Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/atm/nicstar.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* nicstar.c
4
*
5
* Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6
*
7
* IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8
* It was taken from the frle-0.22 device driver.
9
* As the file doesn't have a copyright notice, in the file
10
* nicstarmac.copyright I put the copyright notice from the
11
* frle-0.22 device driver.
12
* Some code is based on the nicstar driver by M. Welsh.
13
*
14
* Author: Rui Prior ([email protected])
15
* PowerPC support by Jay Talbott ([email protected]) April 1999
16
*
17
*
18
* (C) INESC 1999
19
*/
20
21
/*
22
* IMPORTANT INFORMATION
23
*
24
* There are currently three types of spinlocks:
25
*
26
* 1 - Per card interrupt spinlock (to protect structures and such)
27
* 2 - Per SCQ scq spinlock
28
* 3 - Per card resource spinlock (to access registers, etc.)
29
*
30
* These must NEVER be grabbed in reverse order.
31
*
32
*/
33
34
/* Header files */
35
36
#include <linux/module.h>
37
#include <linux/kernel.h>
38
#include <linux/skbuff.h>
39
#include <linux/atmdev.h>
40
#include <linux/atm.h>
41
#include <linux/pci.h>
42
#include <linux/dma-mapping.h>
43
#include <linux/types.h>
44
#include <linux/string.h>
45
#include <linux/delay.h>
46
#include <linux/init.h>
47
#include <linux/sched.h>
48
#include <linux/timer.h>
49
#include <linux/interrupt.h>
50
#include <linux/bitops.h>
51
#include <linux/slab.h>
52
#include <linux/idr.h>
53
#include <asm/io.h>
54
#include <linux/uaccess.h>
55
#include <linux/atomic.h>
56
#include <linux/etherdevice.h>
57
#include "nicstar.h"
58
#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59
#include "suni.h"
60
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61
#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62
#include "idt77105.h"
63
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64
65
/* Additional code */
66
67
#include "nicstarmac.c"
68
69
/* Configurable parameters */
70
71
#undef PHY_LOOPBACK
72
#undef TX_DEBUG
73
#undef RX_DEBUG
74
#undef GENERAL_DEBUG
75
#undef EXTRA_DEBUG
76
77
/* Do not touch these */
78
79
#ifdef TX_DEBUG
80
#define TXPRINTK(args...) printk(args)
81
#else
82
#define TXPRINTK(args...)
83
#endif /* TX_DEBUG */
84
85
#ifdef RX_DEBUG
86
#define RXPRINTK(args...) printk(args)
87
#else
88
#define RXPRINTK(args...)
89
#endif /* RX_DEBUG */
90
91
#ifdef GENERAL_DEBUG
92
#define PRINTK(args...) printk(args)
93
#else
94
#define PRINTK(args...) do {} while (0)
95
#endif /* GENERAL_DEBUG */
96
97
#ifdef EXTRA_DEBUG
98
#define XPRINTK(args...) printk(args)
99
#else
100
#define XPRINTK(args...)
101
#endif /* EXTRA_DEBUG */
102
103
/* Macros */
104
105
#define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106
107
#define NS_DELAY mdelay(1)
108
109
#define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
110
111
#ifndef ATM_SKB
112
#define ATM_SKB(s) (&(s)->atm)
113
#endif
114
115
#define scq_virt_to_bus(scq, p) \
116
(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117
118
/* Function declarations */
119
120
static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121
static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122
int count);
123
static int ns_init_card(int i, struct pci_dev *pcidev);
124
static void ns_init_card_error(ns_dev * card, int error);
125
static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126
static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127
static void push_rxbufs(ns_dev *, struct sk_buff *);
128
static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129
static int ns_open(struct atm_vcc *vcc);
130
static void ns_close(struct atm_vcc *vcc);
131
static void fill_tst(ns_dev * card, int n, vc_map * vc);
132
static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133
static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134
static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135
struct sk_buff *skb, bool may_sleep);
136
static void process_tsq(ns_dev * card);
137
static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138
static void process_rsq(ns_dev * card);
139
static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140
static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141
static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142
static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143
static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144
static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145
static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146
static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147
#ifdef EXTRA_DEBUG
148
static void which_list(ns_dev * card, struct sk_buff *skb);
149
#endif
150
static void ns_poll(struct timer_list *unused);
151
static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152
unsigned long addr);
153
static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
154
155
/* Global variables */
156
157
static struct ns_dev *cards[NS_MAX_CARDS];
158
static unsigned num_cards;
159
static const struct atmdev_ops atm_ops = {
160
.open = ns_open,
161
.close = ns_close,
162
.ioctl = ns_ioctl,
163
.send = ns_send,
164
.send_bh = ns_send_bh,
165
.phy_put = ns_phy_put,
166
.phy_get = ns_phy_get,
167
.proc_read = ns_proc_read,
168
.owner = THIS_MODULE,
169
};
170
171
static struct timer_list ns_timer;
172
static char *mac[NS_MAX_CARDS];
173
module_param_array(mac, charp, NULL, 0);
174
MODULE_DESCRIPTION("ATM NIC driver for IDT 77201/77211 \"NICStAR\" and Fore ForeRunnerLE.");
175
MODULE_LICENSE("GPL");
176
177
/* Functions */
178
179
static int nicstar_init_one(struct pci_dev *pcidev,
180
const struct pci_device_id *ent)
181
{
182
static int index = -1;
183
unsigned int error;
184
185
index++;
186
cards[index] = NULL;
187
188
error = ns_init_card(index, pcidev);
189
if (error) {
190
cards[index--] = NULL; /* don't increment index */
191
goto err_out;
192
}
193
194
return 0;
195
err_out:
196
return -ENODEV;
197
}
198
199
static void nicstar_remove_one(struct pci_dev *pcidev)
200
{
201
int i, j;
202
ns_dev *card = pci_get_drvdata(pcidev);
203
struct sk_buff *hb;
204
struct sk_buff *iovb;
205
struct sk_buff *lb;
206
struct sk_buff *sb;
207
208
i = card->index;
209
210
if (cards[i] == NULL)
211
return;
212
213
if (card->atmdev->phy && card->atmdev->phy->stop)
214
card->atmdev->phy->stop(card->atmdev);
215
216
/* Stop everything */
217
writel(0x00000000, card->membase + CFG);
218
219
/* De-register device */
220
atm_dev_deregister(card->atmdev);
221
222
/* Disable PCI device */
223
pci_disable_device(pcidev);
224
225
/* Free up resources */
226
j = 0;
227
PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
228
while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
229
dev_kfree_skb_any(hb);
230
j++;
231
}
232
PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
233
j = 0;
234
PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
235
card->iovpool.count);
236
while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
237
dev_kfree_skb_any(iovb);
238
j++;
239
}
240
PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
241
while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
242
dev_kfree_skb_any(lb);
243
while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
244
dev_kfree_skb_any(sb);
245
free_scq(card, card->scq0, NULL);
246
for (j = 0; j < NS_FRSCD_NUM; j++) {
247
if (card->scd2vc[j] != NULL)
248
free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
249
}
250
idr_destroy(&card->idr);
251
dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
252
card->rsq.org, card->rsq.dma);
253
dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
254
card->tsq.org, card->tsq.dma);
255
free_irq(card->pcidev->irq, card);
256
iounmap(card->membase);
257
kfree(card);
258
}
259
260
static const struct pci_device_id nicstar_pci_tbl[] = {
261
{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
262
{0,} /* terminate list */
263
};
264
265
MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
266
267
static struct pci_driver nicstar_driver = {
268
.name = "nicstar",
269
.id_table = nicstar_pci_tbl,
270
.probe = nicstar_init_one,
271
.remove = nicstar_remove_one,
272
};
273
274
static int __init nicstar_init(void)
275
{
276
unsigned error = 0; /* Initialized to remove compile warning */
277
278
XPRINTK("nicstar: nicstar_init() called.\n");
279
280
error = pci_register_driver(&nicstar_driver);
281
282
TXPRINTK("nicstar: TX debug enabled.\n");
283
RXPRINTK("nicstar: RX debug enabled.\n");
284
PRINTK("nicstar: General debug enabled.\n");
285
#ifdef PHY_LOOPBACK
286
printk("nicstar: using PHY loopback.\n");
287
#endif /* PHY_LOOPBACK */
288
XPRINTK("nicstar: nicstar_init() returned.\n");
289
290
if (!error) {
291
timer_setup(&ns_timer, ns_poll, 0);
292
ns_timer.expires = jiffies + NS_POLL_PERIOD;
293
add_timer(&ns_timer);
294
}
295
296
return error;
297
}
298
299
static void __exit nicstar_cleanup(void)
300
{
301
XPRINTK("nicstar: nicstar_cleanup() called.\n");
302
303
timer_delete_sync(&ns_timer);
304
305
pci_unregister_driver(&nicstar_driver);
306
307
XPRINTK("nicstar: nicstar_cleanup() returned.\n");
308
}
309
310
static u32 ns_read_sram(ns_dev * card, u32 sram_address)
311
{
312
unsigned long flags;
313
u32 data;
314
sram_address <<= 2;
315
sram_address &= 0x0007FFFC; /* address must be dword aligned */
316
sram_address |= 0x50000000; /* SRAM read command */
317
spin_lock_irqsave(&card->res_lock, flags);
318
while (CMD_BUSY(card)) ;
319
writel(sram_address, card->membase + CMD);
320
while (CMD_BUSY(card)) ;
321
data = readl(card->membase + DR0);
322
spin_unlock_irqrestore(&card->res_lock, flags);
323
return data;
324
}
325
326
static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
327
int count)
328
{
329
unsigned long flags;
330
int i, c;
331
count--; /* count range now is 0..3 instead of 1..4 */
332
c = count;
333
c <<= 2; /* to use increments of 4 */
334
spin_lock_irqsave(&card->res_lock, flags);
335
while (CMD_BUSY(card)) ;
336
for (i = 0; i <= c; i += 4)
337
writel(*(value++), card->membase + i);
