Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/arch_topology.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Arch specific cpu topology information
4
*
5
* Copyright (C) 2016, ARM Ltd.
6
* Written by: Juri Lelli, ARM Ltd.
7
*/
8
9
#include <linux/acpi.h>
10
#include <linux/cacheinfo.h>
11
#include <linux/cleanup.h>
12
#include <linux/cpu.h>
13
#include <linux/cpufreq.h>
14
#include <linux/cpu_smt.h>
15
#include <linux/device.h>
16
#include <linux/of.h>
17
#include <linux/slab.h>
18
#include <linux/sched/topology.h>
19
#include <linux/cpuset.h>
20
#include <linux/cpumask.h>
21
#include <linux/init.h>
22
#include <linux/rcupdate.h>
23
#include <linux/sched.h>
24
#include <linux/units.h>
25
26
#define CREATE_TRACE_POINTS
27
#include <trace/events/hw_pressure.h>
28
29
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
30
static struct cpumask scale_freq_counters_mask;
31
static bool scale_freq_invariant;
32
DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 0;
33
EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
34
35
static bool supports_scale_freq_counters(const struct cpumask *cpus)
36
{
37
return cpumask_subset(cpus, &scale_freq_counters_mask);
38
}
39
40
bool topology_scale_freq_invariant(void)
41
{
42
return cpufreq_supports_freq_invariance() ||
43
supports_scale_freq_counters(cpu_online_mask);
44
}
45
46
static void update_scale_freq_invariant(bool status)
47
{
48
if (scale_freq_invariant == status)
49
return;
50
51
/*
52
* Task scheduler behavior depends on frequency invariance support,
53
* either cpufreq or counter driven. If the support status changes as
54
* a result of counter initialisation and use, retrigger the build of
55
* scheduling domains to ensure the information is propagated properly.
56
*/
57
if (topology_scale_freq_invariant() == status) {
58
scale_freq_invariant = status;
59
rebuild_sched_domains_energy();
60
}
61
}
62
63
void topology_set_scale_freq_source(struct scale_freq_data *data,
64
const struct cpumask *cpus)
65
{
66
struct scale_freq_data *sfd;
67
int cpu;
68
69
/*
70
* Avoid calling rebuild_sched_domains() unnecessarily if FIE is
71
* supported by cpufreq.
72
*/
73
if (cpumask_empty(&scale_freq_counters_mask))
74
scale_freq_invariant = topology_scale_freq_invariant();
75
76
rcu_read_lock();
77
78
for_each_cpu(cpu, cpus) {
79
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
80
81
/* Use ARCH provided counters whenever possible */
82
if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
83
rcu_assign_pointer(per_cpu(sft_data, cpu), data);
84
cpumask_set_cpu(cpu, &scale_freq_counters_mask);
85
}
86
}
87
88
rcu_read_unlock();
89
90
update_scale_freq_invariant(true);
91
}
92
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
93
94
void topology_clear_scale_freq_source(enum scale_freq_source source,
95
const struct cpumask *cpus)
96
{
97
struct scale_freq_data *sfd;
98
int cpu;
99
100
rcu_read_lock();
101
102
for_each_cpu(cpu, cpus) {
103
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
104
105
if (sfd && sfd->source == source) {
106
rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
107
cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
108
}
109
}
110
111
rcu_read_unlock();
112
113
/*
114
* Make sure all references to previous sft_data are dropped to avoid
115
* use-after-free races.
116
*/
117
synchronize_rcu();
118
119
update_scale_freq_invariant(false);
120
}
121
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
122
123
void topology_scale_freq_tick(void)
124
{
125
struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
126
127
if (sfd)
128
sfd->set_freq_scale();
129
}
130
131
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
132
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
133
134
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
135
unsigned long max_freq)
136
{
137
unsigned long scale;
138
int i;
139
140
if (WARN_ON_ONCE(!cur_freq || !max_freq))
141
return;
142
143
/*
144
* If the use of counters for FIE is enabled, just return as we don't
145
* want to update the scale factor with information from CPUFREQ.
146
* Instead the scale factor will be updated from arch_scale_freq_tick.
