if (ap->flags & ATA_FLAG_NO_IORDY)
4506
xfer_mask &= ata_pio_mask_no_iordy(dev);
4507
4508
if (ap->ops->mode_filter)
4509
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4510
4511
/* Apply cable rule here. Don't apply it early because when
4512
* we handle hot plug the cable type can itself change.
4513
* Check this last so that we know if the transfer rate was
4514
* solely limited by the cable.
4515
* Unknown or 80 wire cables reported host side are checked
4516
* drive side as well. Cases where we know a 40wire cable
4517
* is used safely for 80 are not checked here.
4518
*/
4519
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4520
/* UDMA/44 or higher would be available */
4521
if (cable_is_40wire(ap)) {
4522
ata_dev_warn(dev,
4523
"limited to UDMA/33 due to 40-wire cable\n");
4524
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4525
}
4526
4527
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4528
&dev->mwdma_mask, &dev->udma_mask);
4529
}
4530
4531
/**
4532
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4533
* @dev: Device to which command will be sent
4534
*
4535
* Issue SET FEATURES - XFER MODE command to device @dev
4536
* on port @ap.
4537
*
4538
* LOCKING:
4539
* PCI/etc. bus probe sem.
4540
*
4541
* RETURNS:
4542
* 0 on success, AC_ERR_* mask otherwise.
4543
*/
4544
4545
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4546
{
4547
struct ata_taskfile tf;
4548
4549
/* set up set-features taskfile */
4550
ata_dev_dbg(dev, "set features - xfer mode\n");
4551
4552
/* Some controllers and ATAPI devices show flaky interrupt
4553
* behavior after setting xfer mode. Use polling instead.
4554
*/
4555
ata_tf_init(dev, &tf);
4556
tf.command = ATA_CMD_SET_FEATURES;
4557
tf.feature = SETFEATURES_XFER;
4558
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4559
tf.protocol = ATA_PROT_NODATA;
4560
/* If we are using IORDY we must send the mode setting command */
4561
if (ata_pio_need_iordy(dev))
4562
tf.nsect = dev->xfer_mode;
4563
/* If the device has IORDY and the controller does not - turn it off */
4564
else if (ata_id_has_iordy(dev->id))
4565
tf.nsect = 0x01;
4566
else /* In the ancient relic department - skip all of this */
4567
return 0;
4568
4569
/*
4570
* On some disks, this command causes spin-up, so we need longer
4571
* timeout.
4572
*/
4573
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4574
}
4575
4576
/**
4577
* ata_dev_set_feature - Issue SET FEATURES
4578
* @dev: Device to which command will be sent
4579
* @subcmd: The SET FEATURES subcommand to be sent
4580
* @action: The sector count represents a subcommand specific action
4581
*
4582
* Issue SET FEATURES command to device @dev on port @ap with sector count
4583
*
4584
* LOCKING:
4585
* PCI/etc. bus probe sem.
4586
*
4587
* RETURNS:
4588
* 0 on success, AC_ERR_* mask otherwise.
4589
*/
4590
unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4591
{
4592
struct ata_taskfile tf;
4593
unsigned int timeout = 0;
4594
4595
/* set up set-features taskfile */
4596
ata_dev_dbg(dev, "set features\n");
4597
4598
ata_tf_init(dev, &tf);
4599
tf.command = ATA_CMD_SET_FEATURES;
4600
tf.feature = subcmd;
4601
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4602
tf.protocol = ATA_PROT_NODATA;
4603
tf.nsect = action;
4604
4605
if (subcmd == SETFEATURES_SPINUP)
4606
timeout = ata_probe_timeout ?
4607
ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4608
4609
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4610
}
4611
EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4612
4613
/**
4614
* ata_dev_init_params - Issue INIT DEV PARAMS command
4615
* @dev: Device to which command will be sent
4616
* @heads: Number of heads (taskfile parameter)
4617
* @sectors: Number of sectors (taskfile parameter)
4618
*
4619
* LOCKING:
4620
* Kernel thread context (may sleep)
4621
*
4622
* RETURNS:
4623
* 0 on success, AC_ERR_* mask otherwise.
4624
*/
4625
static unsigned int ata_dev_init_params(struct ata_device *dev,
4626
u16 heads, u16 sectors)
4627
{
4628
struct ata_taskfile tf;
4629
unsigned int err_mask;
4630
4631
/* Number of sectors per track 1-255. Number of heads 1-16 */
4632
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4633
return AC_ERR_INVALID;
4634
4635
/* set up init dev params taskfile */
4636
ata_dev_dbg(dev, "init dev params\n");
4637
4638
ata_tf_init(dev, &tf);
4639
tf.command = ATA_CMD_INIT_DEV_PARAMS;
4640
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4641
tf.protocol = ATA_PROT_NODATA;
4642
tf.nsect = sectors;
4643
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4644
4645
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4646
/* A clean abort indicates an original or just out of spec drive
4647
and we should continue as we issue the setup based on the
4648
drive reported working geometry */
4649
if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4650
err_mask = 0;
4651
4652
return err_mask;
4653
}
4654
4655
/**
4656
* atapi_check_dma - Check whether ATAPI DMA can be supported
4657
* @qc: Metadata associated with taskfile to check
4658
*
4659
* Allow low-level driver to filter ATA PACKET commands, returning
4660
* a status indicating whether or not it is OK to use DMA for the
4661
* supplied PACKET command.
4662
*
4663
* LOCKING:
4664
* spin_lock_irqsave(host lock)
4665
*
4666
* RETURNS: 0 when ATAPI DMA can be used
4667
* nonzero otherwise
4668
*/
4669
int atapi_check_dma(struct ata_queued_cmd *qc)
4670
{
4671
struct ata_port *ap = qc->ap;
4672
4673
/* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4674
* few ATAPI devices choke on such DMA requests.
4675
*/
4676
if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4677
unlikely(qc->nbytes & 15))
4678
return -EOPNOTSUPP;
4679
4680
if (ap->ops->check_atapi_dma)
4681
return ap->ops->check_atapi_dma(qc);
4682
4683
return 0;
4684
}
4685
4686
/**
4687
* ata_std_qc_defer - Check whether a qc needs to be deferred
4688
* @qc: ATA command in question
4689
*
4690
* Non-NCQ commands cannot run with any other command, NCQ or
4691
* not. As upper layer only knows the queue depth, we are
4692
* responsible for maintaining exclusion. This function checks
4693
* whether a new command @qc can be issued.
4694
*
4695
* LOCKING:
4696
* spin_lock_irqsave(host lock)
4697
*
4698
* RETURNS:
4699
* ATA_DEFER_* if deferring is needed, 0 otherwise.
4700
*/
4701
int ata_std_qc_defer(struct ata_queued_cmd *qc)
4702
{
4703
struct ata_link *link = qc->dev->link;
4704
4705
if (ata_is_ncq(qc->tf.protocol)) {
4706
if (!ata_tag_valid(link->active_tag))
4707
return 0;
4708
} else {
4709
if (!ata_tag_valid(link->active_tag) && !link->sactive)
4710
return 0;
4711
}
4712
4713
return ATA_DEFER_LINK;
4714
}
4715
EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4716
4717
/**
4718
* ata_sg_init - Associate command with scatter-gather table.
4719
* @qc: Command to be associated
4720
* @sg: Scatter-gather table.
4721
* @n_elem: Number of elements in s/g table.
4722
*
4723
* Initialize the data-related elements of queued_cmd @qc
4724
* to point to a scatter-gather table @sg, containing @n_elem
4725
* elements.
4726
*
4727
* LOCKING:
4728
* spin_lock_irqsave(host lock)
4729
*/
4730
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4731
unsigned int n_elem)
4732
{
4733
qc->sg = sg;
4734
qc->n_elem = n_elem;
4735
qc->cursg = qc->sg;
4736
}
4737
4738
#ifdef CONFIG_HAS_DMA
4739
4740
/**
4741
* ata_sg_clean - Unmap DMA memory associated with command
4742
* @qc: Command containing DMA memory to be released
4743
*
4744
* Unmap all mapped DMA memory associated with this command.
4745
*
4746
* LOCKING:
4747
* spin_lock_irqsave(host lock)
4748
*/
4749
static void ata_sg_clean(struct ata_queued_cmd *qc)
4750
{
4751
struct ata_port *ap = qc->ap;
4752
struct scatterlist *sg = qc->sg;
4753
int dir = qc->dma_dir;
4754
4755
WARN_ON_ONCE(sg == NULL);
4756
4757
if (qc->n_elem)
4758
dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4759
4760
qc->flags &= ~ATA_QCFLAG_DMAMAP;
4761
qc->sg = NULL;
4762
}
4763
4764
/**
4765
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4766
* @qc: Command with scatter-gather table to be mapped.
4767
*
4768
* DMA-map the scatter-gather table associated with queued_cmd @qc.
4769
*
4770
* LOCKING:
4771
* spin_lock_irqsave(host lock)
4772
*
4773
* RETURNS:
4774
* Zero on success, negative on error.