338
/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
339
so card->membase + DR0 == card->membase */
340
sram_address <<= 2;
341
sram_address &= 0x0007FFFC;
342
sram_address |= (0x40000000 | count);
343
writel(sram_address, card->membase + CMD);
344
spin_unlock_irqrestore(&card->res_lock, flags);
345
}
346
347
static int ns_init_card(int i, struct pci_dev *pcidev)
348
{
349
int j;
350
struct ns_dev *card = NULL;
351
unsigned char pci_latency;
352
unsigned error;
353
u32 data;
354
u32 u32d[4];
355
u32 ns_cfg_rctsize;
356
int bcount;
357
unsigned long membase;
358
359
error = 0;
360
361
if (pci_enable_device(pcidev)) {
362
printk("nicstar%d: can't enable PCI device\n", i);
363
error = 2;
364
ns_init_card_error(card, error);
365
return error;
366
}
367
if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
368
printk(KERN_WARNING
369
"nicstar%d: No suitable DMA available.\n", i);
370
error = 2;
371
ns_init_card_error(card, error);
372
return error;
373
}
374
375
card = kmalloc(sizeof(*card), GFP_KERNEL);
376
if (!card) {
377
printk
378
("nicstar%d: can't allocate memory for device structure.\n",
379
i);
380
error = 2;
381
ns_init_card_error(card, error);
382
return error;
383
}
384
cards[i] = card;
385
spin_lock_init(&card->int_lock);
386
spin_lock_init(&card->res_lock);
387
388
pci_set_drvdata(pcidev, card);
389
390
card->index = i;
391
card->atmdev = NULL;
392
card->pcidev = pcidev;
393
membase = pci_resource_start(pcidev, 1);
394
card->membase = ioremap(membase, NS_IOREMAP_SIZE);
395
if (!card->membase) {
396
printk("nicstar%d: can't ioremap() membase.\n", i);
397
error = 3;
398
ns_init_card_error(card, error);
399
return error;
400
}
401
PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
402
403
pci_set_master(pcidev);
404
405
if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
406
printk("nicstar%d: can't read PCI latency timer.\n", i);
407
error = 6;
408
ns_init_card_error(card, error);
409
return error;
410
}
411
#ifdef NS_PCI_LATENCY
412
if (pci_latency < NS_PCI_LATENCY) {
413
PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
414
NS_PCI_LATENCY);
415
for (j = 1; j < 4; j++) {
416
if (pci_write_config_byte
417
(pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
418
break;
419
}
420
if (j == 4) {
421
printk
422
("nicstar%d: can't set PCI latency timer to %d.\n",
423
i, NS_PCI_LATENCY);
424
error = 7;
425
ns_init_card_error(card, error);
426
return error;
427
}
428
}
429
#endif /* NS_PCI_LATENCY */
430
431
/* Clear timer overflow */
432
data = readl(card->membase + STAT);
433
if (data & NS_STAT_TMROF)
434
writel(NS_STAT_TMROF, card->membase + STAT);
435
436
/* Software reset */
437
writel(NS_CFG_SWRST, card->membase + CFG);
438
NS_DELAY;
439
writel(0x00000000, card->membase + CFG);
440
441
/* PHY reset */
442
writel(0x00000008, card->membase + GP);
443
NS_DELAY;
444
writel(0x00000001, card->membase + GP);
445
NS_DELAY;
446
while (CMD_BUSY(card)) ;
447
writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
448
NS_DELAY;
449
450
/* Detect PHY type */
451
while (CMD_BUSY(card)) ;
452
writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
453
while (CMD_BUSY(card)) ;
454
data = readl(card->membase + DR0);
455
switch (data) {
456
case 0x00000009:
457
printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
458
card->max_pcr = ATM_25_PCR;
459
while (CMD_BUSY(card)) ;
460
writel(0x00000008, card->membase + DR0);
461
writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
462
/* Clear an eventual pending interrupt */
463
writel(NS_STAT_SFBQF, card->membase + STAT);
464
#ifdef PHY_LOOPBACK
465
while (CMD_BUSY(card)) ;
466
writel(0x00000022, card->membase + DR0);
467
writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
468
#endif /* PHY_LOOPBACK */
469
break;
470
case 0x00000030:
471
case 0x00000031:
472
printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
473
card->max_pcr = ATM_OC3_PCR;
474
#ifdef PHY_LOOPBACK
475
while (CMD_BUSY(card)) ;
476
writel(0x00000002, card->membase + DR0);
477
writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
478
#endif /* PHY_LOOPBACK */
479
break;
480
default:
481
printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
482
error = 8;
483
ns_init_card_error(card, error);
484
return error;
485
}
486
writel(0x00000000, card->membase + GP);
487
488
/* Determine SRAM size */
489
data = 0x76543210;
490
ns_write_sram(card, 0x1C003, &data, 1);
491
data = 0x89ABCDEF;
492
ns_write_sram(card, 0x14003, &data, 1);
493
if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
494
ns_read_sram(card, 0x1C003) == 0x76543210)
495
card->sram_size = 128;
496
else
497
card->sram_size = 32;
498
PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
499
500
card->rct_size = NS_MAX_RCTSIZE;
501
502
#if (NS_MAX_RCTSIZE == 4096)
503
if (card->sram_size == 128)
504
printk
505
("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
506
i);
507
#elif (NS_MAX_RCTSIZE == 16384)
508
if (card->sram_size == 32) {
509
printk
510
("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
511
i);
512
card->rct_size = 4096;
513
}
514
#else
515
#error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
516
#endif
517
518
card->vpibits = NS_VPIBITS;
519
if (card->rct_size == 4096)
520
card->vcibits = 12 - NS_VPIBITS;
521
else /* card->rct_size == 16384 */
522
card->vcibits = 14 - NS_VPIBITS;
523
524
/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
525
if (mac[i] == NULL)
526
nicstar_init_eprom(card->membase);
527
528
/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
529
writel(0x00000000, card->membase + VPM);
530
531
card->intcnt = 0;
532
if (request_irq
533
(pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
534
pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
535
error = 9;
536
ns_init_card_error(card, error);
537
return error;
538
}
539
540
/* Initialize TSQ */
541
card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
542
NS_TSQSIZE + NS_TSQ_ALIGNMENT,
543
&card->tsq.dma, GFP_KERNEL);
544
if (card->tsq.org == NULL) {
545
printk("nicstar%d: can't allocate TSQ.\n", i);
546
error = 10;
547
ns_init_card_error(card, error);
548
return error;
549
}
550
card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
551
card->tsq.next = card->tsq.base;
552
card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
553
for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
554
ns_tsi_init(card->tsq.base + j);
555
writel(0x00000000, card->membase + TSQH);
556
writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
557
PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
558
559
/* Initialize RSQ */
560
card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
561
NS_RSQSIZE + NS_RSQ_ALIGNMENT,
562
&card->rsq.dma, GFP_KERNEL);
563
if (card->rsq.org == NULL) {
564
printk("nicstar%d: can't allocate RSQ.\n", i);
565
error = 11;
566
ns_init_card_error(card, error);
567
return error;
568
}
569
card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
570
card->rsq.next = card->rsq.base;
571
card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
572
for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
573
ns_rsqe_init(card->rsq.base + j);
574
writel(0x00000000, card->membase + RSQH);
575
writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
576
PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
577
578
/* Initialize SCQ0, the only VBR SCQ used */
579
card->scq1 = NULL;
580
card->scq2 = NULL;
581
card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
582
if (card->scq0 == NULL) {
583
printk("nicstar%d: can't get SCQ0.\n", i);
584
error = 12;
585
ns_init_card_error(card, error);
586
return error;
587
}
588
u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
589
u32d[1] = (u32) 0x00000000;
590
u32d[2] = (u32) 0xffffffff;
591
u32d[3] = (u32) 0x00000000;
592
ns_write_sram(card, NS_VRSCD0, u32d, 4);
593
ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
594
ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
595
card->scq0->scd = NS_VRSCD0;
596
PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
597
598
/* Initialize TSTs */
599
card->tst_addr = NS_TST0;
600
card->tst_free_entries = NS_TST_NUM_ENTRIES;
601
data = NS_TST_OPCODE_VARIABLE;
602
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
603
ns_write_sram(card, NS_TST0 + j, &data, 1);
604
data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
605
ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
606
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
607
ns_write_sram(card, NS_TST1 + j, &data, 1);
608
data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
609
ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
610
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
611
card->tste2vc[j] = NULL;
612
writel(NS_TST0 << 2, card->membase + TSTB);
613
614
/* Initialize RCT. AAL type is set on opening the VC. */
615
#ifdef RCQ_SUPPORT
616
u32d[0] = NS_RCTE_RAWCELLINTEN;
617
#else
618
u32d[0] = 0x00000000;
619
#endif /* RCQ_SUPPORT */
620
u32d[1] = 0x00000000;
621
u32d[2] = 0x00000000;
622
u32d[3] = 0xFFFFFFFF;
623
for (j = 0; j < card->rct_size; j++)
624
ns_write_sram(card, j * 4, u32d, 4);
625
626
memset(card->vcmap, 0, sizeof(card->vcmap));
627
628
for (j = 0; j < NS_FRSCD_NUM; j++)
629
card->scd2vc[j] = NULL;
630
631
/* Initialize buffer levels */
632
card->sbnr.min = MIN_SB;
633
card->sbnr.init = NUM_SB;
634
card->sbnr.max = MAX_SB;
635
card->lbnr.min = MIN_LB;
636
card->lbnr.init = NUM_LB;
637
card->lbnr.max = MAX_LB;
638
card->iovnr.min = MIN_IOVB;
639
card->iovnr.init = NUM_IOVB;
640
card->iovnr.max = MAX_IOVB;
641
card->hbnr.min = MIN_HB;
642
card->hbnr.init = NUM_HB;
643
card->hbnr.max = MAX_HB;
644
645
card->sm_handle = NULL;
646
card->sm_addr = 0x00000000;
647
card->lg_handle = NULL;
648
card->lg_addr = 0x00000000;
649
650
card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
651
652
idr_init(&card->idr);
653
654
/* Pre-allocate some huge buffers */
655
skb_queue_head_init(&card->hbpool.queue);
656
card->hbpool.count = 0;
657
for (j = 0; j < NUM_HB; j++) {
658
struct sk_buff *hb;
659
hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
660
if (hb == NULL) {
661
printk
662
("nicstar%d: can't allocate %dth of %d huge buffers.\n",
663
i, j, NUM_HB);
664
error = 13;
665
ns_init_card_error(card, error);
666
return error;
667
}
668
NS_PRV_BUFTYPE(hb) = BUF_NONE;
669
skb_queue_tail(&card->hbpool.queue, hb);
670
card->hbpool.count++;
671
}
672
673
/* Allocate large buffers */
674
skb_queue_head_init(&card->lbpool.queue);
675
card->lbpool.count = 0; /* Not used */
676
for (j = 0; j < NUM_LB; j++) {
677
struct sk_buff *lb;
678
lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
679
if (lb == NULL) {
680
printk
681
("nicstar%d: can't allocate %dth of %d large buffers.\n",
682
i, j, NUM_LB);
683
error = 14;
684
ns_init_card_error(card, error);
685
return error;
686
}
687
NS_PRV_BUFTYPE(lb) = BUF_LG;
688
skb_queue_tail(&card->lbpool.queue, lb);
689
skb_reserve(lb, NS_SMBUFSIZE);
690
push_rxbufs(card, lb);
691
/* Due to the implementation of push_rxbufs() this is 1, not 0 */
692
if (j == 1) {
693
card->rcbuf = lb;
694
card->rawcell = (struct ns_rcqe *) lb->data;
695
card->rawch = NS_PRV_DMA(lb);
696
}
697
}
698
/* Test for strange behaviour which leads to crashes */
699
if ((bcount =
700
ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
701
printk
702
("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
703
i, j, bcount);
704
error = 14;
705
ns_init_card_error(card, error);
706
return error;
707
}
708
709
/* Allocate small buffers */
710
skb_queue_head_init(&card->sbpool.queue);
711
card->sbpool.count = 0; /* Not used */
712
for (j = 0; j < NUM_SB; j++) {
713
struct sk_buff *sb;
714
sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
715
if (sb == NULL) {
716
printk
717
("nicstar%d: can't allocate %dth of %d small buffers.\n",
718
i, j, NUM_SB);
719
error = 15;
720
ns_init_card_error(card, error);
721
return error;
722
}
723
NS_PRV_BUFTYPE(sb) = BUF_SM;
724
skb_queue_tail(&card->sbpool.queue, sb);
725
skb_reserve(sb, NS_AAL0_HEADER);
726
push_rxbufs(card, sb);
727
}
728
/* Test for strange behaviour which leads to crashes */
729
if ((bcount =
730
ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
731
printk
732
("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
733
i, j, bcount);
734
error = 15;
735
ns_init_card_error(card, error);
736
return error;
737
}
738
739
/* Allocate iovec buffers */
740
skb_queue_head_init(&card->iovpool.queue);
741
card->iovpool.count = 0;
742
for (j = 0; j < NUM_IOVB; j++) {
743
struct sk_buff *iovb;
744
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
745
if (iovb == NULL) {
746
printk
747
("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
748
i, j, NUM_IOVB);
749
error = 16;
750
ns_init_card_error(card, error);
751
return error;
752
}
753
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
754
skb_queue_tail(&card->iovpool.queue, iovb);
755
card->iovpool.count++;
756
}
757
758
/* Configure NICStAR */
759
if (card->rct_size == 4096)
760
ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
761
else /* (card->rct_size == 16384) */
762
ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
763
764
card->efbie = 1;
765
766
/* Register device */
767
card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
768
-1, NULL);
769
if (card->atmdev == NULL) {
770
printk("nicstar%d: can't register device.\n", i);
771
error = 17;
772
ns_init_card_error(card, error);
773
return error;
774
}
775
776
if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
777
nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
778
card->atmdev->esi, 6);
779
if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
780
nicstar_read_eprom(card->membase,
781
NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
782
card->atmdev->esi, 6);
783
}
784
}
785
786
printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
787
788
card->atmdev->dev_data = card;
789
card->atmdev->ci_range.vpi_bits = card->vpibits;
790
card->atmdev->ci_range.vci_bits = card->vcibits;
791
card->atmdev->link_rate = card->max_pcr;
792
card->atmdev->phy = NULL;
793
794
#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
795
if (card->max_pcr == ATM_OC3_PCR)
796
suni_init(card->atmdev);
797
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
798
799
#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
800
if (card->max_pcr == ATM_25_PCR)
801
idt77105_init(card->atmdev);
802
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
803
804
if (card->atmdev->phy && card->atmdev->phy->start)
805
card->atmdev->phy->start(card->atmdev);
806
807
writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
808
NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
809
NS_CFG_PHYIE, card->membase + CFG);
810
811
num_cards++;
812
813
return error;
814
}
815
816
static void ns_init_card_error(ns_dev *card, int error)
817
{
818
if (error >= 17) {
819
writel(0x00000000, card->membase + CFG);
820
}
821
if (error >= 16) {
822
struct sk_buff *iovb;
823
while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
824
dev_kfree_skb_any(iovb);
825
}
826
if (error >= 15) {
827
struct sk_buff *sb;
828
while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
829
dev_kfree_skb_any(sb);
830
free_scq(card, card->scq0, NULL);
831
}
832
if (error >= 14) {
833
struct sk_buff *lb;
834
while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
835
dev_kfree_skb_any(lb);
836
}
837
if (error >= 13) {
838
struct sk_buff *hb;
839
while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
840
dev_kfree_skb_any(hb);
841
}
842
if (error >= 12) {
843
dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
844
card->rsq.org, card->rsq.dma);
845
}
846
if (error >= 11) {
847
dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
848
card->tsq.org, card->tsq.dma);
849
}
850
if (error >= 10) {
851
free_irq(card->pcidev->irq, card);
852
}
853
if (error >= 4) {
854
iounmap(card->membase);
855
}
856
if (error >= 3) {
857
pci_disable_device(card->pcidev);
858
kfree(card);
859
}
860
}
861
862
static scq_info *get_scq(ns_dev *card, int size, u32 scd)
863
{
864
scq_info *scq;
865
866
if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
867
return NULL;
868
869
scq = kmalloc(sizeof(*scq), GFP_KERNEL);
870
if (!scq)
871
return NULL;
872
scq->org = dma_alloc_coherent(&card->pcidev->dev,
873
2 * size, &scq->dma, GFP_KERNEL);
874
if (!scq->org) {
875
kfree(scq);
876
return NULL;
877
}
878
scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
879
GFP_KERNEL);
880
if (!scq->skb) {
881
dma_free_coherent(&card->pcidev->dev,
882
2 * size, scq->org, scq->dma);
883
kfree(scq);
884
return NULL;
885
}
886
scq->num_entries = size / NS_SCQE_SIZE;
887
scq->base = PTR_ALIGN(scq->org, size);
888
scq->next = scq->base;
889
scq->last = scq->base + (scq->num_entries - 1);
890
scq->tail = scq->last;
891
scq->scd = scd;
892
scq->tbd_count = 0;
893
init_waitqueue_head(&scq->scqfull_waitq);
894
scq->full = 0;
895
spin_lock_init(&scq->lock);
896
897
return scq;
898
}
899
900
/* For variable rate SCQ vcc must be NULL */
901
static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
902
{
903
int i;
904
905
if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
906
for (i = 0; i < scq->num_entries; i++) {
907
if (scq->skb[i] != NULL) {
908
vcc = ATM_SKB(scq->skb[i])->vcc;
909
if (vcc->pop != NULL)
910
vcc->pop(vcc, scq->skb[i]);
911
else
912
dev_kfree_skb_any(scq->skb[i]);
913
}
914
} else { /* vcc must be != NULL */
915
916
if (vcc == NULL) {
917
printk
918
("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
919
for (i = 0; i < scq->num_entries; i++)
920
dev_kfree_skb_any(scq->skb[i]);
921
} else
922
for (i = 0; i < scq->num_entries; i++) {
923
if (scq->skb[i] != NULL) {
924
if (vcc->pop != NULL)
925
vcc->pop(vcc, scq->skb[i]);
926
else
927
dev_kfree_skb_any(scq->skb[i]);
928
}
929
}
930
}
931
kfree(scq->skb);
932
dma_free_coherent(&card->pcidev->dev,
933
2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
934
VBR_SCQSIZE : CBR_SCQSIZE),
935
scq->org, scq->dma);
936
kfree(scq);
937
}
938
939
/* The handles passed must be pointers to the sk_buff containing the small
940
or large buffer(s) cast to u32. */
941
static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
942
{
943
struct sk_buff *handle1, *handle2;
944
int id1, id2;
945
u32 addr1, addr2;
946
u32 stat;
947
unsigned long flags;
948
949
/* *BARF* */
950
handle2 = NULL;
951
addr2 = 0;
952
handle1 = skb;
953
addr1 = dma_map_single(&card->pcidev->dev,
954
skb->data,
955
(NS_PRV_BUFTYPE(skb) == BUF_SM
956
? NS_SMSKBSIZE : NS_LGSKBSIZE),
957
DMA_TO_DEVICE);
958
NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
959
960
#ifdef GENERAL_DEBUG
961
if (!addr1)
962
printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
963
card->index);
964
#endif /* GENERAL_DEBUG */
965
966
stat = readl(card->membase + STAT);
967
card->sbfqc = ns_stat_sfbqc_get(stat);
968
card->lbfqc = ns_stat_lfbqc_get(stat);
969
if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
970
if (!addr2) {
971
if (card->sm_addr) {
972
addr2 = card->sm_addr;
973
handle2 = card->sm_handle;
974
card->sm_addr = 0x00000000;
975
card->sm_handle = NULL;
976
} else { /* (!sm_addr) */
977
978
card->sm_addr = addr1;
979
card->sm_handle = handle1;
980
}
981
}
982
} else { /* buf_type == BUF_LG */
983
984
if (!addr2) {
985
if (card->lg_addr) {
986
addr2 = card->lg_addr;
987
handle2 = card->lg_handle;
988
card->lg_addr = 0x00000000;
989
card->lg_handle = NULL;
990
} else { /* (!lg_addr) */
991
992
card->lg_addr = addr1;
993
card->lg_handle = handle1;
994
}
995
}
996
}
997
998
if (addr2) {
999
if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1000
if (card->sbfqc >= card->sbnr.max) {
1001
skb_unlink(handle1, &card->sbpool.queue);
1002
dev_kfree_skb_any(handle1);
1003
skb_unlink(handle2, &card->sbpool.queue);
1004
dev_kfree_skb_any(handle2);
1005
return;
1006
} else
1007
card->sbfqc += 2;
1008
} else { /* (buf_type == BUF_LG) */
1009
1010
if (card->lbfqc >= card->lbnr.max) {
1011
skb_unlink(handle1, &card->lbpool.queue);
1012
dev_kfree_skb_any(handle1);
1013
skb_unlink(handle2, &card->lbpool.queue);
1014
dev_kfree_skb_any(handle2);
1015
return;
