Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/auxdisplay/panel.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* Front panel driver for Linux
4
* Copyright (C) 2000-2008, Willy Tarreau <[email protected]>
5
* Copyright (C) 2016-2017 Glider bvba
6
*
7
* This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8
* connected to a parallel printer port.
9
*
10
* The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11
* serial module compatible with Samsung's KS0074. The pins may be connected in
12
* any combination, everything is programmable.
13
*
14
* The keypad consists in a matrix of push buttons connecting input pins to
15
* data output pins or to the ground. The combinations have to be hard-coded
16
* in the driver, though several profiles exist and adding new ones is easy.
17
*
18
* Several profiles are provided for commonly found LCD+keypad modules on the
19
* market, such as those found in Nexcom's appliances.
20
*
21
* FIXME:
22
* - the initialization/deinitialization process is very dirty and should
23
* be rewritten. It may even be buggy.
24
*
25
* TODO:
26
* - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27
* - make the LCD a part of a virtual screen of Vx*Vy
28
* - make the inputs list smp-safe
29
* - change the keyboard to a double mapping : signals -> key_id -> values
30
* so that applications can change values without knowing signals
31
*
32
*/
33
34
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36
#include <linux/module.h>
37
38
#include <linux/types.h>
39
#include <linux/errno.h>
40
#include <linux/signal.h>
41
#include <linux/sched.h>
42
#include <linux/spinlock.h>
43
#include <linux/interrupt.h>
44
#include <linux/miscdevice.h>
45
#include <linux/slab.h>
46
#include <linux/ioport.h>
47
#include <linux/fcntl.h>
48
#include <linux/init.h>
49
#include <linux/delay.h>
50
#include <linux/kernel.h>
51
#include <linux/ctype.h>
52
#include <linux/parport.h>
53
#include <linux/list.h>
54
55
#include <linux/io.h>
56
#include <linux/uaccess.h>
57
58
#include "charlcd.h"
59
#include "hd44780_common.h"
60
61
#define LCD_MAXBYTES 256 /* max burst write */
62
63
#define KEYPAD_BUFFER 64
64
65
/* poll the keyboard this every second */
66
#define INPUT_POLL_TIME (HZ / 50)
67
/* a key starts to repeat after this times INPUT_POLL_TIME */
68
#define KEYPAD_REP_START (10)
69
/* a key repeats this times INPUT_POLL_TIME */
70
#define KEYPAD_REP_DELAY (2)
71
72
/* converts an r_str() input to an active high, bits string : 000BAOSE */
73
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
74
75
#define PNL_PBUSY 0x80 /* inverted input, active low */
76
#define PNL_PACK 0x40 /* direct input, active low */
77
#define PNL_POUTPA 0x20 /* direct input, active high */
78
#define PNL_PSELECD 0x10 /* direct input, active high */
79
#define PNL_PERRORP 0x08 /* direct input, active low */
80
81
#define PNL_PBIDIR 0x20 /* bi-directional ports */
82
/* high to read data in or-ed with data out */
83
#define PNL_PINTEN 0x10
84
#define PNL_PSELECP 0x08 /* inverted output, active low */
85
#define PNL_PINITP 0x04 /* direct output, active low */
86
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
87
#define PNL_PSTROBE 0x01 /* inverted output */
88
89
#define PNL_PD0 0x01
90
#define PNL_PD1 0x02
91
#define PNL_PD2 0x04
92
#define PNL_PD3 0x08
93
#define PNL_PD4 0x10
94
#define PNL_PD5 0x20
95
#define PNL_PD6 0x40
96
#define PNL_PD7 0x80
97
98
#define PIN_NONE 0
99
#define PIN_STROBE 1
100
#define PIN_D0 2
101
#define PIN_D1 3
102
#define PIN_D2 4
103
#define PIN_D3 5
104
#define PIN_D4 6
105
#define PIN_D5 7
106
#define PIN_D6 8
107
#define PIN_D7 9
108
#define PIN_AUTOLF 14
109
#define PIN_INITP 16
110
#define PIN_SELECP 17
111
#define PIN_NOT_SET 127
112
113
#define NOT_SET -1
114
115
/* macros to simplify use of the parallel port */
116
#define r_ctr(x) (parport_read_control((x)->port))
117
#define r_dtr(x) (parport_read_data((x)->port))
118
#define r_str(x) (parport_read_status((x)->port))
119
#define w_ctr(x, y) (parport_write_control((x)->port, (y)))
120
#define w_dtr(x, y) (parport_write_data((x)->port, (y)))
121
122
/* this defines which bits are to be used and which ones to be ignored */
123
/* logical or of the output bits involved in the scan matrix */
124
static __u8 scan_mask_o;
125
/* logical or of the input bits involved in the scan matrix */
126
static __u8 scan_mask_i;
127
128
enum input_type {
129
INPUT_TYPE_STD,
130
INPUT_TYPE_KBD,
131
};
132
133
enum input_state {
134
INPUT_ST_LOW,
135
INPUT_ST_RISING,
136
INPUT_ST_HIGH,
137
INPUT_ST_FALLING,
138
};
139
140
struct logical_input {
141
struct list_head list;
142
__u64 mask;
143
__u64 value;
144
enum input_type type;
145
enum input_state state;
146
__u8 rise_time, fall_time;
147
__u8 rise_timer, fall_timer, high_timer;
148
149
union {
150
struct { /* valid when type == INPUT_TYPE_STD */
151
void (*press_fct)(int);
152
void (*release_fct)(int);
153
int press_data;
154
int release_data;
155
} std;
156
struct { /* valid when type == INPUT_TYPE_KBD */
157
char press_str[sizeof(void *) + sizeof(int)] __nonstring;
158
char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
159
char release_str[sizeof(void *) + sizeof(int)] __nonstring;
160
} kbd;
161
} u;
162
};
163
164
static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
165
166
/* physical contacts history
167
* Physical contacts are a 45 bits string of 9 groups of 5 bits each.
168
* The 8 lower groups correspond to output bits 0 to 7, and the 9th group
169
* corresponds to the ground.
170
* Within each group, bits are stored in the same order as read on the port :
171
* BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
172
* So, each __u64 is represented like this :
173
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
174
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
175
*/
176
177
/* what has just been read from the I/O ports */
178
static __u64 phys_read;
179
/* previous phys_read */
180
static __u64 phys_read_prev;
181
/* stabilized phys_read (phys_read|phys_read_prev) */
182
static __u64 phys_curr;
183
/* previous phys_curr */
184
static __u64 phys_prev;
185
/* 0 means that at least one logical signal needs be computed */
186
static char inputs_stable;
187
188
/* these variables are specific to the keypad */
189
static struct {
190
bool enabled;
191
} keypad;
192
193
static char keypad_buffer[KEYPAD_BUFFER];
194
static int keypad_buflen;
195
static int keypad_start;
196
static char keypressed;
197
static wait_queue_head_t keypad_read_wait;
198
199
/* lcd-specific variables */
200
static struct {
201
bool enabled;
202
bool initialized;
203
204
int charset;
205
int proto;
206
207
/* TODO: use union here? */
208
struct {
209
int e;
210
int rs;
211
int rw;
212
int cl;
213
int da;
214
int bl;
215
} pins;
216
217
struct charlcd *charlcd;
218
} lcd;
219
220
/* Needed only for init */
221
static int selected_lcd_type = NOT_SET;
222
223
/*
224
* Bit masks to convert LCD signals to parallel port outputs.