4775
*
4776
*/
4777
static int ata_sg_setup(struct ata_queued_cmd *qc)
4778
{
4779
struct ata_port *ap = qc->ap;
4780
unsigned int n_elem;
4781
4782
n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4783
if (n_elem < 1)
4784
return -1;
4785
4786
qc->orig_n_elem = qc->n_elem;
4787
qc->n_elem = n_elem;
4788
qc->flags |= ATA_QCFLAG_DMAMAP;
4789
4790
return 0;
4791
}
4792
4793
#else /* !CONFIG_HAS_DMA */
4794
4795
static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4796
static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4797
4798
#endif /* !CONFIG_HAS_DMA */
4799
4800
/**
4801
* swap_buf_le16 - swap halves of 16-bit words in place
4802
* @buf: Buffer to swap
4803
* @buf_words: Number of 16-bit words in buffer.
4804
*
4805
* Swap halves of 16-bit words if needed to convert from
4806
* little-endian byte order to native cpu byte order, or
4807
* vice-versa.
4808
*
4809
* LOCKING:
4810
* Inherited from caller.
4811
*/
4812
void swap_buf_le16(u16 *buf, unsigned int buf_words)
4813
{
4814
#ifdef __BIG_ENDIAN
4815
unsigned int i;
4816
4817
for (i = 0; i < buf_words; i++)
4818
buf[i] = le16_to_cpu(buf[i]);
4819
#endif /* __BIG_ENDIAN */
4820
}
4821
4822
/**
4823
* ata_qc_free - free unused ata_queued_cmd
4824
* @qc: Command to complete
4825
*
4826
* Designed to free unused ata_queued_cmd object
4827
* in case something prevents using it.
4828
*
4829
* LOCKING:
4830
* spin_lock_irqsave(host lock)
4831
*/
4832
void ata_qc_free(struct ata_queued_cmd *qc)
4833
{
4834
qc->flags = 0;
4835
if (ata_tag_valid(qc->tag))
4836
qc->tag = ATA_TAG_POISON;
4837
}
4838
4839
void __ata_qc_complete(struct ata_queued_cmd *qc)
4840
{
4841
struct ata_port *ap;
4842
struct ata_link *link;
4843
4844
if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4845
return;
4846
4847
ap = qc->ap;
4848
link = qc->dev->link;
4849
4850
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4851
ata_sg_clean(qc);
4852
4853
/* command should be marked inactive atomically with qc completion */
4854
if (ata_is_ncq(qc->tf.protocol)) {
4855
link->sactive &= ~(1 << qc->hw_tag);
4856
if (!link->sactive)
4857
ap->nr_active_links--;
4858
} else {
4859
link->active_tag = ATA_TAG_POISON;
4860
ap->nr_active_links--;
4861
}
4862
4863
/* clear exclusive status */
4864
if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4865
ap->excl_link == link))
4866
ap->excl_link = NULL;
4867
4868
/*
4869
* Mark qc as inactive to prevent the port interrupt handler from
4870
* completing the command twice later, before the error handler is
4871
* called.
4872
*/
4873
qc->flags &= ~ATA_QCFLAG_ACTIVE;
4874
ap->qc_active &= ~(1ULL << qc->tag);
4875
4876
/* call completion callback */
4877
qc->complete_fn(qc);
4878
}
4879
4880
static void fill_result_tf(struct ata_queued_cmd *qc)
4881
{
4882
struct ata_port *ap = qc->ap;
4883
4884
/*
4885
* rtf may already be filled (e.g. for successful NCQ commands).
4886
* If that is the case, we have nothing to do.
4887
*/
4888
if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4889
return;
4890
4891
qc->result_tf.flags = qc->tf.flags;
4892
ap->ops->qc_fill_rtf(qc);
4893
qc->flags |= ATA_QCFLAG_RTF_FILLED;
4894
}
4895
4896
static void ata_verify_xfer(struct ata_queued_cmd *qc)
4897
{
4898
struct ata_device *dev = qc->dev;
4899
4900
if (!ata_is_data(qc->tf.protocol))
4901
return;
4902
4903
if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4904
return;
4905
4906
dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4907
}
4908
4909
/**
4910
* ata_qc_complete - Complete an active ATA command
4911
* @qc: Command to complete
4912
*
4913
* Indicate to the mid and upper layers that an ATA command has
4914
* completed, with either an ok or not-ok status.
4915
*
4916
* Refrain from calling this function multiple times when
4917
* successfully completing multiple NCQ commands.
4918
* ata_qc_complete_multiple() should be used instead, which will
4919
* properly update IRQ expect state.
4920
*
4921
* LOCKING:
4922
* spin_lock_irqsave(host lock)
4923
*/
4924
void ata_qc_complete(struct ata_queued_cmd *qc)
4925
{
4926
struct ata_port *ap = qc->ap;
4927
struct ata_device *dev = qc->dev;
4928
struct ata_eh_info *ehi = &dev->link->eh_info;
4929
4930
/* Trigger the LED (if available) */
4931
ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4932
4933
/*
4934
* In order to synchronize EH with the regular execution path, a qc that
4935
* is owned by EH is marked with ATA_QCFLAG_EH.
4936
*
4937
* The normal execution path is responsible for not accessing a qc owned
4938
* by EH. libata core enforces the rule by returning NULL from
4939
* ata_qc_from_tag() for qcs owned by EH.
4940
*/
4941
if (unlikely(qc->err_mask))
4942
qc->flags |= ATA_QCFLAG_EH;
4943
4944
/*
4945
* Finish internal commands without any further processing and always
4946
* with the result TF filled.
4947
*/
4948
if (unlikely(ata_tag_internal(qc->tag))) {
4949
fill_result_tf(qc);
4950
trace_ata_qc_complete_internal(qc);
4951
__ata_qc_complete(qc);
4952
return;
4953
}
4954
4955
/* Non-internal qc has failed. Fill the result TF and summon EH. */
4956
if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4957
fill_result_tf(qc);
4958
trace_ata_qc_complete_failed(qc);
4959
ata_qc_schedule_eh(qc);
4960
return;
4961
}
4962
4963
WARN_ON_ONCE(ata_port_is_frozen(ap));
4964
4965
/* read result TF if requested */
4966
if (qc->flags & ATA_QCFLAG_RESULT_TF)
4967
fill_result_tf(qc);
4968
4969
trace_ata_qc_complete_done(qc);
4970
4971
/*
4972
* For CDL commands that completed without an error, check if we have
4973
* sense data (ATA_SENSE is set). If we do, then the command may have
4974
* been aborted by the device due to a limit timeout using the policy
4975
* 0xD. For these commands, invoke EH to get the command sense data.
4976
*/
4977
if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4978
qc->result_tf.status & ATA_SENSE) {
4979
/*
4980
* Tell SCSI EH to not overwrite scmd->result even if this
4981
* command is finished with result SAM_STAT_GOOD.
4982
*/
4983
qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4984
qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4985
ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4986
4987
/*
4988
* set pending so that ata_qc_schedule_eh() does not trigger
4989
* fast drain, and freeze the port.
4990
*/
4991
ap->pflags |= ATA_PFLAG_EH_PENDING;
4992
ata_qc_schedule_eh(qc);
4993
return;
4994
}
4995
4996
/* Some commands need post-processing after successful completion. */
4997
switch (qc->tf.command) {
4998
case ATA_CMD_SET_FEATURES:
4999
if (qc->tf.feature != SETFEATURES_WC_ON &&
5000
qc->tf.feature != SETFEATURES_WC_OFF &&
5001
qc->tf.feature != SETFEATURES_RA_ON &&
5002
qc->tf.feature != SETFEATURES_RA_OFF)
5003
break;
5004
fallthrough;
5005
case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5006
case ATA_CMD_SET_MULTI: /* multi_count changed */
5007
/* revalidate device */
5008
ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5009
ata_port_schedule_eh(ap);
5010
break;
5011
5012
case ATA_CMD_SLEEP:
5013
dev->flags |= ATA_DFLAG_SLEEPING;
5014
break;
5015
}
5016
5017
if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5018
ata_verify_xfer(qc);
5019
5020
__ata_qc_complete(qc);
5021
}
5022
EXPORT_SYMBOL_GPL(ata_qc_complete);
5023
5024
/**
5025
* ata_qc_get_active - get bitmask of active qcs
5026
* @ap: port in question
5027
*
5028
* LOCKING:
5029
* spin_lock_irqsave(host lock)
5030
*
5031
* RETURNS:
5032
* Bitmask of active qcs
5033
*/
5034
u64 ata_qc_get_active(struct ata_port *ap)
5035
{
5036
u64 qc_active = ap->qc_active;
5037
5038
/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5039
if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5040
qc_active |= (1 << 0);
5041
qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5042
}
5043
5044
return qc_active;
5045
}
5046
EXPORT_SYMBOL_GPL(ata_qc_get_active);
5047
5048
/**
5049
* ata_qc_issue - issue taskfile to device
5050
* @qc: command to issue to device
5051
*
5052
* Prepare an ATA command to submission to device.