147
*/
148
if (supports_scale_freq_counters(cpus))
149
return;
150
151
scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
152
153
for_each_cpu(i, cpus)
154
per_cpu(arch_freq_scale, i) = scale;
155
}
156
157
DEFINE_PER_CPU(unsigned long, hw_pressure);
158
159
/**
160
* topology_update_hw_pressure() - Update HW pressure for CPUs
161
* @cpus : The related CPUs for which capacity has been reduced
162
* @capped_freq : The maximum allowed frequency that CPUs can run at
163
*
164
* Update the value of HW pressure for all @cpus in the mask. The
165
* cpumask should include all (online+offline) affected CPUs, to avoid
166
* operating on stale data when hot-plug is used for some CPUs. The
167
* @capped_freq reflects the currently allowed max CPUs frequency due to
168
* HW capping. It might be also a boost frequency value, which is bigger
169
* than the internal 'capacity_freq_ref' max frequency. In such case the
170
* pressure value should simply be removed, since this is an indication that
171
* there is no HW throttling. The @capped_freq must be provided in kHz.
172
*/
173
void topology_update_hw_pressure(const struct cpumask *cpus,
174
unsigned long capped_freq)
175
{
176
unsigned long max_capacity, capacity, pressure;
177
u32 max_freq;
178
int cpu;
179
180
cpu = cpumask_first(cpus);
181
max_capacity = arch_scale_cpu_capacity(cpu);
182
max_freq = arch_scale_freq_ref(cpu);
183
184
/*
185
* Handle properly the boost frequencies, which should simply clean
186
* the HW pressure value.
187
*/
188
if (max_freq <= capped_freq)
189
capacity = max_capacity;
190
else
191
capacity = mult_frac(max_capacity, capped_freq, max_freq);
192
193
pressure = max_capacity - capacity;
194
195
trace_hw_pressure_update(cpu, pressure);
196
197
for_each_cpu(cpu, cpus)
198
WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
199
}
200
EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
201
202
static void update_topology_flags_workfn(struct work_struct *work);
203
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
204
205
static int update_topology;
206
207
int topology_update_cpu_topology(void)
208
{
209
return update_topology;
210
}
211
212
/*
213
* Updating the sched_domains can't be done directly from cpufreq callbacks
214
* due to locking, so queue the work for later.
215
*/
216
static void update_topology_flags_workfn(struct work_struct *work)
217
{
218
update_topology = 1;
219
rebuild_sched_domains();
220
pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
221
update_topology = 0;
222
}
223
224
static u32 *raw_capacity;
225
226
static int free_raw_capacity(void)
227
{
228
kfree(raw_capacity);
229
raw_capacity = NULL;
230
231
return 0;
232
}
233
234
void topology_normalize_cpu_scale(void)
235
{
236
u64 capacity;
237
u64 capacity_scale;
238
int cpu;
239
240
if (!raw_capacity)
241
return;
242
243
capacity_scale = 1;
244
for_each_possible_cpu(cpu) {
245
capacity = raw_capacity[cpu] *
246
(per_cpu(capacity_freq_ref, cpu) ?: 1);
247
capacity_scale = max(capacity, capacity_scale);
248
}
249
250
pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
251
for_each_possible_cpu(cpu) {
252
capacity = raw_capacity[cpu] *
253
(per_cpu(capacity_freq_ref, cpu) ?: 1);
254
capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
255
capacity_scale);
256
topology_set_cpu_scale(cpu, capacity);
257
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
258
cpu, topology_get_cpu_scale(cpu));
259
}
260
}
261
262
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
263
{
264
struct clk *cpu_clk;
265
static bool cap_parsing_failed;
266
int ret;
267
u32 cpu_capacity;
268
269
if (cap_parsing_failed)
270
return false;
271
272
ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
273
&cpu_capacity);
274
if (!ret) {
275
if (!raw_capacity) {
276
raw_capacity = kcalloc(num_possible_cpus(),
277
sizeof(*raw_capacity),
278
GFP_KERNEL);
279
if (!raw_capacity) {
280
cap_parsing_failed = true;
281
return false;
282
}
283
}
284
raw_capacity[cpu] = cpu_capacity;
285
pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
286
cpu_node, raw_capacity[cpu]);
287
288
/*
289
* Update capacity_freq_ref for calculating early boot CPU capacities.
290
* For non-clk CPU DVFS mechanism, there's no way to get the
291
* frequency value now, assuming they are running at the same
292
* frequency (by keeping the initial capacity_freq_ref value).