225
* _d_ are values for data port, _c_ are for control port.
226
* [0] = signal OFF, [1] = signal ON, [2] = mask
227
*/
228
#define BIT_CLR 0
229
#define BIT_SET 1
230
#define BIT_MSK 2
231
#define BIT_STATES 3
232
/*
233
* one entry for each bit on the LCD
234
*/
235
#define LCD_BIT_E 0
236
#define LCD_BIT_RS 1
237
#define LCD_BIT_RW 2
238
#define LCD_BIT_BL 3
239
#define LCD_BIT_CL 4
240
#define LCD_BIT_DA 5
241
#define LCD_BITS 6
242
243
/*
244
* each bit can be either connected to a DATA or CTRL port
245
*/
246
#define LCD_PORT_C 0
247
#define LCD_PORT_D 1
248
#define LCD_PORTS 2
249
250
static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
251
252
/*
253
* LCD protocols
254
*/
255
#define LCD_PROTO_PARALLEL 0
256
#define LCD_PROTO_SERIAL 1
257
#define LCD_PROTO_TI_DA8XX_LCD 2
258
259
/*
260
* LCD character sets
261
*/
262
#define LCD_CHARSET_NORMAL 0
263
#define LCD_CHARSET_KS0074 1
264
265
/*
266
* LCD types
267
*/
268
#define LCD_TYPE_NONE 0
269
#define LCD_TYPE_CUSTOM 1
270
#define LCD_TYPE_OLD 2
271
#define LCD_TYPE_KS0074 3
272
#define LCD_TYPE_HANTRONIX 4
273
#define LCD_TYPE_NEXCOM 5
274
275
/*
276
* keypad types
277
*/
278
#define KEYPAD_TYPE_NONE 0
279
#define KEYPAD_TYPE_OLD 1
280
#define KEYPAD_TYPE_NEW 2
281
#define KEYPAD_TYPE_NEXCOM 3
282
283
/*
284
* panel profiles
285
*/
286
#define PANEL_PROFILE_CUSTOM 0
287
#define PANEL_PROFILE_OLD 1
288
#define PANEL_PROFILE_NEW 2
289
#define PANEL_PROFILE_HANTRONIX 3
290
#define PANEL_PROFILE_NEXCOM 4
291
#define PANEL_PROFILE_LARGE 5
292
293
/*
294
* Construct custom config from the kernel's configuration
295
*/
296
#define DEFAULT_PARPORT 0
297
#define DEFAULT_PROFILE PANEL_PROFILE_LARGE
298
#define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
299
#define DEFAULT_LCD_TYPE LCD_TYPE_OLD
300
#define DEFAULT_LCD_HEIGHT 2
301
#define DEFAULT_LCD_WIDTH 40
302
#define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
303
#define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
304
305
#define DEFAULT_LCD_PIN_E PIN_AUTOLF
306
#define DEFAULT_LCD_PIN_RS PIN_SELECP
307
#define DEFAULT_LCD_PIN_RW PIN_INITP
308
#define DEFAULT_LCD_PIN_SCL PIN_STROBE
309
#define DEFAULT_LCD_PIN_SDA PIN_D0
310
#define DEFAULT_LCD_PIN_BL PIN_NOT_SET
311
312
#ifdef CONFIG_PANEL_PARPORT
313
#undef DEFAULT_PARPORT
314
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
315
#endif
316
317
#ifdef CONFIG_PANEL_PROFILE
318
#undef DEFAULT_PROFILE
319
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
320
#endif
321
322
#if DEFAULT_PROFILE == 0 /* custom */
323
#ifdef CONFIG_PANEL_KEYPAD
324
#undef DEFAULT_KEYPAD_TYPE
325
#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
326
#endif
327
328
#ifdef CONFIG_PANEL_LCD
329
#undef DEFAULT_LCD_TYPE
330
#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
331
#endif
332
333
#ifdef CONFIG_PANEL_LCD_HEIGHT
334
#undef DEFAULT_LCD_HEIGHT
335
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
336
#endif
337
338
#ifdef CONFIG_PANEL_LCD_WIDTH
339
#undef DEFAULT_LCD_WIDTH
340
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
341
#endif
342
343
#ifdef CONFIG_PANEL_LCD_BWIDTH
344
#undef DEFAULT_LCD_BWIDTH
345
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
346
#endif
347
348
#ifdef CONFIG_PANEL_LCD_HWIDTH
349
#undef DEFAULT_LCD_HWIDTH
350
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
351
#endif
352
353
#ifdef CONFIG_PANEL_LCD_CHARSET
354
#undef DEFAULT_LCD_CHARSET
355
#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
356
#endif
357
358
#ifdef CONFIG_PANEL_LCD_PROTO
359
#undef DEFAULT_LCD_PROTO
360
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
361
#endif
362
363
#ifdef CONFIG_PANEL_LCD_PIN_E
364
#undef DEFAULT_LCD_PIN_E
365
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
366
#endif
367
368
#ifdef CONFIG_PANEL_LCD_PIN_RS
369
#undef DEFAULT_LCD_PIN_RS
370
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
371
#endif
372
373
#ifdef CONFIG_PANEL_LCD_PIN_RW
374
#undef DEFAULT_LCD_PIN_RW
375
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
376
#endif
377
378
#ifdef CONFIG_PANEL_LCD_PIN_SCL
379
#undef DEFAULT_LCD_PIN_SCL
380
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
381
#endif
382
383
#ifdef CONFIG_PANEL_LCD_PIN_SDA
384
#undef DEFAULT_LCD_PIN_SDA
385
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
386
#endif
387
388
#ifdef CONFIG_PANEL_LCD_PIN_BL
389
#undef DEFAULT_LCD_PIN_BL
390
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
391
#endif
392
393
#endif /* DEFAULT_PROFILE == 0 */
394
395
/* global variables */
396
397
/* Device single-open policy control */
398
static atomic_t keypad_available = ATOMIC_INIT(1);
399
400
static struct pardevice *pprt;
401
402
static int keypad_initialized;
403
404
static DEFINE_SPINLOCK(pprt_lock);
405
static struct timer_list scan_timer;
406
407
MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
408
409
static int parport = DEFAULT_PARPORT;
410
module_param(parport, int, 0000);
411
MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
412
413
static int profile = DEFAULT_PROFILE;
414
module_param(profile, int, 0000);
415
MODULE_PARM_DESC(profile,
416
"1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
417
"4=16x2 nexcom; default=40x2, old kp");
418
419
static int keypad_type = NOT_SET;
420
module_param(keypad_type, int, 0000);
421
MODULE_PARM_DESC(keypad_type,
422
"Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
423
424
static int lcd_type = NOT_SET;
425
module_param(lcd_type, int, 0000);
426
MODULE_PARM_DESC(lcd_type,
427
"LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
428
429
static int lcd_height = NOT_SET;
430
module_param(lcd_height, int, 0000);
431
MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
432
433
static int lcd_width = NOT_SET;
434
module_param(lcd_width, int, 0000);
435
MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
436
437
static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
438
module_param(lcd_bwidth, int, 0000);
439
MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
440
441
static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
442
module_param(lcd_hwidth, int, 0000);
443
MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
444
445
static int lcd_charset = NOT_SET;
446
module_param(lcd_charset, int, 0000);
447
MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
448
449
static int lcd_proto = NOT_SET;
450
module_param(lcd_proto, int, 0000);
451
MODULE_PARM_DESC(lcd_proto,
452
"LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
453
454
/*
455
* These are the parallel port pins the LCD control signals are connected to.