1016
} else
1017
card->lbfqc += 2;
1018
}
1019
1020
id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1021
if (id1 < 0)
1022
goto out;
1023
1024
id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1025
if (id2 < 0)
1026
goto out;
1027
1028
spin_lock_irqsave(&card->res_lock, flags);
1029
while (CMD_BUSY(card)) ;
1030
writel(addr2, card->membase + DR3);
1031
writel(id2, card->membase + DR2);
1032
writel(addr1, card->membase + DR1);
1033
writel(id1, card->membase + DR0);
1034
writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1035
card->membase + CMD);
1036
spin_unlock_irqrestore(&card->res_lock, flags);
1037
1038
XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1039
card->index,
1040
(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1041
addr1, addr2);
1042
}
1043
1044
if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1045
card->lbfqc >= card->lbnr.min) {
1046
card->efbie = 1;
1047
writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1048
card->membase + CFG);
1049
}
1050
1051
out:
1052
return;
1053
}
1054
1055
static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1056
{
1057
u32 stat_r;
1058
ns_dev *card;
1059
struct atm_dev *dev;
1060
unsigned long flags;
1061
1062
card = (ns_dev *) dev_id;
1063
dev = card->atmdev;
1064
card->intcnt++;
1065
1066
PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1067
1068
spin_lock_irqsave(&card->int_lock, flags);
1069
1070
stat_r = readl(card->membase + STAT);
1071
1072
/* Transmit Status Indicator has been written to T. S. Queue */
1073
if (stat_r & NS_STAT_TSIF) {
1074
TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1075
process_tsq(card);
1076
writel(NS_STAT_TSIF, card->membase + STAT);
1077
}
1078
1079
/* Incomplete CS-PDU has been transmitted */
1080
if (stat_r & NS_STAT_TXICP) {
1081
writel(NS_STAT_TXICP, card->membase + STAT);
1082
TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1083
card->index);
1084
}
1085
1086
/* Transmit Status Queue 7/8 full */
1087
if (stat_r & NS_STAT_TSQF) {
1088
writel(NS_STAT_TSQF, card->membase + STAT);
1089
PRINTK("nicstar%d: TSQ full.\n", card->index);
1090
process_tsq(card);
1091
}
1092
1093
/* Timer overflow */
1094
if (stat_r & NS_STAT_TMROF) {
1095
writel(NS_STAT_TMROF, card->membase + STAT);
1096
PRINTK("nicstar%d: Timer overflow.\n", card->index);
1097
}
1098
1099
/* PHY device interrupt signal active */
1100
if (stat_r & NS_STAT_PHYI) {
1101
writel(NS_STAT_PHYI, card->membase + STAT);
1102
PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1103
if (dev->phy && dev->phy->interrupt) {
1104
dev->phy->interrupt(dev);
1105
}
1106
}
1107
1108
/* Small Buffer Queue is full */
1109
if (stat_r & NS_STAT_SFBQF) {
1110
writel(NS_STAT_SFBQF, card->membase + STAT);
1111
printk("nicstar%d: Small free buffer queue is full.\n",
1112
card->index);
1113
}
1114
1115
/* Large Buffer Queue is full */
1116
if (stat_r & NS_STAT_LFBQF) {
1117
writel(NS_STAT_LFBQF, card->membase + STAT);
1118
printk("nicstar%d: Large free buffer queue is full.\n",
1119
card->index);
1120
}
1121
1122
/* Receive Status Queue is full */
1123
if (stat_r & NS_STAT_RSQF) {
1124
writel(NS_STAT_RSQF, card->membase + STAT);
1125
printk("nicstar%d: RSQ full.\n", card->index);
1126
process_rsq(card);
1127
}
1128
1129
/* Complete CS-PDU received */
1130
if (stat_r & NS_STAT_EOPDU) {
1131
RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1132
process_rsq(card);
1133
writel(NS_STAT_EOPDU, card->membase + STAT);
1134
}
1135
1136
/* Raw cell received */
1137
if (stat_r & NS_STAT_RAWCF) {
1138
writel(NS_STAT_RAWCF, card->membase + STAT);
1139
#ifndef RCQ_SUPPORT
1140
printk("nicstar%d: Raw cell received and no support yet...\n",
1141
card->index);
1142
#endif /* RCQ_SUPPORT */
1143
/* NOTE: the following procedure may keep a raw cell pending until the
1144
next interrupt. As this preliminary support is only meant to
1145
avoid buffer leakage, this is not an issue. */
1146
while (readl(card->membase + RAWCT) != card->rawch) {
1147
1148
if (ns_rcqe_islast(card->rawcell)) {
1149
struct sk_buff *oldbuf;
1150
1151
oldbuf = card->rcbuf;
1152
card->rcbuf = idr_find(&card->idr,
1153
ns_rcqe_nextbufhandle(card->rawcell));
1154
card->rawch = NS_PRV_DMA(card->rcbuf);
1155
card->rawcell = (struct ns_rcqe *)
1156
card->rcbuf->data;
1157
recycle_rx_buf(card, oldbuf);
1158
} else {
1159
card->rawch += NS_RCQE_SIZE;
1160
card->rawcell++;
1161
}
1162
}
1163
}
1164
1165
/* Small buffer queue is empty */
1166
if (stat_r & NS_STAT_SFBQE) {
1167
int i;
1168
struct sk_buff *sb;
1169
1170
writel(NS_STAT_SFBQE, card->membase + STAT);
1171
printk("nicstar%d: Small free buffer queue empty.\n",
1172
card->index);
1173
for (i = 0; i < card->sbnr.min; i++) {
1174
sb = dev_alloc_skb(NS_SMSKBSIZE);
1175
if (sb == NULL) {
1176
writel(readl(card->membase + CFG) &
1177
~NS_CFG_EFBIE, card->membase + CFG);
1178
card->efbie = 0;
1179
break;
1180
}
1181
NS_PRV_BUFTYPE(sb) = BUF_SM;
1182
skb_queue_tail(&card->sbpool.queue, sb);
1183
skb_reserve(sb, NS_AAL0_HEADER);
1184
push_rxbufs(card, sb);
1185
}
1186
card->sbfqc = i;
1187
process_rsq(card);
1188
}
1189
1190
/* Large buffer queue empty */
1191
if (stat_r & NS_STAT_LFBQE) {
1192
int i;
1193
struct sk_buff *lb;
1194
1195
writel(NS_STAT_LFBQE, card->membase + STAT);
1196
printk("nicstar%d: Large free buffer queue empty.\n",
1197
card->index);
1198
for (i = 0; i < card->lbnr.min; i++) {
1199
lb = dev_alloc_skb(NS_LGSKBSIZE);
1200
if (lb == NULL) {
1201
writel(readl(card->membase + CFG) &
1202
~NS_CFG_EFBIE, card->membase + CFG);
1203
card->efbie = 0;
1204
break;
1205
}
1206
NS_PRV_BUFTYPE(lb) = BUF_LG;
1207
skb_queue_tail(&card->lbpool.queue, lb);
1208
skb_reserve(lb, NS_SMBUFSIZE);
1209
push_rxbufs(card, lb);
1210
}
1211
card->lbfqc = i;
1212
process_rsq(card);
1213
}
1214
1215
/* Receive Status Queue is 7/8 full */
1216
if (stat_r & NS_STAT_RSQAF) {
1217
writel(NS_STAT_RSQAF, card->membase + STAT);
1218
RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1219
process_rsq(card);
1220
}
1221
1222
spin_unlock_irqrestore(&card->int_lock, flags);
1223
PRINTK("nicstar%d: end of interrupt service\n", card->index);
1224
return IRQ_HANDLED;
1225
}
1226
1227
static int ns_open(struct atm_vcc *vcc)
1228
{
1229
ns_dev *card;
1230
vc_map *vc;
1231
unsigned long tmpl, modl;
1232
int tcr, tcra; /* target cell rate, and absolute value */
1233
int n = 0; /* Number of entries in the TST. Initialized to remove
1234
the compiler warning. */
1235
u32 u32d[4];
1236
int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
1237
warning. How I wish compilers were clever enough to
1238
tell which variables can truly be used
1239
uninitialized... */
1240
int inuse; /* tx or rx vc already in use by another vcc */
1241
short vpi = vcc->vpi;
1242
int vci = vcc->vci;
1243
1244
card = (ns_dev *) vcc->dev->dev_data;
1245
PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1246
vci);
1247
if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1248
PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1249
return -EINVAL;
1250
}
1251
1252
vc = &(card->vcmap[vpi << card->vcibits | vci]);
1253
vcc->dev_data = vc;
1254
1255
inuse = 0;
1256
if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1257
inuse = 1;
1258
if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1259
inuse += 2;
1260
if (inuse) {
1261
printk("nicstar%d: %s vci already in use.\n", card->index,
1262
inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1263
return -EINVAL;
1264
}
1265
1266
set_bit(ATM_VF_ADDR, &vcc->flags);
1267
1268
/* NOTE: You are not allowed to modify an open connection's QOS. To change
1269
that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1270
needed to do that. */
1271
if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1272
scq_info *scq;
1273
1274
set_bit(ATM_VF_PARTIAL, &vcc->flags);
1275
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1276
/* Check requested cell rate and availability of SCD */
1277
if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1278
&& vcc->qos.txtp.min_pcr == 0) {
1279
PRINTK
1280
("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1281
card->index);
1282
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1283
clear_bit(ATM_VF_ADDR, &vcc->flags);
1284
return -EINVAL;
1285
}
1286
1287
tcr = atm_pcr_goal(&(vcc->qos.txtp));
1288
tcra = tcr >= 0 ? tcr : -tcr;
1289
1290
PRINTK("nicstar%d: target cell rate = %d.\n",
1291
card->index, vcc->qos.txtp.max_pcr);
1292
1293
tmpl =
1294
(unsigned long)tcra *(unsigned long)
1295
NS_TST_NUM_ENTRIES;
1296
modl = tmpl % card->max_pcr;
1297
1298
n = (int)(tmpl / card->max_pcr);
1299
if (tcr > 0) {
1300
if (modl > 0)
1301
n++;
1302
} else if (tcr == 0) {
1303
if ((n =
1304
(card->tst_free_entries -
1305
NS_TST_RESERVED)) <= 0) {
1306
PRINTK
1307
("nicstar%d: no CBR bandwidth free.\n",
1308
card->index);
1309
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1310
clear_bit(ATM_VF_ADDR, &vcc->flags);
1311
return -EINVAL;
1312
}
1313
}
1314
1315
if (n == 0) {
1316
printk
1317
("nicstar%d: selected bandwidth < granularity.\n",
1318
card->index);
1319
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1320
clear_bit(ATM_VF_ADDR, &vcc->flags);
1321
return -EINVAL;
1322
}
1323
1324
if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1325
PRINTK
1326
("nicstar%d: not enough free CBR bandwidth.\n",
1327
card->index);
1328
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1329
clear_bit(ATM_VF_ADDR, &vcc->flags);
1330
return -EINVAL;
1331
} else
1332
card->tst_free_entries -= n;
1333
1334
XPRINTK("nicstar%d: writing %d tst entries.\n",
1335
card->index, n);
1336
for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1337
if (card->scd2vc[frscdi] == NULL) {
1338
card->scd2vc[frscdi] = vc;
1339
break;
1340
}
1341
}
1342
if (frscdi == NS_FRSCD_NUM) {
1343
PRINTK
1344
("nicstar%d: no SCD available for CBR channel.\n",
1345
card->index);
1346
card->tst_free_entries += n;
1347
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1348
clear_bit(ATM_VF_ADDR, &vcc->flags);
1349
return -EBUSY;
1350
}
1351
1352
vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1353
1354
scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1355
if (scq == NULL) {
1356
PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1357
card->index);
1358
card->scd2vc[frscdi] = NULL;
1359
card->tst_free_entries += n;
1360
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1361
clear_bit(ATM_VF_ADDR, &vcc->flags);
1362
return -ENOMEM;
1363
}
1364
vc->scq = scq;
1365
u32d[0] = scq_virt_to_bus(scq, scq->base);
1366
u32d[1] = (u32) 0x00000000;
1367
u32d[2] = (u32) 0xffffffff;
1368
u32d[3] = (u32) 0x00000000;
1369
ns_write_sram(card, vc->cbr_scd, u32d, 4);
1370
1371
fill_tst(card, n, vc);
1372
} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1373
vc->cbr_scd = 0x00000000;
1374
vc->scq = card->scq0;
1375
}
1376
1377
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1378
vc->tx = 1;
1379
vc->tx_vcc = vcc;
1380
vc->tbd_count = 0;
1381
}
1382
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1383
u32 status;
1384
1385
vc->rx = 1;
1386
vc->rx_vcc = vcc;
1387
vc->rx_iov = NULL;
1388
1389
/* Open the connection in hardware */
1390
if (vcc->qos.aal == ATM_AAL5)
1391
status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1392
else /* vcc->qos.aal == ATM_AAL0 */
1393
status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1394
#ifdef RCQ_SUPPORT
1395
status |= NS_RCTE_RAWCELLINTEN;
1396
#endif /* RCQ_SUPPORT */
1397
ns_write_sram(card,
1398
NS_RCT +
1399
(vpi << card->vcibits | vci) *
1400
NS_RCT_ENTRY_SIZE, &status, 1);
1401
}
1402
1403
}
1404
1405
set_bit(ATM_VF_READY, &vcc->flags);
1406
return 0;
1407
}
1408
1409
static void ns_close(struct atm_vcc *vcc)
1410
{
1411
vc_map *vc;
1412
ns_dev *card;
1413
u32 data;
1414
int i;
1415
1416
vc = vcc->dev_data;
1417
card = vcc->dev->dev_data;
1418
PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1419
(int)vcc->vpi, vcc->vci);
1420
1421
clear_bit(ATM_VF_READY, &vcc->flags);
1422
1423
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1424
u32 addr;
1425
unsigned long flags;
1426
1427
addr =
1428
NS_RCT +
1429
(vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1430
spin_lock_irqsave(&card->res_lock, flags);
1431
while (CMD_BUSY(card)) ;
1432
writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1433
card->membase + CMD);
1434
spin_unlock_irqrestore(&card->res_lock, flags);
1435
1436
vc->rx = 0;
1437
if (vc->rx_iov != NULL) {
1438
struct sk_buff *iovb;
1439
u32 stat;
1440
1441
stat = readl(card->membase + STAT);
1442
card->sbfqc = ns_stat_sfbqc_get(stat);
1443
card->lbfqc = ns_stat_lfbqc_get(stat);
1444
1445
PRINTK
1446
("nicstar%d: closing a VC with pending rx buffers.\n",
1447
card->index);
1448
iovb = vc->rx_iov;
1449
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1450
NS_PRV_IOVCNT(iovb));
1451
NS_PRV_IOVCNT(iovb) = 0;
1452
spin_lock_irqsave(&card->int_lock, flags);
1453
recycle_iov_buf(card, iovb);
1454
spin_unlock_irqrestore(&card->int_lock, flags);
1455
vc->rx_iov = NULL;
1456
}
1457
}
1458
1459
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1460
vc->tx = 0;
1461
}
1462
1463
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1464
unsigned long flags;
1465
ns_scqe *scqep;
1466
scq_info *scq;
1467
1468
scq = vc->scq;
1469
1470
for (;;) {
1471
spin_lock_irqsave(&scq->lock, flags);
1472
scqep = scq->next;
1473
if (scqep == scq->base)
1474
scqep = scq->last;
1475
else
1476
scqep--;
1477
if (scqep == scq->tail) {
1478
spin_unlock_irqrestore(&scq->lock, flags);
1479
break;
1480
}
1481
/* If the last entry is not a TSR, place one in the SCQ in order to
1482
be able to completely drain it and then close. */
1483
if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1484
ns_scqe tsr;
1485
u32 scdi, scqi;
1486
u32 data;
1487
int index;
1488
1489
tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1490
scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1491
scqi = scq->next - scq->base;
1492
tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1493
tsr.word_3 = 0x00000000;
1494
tsr.word_4 = 0x00000000;
1495
*scq->next = tsr;
1496
index = (int)scqi;
1497
scq->skb[index] = NULL;
1498
if (scq->next == scq->last)
1499
scq->next = scq->base;
1500
else
1501
scq->next++;
1502
data = scq_virt_to_bus(scq, scq->next);
1503
ns_write_sram(card, scq->scd, &data, 1);
1504
}
1505
spin_unlock_irqrestore(&scq->lock, flags);
1506
schedule();
1507
}
1508
1509
/* Free all TST entries */
1510
data = NS_TST_OPCODE_VARIABLE;
1511
for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1512
if (card->tste2vc[i] == vc) {
1513
ns_write_sram(card, card->tst_addr + i, &data,
1514
1);
1515
card->tste2vc[i] = NULL;
1516
card->tst_free_entries++;
1517
}
1518
}
1519
1520
card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1521
free_scq(card, vc->scq, vcc);
1522
}
1523
1524
/* remove all references to vcc before deleting it */
1525
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1526
unsigned long flags;
1527
scq_info *scq = card->scq0;
1528
1529
spin_lock_irqsave(&scq->lock, flags);
1530
1531
for (i = 0; i < scq->num_entries; i++) {
1532
if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1533
ATM_SKB(scq->skb[i])->vcc = NULL;
1534
atm_return(vcc, scq->skb[i]->truesize);
1535
PRINTK
1536
("nicstar: deleted pending vcc mapping\n");
1537
}
1538
}
1539
1540
spin_unlock_irqrestore(&scq->lock, flags);
1541
}
1542
1543
vcc->dev_data = NULL;
1544
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1545
clear_bit(ATM_VF_ADDR, &vcc->flags);
1546
1547
#ifdef RX_DEBUG
1548
{
1549
u32 stat, cfg;
1550
stat = readl(card->membase + STAT);
1551
cfg = readl(card->membase + CFG);
1552
printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
1553
printk
1554
("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
1555
card->tsq.base, card->tsq.next,
1556
card->tsq.last, readl(card->membase + TSQT));
1557
printk
1558
("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
1559
card->rsq.base, card->rsq.next,
1560
card->rsq.last, readl(card->membase + RSQT));
1561
printk("Empty free buffer queue interrupt %s \n",
1562
card->efbie ? "enabled" : "disabled");
1563
printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
1564
ns_stat_sfbqc_get(stat), card->sbpool.count,
1565
ns_stat_lfbqc_get(stat), card->lbpool.count);
1566
printk("hbpool.count = %d iovpool.count = %d \n",
1567
card->hbpool.count, card->iovpool.count);
1568
}
1569
#endif /* RX_DEBUG */
1570
}
1571
1572
static void fill_tst(ns_dev * card, int n, vc_map * vc)
1573
{
1574
u32 new_tst;
1575
unsigned long cl;
1576
int e, r;
1577
u32 data;
1578
1579
/* It would be very complicated to keep the two TSTs synchronized while
1580
assuring that writes are only made to the inactive TST. So, for now I
1581
will use only one TST. If problems occur, I will change this again */
1582
1583
new_tst = card->tst_addr;
1584
1585
/* Fill procedure */
1586
1587
for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1588
if (card->tste2vc[e] == NULL)
1589
break;
1590
}
1591
if (e == NS_TST_NUM_ENTRIES) {
1592
printk("nicstar%d: No free TST entries found. \n", card->index);
1593
return;
1594
}
1595
1596
r = n;
1597
cl = NS_TST_NUM_ENTRIES;
1598
data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1599
1600
while (r > 0) {
1601
if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1602
card->tste2vc[e] = vc;
1603
ns_write_sram(card, new_tst + e, &data, 1);
1604
cl -= NS_TST_NUM_ENTRIES;
1605
r--;
1606
}
1607
1608
if (++e == NS_TST_NUM_ENTRIES) {
1609
e = 0;
1610
}
1611
cl += n;
1612
}
1613
1614
/* End of fill procedure */
1615
1616
data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1617
ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1618
ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1619
card->tst_addr = new_tst;
1620
}
1621
1622
static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1623
{
1624
ns_dev *card;
1625
vc_map *vc;
1626
scq_info *scq;
1627
unsigned long buflen;
1628
ns_scqe scqe;
1629
u32 flags; /* TBD flags, not CPU flags */
1630
1631
card = vcc->dev->dev_data;
1632
TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1633
if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1634
printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1635
card->index);
1636
atomic_inc(&vcc->stats->tx_err);
1637
dev_kfree_skb_any(skb);
1638
return -EINVAL;
1639
}
1640
1641
if (!vc->tx) {
1642
printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1643
card->index);
1644
atomic_inc(&vcc->stats->tx_err);
1645
dev_kfree_skb_any(skb);
1646
return -EINVAL;
1647
}
1648
1649
if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1650
printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1651
card->index);
1652
atomic_inc(&vcc->stats->tx_err);
1653
dev_kfree_skb_any(skb);
1654
return -EINVAL;
1655
}
1656
1657
if (skb_shinfo(skb)->nr_frags != 0) {
1658
printk("nicstar%d: No scatter-gather yet.\n", card->index);
1659
atomic_inc(&vcc->stats->tx_err);
1660
dev_kfree_skb_any(skb);
1661
return -EINVAL;
1662
}
1663
1664
ATM_SKB(skb)->vcc = vcc;
1665
1666
NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1667
skb->len, DMA_TO_DEVICE);
1668
1669
if (vcc->qos.aal == ATM_AAL5) {
1670
buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
1671
flags = NS_TBD_AAL5;
1672
scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1673
scqe.word_3 = cpu_to_le32(skb->len);
1674
scqe.word_4 =
1675
ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1676
ATM_SKB(skb)->
1677
atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1678
flags |= NS_TBD_EOPDU;
1679
} else { /* (vcc->qos.aal == ATM_AAL0) */
1680
1681
buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
1682
flags = NS_TBD_AAL0;
1683
scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1684
scqe.word_3 = cpu_to_le32(0x00000000);
1685
if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
1686
flags |= NS_TBD_EOPDU;
1687
scqe.word_4 =
1688
cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1689
/* Force the VPI/VCI to be the same as in VCC struct */
1690
scqe.word_4 |=
1691
cpu_to_le32((((u32) vcc->
1692
vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1693
vci) <<