293
*/
294
cpu_clk = of_clk_get(cpu_node, 0);
295
if (!PTR_ERR_OR_ZERO(cpu_clk)) {
296
per_cpu(capacity_freq_ref, cpu) =
297
clk_get_rate(cpu_clk) / HZ_PER_KHZ;
298
clk_put(cpu_clk);
299
}
300
} else {
301
if (raw_capacity) {
302
pr_err("cpu_capacity: missing %pOF raw capacity\n",
303
cpu_node);
304
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
305
}
306
cap_parsing_failed = true;
307
free_raw_capacity();
308
}
309
310
return !ret;
311
}
312
313
void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
314
{
315
}
316
317
#ifdef CONFIG_ACPI_CPPC_LIB
318
#include <acpi/cppc_acpi.h>
319
320
static inline void topology_init_cpu_capacity_cppc(void)
321
{
322
u64 capacity, capacity_scale = 0;
323
struct cppc_perf_caps perf_caps;
324
int cpu;
325
326
if (likely(!acpi_cpc_valid()))
327
return;
328
329
raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
330
GFP_KERNEL);
331
if (!raw_capacity)
332
return;
333
334
for_each_possible_cpu(cpu) {
335
if (!cppc_get_perf_caps(cpu, &perf_caps) &&
336
(perf_caps.highest_perf >= perf_caps.nominal_perf) &&
337
(perf_caps.highest_perf >= perf_caps.lowest_perf)) {
338
raw_capacity[cpu] = perf_caps.highest_perf;
339
capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
340
341
per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
342
343
pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
344
cpu, raw_capacity[cpu]);
345
continue;
346
}
347
348
pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
349
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
350
goto exit;
351
}
352
353
for_each_possible_cpu(cpu) {
354
freq_inv_set_max_ratio(cpu,
355
per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
356
357
capacity = raw_capacity[cpu];
358
capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
359
capacity_scale);
360
topology_set_cpu_scale(cpu, capacity);
361
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
362
cpu, topology_get_cpu_scale(cpu));
363
}
364
365
schedule_work(&update_topology_flags_work);
366
pr_debug("cpu_capacity: cpu_capacity initialization done\n");
367
368
exit:
369
free_raw_capacity();
370
}
371
void acpi_processor_init_invariance_cppc(void)
372
{
373
topology_init_cpu_capacity_cppc();
374
}
375
#endif
376
377
#ifdef CONFIG_CPU_FREQ
378
static cpumask_var_t cpus_to_visit;
379
static void parsing_done_workfn(struct work_struct *work);
380
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
381
382
static int
383
init_cpu_capacity_callback(struct notifier_block *nb,
384
unsigned long val,
385
void *data)
386
{
387
struct cpufreq_policy *policy = data;
388
int cpu;
389
390
if (val != CPUFREQ_CREATE_POLICY)
391
return 0;
392
393
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
394
cpumask_pr_args(policy->related_cpus),
395
cpumask_pr_args(cpus_to_visit));
396
397
cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
398
399
for_each_cpu(cpu, policy->related_cpus) {
400
per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
401
freq_inv_set_max_ratio(cpu,
402
per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
403
}
404
405
if (cpumask_empty(cpus_to_visit)) {
406
if (raw_capacity) {
407
topology_normalize_cpu_scale();
408
schedule_work(&update_topology_flags_work);
409
free_raw_capacity();
410
}
411
pr_debug("cpu_capacity: parsing done\n");
412
schedule_work(&parsing_done_work);
413
}
414
415
return 0;
416
}
417
418
static struct notifier_block init_cpu_capacity_notifier = {
419
.notifier_call = init_cpu_capacity_callback,
420
};
421
422
static int __init register_cpufreq_notifier(void)
423
{
424
int ret;
425
426
/*
427
* On ACPI-based systems skip registering cpufreq notifier as cpufreq
428
* information is not needed for cpu capacity initialization.