456
* Set this to 0 if the signal is not used. Set it to its opposite value
457
* (negative) if the signal is negated. -MAXINT is used to indicate that the
458
* pin has not been explicitly specified.
459
*
460
* WARNING! no check will be performed about collisions with keypad !
461
*/
462
463
static int lcd_e_pin = PIN_NOT_SET;
464
module_param(lcd_e_pin, int, 0000);
465
MODULE_PARM_DESC(lcd_e_pin,
466
"# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
467
468
static int lcd_rs_pin = PIN_NOT_SET;
469
module_param(lcd_rs_pin, int, 0000);
470
MODULE_PARM_DESC(lcd_rs_pin,
471
"# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
472
473
static int lcd_rw_pin = PIN_NOT_SET;
474
module_param(lcd_rw_pin, int, 0000);
475
MODULE_PARM_DESC(lcd_rw_pin,
476
"# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
477
478
static int lcd_cl_pin = PIN_NOT_SET;
479
module_param(lcd_cl_pin, int, 0000);
480
MODULE_PARM_DESC(lcd_cl_pin,
481
"# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
482
483
static int lcd_da_pin = PIN_NOT_SET;
484
module_param(lcd_da_pin, int, 0000);
485
MODULE_PARM_DESC(lcd_da_pin,
486
"# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
487
488
static int lcd_bl_pin = PIN_NOT_SET;
489
module_param(lcd_bl_pin, int, 0000);
490
MODULE_PARM_DESC(lcd_bl_pin,
491
"# of the // port pin connected to LCD backlight, with polarity (-17..17)");
492
493
/* Deprecated module parameters - consider not using them anymore */
494
495
static int lcd_enabled = NOT_SET;
496
module_param(lcd_enabled, int, 0000);
497
MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
498
499
static int keypad_enabled = NOT_SET;
500
module_param(keypad_enabled, int, 0000);
501
MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
502
503
/* for some LCD drivers (ks0074) we need a charset conversion table. */
504
static const unsigned char lcd_char_conv_ks0074[256] = {
505
/* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
506
/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
507
/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
508
/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
509
/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
510
/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
511
/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
512
/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
513
/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
514
/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
515
/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
516
/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
517
/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
518
/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
519
/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
520
/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
521
/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
522
/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
523
/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
524
/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
525
/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
526
/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
527
/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
528
/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
529
/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
530
/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
531
/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
532
/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
533
/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
534
/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
535
/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
536
/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
537
/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
538
};
539
540
static const char old_keypad_profile[][4][9] = {
541
{"S0", "Left\n", "Left\n", ""},
542
{"S1", "Down\n", "Down\n", ""},
543
{"S2", "Up\n", "Up\n", ""},
544
{"S3", "Right\n", "Right\n", ""},
545
{"S4", "Esc\n", "Esc\n", ""},
546
{"S5", "Ret\n", "Ret\n", ""},
547
{"", "", "", ""}
548
};
549
550
/* signals, press, repeat, release */
551
static const char new_keypad_profile[][4][9] = {
552
{"S0", "Left\n", "Left\n", ""},
553
{"S1", "Down\n", "Down\n", ""},
554
{"S2", "Up\n", "Up\n", ""},
555
{"S3", "Right\n", "Right\n", ""},
556
{"S4s5", "", "Esc\n", "Esc\n"},
557
{"s4S5", "", "Ret\n", "Ret\n"},
558
{"S4S5", "Help\n", "", ""},
559
/* add new signals above this line */
560
{"", "", "", ""}
561
};
562
563
/* signals, press, repeat, release */
564
static const char nexcom_keypad_profile[][4][9] = {
565
{"a-p-e-", "Down\n", "Down\n", ""},
566
{"a-p-E-", "Ret\n", "Ret\n", ""},
567
{"a-P-E-", "Esc\n", "Esc\n", ""},
568
{"a-P-e-", "Up\n", "Up\n", ""},
569
/* add new signals above this line */
570
{"", "", "", ""}
571
};
572
573
static const char (*keypad_profile)[4][9] = old_keypad_profile;
574
575
static DECLARE_BITMAP(bits, LCD_BITS);
576
577
static void lcd_get_bits(unsigned int port, int *val)
578
{
579
unsigned int bit, state;
580
581
for (bit = 0; bit < LCD_BITS; bit++) {
582
state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
583
*val &= lcd_bits[port][bit][BIT_MSK];
584
*val |= lcd_bits[port][bit][state];
585
}
586
}
587
588
/* sets data port bits according to current signals values */
589
static int set_data_bits(void)
590
{
591
int val;
592
593
val = r_dtr(pprt);
594
lcd_get_bits(LCD_PORT_D, &val);
595
w_dtr(pprt, val);
596
return val;
597
}
598
599
/* sets ctrl port bits according to current signals values */
600
static int set_ctrl_bits(void)
601
{
602
int val;
603
604
val = r_ctr(pprt);
605
lcd_get_bits(LCD_PORT_C, &val);
606
w_ctr(pprt, val);
607
return val;
608
}
609
610
/* sets ctrl & data port bits according to current signals values */
611
static void panel_set_bits(void)
612
{
613
set_data_bits();
614
set_ctrl_bits();
615
}
616
617
/*
618
* Converts a parallel port pin (from -25 to 25) to data and control ports
619
* masks, and data and control port bits. The signal will be considered
620
* unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
621
*
622
* Result will be used this way :
623
* out(dport, in(dport) & d_val[2] | d_val[signal_state])
624
* out(cport, in(cport) & c_val[2] | c_val[signal_state])
625
*/
626
static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
627
{
628
int d_bit, c_bit, inv;
629
630
d_val[0] = 0;
631
c_val[0] = 0;
632
d_val[1] = 0;
633
c_val[1] = 0;
634
d_val[2] = 0xFF;
635
c_val[2] = 0xFF;
636
637
if (pin == 0)
638
return;
639
640
inv = (pin < 0);
641
if (inv)
642
pin = -pin;
643
644
d_bit = 0;
645
c_bit = 0;
646
647
switch (pin) {
648
case PIN_STROBE: /* strobe, inverted */
649
c_bit = PNL_PSTROBE;
650
inv = !inv;
651
break;
652
case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
653
d_bit = 1 << (pin - 2);
654
break;
655
case PIN_AUTOLF: /* autofeed, inverted */
656
c_bit = PNL_PAUTOLF;
657
inv = !inv;
658
break;
659
case PIN_INITP: /* init, direct */
660
c_bit = PNL_PINITP;
661
break;
662
case PIN_SELECP: /* select_in, inverted */
663
c_bit = PNL_PSELECP;
664
inv = !inv;
665
break;
666
default: /* unknown pin, ignore */
667
break;
668
}
669
670
if (c_bit) {
671
c_val[2] &= ~c_bit;
672
c_val[!inv] = c_bit;
673
} else if (d_bit) {
674
d_val[2] &= ~d_bit;
675
d_val[!inv] = d_bit;
676
}
677
}
678
679
/*
680
* send a serial byte to the LCD panel. The caller is responsible for locking
681
* if needed.