1694
NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1695
}
1696
1697
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1698
scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1699
scq = ((vc_map *) vcc->dev_data)->scq;
1700
} else {
1701
scqe.word_1 =
1702
ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1703
scq = card->scq0;
1704
}
1705
1706
if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1707
atomic_inc(&vcc->stats->tx_err);
1708
dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1709
DMA_TO_DEVICE);
1710
dev_kfree_skb_any(skb);
1711
return -EIO;
1712
}
1713
atomic_inc(&vcc->stats->tx);
1714
1715
return 0;
1716
}
1717
1718
static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1719
{
1720
return _ns_send(vcc, skb, true);
1721
}
1722
1723
static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1724
{
1725
return _ns_send(vcc, skb, false);
1726
}
1727
1728
static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1729
struct sk_buff *skb, bool may_sleep)
1730
{
1731
unsigned long flags;
1732
ns_scqe tsr;
1733
u32 scdi, scqi;
1734
int scq_is_vbr;
1735
u32 data;
1736
int index;
1737
1738
spin_lock_irqsave(&scq->lock, flags);
1739
while (scq->tail == scq->next) {
1740
if (!may_sleep) {
1741
spin_unlock_irqrestore(&scq->lock, flags);
1742
printk("nicstar%d: Error pushing TBD.\n", card->index);
1743
return 1;
1744
}
1745
1746
scq->full = 1;
1747
wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1748
scq->tail != scq->next,
1749
scq->lock,
1750
SCQFULL_TIMEOUT);
1751
1752
if (scq->full) {
1753
spin_unlock_irqrestore(&scq->lock, flags);
1754
printk("nicstar%d: Timeout pushing TBD.\n",
1755
card->index);
1756
return 1;
1757
}
1758
}
1759
*scq->next = *tbd;
1760
index = (int)(scq->next - scq->base);
1761
scq->skb[index] = skb;
1762
XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1763
card->index, skb, index);
1764
XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1765
card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1766
le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1767
scq->next);
1768
if (scq->next == scq->last)
1769
scq->next = scq->base;
1770
else
1771
scq->next++;
1772
1773
vc->tbd_count++;
1774
if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1775
scq->tbd_count++;
1776
scq_is_vbr = 1;
1777
} else
1778
scq_is_vbr = 0;
1779
1780
if (vc->tbd_count >= MAX_TBD_PER_VC
1781
|| scq->tbd_count >= MAX_TBD_PER_SCQ) {
1782
int has_run = 0;
1783
1784
while (scq->tail == scq->next) {
1785
if (!may_sleep) {
1786
data = scq_virt_to_bus(scq, scq->next);
1787
ns_write_sram(card, scq->scd, &data, 1);
1788
spin_unlock_irqrestore(&scq->lock, flags);
1789
printk("nicstar%d: Error pushing TSR.\n",
1790
card->index);
1791
return 0;
1792
}
1793
1794
scq->full = 1;
1795
if (has_run++)
1796
break;
1797
wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1798
scq->tail != scq->next,
1799
scq->lock,
1800
SCQFULL_TIMEOUT);
1801
}
1802
1803
if (!scq->full) {
1804
tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1805
if (scq_is_vbr)
1806
scdi = NS_TSR_SCDISVBR;
1807
else
1808
scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1809
scqi = scq->next - scq->base;
1810
tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1811
tsr.word_3 = 0x00000000;
1812
tsr.word_4 = 0x00000000;
1813
1814
*scq->next = tsr;
1815
index = (int)scqi;
1816
scq->skb[index] = NULL;
1817
XPRINTK
1818
("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1819
card->index, le32_to_cpu(tsr.word_1),
1820
le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1821
le32_to_cpu(tsr.word_4), scq->next);
1822
if (scq->next == scq->last)
1823
scq->next = scq->base;
1824
else
1825
scq->next++;
1826
vc->tbd_count = 0;
1827
scq->tbd_count = 0;
1828
} else
1829
PRINTK("nicstar%d: Timeout pushing TSR.\n",
1830
card->index);
1831
}
1832
data = scq_virt_to_bus(scq, scq->next);
1833
ns_write_sram(card, scq->scd, &data, 1);
1834
1835
spin_unlock_irqrestore(&scq->lock, flags);
1836
1837
return 0;
1838
}
1839
1840
static void process_tsq(ns_dev * card)
1841
{
1842
u32 scdi;
1843
scq_info *scq;
1844
ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1845
int serviced_entries; /* flag indicating at least on entry was serviced */
1846
1847
serviced_entries = 0;
1848
1849
if (card->tsq.next == card->tsq.last)
1850
one_ahead = card->tsq.base;
1851
else
1852
one_ahead = card->tsq.next + 1;
1853
1854
if (one_ahead == card->tsq.last)
1855
two_ahead = card->tsq.base;
1856
else
1857
two_ahead = one_ahead + 1;
1858
1859
while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1860
!ns_tsi_isempty(two_ahead))
1861
/* At most two empty, as stated in the 77201 errata */
1862
{
1863
serviced_entries = 1;
1864
1865
/* Skip the one or two possible empty entries */
1866
while (ns_tsi_isempty(card->tsq.next)) {
1867
if (card->tsq.next == card->tsq.last)
1868
card->tsq.next = card->tsq.base;
1869
else
1870
card->tsq.next++;
1871
}
1872
1873
if (!ns_tsi_tmrof(card->tsq.next)) {
1874
scdi = ns_tsi_getscdindex(card->tsq.next);
1875
if (scdi == NS_TSI_SCDISVBR)
1876
scq = card->scq0;
1877
else {
1878
if (card->scd2vc[scdi] == NULL) {
1879
printk
1880
("nicstar%d: could not find VC from SCD index.\n",
1881
card->index);
1882
ns_tsi_init(card->tsq.next);
1883
return;
1884
}
1885
scq = card->scd2vc[scdi]->scq;
1886
}
1887
drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1888
scq->full = 0;
1889
wake_up_interruptible(&(scq->scqfull_waitq));
1890
}
1891
1892
ns_tsi_init(card->tsq.next);
1893
previous = card->tsq.next;
1894
if (card->tsq.next == card->tsq.last)
1895
card->tsq.next = card->tsq.base;
1896
else
1897
card->tsq.next++;
1898
1899
if (card->tsq.next == card->tsq.last)
1900
one_ahead = card->tsq.base;
1901
else
1902
one_ahead = card->tsq.next + 1;
1903
1904
if (one_ahead == card->tsq.last)
1905
two_ahead = card->tsq.base;
1906
else
1907
two_ahead = one_ahead + 1;
1908
}
1909
1910
if (serviced_entries)
1911
writel(PTR_DIFF(previous, card->tsq.base),
1912
card->membase + TSQH);
1913
}
1914
1915
static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1916
{
1917
struct atm_vcc *vcc;
1918
struct sk_buff *skb;
1919
int i;
1920
unsigned long flags;
1921
1922
XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1923
card->index, scq, pos);
1924
if (pos >= scq->num_entries) {
1925
printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1926
return;
1927
}
1928
1929
spin_lock_irqsave(&scq->lock, flags);
1930
i = (int)(scq->tail - scq->base);
1931
if (++i == scq->num_entries)
1932
i = 0;
1933
while (i != pos) {
1934
skb = scq->skb[i];
1935
XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1936
card->index, skb, i);
1937
if (skb != NULL) {
1938
dma_unmap_single(&card->pcidev->dev,
1939
NS_PRV_DMA(skb),
1940
skb->len,
1941
DMA_TO_DEVICE);
1942
vcc = ATM_SKB(skb)->vcc;
1943
if (vcc && vcc->pop != NULL) {
1944
vcc->pop(vcc, skb);
1945
} else {
1946
dev_kfree_skb_irq(skb);
1947
}
1948
scq->skb[i] = NULL;
1949
}
1950
if (++i == scq->num_entries)
1951
i = 0;
1952
}
1953
scq->tail = scq->base + pos;
1954
spin_unlock_irqrestore(&scq->lock, flags);
1955
}
1956
1957
static void process_rsq(ns_dev * card)
1958
{
1959
ns_rsqe *previous;
1960
1961
if (!ns_rsqe_valid(card->rsq.next))
1962
return;
1963
do {
1964
dequeue_rx(card, card->rsq.next);
1965
ns_rsqe_init(card->rsq.next);
1966
previous = card->rsq.next;
1967
if (card->rsq.next == card->rsq.last)
1968
card->rsq.next = card->rsq.base;
1969
else
1970
card->rsq.next++;
1971
} while (ns_rsqe_valid(card->rsq.next));
1972
writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1973
}
1974
1975
static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1976
{
1977
u32 vpi, vci;
1978
vc_map *vc;
1979
struct sk_buff *iovb;
1980
struct iovec *iov;
1981
struct atm_vcc *vcc;
1982
struct sk_buff *skb;
1983
unsigned short aal5_len;
1984
int len;
1985
u32 stat;
1986
u32 id;
1987
1988
stat = readl(card->membase + STAT);
1989
card->sbfqc = ns_stat_sfbqc_get(stat);
1990
card->lbfqc = ns_stat_lfbqc_get(stat);
1991
1992
id = le32_to_cpu(rsqe->buffer_handle);
1993
skb = idr_remove(&card->idr, id);
1994
if (!skb) {
1995
RXPRINTK(KERN_ERR
1996
"nicstar%d: skb not found!\n", card->index);
1997
return;
1998
}
1999
dma_sync_single_for_cpu(&card->pcidev->dev,
2000
NS_PRV_DMA(skb),
2001
(NS_PRV_BUFTYPE(skb) == BUF_SM
2002
? NS_SMSKBSIZE : NS_LGSKBSIZE),
2003
DMA_FROM_DEVICE);
2004
dma_unmap_single(&card->pcidev->dev,
2005
NS_PRV_DMA(skb),
2006
(NS_PRV_BUFTYPE(skb) == BUF_SM
2007
? NS_SMSKBSIZE : NS_LGSKBSIZE),
2008
DMA_FROM_DEVICE);
2009
vpi = ns_rsqe_vpi(rsqe);
2010
vci = ns_rsqe_vci(rsqe);
2011
if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2012
printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2013
card->index, vpi, vci);
2014
recycle_rx_buf(card, skb);
2015
return;
2016
}
2017
2018
vc = &(card->vcmap[vpi << card->vcibits | vci]);
2019
if (!vc->rx) {
2020
RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2021
card->index, vpi, vci);
2022
recycle_rx_buf(card, skb);
2023
return;
2024
}
2025
2026
vcc = vc->rx_vcc;
2027
2028
if (vcc->qos.aal == ATM_AAL0) {
2029
struct sk_buff *sb;
2030
unsigned char *cell;
2031
int i;
2032
2033
cell = skb->data;
2034
for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2035
sb = dev_alloc_skb(NS_SMSKBSIZE);
2036
if (!sb) {
2037
printk
2038
("nicstar%d: Can't allocate buffers for aal0.\n",
2039
card->index);
2040
atomic_add(i, &vcc->stats->rx_drop);
2041
break;
2042
}
2043
if (!atm_charge(vcc, sb->truesize)) {
2044
RXPRINTK
2045
("nicstar%d: atm_charge() dropped aal0 packets.\n",
2046
card->index);
2047
atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
2048
dev_kfree_skb_any(sb);
2049
break;
2050
}
2051
/* Rebuild the header */
2052
*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2053
(ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2054
if (i == 1 && ns_rsqe_eopdu(rsqe))
2055
*((u32 *) sb->data) |= 0x00000002;
2056
skb_put(sb, NS_AAL0_HEADER);
2057
memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2058
skb_put(sb, ATM_CELL_PAYLOAD);
2059
ATM_SKB(sb)->vcc = vcc;
2060
__net_timestamp(sb);
2061