5053
* This includes mapping the data into a DMA-able
5054
* area, filling in the S/G table, and finally
5055
* writing the taskfile to hardware, starting the command.
5056
*
5057
* LOCKING:
5058
* spin_lock_irqsave(host lock)
5059
*/
5060
void ata_qc_issue(struct ata_queued_cmd *qc)
5061
{
5062
struct ata_port *ap = qc->ap;
5063
struct ata_link *link = qc->dev->link;
5064
u8 prot = qc->tf.protocol;
5065
5066
/* Make sure only one non-NCQ command is outstanding. */
5067
WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5068
5069
if (ata_is_ncq(prot)) {
5070
WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5071
5072
if (!link->sactive)
5073
ap->nr_active_links++;
5074
link->sactive |= 1 << qc->hw_tag;
5075
} else {
5076
WARN_ON_ONCE(link->sactive);
5077
5078
ap->nr_active_links++;
5079
link->active_tag = qc->tag;
5080
}
5081
5082
qc->flags |= ATA_QCFLAG_ACTIVE;
5083
ap->qc_active |= 1ULL << qc->tag;
5084
5085
/*
5086
* We guarantee to LLDs that they will have at least one
5087
* non-zero sg if the command is a data command.
5088
*/
5089
if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5090
goto sys_err;
5091
5092
if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5093
(ap->flags & ATA_FLAG_PIO_DMA)))
5094
if (ata_sg_setup(qc))
5095
goto sys_err;
5096
5097
/* if device is sleeping, schedule reset and abort the link */
5098
if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5099
link->eh_info.action |= ATA_EH_RESET;
5100
ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5101
ata_link_abort(link);
5102
return;
5103
}
5104
5105
if (ap->ops->qc_prep) {
5106
trace_ata_qc_prep(qc);
5107
qc->err_mask |= ap->ops->qc_prep(qc);
5108
if (unlikely(qc->err_mask))
5109
goto err;
5110
}
5111
5112
trace_ata_qc_issue(qc);
5113
qc->err_mask |= ap->ops->qc_issue(qc);
5114
if (unlikely(qc->err_mask))
5115
goto err;
5116
return;
5117
5118
sys_err:
5119
qc->err_mask |= AC_ERR_SYSTEM;
5120
err:
5121
ata_qc_complete(qc);
5122
}
5123
5124
/**
5125
* ata_phys_link_online - test whether the given link is online
5126
* @link: ATA link to test
5127
*
5128
* Test whether @link is online. Note that this function returns
5129
* 0 if online status of @link cannot be obtained, so
5130
* ata_link_online(link) != !ata_link_offline(link).
5131
*
5132
* LOCKING:
5133
* None.
5134
*
5135
* RETURNS:
5136
* True if the port online status is available and online.
5137
*/
5138
bool ata_phys_link_online(struct ata_link *link)
5139
{
5140
u32 sstatus;
5141
5142
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5143
ata_sstatus_online(sstatus))
5144
return true;
5145
return false;
5146
}
5147
5148
/**
5149
* ata_phys_link_offline - test whether the given link is offline
5150
* @link: ATA link to test
5151
*
5152
* Test whether @link is offline. Note that this function
5153
* returns 0 if offline status of @link cannot be obtained, so
5154
* ata_link_online(link) != !ata_link_offline(link).
5155
*
5156
* LOCKING:
5157
* None.
5158
*
5159
* RETURNS:
5160
* True if the port offline status is available and offline.
5161
*/
5162
bool ata_phys_link_offline(struct ata_link *link)
5163
{
5164
u32 sstatus;
5165
5166
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5167
!ata_sstatus_online(sstatus))
5168
return true;
5169
return false;
5170
}
5171
5172
/**
5173
* ata_link_online - test whether the given link is online
5174
* @link: ATA link to test
5175
*
5176
* Test whether @link is online. This is identical to
5177
* ata_phys_link_online() when there's no slave link. When
5178
* there's a slave link, this function should only be called on
5179
* the master link and will return true if any of M/S links is
5180
* online.
5181
*
5182
* LOCKING:
5183
* None.
5184
*
5185
* RETURNS:
5186
* True if the port online status is available and online.
5187
*/
5188
bool ata_link_online(struct ata_link *link)
5189
{
5190
struct ata_link *slave = link->ap->slave_link;
5191
5192
WARN_ON(link == slave); /* shouldn't be called on slave link */
5193
5194
return ata_phys_link_online(link) ||
5195
(slave && ata_phys_link_online(slave));
5196
}
5197
EXPORT_SYMBOL_GPL(ata_link_online);
5198
5199
/**
5200
* ata_link_offline - test whether the given link is offline
5201
* @link: ATA link to test
5202
*
5203
* Test whether @link is offline. This is identical to
5204
* ata_phys_link_offline() when there's no slave link. When
5205
* there's a slave link, this function should only be called on
5206
* the master link and will return true if both M/S links are
5207
* offline.
5208
*
5209
* LOCKING:
5210
* None.
5211
*
5212
* RETURNS:
5213
* True if the port offline status is available and offline.
5214
*/
5215
bool ata_link_offline(struct ata_link *link)
5216
{
5217
struct ata_link *slave = link->ap->slave_link;
5218
5219
WARN_ON(link == slave); /* shouldn't be called on slave link */
5220
5221
return ata_phys_link_offline(link) &&
5222
(!slave || ata_phys_link_offline(slave));
5223
}
5224
EXPORT_SYMBOL_GPL(ata_link_offline);
5225
5226
#ifdef CONFIG_PM
5227
static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5228
unsigned int action, unsigned int ehi_flags,
5229
bool async)
5230
{
5231
struct ata_link *link;
5232
unsigned long flags;
5233
5234
spin_lock_irqsave(ap->lock, flags);
5235
5236
/*
5237
* A previous PM operation might still be in progress. Wait for
5238
* ATA_PFLAG_PM_PENDING to clear.
5239
*/
5240
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5241
spin_unlock_irqrestore(ap->lock, flags);
5242
ata_port_wait_eh(ap);
5243
spin_lock_irqsave(ap->lock, flags);
5244
}
5245
5246
/* Request PM operation to EH */
5247
ap->pm_mesg = mesg;
5248
ap->pflags |= ATA_PFLAG_PM_PENDING;
5249
ata_for_each_link(link, ap, HOST_FIRST) {
5250
link->eh_info.action |= action;
5251
link->eh_info.flags |= ehi_flags;
5252
}
5253
5254
ata_port_schedule_eh(ap);
5255
5256
spin_unlock_irqrestore(ap->lock, flags);
5257
5258
if (!async)
5259
ata_port_wait_eh(ap);
5260
}
5261
5262
static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5263
bool async)
5264
{
5265
/*
5266
* We are about to suspend the port, so we do not care about
5267
* scsi_rescan_device() calls scheduled by previous resume operations.
5268
* The next resume will schedule the rescan again. So cancel any rescan
5269
* that is not done yet.
5270
*/
5271
cancel_delayed_work_sync(&ap->scsi_rescan_task);
5272
5273
/*
5274
* On some hardware, device fails to respond after spun down for
5275
* suspend. As the device will not be used until being resumed, we
5276
* do not need to touch the device. Ask EH to skip the usual stuff
5277
* and proceed directly to suspend.
5278
*
5279
* http://thread.gmane.org/gmane.linux.ide/46764
5280
*/
5281
ata_port_request_pm(ap, mesg, 0,
5282
ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5283
ATA_EHI_NO_RECOVERY,
5284
async);
5285
}
5286
5287
static int ata_port_pm_suspend(struct device *dev)
5288
{
5289
struct ata_port *ap = to_ata_port(dev);
5290
5291
if (pm_runtime_suspended(dev))
5292
return 0;
5293
5294
ata_port_suspend(ap, PMSG_SUSPEND, false);
5295
return 0;
5296
}
5297
5298
static int ata_port_pm_freeze(struct device *dev)
5299
{
5300
struct ata_port *ap = to_ata_port(dev);
5301
5302
if (pm_runtime_suspended(dev))
5303
return 0;
5304
5305
ata_port_suspend(ap, PMSG_FREEZE, false);
5306
return 0;
5307
}
5308
5309
static int ata_port_pm_poweroff(struct device *dev)
5310
{
5311
if (!pm_runtime_suspended(dev))
5312
ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5313
return 0;
5314
}
5315
5316
static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5317
bool async)
5318
{
5319
ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5320
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5321
async);
5322
}
5323
5324
static int ata_port_pm_resume(struct device *dev)
5325
{
5326
if (!pm_runtime_suspended(dev))
5327
ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5328
return 0;
5329
}
5330
5331
/*
5332
* For ODDs, the upper layer will poll for media change every few seconds,
5333
* which will make it enter and leave suspend state every few seconds. And
5334
* as each suspend will cause a hard/soft reset, the gain of runtime suspend
5335
* is very little and the ODD may malfunction after constantly being reset.