682
*/
683
static void lcd_send_serial(int byte)
684
{
685
int bit;
686
687
/*
688
* the data bit is set on D0, and the clock on STROBE.
689
* LCD reads D0 on STROBE's rising edge.
690
*/
691
for (bit = 0; bit < 8; bit++) {
692
clear_bit(LCD_BIT_CL, bits); /* CLK low */
693
panel_set_bits();
694
if (byte & 1) {
695
set_bit(LCD_BIT_DA, bits);
696
} else {
697
clear_bit(LCD_BIT_DA, bits);
698
}
699
700
panel_set_bits();
701
udelay(2); /* maintain the data during 2 us before CLK up */
702
set_bit(LCD_BIT_CL, bits); /* CLK high */
703
panel_set_bits();
704
udelay(1); /* maintain the strobe during 1 us */
705
byte >>= 1;
706
}
707
}
708
709
/* turn the backlight on or off */
710
static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on)
711
{
712
if (lcd.pins.bl == PIN_NONE)
713
return;
714
715
/* The backlight is activated by setting the AUTOFEED line to +5V */
716
spin_lock_irq(&pprt_lock);
717
if (on)
718
set_bit(LCD_BIT_BL, bits);
719
else
720
clear_bit(LCD_BIT_BL, bits);
721
panel_set_bits();
722
spin_unlock_irq(&pprt_lock);
723
}
724
725
/* send a command to the LCD panel in serial mode */
726
static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd)
727
{
728
spin_lock_irq(&pprt_lock);
729
lcd_send_serial(0x1F); /* R/W=W, RS=0 */
730
lcd_send_serial(cmd & 0x0F);
731
lcd_send_serial((cmd >> 4) & 0x0F);
732
udelay(40); /* the shortest command takes at least 40 us */
733
spin_unlock_irq(&pprt_lock);
734
}
735
736
/* send data to the LCD panel in serial mode */
737
static void lcd_write_data_s(struct hd44780_common *hdc, int data)
738
{
739
spin_lock_irq(&pprt_lock);
740
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
741
lcd_send_serial(data & 0x0F);
742
lcd_send_serial((data >> 4) & 0x0F);
743
udelay(40); /* the shortest data takes at least 40 us */
744
spin_unlock_irq(&pprt_lock);
745
}
746
747
/* send a command to the LCD panel in 8 bits parallel mode */
748
static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd)
749
{
750
spin_lock_irq(&pprt_lock);
751
/* present the data to the data port */
752
w_dtr(pprt, cmd);
753
udelay(20); /* maintain the data during 20 us before the strobe */
754
755
set_bit(LCD_BIT_E, bits);
756
clear_bit(LCD_BIT_RS, bits);
757
clear_bit(LCD_BIT_RW, bits);
758
set_ctrl_bits();
759
760
udelay(40); /* maintain the strobe during 40 us */
761
762
clear_bit(LCD_BIT_E, bits);
763
set_ctrl_bits();
764
765
udelay(120); /* the shortest command takes at least 120 us */
766
spin_unlock_irq(&pprt_lock);
767
}
768
769
/* send data to the LCD panel in 8 bits parallel mode */
770
static void lcd_write_data_p8(struct hd44780_common *hdc, int data)
771
{
772
spin_lock_irq(&pprt_lock);
773
/* present the data to the data port */
774
w_dtr(pprt, data);
775
udelay(20); /* maintain the data during 20 us before the strobe */
776
777
set_bit(LCD_BIT_E, bits);
778
set_bit(LCD_BIT_RS, bits);
779
clear_bit(LCD_BIT_RW, bits);
780
set_ctrl_bits();
781
782
udelay(40); /* maintain the strobe during 40 us */
783
784
clear_bit(LCD_BIT_E, bits);
785
set_ctrl_bits();
786
787
udelay(45); /* the shortest data takes at least 45 us */
788
spin_unlock_irq(&pprt_lock);
789
}
790
791
/* send a command to the TI LCD panel */
792
static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd)
793
{
794
spin_lock_irq(&pprt_lock);
795
/* present the data to the control port */
796
w_ctr(pprt, cmd);
797
udelay(60);
798
spin_unlock_irq(&pprt_lock);
799
}
800
801
/* send data to the TI LCD panel */
802
static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data)
803
{
804
spin_lock_irq(&pprt_lock);
805
/* present the data to the data port */
806
w_dtr(pprt, data);
807
udelay(60);
808
spin_unlock_irq(&pprt_lock);
809
}
810
811
static const struct charlcd_ops charlcd_ops = {
812
.backlight = lcd_backlight,
813
.print = hd44780_common_print,
814
.gotoxy = hd44780_common_gotoxy,
815
.home = hd44780_common_home,
816
.clear_display = hd44780_common_clear_display,
817
.init_display = hd44780_common_init_display,
818
.shift_cursor = hd44780_common_shift_cursor,
819
.shift_display = hd44780_common_shift_display,
820
.display = hd44780_common_display,
821
.cursor = hd44780_common_cursor,
822
.blink = hd44780_common_blink,
823
.fontsize = hd44780_common_fontsize,
824
.lines = hd44780_common_lines,
825
.redefine_char = hd44780_common_redefine_char,
826
};
827
828
/* initialize the LCD driver */
829
static void lcd_init(void)
830
{
831
struct charlcd *charlcd;
832
struct hd44780_common *hdc;
833
834
charlcd = hd44780_common_alloc();
835
if (!charlcd)
836
return;
837
838
hdc = charlcd->drvdata;
839
hdc->hd44780 = &lcd;
840
841
/*
842
* Init lcd struct with load-time values to preserve exact
843
* current functionality (at least for now).