vcc->push(vcc, sb);
2062
atomic_inc(&vcc->stats->rx);
2063
cell += ATM_CELL_PAYLOAD;
2064
}
2065
2066
recycle_rx_buf(card, skb);
2067
return;
2068
}
2069
2070
/* To reach this point, the AAL layer can only be AAL5 */
2071
2072
if ((iovb = vc->rx_iov) == NULL) {
2073
iovb = skb_dequeue(&(card->iovpool.queue));
2074
if (iovb == NULL) { /* No buffers in the queue */
2075
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2076
if (iovb == NULL) {
2077
printk("nicstar%d: Out of iovec buffers.\n",
2078
card->index);
2079
atomic_inc(&vcc->stats->rx_drop);
2080
recycle_rx_buf(card, skb);
2081
return;
2082
}
2083
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2084
} else if (--card->iovpool.count < card->iovnr.min) {
2085
struct sk_buff *new_iovb;
2086
if ((new_iovb =
2087
alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2088
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2089
skb_queue_tail(&card->iovpool.queue, new_iovb);
2090
card->iovpool.count++;
2091
}
2092
}
2093
vc->rx_iov = iovb;
2094
NS_PRV_IOVCNT(iovb) = 0;
2095
iovb->len = 0;
2096
iovb->data = iovb->head;
2097
skb_reset_tail_pointer(iovb);
2098
/* IMPORTANT: a pointer to the sk_buff containing the small or large
2099
buffer is stored as iovec base, NOT a pointer to the
2100
small or large buffer itself. */
2101
} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2102
printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2103
atomic_inc(&vcc->stats->rx_err);
2104
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2105
NS_MAX_IOVECS);
2106
NS_PRV_IOVCNT(iovb) = 0;
2107
iovb->len = 0;
2108
iovb->data = iovb->head;
2109
skb_reset_tail_pointer(iovb);
2110
}
2111
iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2112
iov->iov_base = (void *)skb;
2113
iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2114
iovb->len += iov->iov_len;
2115
2116
#ifdef EXTRA_DEBUG
2117
if (NS_PRV_IOVCNT(iovb) == 1) {
2118
if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2119
printk
2120
("nicstar%d: Expected a small buffer, and this is not one.\n",
2121
card->index);
2122
which_list(card, skb);
2123
atomic_inc(&vcc->stats->rx_err);
2124
recycle_rx_buf(card, skb);
2125
vc->rx_iov = NULL;
2126
recycle_iov_buf(card, iovb);
2127
return;
2128
}
2129
} else { /* NS_PRV_IOVCNT(iovb) >= 2 */
2130
2131
if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2132
printk
2133
("nicstar%d: Expected a large buffer, and this is not one.\n",
2134
card->index);
2135
which_list(card, skb);
2136
atomic_inc(&vcc->stats->rx_err);
2137
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2138
NS_PRV_IOVCNT(iovb));
2139
vc->rx_iov = NULL;
2140
recycle_iov_buf(card, iovb);
2141
return;
2142
}
2143
}
2144
#endif /* EXTRA_DEBUG */
2145
2146
if (ns_rsqe_eopdu(rsqe)) {
2147
/* This works correctly regardless of the endianness of the host */
2148
unsigned char *L1L2 = (unsigned char *)
2149
(skb->data + iov->iov_len - 6);
2150
aal5_len = L1L2[0] << 8 | L1L2[1];
2151
len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2152
if (ns_rsqe_crcerr(rsqe) ||
2153
len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2154
printk("nicstar%d: AAL5 CRC error", card->index);
2155
if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2156
printk(" - PDU size mismatch.\n");
2157
else
2158
printk(".\n");
2159
atomic_inc(&vcc->stats->rx_err);
2160
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2161
NS_PRV_IOVCNT(iovb));
2162
vc->rx_iov = NULL;
2163
recycle_iov_buf(card, iovb);
2164
return;
2165
}
2166
2167
/* By this point we (hopefully) have a complete SDU without errors. */
2168
2169
if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
2170
/* skb points to a small buffer */
2171
if (!atm_charge(vcc, skb->truesize)) {
2172
push_rxbufs(card, skb);
2173
atomic_inc(&vcc->stats->rx_drop);
2174
} else {
2175
skb_put(skb, len);
2176
dequeue_sm_buf(card, skb);
2177
ATM_SKB(skb)->vcc = vcc;
2178
__net_timestamp(skb);
2179
vcc->push(vcc, skb);
2180
atomic_inc(&vcc->stats->rx);
2181
}
2182
} else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
2183
struct sk_buff *sb;
2184
2185
sb = (struct sk_buff *)(iov - 1)->iov_base;
2186
/* skb points to a large buffer */
2187
2188
if (len <= NS_SMBUFSIZE) {
2189
if (!atm_charge(vcc, sb->truesize)) {
2190
push_rxbufs(card, sb);
2191
atomic_inc(&vcc->stats->rx_drop);
2192
} else {
2193
skb_put(sb, len);
2194
dequeue_sm_buf(card, sb);
2195
ATM_SKB(sb)->vcc = vcc;
2196
__net_timestamp(sb);
2197
vcc->push(vcc, sb);
2198
atomic_inc(&vcc->stats->rx);
2199
}
2200
2201
push_rxbufs(card, skb);
2202
2203
} else { /* len > NS_SMBUFSIZE, the usual case */
2204
2205
if (!atm_charge(vcc, skb->truesize)) {
2206
push_rxbufs(card, skb);
2207
atomic_inc(&vcc->stats->rx_drop);
2208
} else {
2209
dequeue_lg_buf(card, skb);
2210
skb_push(skb, NS_SMBUFSIZE);
2211
skb_copy_from_linear_data(sb, skb->data,
2212
NS_SMBUFSIZE);
2213
skb_put(skb, len - NS_SMBUFSIZE);
2214
ATM_SKB(skb)->vcc = vcc;
2215
__net_timestamp(skb);
2216
vcc->push(vcc, skb);
2217
atomic_inc(&vcc->stats->rx);
2218
}
2219
2220
push_rxbufs(card, sb);
2221
2222
}
2223
2224
} else { /* Must push a huge buffer */
2225
2226
struct sk_buff *hb, *sb, *lb;
2227
int remaining, tocopy;
2228
int j;
2229
2230
hb = skb_dequeue(&(card->hbpool.queue));
2231
if (hb == NULL) { /* No buffers in the queue */
2232
2233
hb = dev_alloc_skb(NS_HBUFSIZE);
2234
if (hb == NULL) {
2235
printk
2236
("nicstar%d: Out of huge buffers.\n",
2237
card->index);
2238
atomic_inc(&vcc->stats->rx_drop);
2239
recycle_iovec_rx_bufs(card,
2240
(struct iovec *)
2241
iovb->data,
2242
NS_PRV_IOVCNT(iovb));
2243
vc->rx_iov = NULL;
2244
recycle_iov_buf(card, iovb);
2245
return;
2246
} else if (card->hbpool.count < card->hbnr.min) {
2247
struct sk_buff *new_hb;
2248
if ((new_hb =
2249
dev_alloc_skb(NS_HBUFSIZE)) !=
2250
NULL) {
2251
skb_queue_tail(&card->hbpool.
2252
queue, new_hb);
2253
card->hbpool.count++;
2254
}
2255
}
2256
NS_PRV_BUFTYPE(hb) = BUF_NONE;
2257
} else if (--card->hbpool.count < card->hbnr.min) {
2258
struct sk_buff *new_hb;
2259
if ((new_hb =
2260
dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2261
NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2262
skb_queue_tail(&card->hbpool.queue,
2263
new_hb);
2264
card->hbpool.count++;
2265
}
2266
if (card->hbpool.count < card->hbnr.min) {
2267
if ((new_hb =
2268
dev_alloc_skb(NS_HBUFSIZE)) !=
2269
NULL) {
2270
NS_PRV_BUFTYPE(new_hb) =
2271
BUF_NONE;
2272
skb_queue_tail(&card->hbpool.
2273
queue, new_hb);
2274
card->hbpool.count++;
2275
}
2276
}
2277
}
2278
2279
iov = (struct iovec *)iovb->data;
2280
2281
if (!atm_charge(vcc, hb->truesize)) {
2282
recycle_iovec_rx_bufs(card, iov,
2283
NS_PRV_IOVCNT(iovb));
2284
if (card->hbpool.count < card->hbnr.max) {
2285
skb_queue_tail(&card->hbpool.queue, hb);
2286
card->hbpool.count++;
2287
} else
2288
dev_kfree_skb_any(hb);
2289
atomic_inc(&vcc->stats->rx_drop);
2290
} else {
2291
/* Copy the small buffer to the huge buffer */
2292
sb = (struct sk_buff *)iov->iov_base;
2293
skb_copy_from_linear_data(sb, hb->data,
2294
iov->iov_len);
2295
skb_put(hb, iov->iov_len);
2296
remaining = len - iov->iov_len;
2297
iov++;
2298
/* Free the small buffer */
2299
push_rxbufs(card, sb);
2300
2301
/* Copy all large buffers to the huge buffer and free them */
2302
for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2303
lb = (struct sk_buff *)iov->iov_base;
2304
tocopy =
2305
min_t(int, remaining, iov->iov_len);
2306
skb_copy_from_linear_data(lb,
2307
skb_tail_pointer
2308
(hb), tocopy);
2309
skb_put(hb, tocopy);
2310
iov++;
2311
remaining -= tocopy;
2312
push_rxbufs(card, lb);
2313
}
2314
#ifdef EXTRA_DEBUG
2315
if (remaining != 0 || hb->len != len)
2316
printk
2317
("nicstar%d: Huge buffer len mismatch.\n",
2318
card->index);
2319
#endif /* EXTRA_DEBUG */
2320
ATM_SKB(hb)->vcc = vcc;
2321
__net_timestamp(hb);
2322
vcc->push(vcc, hb);
2323
atomic_inc(&vcc->stats->rx);
2324
}
2325
}
2326
2327
vc->rx_iov = NULL;
2328
recycle_iov_buf(card, iovb);
2329
}
2330
2331
}
2332
2333
static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2334
{
2335
if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2336
printk("nicstar%d: What kind of rx buffer is this?\n",
2337
card->index);
2338
dev_kfree_skb_any(skb);
2339
} else
2340
push_rxbufs(card, skb);
2341
}
2342
2343
static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2344
{
2345
while (count-- > 0)
2346
recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2347
}
2348
2349
static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2350
{
2351
if (card->iovpool.count < card->iovnr.max) {
2352
skb_queue_tail(&card->iovpool.queue, iovb);
2353
card->iovpool.count++;
2354
} else
2355
dev_kfree_skb_any(iovb);
2356
}
2357
2358
static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2359
{
2360
skb_unlink(sb, &card->sbpool.queue);
2361
if (card->sbfqc < card->sbnr.init) {
2362
struct sk_buff *new_sb;
2363
if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2364
NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2365
skb_queue_tail(&card->sbpool.queue, new_sb);
2366
skb_reserve(new_sb, NS_AAL0_HEADER);
2367
push_rxbufs(card, new_sb);
2368
}
2369
}
2370
if (card->sbfqc < card->sbnr.init)
2371
{
2372
struct sk_buff *new_sb;
2373
if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2374
NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2375
skb_queue_tail(&card->sbpool.queue, new_sb);
2376
skb_reserve(new_sb, NS_AAL0_HEADER);
2377
push_rxbufs(card, new_sb);
2378
}
2379
}
2380
}
2381
2382
static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2383
{
2384
skb_unlink(lb, &card->lbpool.queue);
2385
if (card->lbfqc < card->lbnr.init) {
2386
struct sk_buff *new_lb;
2387
if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2388
NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2389
skb_queue_tail(&card->lbpool.queue, new_lb);
2390
skb_reserve(new_lb, NS_SMBUFSIZE);
2391
push_rxbufs(card, new_lb);
2392
}
2393
}
2394
if (card->lbfqc < card->lbnr.init)
2395
{
2396
struct sk_buff *new_lb;
2397
if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2398
NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2399
skb_queue_tail(&card->lbpool.queue, new_lb);
2400
skb_reserve(new_lb, NS_SMBUFSIZE);
2401
push_rxbufs(card, new_lb);
2402
}
2403
}
2404
}
2405
2406
static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2407
{
2408
u32 stat;
2409
ns_dev *card;
2410
int left;
2411
2412
left = (int)*pos;
2413
card = (ns_dev *) dev->dev_data;
2414
stat = readl(card->membase + STAT);
2415
if (!left--)
2416
return sprintf(page, "Pool count min init max \n");
2417
if (!left--)
2418
return sprintf(page, "Small %5d %5d %5d %5d \n",
2419
ns_stat_sfbqc_get(stat), card->sbnr.min,
2420
card->sbnr.init, card->sbnr.max);
2421
if (!left--)
2422
return sprintf(page, "Large %5d %5d %5d %5d \n",
2423
ns_stat_lfbqc_get(stat), card->lbnr.min,
2424
card->lbnr.init, card->lbnr.max);
2425
if (!left--)
2426
return sprintf(page, "Huge %5d %5d %5d %5d \n",
2427
card->hbpool.count, card->hbnr.min,
2428
card->hbnr.init, card->hbnr.max);
2429
if (!left--)
2430
return sprintf(page, "Iovec %5d %5d %5d %5d \n",
2431
card->iovpool.count, card->iovnr.min,
2432
card->iovnr.init, card->iovnr.max);
2433
if (!left--) {
2434
int retval;
2435
retval =
2436
sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2437
card->intcnt = 0;
2438
return retval;
2439
}
2440
#if 0
2441
/* Dump 25.6 Mbps PHY registers */
2442
/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2443
here just in case it's needed for debugging. */
2444
if (card->max_pcr == ATM_25_PCR && !left--) {
2445
u32 phy_regs[4];
2446
u32 i;
2447
2448
for (i = 0; i < 4; i++) {
2449
while (CMD_BUSY(card)) ;
2450
writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2451
card->membase + CMD);
2452
while (CMD_BUSY(card)) ;
2453
phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2454
}
2455
2456
return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2457
phy_regs[0], phy_regs[1], phy_regs[2],
2458
phy_regs[3]);
2459
}
2460
#endif /* 0 - Dump 25.6 Mbps PHY registers */
2461
#if 0
2462
/* Dump TST */
2463
if (left-- < NS_TST_NUM_ENTRIES) {
2464
if (card->tste2vc[left + 1] == NULL)
2465
return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2466
else
2467
return sprintf(page, "%5d - %d %d \n", left + 1,
2468
card->tste2vc[left + 1]->tx_vcc->vpi,
2469
card->tste2vc[left + 1]->tx_vcc->vci);
2470
}
2471
#endif /* 0 */
2472
return 0;
2473
}
2474
2475
static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2476
{
2477
ns_dev *card;
2478
pool_levels pl;
2479
long btype;
2480
unsigned long flags;
2481
2482
card = dev->dev_data;
2483
switch (cmd) {
2484
case NS_GETPSTAT:
2485
if (get_user
2486
(pl.buftype, &((pool_levels __user *) arg)->buftype))
2487
return -EFAULT;
2488
switch (pl.buftype) {
2489
case NS_BUFTYPE_SMALL:
2490
pl.count =
2491
ns_stat_sfbqc_get(readl(card->membase + STAT));
2492
pl.level.min = card->sbnr.min;
2493
pl.level.init = card->sbnr.init;
2494
pl.level.max = card->sbnr.max;
2495
break;
2496
2497
case NS_BUFTYPE_LARGE:
2498
pl.count =
2499
ns_stat_lfbqc_get(readl(card->membase + STAT));
2500
pl.level.min = card->lbnr.min;
2501
pl.level.init = card->lbnr.init;
2502
pl.level.max = card->lbnr.max;
2503
break;
2504
2505
case NS_BUFTYPE_HUGE:
2506
pl.count = card->hbpool.count;
2507
pl.level.min = card->hbnr.min;
2508
pl.level.init = card->hbnr.init;
2509
pl.level.max = card->hbnr.max;
2510
break;
2511
2512
case NS_BUFTYPE_IOVEC:
2513
pl.count = card->iovpool.count;
2514
pl.level.min = card->iovnr.min;
2515
pl.level.init = card->iovnr.init;
2516
pl.level.max = card->iovnr.max;
2517
break;
2518
2519
default:
2520
return -ENOIOCTLCMD;
2521
2522
}
2523
if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2524
return (sizeof(pl));
2525
else
2526
return -EFAULT;
2527
2528
case NS_SETBUFLEV:
2529
if (!capable(CAP_NET_ADMIN))
2530
return -EPERM;
2531
if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2532
return -EFAULT;
2533
if (pl.level.min >= pl.level.init
2534
|| pl.level.init >= pl.level.max)
2535
return -EINVAL;
2536
if (pl.level.min == 0)
2537
return -EINVAL;
2538
switch (pl.buftype) {
2539
case NS_BUFTYPE_SMALL:
2540
if (pl.level.max > TOP_SB)
2541
return -EINVAL;
2542
card->sbnr.min = pl.level.min;
2543
card->sbnr.init = pl.level.init;
2544
card->sbnr.max = pl.level.max;
2545
break;
2546
2547
case NS_BUFTYPE_LARGE:
2548
if (pl.level.max > TOP_LB)
2549
return -EINVAL;
2550
card->lbnr.min = pl.level.min;
2551
card->lbnr.init = pl.level.init;
2552
card->lbnr.max = pl.level.max;
2553
break;
2554
2555
case NS_BUFTYPE_HUGE:
2556
if (pl.level.max > TOP_HB)
2557
return -EINVAL;
2558
card->hbnr.min = pl.level.min;
2559
card->hbnr.init = pl.level.init;
2560
card->hbnr.max = pl.level.max;
2561
break;
2562
2563
case NS_BUFTYPE_IOVEC:
2564
if (pl.level.max > TOP_IOVB)
2565
return -EINVAL;
2566
card->iovnr.min = pl.level.min;
2567
card->iovnr.init = pl.level.init;
2568
card->iovnr.max = pl.level.max;
2569
break;
2570
2571
default:
2572
return -EINVAL;
2573
2574
}
2575
return 0;
2576
2577
case NS_ADJBUFLEV:
2578
if (!capable(CAP_NET_ADMIN))
2579
return -EPERM;
2580
btype = (long)arg; /* a long is the same size as a pointer or bigger */
2581
switch (btype) {
2582
case NS_BUFTYPE_SMALL:
2583
while (card->sbfqc < card->sbnr.init) {
2584
struct sk_buff *sb;
2585
2586
sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2587
if (sb == NULL)
2588
return -ENOMEM;
2589
NS_PRV_BUFTYPE(sb) = BUF_SM;
2590
skb_queue_tail(&card->sbpool.queue, sb);
2591
skb_reserve(sb, NS_AAL0_HEADER);
2592
push_rxbufs(card, sb);
2593
}
2594
break;
2595
2596
case NS_BUFTYPE_LARGE:
2597
while (card->lbfqc < card->lbnr.init) {
2598
struct sk_buff *lb;
2599
2600
lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2601
if (lb == NULL)
2602
return -ENOMEM;
2603
NS_PRV_BUFTYPE(lb) = BUF_LG;
2604
skb_queue_tail(&card->lbpool.queue, lb);
2605
skb_reserve(lb, NS_SMBUFSIZE);
2606
push_rxbufs(card, lb);
2607
}
2608
break;
2609
2610
case NS_BUFTYPE_HUGE:
2611
while (card->hbpool.count > card->hbnr.init) {
2612
struct sk_buff *hb;
2613
2614
spin_lock_irqsave(&card->int_lock, flags);
2615
hb = skb_dequeue(&card->hbpool.queue);
2616
card->hbpool.count--;
2617
spin_unlock_irqrestore(&card->int_lock, flags);
2618
if (hb == NULL)
2619
printk
2620
("nicstar%d: huge buffer count inconsistent.\n",
2621
card->index);
2622
else
2623
dev_kfree_skb_any(hb);
2624
2625
}
2626
while (card->hbpool.count < card->hbnr.init) {
2627
struct sk_buff *hb;
2628
2629
hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2630
if (hb == NULL)
2631
return -ENOMEM;
2632
NS_PRV_BUFTYPE(hb) = BUF_NONE;
2633
spin_lock_irqsave(&card->int_lock, flags);
2634
skb_queue_tail(&card->hbpool.queue, hb);
2635
card->hbpool.count++;
2636
spin_unlock_irqrestore(&card->int_lock, flags);
2637
}
2638
break;
2639
2640
case NS_BUFTYPE_IOVEC:
2641
while (card->iovpool.count > card->iovnr.init) {
2642
struct sk_buff *iovb;
2643
2644
spin_lock_irqsave(&card->int_lock, flags);
2645
iovb = skb_dequeue(&card->iovpool.queue);
2646
card->iovpool.count--;
2647
spin_unlock_irqrestore(&card->int_lock, flags);
2648
if (iovb == NULL)
2649
printk
2650
("nicstar%d: iovec buffer count inconsistent.\n",
2651
card->index);
2652
else
2653
dev_kfree_skb_any(iovb);
2654
2655
}
2656
while (card->iovpool.count < card->iovnr.init) {
2657
struct sk_buff *iovb;
2658
2659
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2660
if (iovb == NULL)
2661
return -ENOMEM;
2662
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2663
spin_lock_irqsave(&card->int_lock, flags);
2664
skb_queue_tail(&card->iovpool.queue, iovb);
2665
card->iovpool.count++;
2666
spin_unlock_irqrestore(&card->int_lock, flags);
2667
}
2668
break;
2669
2670
default:
2671
return -EINVAL;
2672
2673
}
2674
return 0;
2675
2676
default:
2677
if (dev->phy && dev->phy->ioctl) {
2678
return dev->phy->ioctl(dev, cmd, arg);
2679
} else {
2680
printk("nicstar%d: %s == NULL \n", card->index,
2681
dev->phy ? "dev->phy->ioctl" : "dev->phy");
2682
return -ENOIOCTLCMD;
2683
}
2684
}
2685
}
2686
2687
#ifdef EXTRA_DEBUG
2688
static void which_list(ns_dev * card, struct sk_buff *skb)
2689
{
2690
printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2691
}
2692
#endif /* EXTRA_DEBUG */
2693
2694
static void ns_poll(struct timer_list *unused)
2695
{
2696
int i;
2697
ns_dev *card;
2698
unsigned long flags;
2699
u32 stat_r, stat_w;
2700
2701
PRINTK("nicstar: Entering ns_poll().\n");
2702
for (i = 0; i < num_cards; i++) {
2703
card = cards[i];
2704
if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2705
/* Probably it isn't worth spinning */
2706
continue;
2707
}
2708
2709
stat_w = 0;
2710
stat_r = readl(card->membase + STAT);
2711
if (stat_r & NS_STAT_TSIF)
2712
stat_w |= NS_STAT_TSIF;
2713
if (stat_r & NS_STAT_EOPDU)
2714
stat_w |= NS_STAT_EOPDU;
2715
2716
process_tsq(card);
2717
process_rsq(card);
2718
2719
writel(stat_w, card->membase + STAT);
2720
spin_unlock_irqrestore(&card->int_lock, flags);
2721
}
2722
mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2723
PRINTK("nicstar: Leaving ns_poll().\n");
2724
}
2725
2726
static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2727
unsigned long addr)
2728
{
2729
ns_dev *card;
2730
unsigned long flags;
2731
2732
card = dev->dev_data;
2733
spin_lock_irqsave(&card->res_lock, flags);
2734
while (CMD_BUSY(card)) ;
2735
writel((u32) value, card->membase + DR0);
2736
writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2737
card->membase + CMD);
2738
spin_unlock_irqrestore(&card->res_lock, flags);
2739
}
2740
2741
static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2742
{
2743
ns_dev *card;
2744
unsigned long flags;
2745
u32 data;
2746
2747
card = dev->dev_data;
2748
spin_lock_irqsave(&card->res_lock, flags);
2749
while (CMD_BUSY(card)) ;
2750
writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2751
card->membase + CMD);
2752
while (CMD_BUSY(card)) ;
2753
data = readl(card->membase + DR0) & 0x000000FF;
2754
spin_unlock_irqrestore(&card->res_lock, flags);
2755
return (unsigned char)data;
2756
}
2757
2758
module_init(nicstar_init);
2759
module_exit(nicstar_cleanup);
2760
2761