5336
* So the idle callback here will not proceed to suspend if a non-ZPODD capable
5337
* ODD is attached to the port.
5338
*/
5339
static int ata_port_runtime_idle(struct device *dev)
5340
{
5341
struct ata_port *ap = to_ata_port(dev);
5342
struct ata_link *link;
5343
struct ata_device *adev;
5344
5345
ata_for_each_link(link, ap, HOST_FIRST) {
5346
ata_for_each_dev(adev, link, ENABLED)
5347
if (adev->class == ATA_DEV_ATAPI &&
5348
!zpodd_dev_enabled(adev))
5349
return -EBUSY;
5350
}
5351
5352
return 0;
5353
}
5354
5355
static int ata_port_runtime_suspend(struct device *dev)
5356
{
5357
ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5358
return 0;
5359
}
5360
5361
static int ata_port_runtime_resume(struct device *dev)
5362
{
5363
ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5364
return 0;
5365
}
5366
5367
static const struct dev_pm_ops ata_port_pm_ops = {
5368
.suspend = ata_port_pm_suspend,
5369
.resume = ata_port_pm_resume,
5370
.freeze = ata_port_pm_freeze,
5371
.thaw = ata_port_pm_resume,
5372
.poweroff = ata_port_pm_poweroff,
5373
.restore = ata_port_pm_resume,
5374
5375
.runtime_suspend = ata_port_runtime_suspend,
5376
.runtime_resume = ata_port_runtime_resume,
5377
.runtime_idle = ata_port_runtime_idle,
5378
};
5379
5380
/* sas ports don't participate in pm runtime management of ata_ports,
5381
* and need to resume ata devices at the domain level, not the per-port
5382
* level. sas suspend/resume is async to allow parallel port recovery
5383
* since sas has multiple ata_port instances per Scsi_Host.
5384
*/
5385
void ata_sas_port_suspend(struct ata_port *ap)
5386
{
5387
ata_port_suspend(ap, PMSG_SUSPEND, true);
5388
}
5389
EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5390
5391
void ata_sas_port_resume(struct ata_port *ap)
5392
{
5393
ata_port_resume(ap, PMSG_RESUME, true);
5394
}
5395
EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5396
5397
/**
5398
* ata_host_suspend - suspend host
5399
* @host: host to suspend
5400
* @mesg: PM message
5401
*
5402
* Suspend @host. Actual operation is performed by port suspend.
5403
*/
5404
void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5405
{
5406
host->dev->power.power_state = mesg;
5407
}
5408
EXPORT_SYMBOL_GPL(ata_host_suspend);
5409
5410
/**
5411
* ata_host_resume - resume host
5412
* @host: host to resume
5413
*
5414
* Resume @host. Actual operation is performed by port resume.
5415
*/
5416
void ata_host_resume(struct ata_host *host)
5417
{
5418
host->dev->power.power_state = PMSG_ON;
5419
}
5420
EXPORT_SYMBOL_GPL(ata_host_resume);
5421
#endif
5422
5423
const struct device_type ata_port_type = {
5424
.name = ATA_PORT_TYPE_NAME,
5425
#ifdef CONFIG_PM
5426
.pm = &ata_port_pm_ops,
5427
#endif
5428
};
5429
5430
/**
5431
* ata_dev_init - Initialize an ata_device structure
5432
* @dev: Device structure to initialize
5433
*
5434
* Initialize @dev in preparation for probing.
5435
*
5436
* LOCKING:
5437
* Inherited from caller.
5438
*/
5439
void ata_dev_init(struct ata_device *dev)
5440
{
5441
struct ata_link *link = ata_dev_phys_link(dev);
5442
struct ata_port *ap = link->ap;
5443
unsigned long flags;
5444
5445
/* SATA spd limit is bound to the attached device, reset together */
5446
link->sata_spd_limit = link->hw_sata_spd_limit;
5447
link->sata_spd = 0;
5448
5449
/* High bits of dev->flags are used to record warm plug
5450
* requests which occur asynchronously. Synchronize using
5451
* host lock.
5452
*/
5453
spin_lock_irqsave(ap->lock, flags);
5454
dev->flags &= ~ATA_DFLAG_INIT_MASK;
5455
dev->quirks = 0;
5456
spin_unlock_irqrestore(ap->lock, flags);
5457
5458
memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5459
ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5460
dev->pio_mask = UINT_MAX;
5461
dev->mwdma_mask = UINT_MAX;
5462
dev->udma_mask = UINT_MAX;
5463
}
5464
5465
/**
5466
* ata_link_init - Initialize an ata_link structure
5467
* @ap: ATA port link is attached to
5468
* @link: Link structure to initialize
5469
* @pmp: Port multiplier port number
5470
*
5471
* Initialize @link.
5472
*
5473
* LOCKING:
5474
* Kernel thread context (may sleep)
5475
*/
5476
void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5477
{
5478
int i;
5479
5480
/* clear everything except for devices */
5481
memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5482
ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5483
5484
link->ap = ap;
5485
link->pmp = pmp;
5486
link->active_tag = ATA_TAG_POISON;
5487
link->hw_sata_spd_limit = UINT_MAX;
5488
5489
/* can't use iterator, ap isn't initialized yet */
5490
for (i = 0; i < ATA_MAX_DEVICES; i++) {
5491
struct ata_device *dev = &link->device[i];
5492
5493
dev->link = link;
5494
dev->devno = dev - link->device;
5495
#ifdef CONFIG_ATA_ACPI
5496
dev->gtf_filter = ata_acpi_gtf_filter;
5497
#endif
5498
ata_dev_init(dev);
5499
}
5500
}
5501
5502
/**
5503
* sata_link_init_spd - Initialize link->sata_spd_limit
5504
* @link: Link to configure sata_spd_limit for
5505
*
5506
* Initialize ``link->[hw_]sata_spd_limit`` to the currently
5507
* configured value.
5508
*
5509
* LOCKING:
5510
* Kernel thread context (may sleep).
5511
*
5512
* RETURNS:
5513
* 0 on success, -errno on failure.
5514
*/
5515
int sata_link_init_spd(struct ata_link *link)
5516
{
5517
u8 spd;
5518
int rc;
5519
5520
rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5521
if (rc)
5522
return rc;
5523
5524
spd = (link->saved_scontrol >> 4) & 0xf;
5525
if (spd)
5526
link->hw_sata_spd_limit &= (1 << spd) - 1;
5527
5528
ata_force_link_limits(link);
5529
5530
link->sata_spd_limit = link->hw_sata_spd_limit;
5531
5532
return 0;
5533
}
5534
5535
/**
5536
* ata_port_alloc - allocate and initialize basic ATA port resources
5537
* @host: ATA host this allocated port belongs to
5538
*
5539
* Allocate and initialize basic ATA port resources.
5540
*
5541
* RETURNS:
5542
* Allocate ATA port on success, NULL on failure.
5543
*
5544
* LOCKING:
5545
* Inherited from calling layer (may sleep).
5546
*/
5547
struct ata_port *ata_port_alloc(struct ata_host *host)
5548
{
5549
struct ata_port *ap;
5550
int id;
5551
5552
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5553
if (!ap)
5554
return NULL;
5555
5556
ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5557
ap->lock = &host->lock;
5558
id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5559
if (id < 0) {
5560
kfree(ap);
5561
return NULL;
5562
}
5563
ap->print_id = id;
5564
ap->host = host;
5565
ap->dev = host->dev;
5566
5567
mutex_init(&ap->scsi_scan_mutex);
5568
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5569
INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5570
INIT_LIST_HEAD(&ap->eh_done_q);
5571
init_waitqueue_head(&ap->eh_wait_q);
5572
init_completion(&ap->park_req_pending);
5573
timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5574
TIMER_DEFERRABLE);
5575
5576
ap->cbl = ATA_CBL_NONE;
5577
5578
ata_link_init(ap, &ap->link, 0);
5579
5580
#ifdef ATA_IRQ_TRAP
5581
ap->stats.unhandled_irq = 1;
5582
ap->stats.idle_irq = 1;
5583
#endif
5584
ata_sff_port_init(ap);
5585
5586
ata_force_pflags(ap);
5587
5588
return ap;
5589
}
5590
EXPORT_SYMBOL_GPL(ata_port_alloc);
5591
5592
void ata_port_free(struct ata_port *ap)
5593
{
5594
if (!ap)
5595
return;
5596
5597
kfree(ap->pmp_link);
5598
kfree(ap->slave_link);
5599
ida_free(&ata_ida, ap->print_id);
5600
kfree(ap);
5601
}
5602
EXPORT_SYMBOL_GPL(ata_port_free);
5603
5604
static void ata_devres_release(struct device *gendev, void *res)
5605
{
5606
struct ata_host *host = dev_get_drvdata(gendev);
5607
int i;
5608
5609
for (i = 0; i < host->n_ports; i++) {
5610
struct ata_port *ap = host->ports[i];
5611
5612
if (!ap)
5613
continue;
5614
5615
if (ap->scsi_host)
5616
scsi_host_put(ap->scsi_host);
5617
5618
}
5619
5620
dev_set_drvdata(gendev, NULL);
5621
ata_host_put(host);
5622
}
5623
5624
static void ata_host_release(struct kref *kref)
5625
{
5626
struct ata_host *host = container_of(kref, struct ata_host, kref);
5627
int i;
5628
5629
for (i = 0; i < host->n_ports; i++) {
5630
ata_port_free(host->ports[i]);
5631
host->ports[i] = NULL;
5632
}
5633
kfree(host);
5634
}
5635
5636
void ata_host_get(struct ata_host *host)
5637
{
5638
kref_get(&host->kref);
5639
}
5640
5641
void ata_host_put(struct ata_host *host)
5642
{
5643
kref_put(&host->kref, ata_host_release);
5644
}
5645
EXPORT_SYMBOL_GPL(ata_host_put);
5646
5647
/**
5648
* ata_host_alloc - allocate and init basic ATA host resources
5649
* @dev: generic device this host is associated with
5650
* @n_ports: the number of ATA ports associated with this host
5651
*
5652
* Allocate and initialize basic ATA host resources. LLD calls
5653
* this function to allocate a host, initializes it fully and
5654
* attaches it using ata_host_register().