844
*/
845
charlcd->height = lcd_height;
846
charlcd->width = lcd_width;
847
hdc->bwidth = lcd_bwidth;
848
hdc->hwidth = lcd_hwidth;
849
850
switch (selected_lcd_type) {
851
case LCD_TYPE_OLD:
852
/* parallel mode, 8 bits */
853
lcd.proto = LCD_PROTO_PARALLEL;
854
lcd.charset = LCD_CHARSET_NORMAL;
855
lcd.pins.e = PIN_STROBE;
856
lcd.pins.rs = PIN_AUTOLF;
857
858
charlcd->width = 40;
859
hdc->bwidth = 40;
860
hdc->hwidth = 64;
861
charlcd->height = 2;
862
break;
863
case LCD_TYPE_KS0074:
864
/* serial mode, ks0074 */
865
lcd.proto = LCD_PROTO_SERIAL;
866
lcd.charset = LCD_CHARSET_KS0074;
867
lcd.pins.bl = PIN_AUTOLF;
868
lcd.pins.cl = PIN_STROBE;
869
lcd.pins.da = PIN_D0;
870
871
charlcd->width = 16;
872
hdc->bwidth = 40;
873
hdc->hwidth = 16;
874
charlcd->height = 2;
875
break;
876
case LCD_TYPE_NEXCOM:
877
/* parallel mode, 8 bits, generic */
878
lcd.proto = LCD_PROTO_PARALLEL;
879
lcd.charset = LCD_CHARSET_NORMAL;
880
lcd.pins.e = PIN_AUTOLF;
881
lcd.pins.rs = PIN_SELECP;
882
lcd.pins.rw = PIN_INITP;
883
884
charlcd->width = 16;
885
hdc->bwidth = 40;
886
hdc->hwidth = 64;
887
charlcd->height = 2;
888
break;
889
case LCD_TYPE_CUSTOM:
890
/* customer-defined */
891
lcd.proto = DEFAULT_LCD_PROTO;
892
lcd.charset = DEFAULT_LCD_CHARSET;
893
/* default geometry will be set later */
894
break;
895
case LCD_TYPE_HANTRONIX:
896
/* parallel mode, 8 bits, hantronix-like */
897
default:
898
lcd.proto = LCD_PROTO_PARALLEL;
899
lcd.charset = LCD_CHARSET_NORMAL;
900
lcd.pins.e = PIN_STROBE;
901
lcd.pins.rs = PIN_SELECP;
902
903
charlcd->width = 16;
904
hdc->bwidth = 40;
905
hdc->hwidth = 64;
906
charlcd->height = 2;
907
break;
908
}
909
910
/* Overwrite with module params set on loading */
911
if (lcd_height != NOT_SET)
912
charlcd->height = lcd_height;
913
if (lcd_width != NOT_SET)
914
charlcd->width = lcd_width;
915
if (lcd_bwidth != NOT_SET)
916
hdc->bwidth = lcd_bwidth;
917
if (lcd_hwidth != NOT_SET)
918
hdc->hwidth = lcd_hwidth;
919
if (lcd_charset != NOT_SET)
920
lcd.charset = lcd_charset;
921
if (lcd_proto != NOT_SET)
922
lcd.proto = lcd_proto;
923
if (lcd_e_pin != PIN_NOT_SET)
924
lcd.pins.e = lcd_e_pin;
925
if (lcd_rs_pin != PIN_NOT_SET)
926
lcd.pins.rs = lcd_rs_pin;
927
if (lcd_rw_pin != PIN_NOT_SET)
928
lcd.pins.rw = lcd_rw_pin;
929
if (lcd_cl_pin != PIN_NOT_SET)
930
lcd.pins.cl = lcd_cl_pin;
931
if (lcd_da_pin != PIN_NOT_SET)
932
lcd.pins.da = lcd_da_pin;
933
if (lcd_bl_pin != PIN_NOT_SET)
934
lcd.pins.bl = lcd_bl_pin;
935
936
/* this is used to catch wrong and default values */
937
if (charlcd->width <= 0)
938
charlcd->width = DEFAULT_LCD_WIDTH;
939
if (hdc->bwidth <= 0)
940
hdc->bwidth = DEFAULT_LCD_BWIDTH;
941
if (hdc->hwidth <= 0)
942
hdc->hwidth = DEFAULT_LCD_HWIDTH;
943
if (charlcd->height <= 0)
944
charlcd->height = DEFAULT_LCD_HEIGHT;
945
946
if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
947
charlcd->ops = &charlcd_ops;
948
hdc->write_data = lcd_write_data_s;
949
hdc->write_cmd = lcd_write_cmd_s;
950
951
if (lcd.pins.cl == PIN_NOT_SET)
952
lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
953
if (lcd.pins.da == PIN_NOT_SET)
954
lcd.pins.da = DEFAULT_LCD_PIN_SDA;
955
956
} else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
957
charlcd->ops = &charlcd_ops;
958
hdc->write_data = lcd_write_data_p8;
959
hdc->write_cmd = lcd_write_cmd_p8;
960
961
if (lcd.pins.e == PIN_NOT_SET)
962
lcd.pins.e = DEFAULT_LCD_PIN_E;
963
if (lcd.pins.rs == PIN_NOT_SET)
964
lcd.pins.rs = DEFAULT_LCD_PIN_RS;
965
if (lcd.pins.rw == PIN_NOT_SET)
966
lcd.pins.rw = DEFAULT_LCD_PIN_RW;
967
} else {
968
charlcd->ops = &charlcd_ops;
969
hdc->write_data = lcd_write_data_tilcd;
970
hdc->write_cmd = lcd_write_cmd_tilcd;
971
}
972
973
if (lcd.pins.bl == PIN_NOT_SET)
974
lcd.pins.bl = DEFAULT_LCD_PIN_BL;
975
976
if (lcd.pins.e == PIN_NOT_SET)
977
lcd.pins.e = PIN_NONE;
978
if (lcd.pins.rs == PIN_NOT_SET)
979
lcd.pins.rs = PIN_NONE;
980
if (lcd.pins.rw == PIN_NOT_SET)
981
lcd.pins.rw = PIN_NONE;
982
if (lcd.pins.bl == PIN_NOT_SET)
983
lcd.pins.bl = PIN_NONE;
984
if (lcd.pins.cl == PIN_NOT_SET)
985
lcd.pins.cl = PIN_NONE;
986
if (lcd.pins.da == PIN_NOT_SET)
987
lcd.pins.da = PIN_NONE;
988
989
if (lcd.charset == NOT_SET)
990
lcd.charset = DEFAULT_LCD_CHARSET;
991
992
if (lcd.charset == LCD_CHARSET_KS0074)
993
charlcd->char_conv = lcd_char_conv_ks0074;
994
else
995
charlcd->char_conv = NULL;
996
997
pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
998
lcd_bits[LCD_PORT_C][LCD_BIT_E]);
999
pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1000
lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1001
pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1002
lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1003
pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1004
lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1005
pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1006
lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1007
pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1008
lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1009
1010
lcd.charlcd = charlcd;
1011
lcd.initialized = true;
1012
}
1013
1014
/*
1015
* These are the file operation function for user access to /dev/keypad
1016
*/
1017
1018
static ssize_t keypad_read(struct file *file,
1019
char __user *buf, size_t count, loff_t *ppos)
1020
{
1021
unsigned i = *ppos;
1022
char __user *tmp = buf;
1023
1024
if (keypad_buflen == 0) {
1025
if (file->f_flags & O_NONBLOCK)
1026
return -EAGAIN;
1027
1028
if (wait_event_interruptible(keypad_read_wait,
1029
keypad_buflen != 0))
1030
return -EINTR;
1031
}
1032
1033
for (; count-- > 0 && (keypad_buflen > 0);
1034
++i, ++tmp, --keypad_buflen) {
1035
put_user(keypad_buffer[keypad_start], tmp);
1036
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1037
}
1038
*ppos = i;
1039
1040
return tmp - buf;
1041
}
1042
1043
static int keypad_open(struct inode *inode, struct file *file)
1044
{
1045
int ret;
1046
1047
ret = -EBUSY;
1048
if (!atomic_dec_and_test(&keypad_available))
1049
goto fail; /* open only once at a time */
1050
1051
ret = -EPERM;
1052
if (file->f_mode & FMODE_WRITE) /* device is read-only */
1053
goto fail;
1054
1055
keypad_buflen = 0; /* flush the buffer on opening */
1056
return 0;
1057
fail:
1058
atomic_inc(&keypad_available);
1059
return ret;
1060
}
1061
1062
static int keypad_release(struct inode *inode, struct file *file)
1063
{
1064
atomic_inc(&keypad_available);
1065
return 0;
1066
}
1067
1068
static const struct file_operations keypad_fops = {
1069
.read = keypad_read, /* read */
1070
.open = keypad_open, /* open */
1071
.release = keypad_release, /* close */
1072
.llseek = default_llseek,
1073
};
1074
1075
static struct miscdevice keypad_dev = {
1076
.minor = KEYPAD_MINOR,
1077
.name = "keypad",
1078
.fops = &keypad_fops,
1079
};
1080
1081
static void keypad_send_key(const char *string, int max_len)
1082
{
1083
/* send the key to the device only if a process is attached to it. */
1084
if (!atomic_read(&keypad_available)) {
1085
while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1086
keypad_buffer[(keypad_start + keypad_buflen++) %
1087
KEYPAD_BUFFER] = *string++;
1088
}
1089
wake_up_interruptible(&keypad_read_wait);
1090
}
1091
}
1092
1093
/* this function scans all the bits involving at least one logical signal,
1094
* and puts the results in the bitfield "phys_read" (one bit per established
1095
* contact), and sets "phys_read_prev" to "phys_read".
1096
*
1097
* Note: to debounce input signals, we will only consider as switched a signal
1098
* which is stable across 2 measures. Signals which are different between two
1099
* reads will be kept as they previously were in their logical form (phys_prev).
1100
* A signal which has just switched will have a 1 in
1101
* (phys_read ^ phys_read_prev).
1102
*/
1103
static void phys_scan_contacts(void)
1104
{
1105
int bit, bitval;
1106
char oldval;
1107
char bitmask;
1108
char gndmask;
1109
1110
phys_prev = phys_curr;
1111
phys_read_prev = phys_read;
1112
phys_read = 0; /* flush all signals */
1113
1114
/* keep track of old value, with all outputs disabled */
1115
oldval = r_dtr(pprt) | scan_mask_o;
1116
/* activate all keyboard outputs (active low) */
1117
w_dtr(pprt, oldval & ~scan_mask_o);
1118
1119
/* will have a 1 for each bit set to gnd */
1120
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1121
/* disable all matrix signals */
1122
w_dtr(pprt, oldval);
1123
1124
/* now that all outputs are cleared, the only active input bits are
1125
* directly connected to the ground
1126
*/
1127
1128
/* 1 for each grounded input */
1129
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1130
1131
/* grounded inputs are signals 40-44 */
1132
phys_read |= (__u64)gndmask << 40;
1133
1134
if (bitmask != gndmask) {
1135
/*
1136
* since clearing the outputs changed some inputs, we know
1137
* that some input signals are currently tied to some outputs.
1138
* So we'll scan them.
1139
*/
1140
for (bit = 0; bit < 8; bit++) {
1141
bitval = BIT(bit);
1142
1143
if (!(scan_mask_o & bitval)) /* skip unused bits */
1144
continue;
1145
1146
w_dtr(pprt, oldval & ~bitval); /* enable this output */
1147
bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1148
phys_read |= (__u64)bitmask << (5 * bit);
1149
}
1150
w_dtr(pprt, oldval); /* disable all outputs */
1151
}
1152
/*
1153
* this is easy: use old bits when they are flapping,
1154
* use new ones when stable
1155
*/
1156
phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1157
(phys_read & ~(phys_read ^ phys_read_prev));
1158
}
1159
1160
static inline int input_state_high(struct logical_input *input)
1161
{
1162
#if 0
1163
/* FIXME:
1164
* this is an invalid test. It tries to catch
1165
* transitions from single-key to multiple-key, but
1166
* doesn't take into account the contacts polarity.
1167
* The only solution to the problem is to parse keys
1168
* from the most complex to the simplest combinations,
1169
* and mark them as 'caught' once a combination
1170
* matches, then unmatch it for all other ones.
1171
*/
1172
1173
/* try to catch dangerous transitions cases :
1174
* someone adds a bit, so this signal was a false
1175
* positive resulting from a transition. We should
1176
* invalidate the signal immediately and not call the
1177
* release function.
1178
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1179
*/
1180
if (((phys_prev & input->mask) == input->value) &&
1181
((phys_curr & input->mask) > input->value)) {
1182
input->state = INPUT_ST_LOW; /* invalidate */
1183
return 1;
1184
}
1185
#endif
1186
1187
if ((phys_curr & input->mask) == input->value) {
1188
if ((input->type == INPUT_TYPE_STD) &&
1189
(input->high_timer == 0)) {
1190
input->high_timer++;
1191
if (input->u.std.press_fct)
1192
input->u.std.press_fct(input->u.std.press_data);
1193
} else if (input->type == INPUT_TYPE_KBD) {
1194
/* will turn on the light */
1195
keypressed = 1;
1196
1197
if (input->high_timer == 0) {
1198
char *press_str = input->u.kbd.press_str;
1199
1200
if (press_str[0]) {
1201
int s = sizeof(input->u.kbd.press_str);
1202
1203
keypad_send_key(press_str, s);
1204
}
1205
}
1206
1207
if (input->u.kbd.repeat_str[0]) {
1208
char *repeat_str = input->u.kbd.repeat_str;
1209
1210
if (input->high_timer >= KEYPAD_REP_START) {
1211
int s = sizeof(input->u.kbd.repeat_str);
1212
1213
input->high_timer -= KEYPAD_REP_DELAY;
1214
keypad_send_key(repeat_str, s);
1215
}
1216
/* we will need to come back here soon */
1217
inputs_stable = 0;
1218
}
1219
1220
if (input->high_timer < 255)
1221
input->high_timer++;
1222
}
1223
return 1;
1224
}
1225
1226
/* else signal falling down. Let's fall through. */
1227
input->state = INPUT_ST_FALLING;
1228
input->fall_timer = 0;
1229
1230
return 0;
1231
}
1232
1233
static inline void input_state_falling(struct logical_input *input)
1234
{
1235
#if 0
1236
/* FIXME !!! same comment as in input_state_high */
1237
if (((phys_prev & input->mask) == input->value) &&
1238
((phys_curr & input->mask) > input->value)) {
1239
input->state = INPUT_ST_LOW; /* invalidate */
1240
return;
1241
}
1242
#endif
1243
1244
if ((phys_curr & input->mask) == input->value) {
1245
if (input->type == INPUT_TYPE_KBD) {
1246
/* will turn on the light */
1247
keypressed = 1;
1248
1249
if (input->u.kbd.repeat_str[0]) {
1250
char *repeat_str = input->u.kbd.repeat_str;
1251
1252
if (input->high_timer >= KEYPAD_REP_START) {
1253
int s = sizeof(input->u.kbd.repeat_str);
1254
1255
input->high_timer -= KEYPAD_REP_DELAY;
1256
keypad_send_key(repeat_str, s);
1257
}
1258
/* we will need to come back here soon */
1259
inputs_stable = 0;
1260
}
1261
1262
if (input->high_timer < 255)
1263
input->high_timer++;
1264
}
1265
input->state = INPUT_ST_HIGH;
1266
} else if (input->fall_timer >= input->fall_time) {
1267
/* call release event */
1268
if (input->type == INPUT_TYPE_STD) {
1269
void (*release_fct)(int) = input->u.std.release_fct;
1270
1271
if (release_fct)
1272
release_fct(input->u.std.release_data);
1273
} else if (input->type == INPUT_TYPE_KBD) {
1274
char *release_str = input->u.kbd.release_str;
1275
1276
if (release_str[0]) {
1277
int s = sizeof(input->u.kbd.release_str);
1278
1279
keypad_send_key(release_str, s);
1280
}
1281
}
1282
1283
input->state = INPUT_ST_LOW;
1284
} else {
1285
input->fall_timer++;
1286
inputs_stable = 0;
1287
}
1288
}
1289
1290
static void panel_process_inputs(void)
1291
{
1292
struct logical_input *input;
1293
1294
keypressed = 0;
1295
inputs_stable = 1;
1296
list_for_each_entry(input, &logical_inputs, list) {
1297
switch (input->state) {
1298
case INPUT_ST_LOW:
1299
if ((phys_curr & input->mask) != input->value)
1300
break;
1301
/* if all needed ones were already set previously,
1302
* this means that this logical signal has been
1303
* activated by the releasing of another combined
1304
* signal, so we don't want to match.