5655
*
5656
* RETURNS:
5657
* Allocate ATA host on success, NULL on failure.
5658
*
5659
* LOCKING:
5660
* Inherited from calling layer (may sleep).
5661
*/
5662
struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5663
{
5664
struct ata_host *host;
5665
size_t sz;
5666
int i;
5667
void *dr;
5668
5669
/* alloc a container for our list of ATA ports (buses) */
5670
sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5671
host = kzalloc(sz, GFP_KERNEL);
5672
if (!host)
5673
return NULL;
5674
5675
if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5676
kfree(host);
5677
return NULL;
5678
}
5679
5680
dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5681
if (!dr) {
5682
kfree(host);
5683
goto err_out;
5684
}
5685
5686
devres_add(dev, dr);
5687
dev_set_drvdata(dev, host);
5688
5689
spin_lock_init(&host->lock);
5690
mutex_init(&host->eh_mutex);
5691
host->dev = dev;
5692
host->n_ports = n_ports;
5693
kref_init(&host->kref);
5694
5695
/* allocate ports bound to this host */
5696
for (i = 0; i < n_ports; i++) {
5697
struct ata_port *ap;
5698
5699
ap = ata_port_alloc(host);
5700
if (!ap)
5701
goto err_out;
5702
5703
ap->port_no = i;
5704
host->ports[i] = ap;
5705
}
5706
5707
devres_remove_group(dev, NULL);
5708
return host;
5709
5710
err_out:
5711
devres_release_group(dev, NULL);
5712
return NULL;
5713
}
5714
EXPORT_SYMBOL_GPL(ata_host_alloc);
5715
5716
/**
5717
* ata_host_alloc_pinfo - alloc host and init with port_info array
5718
* @dev: generic device this host is associated with
5719
* @ppi: array of ATA port_info to initialize host with
5720
* @n_ports: number of ATA ports attached to this host
5721
*
5722
* Allocate ATA host and initialize with info from @ppi. If NULL
5723
* terminated, @ppi may contain fewer entries than @n_ports. The
5724
* last entry will be used for the remaining ports.
5725
*
5726
* RETURNS:
5727
* Allocate ATA host on success, NULL on failure.
5728
*
5729
* LOCKING:
5730
* Inherited from calling layer (may sleep).
5731
*/
5732
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5733
const struct ata_port_info * const * ppi,
5734
int n_ports)
5735
{
5736
const struct ata_port_info *pi = &ata_dummy_port_info;
5737
struct ata_host *host;
5738
int i, j;
5739
5740
host = ata_host_alloc(dev, n_ports);
5741
if (!host)
5742
return NULL;
5743
5744
for (i = 0, j = 0; i < host->n_ports; i++) {
5745
struct ata_port *ap = host->ports[i];
5746
5747
if (ppi[j])
5748
pi = ppi[j++];
5749
5750
ap->pio_mask = pi->pio_mask;
5751
ap->mwdma_mask = pi->mwdma_mask;
5752
ap->udma_mask = pi->udma_mask;
5753
ap->flags |= pi->flags;
5754
ap->link.flags |= pi->link_flags;
5755
ap->ops = pi->port_ops;
5756
5757
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5758
host->ops = pi->port_ops;
5759
}
5760
5761
return host;
5762
}
5763
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5764
5765
static void ata_host_stop(struct device *gendev, void *res)
5766
{
5767
struct ata_host *host = dev_get_drvdata(gendev);
5768
int i;
5769
5770
WARN_ON(!(host->flags & ATA_HOST_STARTED));
5771
5772
for (i = 0; i < host->n_ports; i++) {
5773
struct ata_port *ap = host->ports[i];
5774
5775
if (ap->ops->port_stop)
5776
ap->ops->port_stop(ap);
5777
}
5778
5779
if (host->ops->host_stop)
5780
host->ops->host_stop(host);
5781
}
5782
5783
/**
5784
* ata_finalize_port_ops - finalize ata_port_operations
5785
* @ops: ata_port_operations to finalize
5786
*
5787
* An ata_port_operations can inherit from another ops and that
5788
* ops can again inherit from another. This can go on as many
5789
* times as necessary as long as there is no loop in the
5790
* inheritance chain.
5791
*
5792
* Ops tables are finalized when the host is started. NULL or
5793
* unspecified entries are inherited from the closet ancestor
5794
* which has the method and the entry is populated with it.
5795
* After finalization, the ops table directly points to all the
5796
* methods and ->inherits is no longer necessary and cleared.
5797
*
5798
* Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5799
*
5800
* LOCKING:
5801
* None.
5802
*/
5803
static void ata_finalize_port_ops(struct ata_port_operations *ops)
5804
{
5805
static DEFINE_SPINLOCK(lock);
5806
const struct ata_port_operations *cur;
5807
void **begin = (void **)ops;
5808
void **end = (void **)&ops->inherits;
5809
void **pp;
5810
5811
if (!ops || !ops->inherits)
5812
return;
5813
5814
spin_lock(&lock);
5815
5816
for (cur = ops->inherits; cur; cur = cur->inherits) {
5817
void **inherit = (void **)cur;
5818
5819
for (pp = begin; pp < end; pp++, inherit++)
5820
if (!*pp)
5821
*pp = *inherit;
5822
}
5823
5824
for (pp = begin; pp < end; pp++)
5825
if (IS_ERR(*pp))
5826
*pp = NULL;
5827
5828
ops->inherits = NULL;
5829
5830
spin_unlock(&lock);
5831
}
5832
5833
/**
5834
* ata_host_start - start and freeze ports of an ATA host
5835
* @host: ATA host to start ports for
5836
*
5837
* Start and then freeze ports of @host. Started status is
5838
* recorded in host->flags, so this function can be called
5839
* multiple times. Ports are guaranteed to get started only
5840
* once. If host->ops is not initialized yet, it is set to the
5841
* first non-dummy port ops.
5842
*
5843
* LOCKING:
5844
* Inherited from calling layer (may sleep).
5845
*
5846
* RETURNS:
5847
* 0 if all ports are started successfully, -errno otherwise.