1305
* eg: AB -(release B)-> A -(release A)-> 0 :
1306
* don't match A.
1307
*/
1308
if ((phys_prev & input->mask) == input->value)
1309
break;
1310
input->rise_timer = 0;
1311
input->state = INPUT_ST_RISING;
1312
fallthrough;
1313
case INPUT_ST_RISING:
1314
if ((phys_curr & input->mask) != input->value) {
1315
input->state = INPUT_ST_LOW;
1316
break;
1317
}
1318
if (input->rise_timer < input->rise_time) {
1319
inputs_stable = 0;
1320
input->rise_timer++;
1321
break;
1322
}
1323
input->high_timer = 0;
1324
input->state = INPUT_ST_HIGH;
1325
fallthrough;
1326
case INPUT_ST_HIGH:
1327
if (input_state_high(input))
1328
break;
1329
fallthrough;
1330
case INPUT_ST_FALLING:
1331
input_state_falling(input);
1332
}
1333
}
1334
}
1335
1336
static void panel_scan_timer(struct timer_list *unused)
1337
{
1338
if (keypad.enabled && keypad_initialized) {
1339
if (spin_trylock_irq(&pprt_lock)) {
1340
phys_scan_contacts();
1341
1342
/* no need for the parport anymore */
1343
spin_unlock_irq(&pprt_lock);
1344
}
1345
1346
if (!inputs_stable || phys_curr != phys_prev)
1347
panel_process_inputs();
1348
}
1349
1350
if (keypressed && lcd.enabled && lcd.initialized)
1351
charlcd_poke(lcd.charlcd);
1352
1353
mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1354
}
1355
1356
static void init_scan_timer(void)
1357
{
1358
if (scan_timer.function)
1359
return; /* already started */
1360
1361
timer_setup(&scan_timer, panel_scan_timer, 0);
1362
scan_timer.expires = jiffies + INPUT_POLL_TIME;
1363
add_timer(&scan_timer);
1364
}
1365
1366
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1367
* if <omask> or <imask> are non-null, they will be or'ed with the bits
1368
* corresponding to out and in bits respectively.
1369
* returns 1 if ok, 0 if error (in which case, nothing is written).
1370
*/
1371
static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1372
u8 *imask, u8 *omask)
1373
{
1374
const char sigtab[] = "EeSsPpAaBb";
1375
u8 im, om;
1376
__u64 m, v;
1377
1378
om = 0;
1379
im = 0;
1380
m = 0ULL;
1381
v = 0ULL;
1382
while (*name) {
1383
int in, out, bit, neg;
1384
const char *idx;
1385
1386
idx = strchr(sigtab, *name);
1387
if (!idx)
1388
return 0; /* input name not found */
1389
1390
in = idx - sigtab;
1391
neg = (in & 1); /* odd (lower) names are negated */
1392
in >>= 1;
1393
im |= BIT(in);
1394
1395
name++;
1396
if (*name >= '0' && *name <= '7') {
1397
out = *name - '0';
1398
om |= BIT(out);
1399
} else if (*name == '-') {
1400
out = 8;
1401
} else {
1402
return 0; /* unknown bit name */
1403
}
1404
1405
bit = (out * 5) + in;
1406
1407
m |= 1ULL << bit;
1408
if (!neg)
1409
v |= 1ULL << bit;
1410
name++;
1411
}
1412
*mask = m;
1413
*value = v;
1414
if (imask)
1415
*imask |= im;
1416
if (omask)
1417
*omask |= om;
1418
return 1;
1419
}
1420
1421
/* tries to bind a key to the signal name <name>. The key will send the
1422
* strings <press>, <repeat>, <release> for these respective events.
1423
* Returns the pointer to the new key if ok, NULL if the key could not be bound.
1424
*/
1425
static struct logical_input *panel_bind_key(const char *name, const char *press,
1426
const char *repeat,
1427
const char *release)
1428
{
1429
struct logical_input *key;
1430
1431
key = kzalloc(sizeof(*key), GFP_KERNEL);
1432
if (!key)
1433
return NULL;
1434
1435
if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1436
&scan_mask_o)) {
1437
kfree(key);
1438
return NULL;
1439
}
1440
1441
key->type = INPUT_TYPE_KBD;
1442
key->state = INPUT_ST_LOW;
1443
key->rise_time = 1;
1444
key->fall_time = 1;
1445
1446
strtomem_pad(key->u.kbd.press_str, press, '\0');
1447
strtomem_pad(key->u.kbd.repeat_str, repeat, '\0');
1448
strtomem_pad(key->u.kbd.release_str, release, '\0');
1449
list_add(&key->list, &logical_inputs);
1450
return key;
1451
}
1452
1453
#if 0
1454
/* tries to bind a callback function to the signal name <name>. The function
1455
* <press_fct> will be called with the <press_data> arg when the signal is
1456
* activated, and so on for <release_fct>/<release_data>
1457
* Returns the pointer to the new signal if ok, NULL if the signal could not
1458
* be bound.