5848
*/
5849
int ata_host_start(struct ata_host *host)
5850
{
5851
int have_stop = 0;
5852
void *start_dr = NULL;
5853
int i, rc;
5854
5855
if (host->flags & ATA_HOST_STARTED)
5856
return 0;
5857
5858
ata_finalize_port_ops(host->ops);
5859
5860
for (i = 0; i < host->n_ports; i++) {
5861
struct ata_port *ap = host->ports[i];
5862
5863
ata_finalize_port_ops(ap->ops);
5864
5865
if (!host->ops && !ata_port_is_dummy(ap))
5866
host->ops = ap->ops;
5867
5868
if (ap->ops->port_stop)
5869
have_stop = 1;
5870
}
5871
5872
if (host->ops && host->ops->host_stop)
5873
have_stop = 1;
5874
5875
if (have_stop) {
5876
start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5877
if (!start_dr)
5878
return -ENOMEM;
5879
}
5880
5881
for (i = 0; i < host->n_ports; i++) {
5882
struct ata_port *ap = host->ports[i];
5883
5884
if (ap->ops->port_start) {
5885
rc = ap->ops->port_start(ap);
5886
if (rc) {
5887
if (rc != -ENODEV)
5888
dev_err(host->dev,
5889
"failed to start port %d (errno=%d)\n",
5890
i, rc);
5891
goto err_out;
5892
}
5893
}
5894
ata_eh_freeze_port(ap);
5895
}
5896
5897
if (start_dr)
5898
devres_add(host->dev, start_dr);
5899
host->flags |= ATA_HOST_STARTED;
5900
return 0;
5901
5902
err_out:
5903
while (--i >= 0) {
5904
struct ata_port *ap = host->ports[i];
5905
5906
if (ap->ops->port_stop)
5907
ap->ops->port_stop(ap);
5908
}
5909
devres_free(start_dr);
5910
return rc;
5911
}
5912
EXPORT_SYMBOL_GPL(ata_host_start);
5913
5914
/**
5915
* ata_host_init - Initialize a host struct for sas (ipr, libsas)
5916
* @host: host to initialize
5917
* @dev: device host is attached to
5918
* @ops: port_ops
5919
*
5920
*/
5921
void ata_host_init(struct ata_host *host, struct device *dev,
5922
struct ata_port_operations *ops)
5923
{
5924
spin_lock_init(&host->lock);
5925
mutex_init(&host->eh_mutex);
5926
host->n_tags = ATA_MAX_QUEUE;
5927
host->dev = dev;
5928
host->ops = ops;
5929
kref_init(&host->kref);
5930
}
5931
EXPORT_SYMBOL_GPL(ata_host_init);
5932
5933
void ata_port_probe(struct ata_port *ap)
5934
{
5935
struct ata_eh_info *ehi = &ap->link.eh_info;
5936
unsigned long flags;
5937
5938
ata_acpi_port_power_on(ap);
5939
5940
/* kick EH for boot probing */
5941
spin_lock_irqsave(ap->lock, flags);
5942
5943
ehi->probe_mask |= ATA_ALL_DEVICES;
5944
ehi->action |= ATA_EH_RESET;
5945
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5946
5947
ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5948
ap->pflags |= ATA_PFLAG_LOADING;
5949
ata_port_schedule_eh(ap);
5950
5951
spin_unlock_irqrestore(ap->lock, flags);
5952
}
5953
EXPORT_SYMBOL_GPL(ata_port_probe);
5954
5955
static void async_port_probe(void *data, async_cookie_t cookie)
5956
{
5957
struct ata_port *ap = data;
5958
5959
/*
5960
* If we're not allowed to scan this host in parallel,
5961
* we need to wait until all previous scans have completed
5962
* before going further.
5963
* Jeff Garzik says this is only within a controller, so we
5964
* don't need to wait for port 0, only for later ports.
5965
*/
5966
if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5967
async_synchronize_cookie(cookie);
5968
5969
ata_port_probe(ap);
5970
ata_port_wait_eh(ap);
5971
5972
/* in order to keep device order, we need to synchronize at this point */
5973
async_synchronize_cookie(cookie);
5974
5975
ata_scsi_scan_host(ap, 1);
5976
}
5977
5978
/**
5979
* ata_host_register - register initialized ATA host
5980
* @host: ATA host to register
5981
* @sht: template for SCSI host
5982
*
5983
* Register initialized ATA host. @host is allocated using
5984
* ata_host_alloc() and fully initialized by LLD. This function
5985
* starts ports, registers @host with ATA and SCSI layers and
5986
* probe registered devices.
5987
*
5988
* LOCKING:
5989
* Inherited from calling layer (may sleep).
5990
*
5991
* RETURNS:
5992
* 0 on success, -errno otherwise.
5993
*/
5994
int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5995
{
5996
int i, rc;
5997
5998
host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5999
6000
/* host must have been started */
6001
if (!(host->flags & ATA_HOST_STARTED)) {
6002
dev_err(host->dev, "BUG: trying to register unstarted host\n");
6003
WARN_ON(1);
6004
return -EINVAL;
6005
}
6006
6007
/* Create associated sysfs transport objects */
6008
for (i = 0; i < host->n_ports; i++) {
6009
rc = ata_tport_add(host->dev,host->ports[i]);
6010
if (rc) {
6011
goto err_tadd;
6012
}
6013
}
6014
6015
rc = ata_scsi_add_hosts(host, sht);
6016
if (rc)
6017
goto err_tadd;
6018
6019
/* set cable, sata_spd_limit and report */
6020
for (i = 0; i < host->n_ports; i++) {
6021
struct ata_port *ap = host->ports[i];
6022
unsigned int xfer_mask;
6023
6024
/* set SATA cable type if still unset */
6025
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6026
ap->cbl = ATA_CBL_SATA;
6027
6028
/* init sata_spd_limit to the current value */
6029
sata_link_init_spd(&ap->link);
6030
if (ap->slave_link)
6031
sata_link_init_spd(ap->slave_link);
6032
6033
/* print per-port info to dmesg */
6034
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6035
ap->udma_mask);
6036
6037
if (!ata_port_is_dummy(ap)) {
6038
ata_port_info(ap, "%cATA max %s %s\n",
6039
(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6040
ata_mode_string(xfer_mask),
6041
ap->link.eh_info.desc);
6042
ata_ehi_clear_desc(&ap->link.eh_info);
6043
} else
6044
ata_port_info(ap, "DUMMY\n");
6045
}
6046
6047
/* perform each probe asynchronously */
6048
for (i = 0; i < host->n_ports; i++) {
6049
struct ata_port *ap = host->ports[i];
6050
ap->cookie = async_schedule(async_port_probe, ap);
6051
}
6052
6053
return 0;
6054
6055
err_tadd:
6056
while (--i >= 0) {
6057
ata_tport_delete(host->ports[i]);
6058
}
6059
return rc;
6060
6061
}
6062
EXPORT_SYMBOL_GPL(ata_host_register);
6063
6064
/**
6065
* ata_host_activate - start host, request IRQ and register it
6066
* @host: target ATA host
6067
* @irq: IRQ to request
6068
* @irq_handler: irq_handler used when requesting IRQ
6069
* @irq_flags: irq_flags used when requesting IRQ
6070
* @sht: scsi_host_template to use when registering the host
6071
*
6072
* After allocating an ATA host and initializing it, most libata
6073
* LLDs perform three steps to activate the host - start host,
6074
* request IRQ and register it. This helper takes necessary
6075
* arguments and performs the three steps in one go.
6076
*
6077
* An invalid IRQ skips the IRQ registration and expects the host to
6078
* have set polling mode on the port. In this case, @irq_handler
6079
* should be NULL.
6080
*
6081
* LOCKING:
6082
* Inherited from calling layer (may sleep).
6083
*
6084
* RETURNS:
6085
* 0 on success, -errno otherwise.
6086
*/
6087
int ata_host_activate(struct ata_host *host, int irq,
6088
irq_handler_t irq_handler, unsigned long irq_flags,
6089
const struct scsi_host_template *sht)
6090
{
6091
int i, rc;
6092
char *irq_desc;
6093
6094
rc = ata_host_start(host);
6095
if (rc)
6096
return rc;
6097
6098
/* Special case for polling mode */
6099
if (!irq) {
6100
WARN_ON(irq_handler);
6101
return ata_host_register(host, sht);
6102
}
6103
6104
irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6105
dev_driver_string(host->dev),
6106
dev_name(host->dev));
6107
if (!irq_desc)
6108
return -ENOMEM;
6109
6110
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6111
irq_desc, host);
6112
if (rc)
6113
return rc;
6114
6115
for (i = 0; i < host->n_ports; i++)
6116
ata_port_desc_misc(host->ports[i], irq);
6117
6118
rc = ata_host_register(host, sht);
6119
/* if failed, just free the IRQ and leave ports alone */
6120
if (rc)
6121
devm_free_irq(host->dev, irq, host);
6122
6123
return rc;
6124
}
6125
EXPORT_SYMBOL_GPL(ata_host_activate);
6126
6127
/**
6128
* ata_dev_free_resources - Free a device resources
6129
* @dev: Target ATA device
6130
*
6131
* Free resources allocated to support a device features.
6132
*
6133
* LOCKING:
6134
* Kernel thread context (may sleep).
6135
*/
6136
void ata_dev_free_resources(struct ata_device *dev)
6137
{
6138
if (zpodd_dev_enabled(dev))
6139
zpodd_exit(dev);
6140
6141
ata_dev_cleanup_cdl_resources(dev);
6142
}
6143
6144
/**
6145
* ata_port_detach - Detach ATA port in preparation of device removal
6146
* @ap: ATA port to be detached
6147
*
6148
* Detach all ATA devices and the associated SCSI devices of @ap;
6149
* then, remove the associated SCSI host. @ap is guaranteed to
6150
* be quiescent on return from this function.
6151
*
6152
* LOCKING:
6153
* Kernel thread context (may sleep).
6154
*/
6155
static void ata_port_detach(struct ata_port *ap)
6156
{
6157
unsigned long flags;
6158
struct ata_link *link;
6159
struct ata_device *dev;
6160
6161
/* Ensure ata_port probe has completed */
6162
async_synchronize_cookie(ap->cookie + 1);
6163
6164
/* Wait for any ongoing EH */
6165
ata_port_wait_eh(ap);
6166
6167
mutex_lock(&ap->scsi_scan_mutex);
6168
spin_lock_irqsave(ap->lock, flags);
6169
6170
/* Remove scsi devices */
6171
ata_for_each_link(link, ap, HOST_FIRST) {
6172
ata_for_each_dev(dev, link, ALL) {
6173
if (dev->sdev) {
6174
spin_unlock_irqrestore(ap->lock, flags);
6175
scsi_remove_device(dev->sdev);
6176
spin_lock_irqsave(ap->lock, flags);
6177
dev->sdev = NULL;
6178
}
6179
}
6180
}
6181
6182
/* Tell EH to disable all devices */
6183
ap->pflags |= ATA_PFLAG_UNLOADING;
6184
ata_port_schedule_eh(ap);
6185
6186
spin_unlock_irqrestore(ap->lock, flags);
6187
mutex_unlock(&ap->scsi_scan_mutex);
6188
6189
/* wait till EH commits suicide */
6190
ata_port_wait_eh(ap);
6191
6192
/* it better be dead now */
6193
WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6194
6195
cancel_delayed_work_sync(&ap->hotplug_task);
6196
cancel_delayed_work_sync(&ap->scsi_rescan_task);
6197
6198
/* Delete port multiplier link transport devices */
6199
if (ap->pmp_link) {
6200
int i;
6201
6202
for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6203
ata_tlink_delete(&ap->pmp_link[i]);
6204
}
6205
6206
/* Remove the associated SCSI host */
6207
scsi_remove_host(ap->scsi_host);
6208
ata_tport_delete(ap);
6209
}
6210
6211
/**
6212
* ata_host_detach - Detach all ports of an ATA host
6213
* @host: Host to detach
6214
*
6215
* Detach all ports of @host.
6216
*
6217
* LOCKING:
6218
* Kernel thread context (may sleep).
6219
*/
6220
void ata_host_detach(struct ata_host *host)
6221
{
6222
int i;
6223
6224
for (i = 0; i < host->n_ports; i++)
6225
ata_port_detach(host->ports[i]);
6226
6227
/* the host is dead now, dissociate ACPI */
6228
ata_acpi_dissociate(host);
6229
}
6230
EXPORT_SYMBOL_GPL(ata_host_detach);
6231
6232
#ifdef CONFIG_PCI
6233
6234
/**
6235
* ata_pci_remove_one - PCI layer callback for device removal
6236
* @pdev: PCI device that was removed
6237
*
6238
* PCI layer indicates to libata via this hook that hot-unplug or
6239
* module unload event has occurred. Detach all ports. Resource
6240
* release is handled via devres.
6241
*
6242
* LOCKING:
6243
* Inherited from PCI layer (may sleep).
6244
*/
6245
void ata_pci_remove_one(struct pci_dev *pdev)
6246
{
6247
struct ata_host *host = pci_get_drvdata(pdev);
6248
6249
ata_host_detach(host);
6250
}
6251
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6252
6253
void ata_pci_shutdown_one(struct pci_dev *pdev)
6254
{
6255
struct ata_host *host = pci_get_drvdata(pdev);
6256
int i;
6257
6258
for (i = 0; i < host->n_ports; i++) {
6259
struct ata_port *ap = host->ports[i];
6260
6261
ap->pflags |= ATA_PFLAG_FROZEN;
6262
6263
/* Disable port interrupts */
6264
if (ap->ops->freeze)
6265
ap->ops->freeze(ap);
6266
6267
/* Stop the port DMA engines */
6268
if (ap->ops->port_stop)
6269
ap->ops->port_stop(ap);
6270
}
6271
}
6272
EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6273
6274
/* move to PCI subsystem */
6275
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6276
{
6277
unsigned long tmp = 0;
6278
6279
switch (bits->width) {
6280
case 1: {
6281
u8 tmp8 = 0;
6282
pci_read_config_byte(pdev, bits->reg, &tmp8);
6283
tmp = tmp8;
6284
break;
6285
}
6286
case 2: {
6287
u16 tmp16 = 0;
6288
pci_read_config_word(pdev, bits->reg, &tmp16);
6289
tmp = tmp16;
6290
break;
6291
}
6292
case 4: {
6293
u32 tmp32 = 0;
6294
pci_read_config_dword(pdev, bits->reg, &tmp32);
6295
tmp = tmp32;
6296
break;
6297
}
6298
6299
default:
6300
return -EINVAL;
6301
}
6302
6303
tmp &= bits->mask;
6304
6305
return (tmp == bits->val) ? 1 : 0;
6306
}
6307
EXPORT_SYMBOL_GPL(pci_test_config_bits);
6308
6309
#ifdef CONFIG_PM
6310
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6311
{
6312
pci_save_state(pdev);
6313
pci_disable_device(pdev);
6314
6315
if (mesg.event & PM_EVENT_SLEEP)
6316
pci_set_power_state(pdev, PCI_D3hot);
6317
}
6318
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6319
6320
int ata_pci_device_do_resume(struct pci_dev *pdev)
6321
{
6322
int rc;
6323
6324
pci_set_power_state(pdev, PCI_D0);
6325
pci_restore_state(pdev);
6326
6327
rc = pcim_enable_device(pdev);
6328
if (rc) {
6329
dev_err(&pdev->dev,
6330
"failed to enable device after resume (%d)\n", rc);
6331
return rc;
6332
}
6333
6334
pci_set_master(pdev);
6335
return 0;
6336
}
6337
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6338
6339
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6340
{
6341
struct ata_host *host = pci_get_drvdata(pdev);
6342
6343
ata_host_suspend(host, mesg);
6344
6345
ata_pci_device_do_suspend(pdev, mesg);
6346
6347
return 0;
6348
}
6349
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6350
6351
int ata_pci_device_resume(struct pci_dev *pdev)
6352
{
6353
struct ata_host *host = pci_get_drvdata(pdev);
6354
int rc;
6355
6356
rc = ata_pci_device_do_resume(pdev);
6357
if (rc == 0)
6358
ata_host_resume(host);
6359
return rc;
6360
}
6361
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6362
#endif /* CONFIG_PM */
6363
#endif /* CONFIG_PCI */
6364
6365
/**
6366
* ata_platform_remove_one - Platform layer callback for device removal
6367
* @pdev: Platform device that was removed
6368
*
6369
* Platform layer indicates to libata via this hook that hot-unplug or
6370
* module unload event has occurred. Detach all ports. Resource
6371
* release is handled via devres.
6372
*
6373
* LOCKING:
6374
* Inherited from platform layer (may sleep).