1459
*/
1460
static struct logical_input *panel_bind_callback(char *name,
1461
void (*press_fct)(int),
1462
int press_data,
1463
void (*release_fct)(int),
1464
int release_data)
1465
{
1466
struct logical_input *callback;
1467
1468
callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1469
if (!callback)
1470
return NULL;
1471
1472
memset(callback, 0, sizeof(struct logical_input));
1473
if (!input_name2mask(name, &callback->mask, &callback->value,
1474
&scan_mask_i, &scan_mask_o))
1475
return NULL;
1476
1477
callback->type = INPUT_TYPE_STD;
1478
callback->state = INPUT_ST_LOW;
1479
callback->rise_time = 1;
1480
callback->fall_time = 1;
1481
callback->u.std.press_fct = press_fct;
1482
callback->u.std.press_data = press_data;
1483
callback->u.std.release_fct = release_fct;
1484
callback->u.std.release_data = release_data;
1485
list_add(&callback->list, &logical_inputs);
1486
return callback;
1487
}
1488
#endif
1489
1490
static void keypad_init(void)
1491
{
1492
int keynum;
1493
1494
init_waitqueue_head(&keypad_read_wait);
1495
keypad_buflen = 0; /* flushes any eventual noisy keystroke */
1496
1497
/* Let's create all known keys */
1498
1499
for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1500
panel_bind_key(keypad_profile[keynum][0],
1501
keypad_profile[keynum][1],
1502
keypad_profile[keynum][2],
1503
keypad_profile[keynum][3]);
1504
}
1505
1506
init_scan_timer();
1507
keypad_initialized = 1;
1508
}
1509
1510
/**************************************************/
1511
/* device initialization */
1512
/**************************************************/
1513
1514
static void panel_attach(struct parport *port)
1515
{
1516
int selected_keypad_type = NOT_SET;
1517
struct pardev_cb panel_cb;
1518
1519
/* take care of an eventual profile */
1520
switch (profile) {
1521
case PANEL_PROFILE_CUSTOM:
1522
/* custom profile */
1523
selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1524
selected_lcd_type = DEFAULT_LCD_TYPE;
1525
break;
1526
case PANEL_PROFILE_OLD:
1527
/* 8 bits, 2*16, old keypad */
1528
selected_keypad_type = KEYPAD_TYPE_OLD;
1529
selected_lcd_type = LCD_TYPE_OLD;
1530
1531
/* TODO: This two are a little hacky, sort it out later */
1532
if (lcd_width == NOT_SET)
1533
lcd_width = 16;
1534
if (lcd_hwidth == NOT_SET)
1535
lcd_hwidth = 16;
1536
break;
1537
case PANEL_PROFILE_NEW:
1538
/* serial, 2*16, new keypad */
1539
selected_keypad_type = KEYPAD_TYPE_NEW;
1540
selected_lcd_type = LCD_TYPE_KS0074;
1541
break;
1542
case PANEL_PROFILE_HANTRONIX:
1543
/* 8 bits, 2*16 hantronix-like, no keypad */
1544
selected_keypad_type = KEYPAD_TYPE_NONE;
1545
selected_lcd_type = LCD_TYPE_HANTRONIX;
1546
break;
1547
case PANEL_PROFILE_NEXCOM:
1548
/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1549
selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1550
selected_lcd_type = LCD_TYPE_NEXCOM;
1551
break;
1552
case PANEL_PROFILE_LARGE:
1553
/* 8 bits, 2*40, old keypad */
1554
selected_keypad_type = KEYPAD_TYPE_OLD;
1555
selected_lcd_type = LCD_TYPE_OLD;
1556
break;
1557
}
1558
1559
/*
1560
* Overwrite selection with module param values (both keypad and lcd),
1561
* where the deprecated params have lower prio.
1562
*/
1563
if (keypad_enabled != NOT_SET)
1564
selected_keypad_type = keypad_enabled;
1565
if (keypad_type != NOT_SET)
1566
selected_keypad_type = keypad_type;
1567
1568
keypad.enabled = (selected_keypad_type > 0);
1569
1570
if (lcd_enabled != NOT_SET)
1571
selected_lcd_type = lcd_enabled;
1572
if (lcd_type != NOT_SET)
1573
selected_lcd_type = lcd_type;
1574
1575
lcd.enabled = (selected_lcd_type > 0);
1576
1577
if (lcd.enabled) {
1578
/*
1579
* Init lcd struct with load-time values to preserve exact
1580
* current functionality (at least for now).
1581
*/
1582
lcd.charset = lcd_charset;
1583
lcd.proto = lcd_proto;
1584
lcd.pins.e = lcd_e_pin;
1585
lcd.pins.rs = lcd_rs_pin;
1586
lcd.pins.rw = lcd_rw_pin;
1587
lcd.pins.cl = lcd_cl_pin;
1588
lcd.pins.da = lcd_da_pin;
1589
lcd.pins.bl = lcd_bl_pin;
1590
}
1591
1592
switch (selected_keypad_type) {
1593
case KEYPAD_TYPE_OLD:
1594
keypad_profile = old_keypad_profile;
1595
break;
1596
case KEYPAD_TYPE_NEW:
1597
keypad_profile = new_keypad_profile;
1598
break;
1599
case KEYPAD_TYPE_NEXCOM:
1600
keypad_profile = nexcom_keypad_profile;
1601
break;
1602
default:
1603
keypad_profile = NULL;
1604
break;
1605
}
1606
1607
if (!lcd.enabled && !keypad.enabled) {
1608
/* no device enabled, let's exit */
1609
pr_err("panel driver disabled.\n");
1610
return;
1611
}
1612
1613
if (port->number != parport)
1614
return;
1615
1616
if (pprt) {
1617
pr_err("%s: port->number=%d parport=%d, already registered!\n",
1618
__func__, port->number, parport);
1619
return;
1620
}
1621
1622
memset(&panel_cb, 0, sizeof(panel_cb));
1623
panel_cb.private = &pprt;
1624
/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1625
1626
pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1627
if (!pprt) {
1628
pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1629
__func__, port->number, parport);
1630
return;
1631
}
1632
1633
if (parport_claim(pprt)) {
1634
pr_err("could not claim access to parport%d. Aborting.\n",
1635
parport);
1636
goto err_unreg_device;
1637
}
1638
1639
/* must init LCD first, just in case an IRQ from the keypad is
1640
* generated at keypad init
1641
*/
1642
if (lcd.enabled) {
1643
lcd_init();
1644
if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1645
goto err_unreg_device;
1646
}
1647
1648
if (keypad.enabled) {
1649
keypad_init();
1650
if (misc_register(&keypad_dev))
1651
goto err_lcd_unreg;
1652
}
1653
return;
1654
1655
err_lcd_unreg:
1656
if (scan_timer.function)
1657
timer_delete_sync(&scan_timer);
1658
if (lcd.enabled)
1659
charlcd_unregister(lcd.charlcd);
1660
err_unreg_device:
1661
hd44780_common_free(lcd.charlcd);
1662
lcd.charlcd = NULL;
1663
parport_unregister_device(pprt);
1664
pprt = NULL;
1665
}
1666
1667
static void panel_detach(struct parport *port)
1668
{
1669
if (port->number != parport)
1670
return;
1671
1672
if (!pprt) {
1673
pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1674
__func__, port->number, parport);
1675
return;
1676
}
1677
if (scan_timer.function)
1678
timer_delete_sync(&scan_timer);
1679
1680
if (keypad.enabled) {
1681
misc_deregister(&keypad_dev);
1682
keypad_initialized = 0;
1683
}
1684
1685
if (lcd.enabled) {
1686
charlcd_unregister(lcd.charlcd);
1687
lcd.initialized = false;
1688
hd44780_common_free(lcd.charlcd);
1689
lcd.charlcd = NULL;
1690
}
1691
1692
/* TODO: free all input signals */
1693
parport_release(pprt);
1694
parport_unregister_device(pprt);
1695
pprt = NULL;
1696
}
1697
1698
static struct parport_driver panel_driver = {
1699
.name = "panel",
1700
.match_port = panel_attach,
1701
.detach = panel_detach,
1702
};
1703
module_parport_driver(panel_driver);
1704
1705
MODULE_AUTHOR("Willy Tarreau");
1706
MODULE_LICENSE("GPL");
1707
1708