6375
*/
6376
void ata_platform_remove_one(struct platform_device *pdev)
6377
{
6378
struct ata_host *host = platform_get_drvdata(pdev);
6379
6380
ata_host_detach(host);
6381
}
6382
EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6383
6384
#ifdef CONFIG_ATA_FORCE
6385
6386
#define force_cbl(name, flag) \
6387
{ #name, .cbl = (flag) }
6388
6389
#define force_spd_limit(spd, val) \
6390
{ #spd, .spd_limit = (val) }
6391
6392
#define force_xfer(mode, shift) \
6393
{ #mode, .xfer_mask = (1UL << (shift)) }
6394
6395
#define force_lflag_on(name, flags) \
6396
{ #name, .lflags_on = (flags) }
6397
6398
#define force_lflag_onoff(name, flags) \
6399
{ "no" #name, .lflags_on = (flags) }, \
6400
{ #name, .lflags_off = (flags) }
6401
6402
#define force_pflag_on(name, flags) \
6403
{ #name, .pflags_on = (flags) }
6404
6405
#define force_quirk_on(name, flag) \
6406
{ #name, .quirk_on = (flag) }
6407
6408
#define force_quirk_onoff(name, flag) \
6409
{ "no" #name, .quirk_on = (flag) }, \
6410
{ #name, .quirk_off = (flag) }
6411
6412
static const struct ata_force_param force_tbl[] __initconst = {
6413
force_cbl(40c, ATA_CBL_PATA40),
6414
force_cbl(80c, ATA_CBL_PATA80),
6415
force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6416
force_cbl(unk, ATA_CBL_PATA_UNK),
6417
force_cbl(ign, ATA_CBL_PATA_IGN),
6418
force_cbl(sata, ATA_CBL_SATA),
6419
6420
force_spd_limit(1.5Gbps, 1),
6421
force_spd_limit(3.0Gbps, 2),
6422
6423
force_xfer(pio0, ATA_SHIFT_PIO + 0),
6424
force_xfer(pio1, ATA_SHIFT_PIO + 1),
6425
force_xfer(pio2, ATA_SHIFT_PIO + 2),
6426
force_xfer(pio3, ATA_SHIFT_PIO + 3),
6427
force_xfer(pio4, ATA_SHIFT_PIO + 4),
6428
force_xfer(pio5, ATA_SHIFT_PIO + 5),
6429
force_xfer(pio6, ATA_SHIFT_PIO + 6),
6430
force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6431
force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6432
force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6433
force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6434
force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6435
force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6436
force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6437
force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6438
force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6439
force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6440
force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6441
force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6442
force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6443
force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6444
force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6445
force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6446
force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6447
force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6448
force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6449
force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6450
force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6451
force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6452
force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6453
force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6454
force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6455
force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6456
force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6457
6458
force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6459
force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6460
force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6461
force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6462
force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6463
6464
force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6465
6466
force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6467
force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6468
force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6469
6470
force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6471
force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6472
force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6473
6474
force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6475
force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6476
force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6477
6478
force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6479
force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6480
force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6481
6482
force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6483
force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6484
force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6485
6486
force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6487
force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6488
force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6489
force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6490
6491
force_quirk_on(disable, ATA_QUIRK_DISABLE),
6492
};
6493
6494
static int __init ata_parse_force_one(char **cur,
6495
struct ata_force_ent *force_ent,
6496
const char **reason)
6497
{
6498
char *start = *cur, *p = *cur;
6499
char *id, *val, *endp;
6500
const struct ata_force_param *match_fp = NULL;
6501
int nr_matches = 0, i;
6502
6503
/* find where this param ends and update *cur */
6504
while (*p != '\0' && *p != ',')
6505
p++;
6506
6507
if (*p == '\0')
6508
*cur = p;
6509
else
6510
*cur = p + 1;
6511
6512
*p = '\0';
6513
6514
/* parse */
6515
p = strchr(start, ':');
6516
if (!p) {
6517
val = strstrip(start);
6518
goto parse_val;
6519
}
6520
*p = '\0';
6521
6522
id = strstrip(start);
6523
val = strstrip(p + 1);
6524
6525
/* parse id */
6526
p = strchr(id, '.');
6527
if (p) {
6528
*p++ = '\0';
6529
force_ent->device = simple_strtoul(p, &endp, 10);
6530
if (p == endp || *endp != '\0') {
6531
*reason = "invalid device";
6532
return -EINVAL;
6533
}
6534
}
6535
6536
force_ent->port = simple_strtoul(id, &endp, 10);
6537
if (id == endp || *endp != '\0') {
6538
*reason = "invalid port/link";
6539
return -EINVAL;
6540
}
6541
6542
parse_val:
6543
/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6544
for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6545
const struct ata_force_param *fp = &force_tbl[i];
6546
6547
if (strncasecmp(val, fp->name, strlen(val)))
6548
continue;
6549
6550
nr_matches++;
6551
match_fp = fp;
6552
6553
if (strcasecmp(val, fp->name) == 0) {
6554
nr_matches = 1;
6555
break;
6556
}
6557
}
6558
6559
if (!nr_matches) {
6560
*reason = "unknown value";
6561
return -EINVAL;
6562
}
6563
if (nr_matches > 1) {
6564
*reason = "ambiguous value";
6565
return -EINVAL;
6566
}
6567
6568
force_ent->param = *match_fp;
6569
6570
return 0;
6571
}
6572
6573
static void __init ata_parse_force_param(void)
6574
{
6575
int idx = 0, size = 1;
6576
int last_port = -1, last_device = -1;
6577
char *p, *cur, *next;
6578
6579
/* Calculate maximum number of params and allocate ata_force_tbl */
6580
for (p = ata_force_param_buf; *p; p++)
6581
if (*p == ',')
6582
size++;
6583
6584
ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6585
if (!ata_force_tbl) {
6586
printk(KERN_WARNING "ata: failed to extend force table, "
6587
"libata.force ignored\n");
6588
return;
6589
}
6590
6591
/* parse and populate the table */
6592
for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6593
const char *reason = "";
6594
struct ata_force_ent te = { .port = -1, .device = -1 };
6595
6596
next = cur;
6597
if (ata_parse_force_one(&next, &te, &reason)) {
6598
printk(KERN_WARNING "ata: failed to parse force "
6599
"parameter \"%s\" (%s)\n",
6600
cur, reason);
6601
continue;
6602
}
6603
6604
if (te.port == -1) {
6605
te.port = last_port;
6606
te.device = last_device;
6607
}
6608
6609
ata_force_tbl[idx++] = te;
6610
6611
last_port = te.port;
6612
last_device = te.device;
6613
}
6614
6615
ata_force_tbl_size = idx;
6616
}
6617
6618
static void ata_free_force_param(void)
6619
{
6620
kfree(ata_force_tbl);
6621
}
6622
#else
6623
static inline void ata_parse_force_param(void) { }
6624
static inline void ata_free_force_param(void) { }
6625
#endif
6626
6627
static int __init ata_init(void)
6628
{
6629
int rc;
6630
6631
ata_parse_force_param();
6632
6633
rc = ata_sff_init();
6634
if (rc) {
6635
ata_free_force_param();
6636
return rc;
6637
}
6638
6639
libata_transport_init();
6640
ata_scsi_transport_template = ata_attach_transport();
6641
if (!ata_scsi_transport_template) {
6642
ata_sff_exit();
6643
rc = -ENOMEM;
6644
goto err_out;
6645
}
6646
6647
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6648
return 0;
6649
6650
err_out:
6651
return rc;
6652
}
6653
6654
static void __exit ata_exit(void)
6655
{
6656
ata_release_transport(ata_scsi_transport_template);
6657
libata_transport_exit();
6658
ata_sff_exit();
6659
ata_free_force_param();
6660
}
6661
6662
subsys_initcall(ata_init);
6663
module_exit(ata_exit);
6664
6665
static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6666
6667
int ata_ratelimit(void)
6668
{
6669
return __ratelimit(&ratelimit);
6670
}
6671
EXPORT_SYMBOL_GPL(ata_ratelimit);
6672
6673
/**
6674
* ata_msleep - ATA EH owner aware msleep
6675
* @ap: ATA port to attribute the sleep to
6676
* @msecs: duration to sleep in milliseconds
6677
*
6678
* Sleeps @msecs. If the current task is owner of @ap's EH, the
6679
* ownership is released before going to sleep and reacquired
6680
* after the sleep is complete. IOW, other ports sharing the
6681
* @ap->host will be allowed to own the EH while this task is
6682
* sleeping.
6683
*
6684
* LOCKING:
6685
* Might sleep.
6686
*/
6687
void ata_msleep(struct ata_port *ap, unsigned int msecs)
6688
{
6689
bool owns_eh = ap && ap->host->eh_owner == current;
6690
6691
if (owns_eh)
6692
ata_eh_release(ap);
6693
6694
if (msecs < 20) {
6695
unsigned long usecs = msecs * USEC_PER_MSEC;
6696
usleep_range(usecs, usecs + 50);
6697
} else {
6698
msleep(msecs);
6699
}
6700
6701
if (owns_eh)
6702
ata_eh_acquire(ap);
6703
}
6704
EXPORT_SYMBOL_GPL(ata_msleep);
6705
6706
/**
6707
* ata_wait_register - wait until register value changes
6708
* @ap: ATA port to wait register for, can be NULL
6709
* @reg: IO-mapped register
6710
* @mask: Mask to apply to read register value
6711
* @val: Wait condition
6712
* @interval: polling interval in milliseconds
6713
* @timeout: timeout in milliseconds
6714
*
6715
* Waiting for some bits of register to change is a common
6716
* operation for ATA controllers. This function reads 32bit LE
6717
* IO-mapped register @reg and tests for the following condition.
6718
*
6719
* (*@reg & mask) != val
6720
*
6721
* If the condition is met, it returns; otherwise, the process is
6722
* repeated after @interval_msec until timeout.
6723
*
6724
* LOCKING:
6725
* Kernel thread context (may sleep)
6726
*
6727
* RETURNS:
6728
* The final register value.
6729
*/
6730
u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6731
unsigned int interval, unsigned int timeout)
6732
{
6733
unsigned long deadline;
6734
u32 tmp;
6735
6736
tmp = ioread32(reg);
6737
6738
/* Calculate timeout _after_ the first read to make sure
6739
* preceding writes reach the controller before starting to
6740
* eat away the timeout.
6741
*/
6742
deadline = ata_deadline(jiffies, timeout);
6743
6744
while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6745
ata_msleep(ap, interval);
6746
tmp = ioread32(reg);
6747
}
6748
6749
return tmp;
6750
}
6751
EXPORT_SYMBOL_GPL(ata_wait_register);
6752
6753
/*
6754
* Dummy port_ops
6755
*/
6756
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6757
{
6758
return AC_ERR_SYSTEM;
6759
}
6760
6761
static void ata_dummy_error_handler(struct ata_port *ap)
6762
{
6763
/* truly dummy */
6764
}
6765
6766
struct ata_port_operations ata_dummy_port_ops = {
6767
.qc_issue = ata_dummy_qc_issue,
6768
.error_handler = ata_dummy_error_handler,
6769
.sched_eh = ata_std_sched_eh,
6770
.end_eh = ata_std_end_eh,
6771
};
6772
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6773
6774
const struct ata_port_info ata_dummy_port_info = {
6775
.port_ops = &ata_dummy_port_ops,
6776
};
6777
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6778
6779
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6780
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6781
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6782
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6783
EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6784
6785