429
*/
430
if (!acpi_disabled)
431
return -EINVAL;
432
433
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
434
return -ENOMEM;
435
436
cpumask_copy(cpus_to_visit, cpu_possible_mask);
437
438
ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
439
CPUFREQ_POLICY_NOTIFIER);
440
441
if (ret)
442
free_cpumask_var(cpus_to_visit);
443
444
return ret;
445
}
446
core_initcall(register_cpufreq_notifier);
447
448
static void parsing_done_workfn(struct work_struct *work)
449
{
450
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
451
CPUFREQ_POLICY_NOTIFIER);
452
free_cpumask_var(cpus_to_visit);
453
}
454
455
#else
456
core_initcall(free_raw_capacity);
457
#endif
458
459
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
460
461
/* Used to enable the SMT control */
462
static unsigned int max_smt_thread_num = 1;
463
464
/*
465
* This function returns the logic cpu number of the node.
466
* There are basically three kinds of return values:
467
* (1) logic cpu number which is > 0.
468
* (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
469
* there is no possible logical CPU in the kernel to match. This happens
470
* when CONFIG_NR_CPUS is configure to be smaller than the number of
471
* CPU nodes in DT. We need to just ignore this case.
472
* (3) -1 if the node does not exist in the device tree
473
*/
474
static int __init get_cpu_for_node(struct device_node *node)
475
{
476
int cpu;
477
struct device_node *cpu_node __free(device_node) =
478
of_parse_phandle(node, "cpu", 0);
479
480
if (!cpu_node)
481
return -1;
482
483
cpu = of_cpu_node_to_id(cpu_node);
484
if (cpu >= 0)
485
topology_parse_cpu_capacity(cpu_node, cpu);
486
else
487
pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
488
cpu_node, cpumask_pr_args(cpu_possible_mask));
489
490
return cpu;
491
}
492
493
static int __init parse_core(struct device_node *core, int package_id,
494
int cluster_id, int core_id)
495
{
496
char name[20];
497
bool leaf = true;
498
int i = 0;
499
int cpu;
500
501
do {
502
snprintf(name, sizeof(name), "thread%d", i);
503
struct device_node *t __free(device_node) =
504
of_get_child_by_name(core, name);
505
506
if (!t)
507
break;
508
509
leaf = false;
510
cpu = get_cpu_for_node(t);
511
if (cpu >= 0) {
512
cpu_topology[cpu].package_id = package_id;
513
cpu_topology[cpu].cluster_id = cluster_id;
514
cpu_topology[cpu].core_id = core_id;
515
cpu_topology[cpu].thread_id = i;
516
} else if (cpu != -ENODEV) {
517
pr_err("%pOF: Can't get CPU for thread\n", t);
518
return -EINVAL;
519
}
520
i++;
521
} while (1);
522
523
max_smt_thread_num = max_t(unsigned int, max_smt_thread_num, i);
524
525
cpu = get_cpu_for_node(core);
526
if (cpu >= 0) {
527
if (!leaf) {
528
pr_err("%pOF: Core has both threads and CPU\n",
529
core);
530
return -EINVAL;
531
}
532
533
cpu_topology[cpu].package_id = package_id;
534
cpu_topology[cpu].cluster_id = cluster_id;
535
cpu_topology[cpu].core_id = core_id;
536
} else if (leaf && cpu != -ENODEV) {
537
pr_err("%pOF: Can't get CPU for leaf core\n", core);
538
return -EINVAL;
539
}
540
541
return 0;
542
}
543
544
static int __init parse_cluster(struct device_node *cluster, int package_id,
545
int cluster_id, int depth)
546
{
547
char name[20];
548
bool leaf = true;
549
bool has_cores = false;
550
int core_id = 0;
551
int i, ret;
552
553
/*
554
* First check for child clusters; we currently ignore any
555
* information about the nesting of clusters and present the
556
* scheduler with a flat list of them.
557
*/
558
i = 0;
559
do {
560
snprintf(name, sizeof(name), "cluster%d", i);
561
struct device_node *c __free(device_node) =
562
of_get_child_by_name(cluster, name);
563
564
if (!c)
565
break;
566
567
leaf = false;
568
ret = parse_cluster(c, package_id, i, depth + 1);
569
if (depth > 0)
570
pr_warn("Topology for clusters of clusters not yet supported\n");
571
if (ret != 0)
572
return ret;
573
i++;
574
} while (1);
575
576
/* Now check for cores */
577
i = 0;
578
do {
579
snprintf(name, sizeof(name), "core%d", i);
580
struct device_node *c __free(device_node) =
581
of_get_child_by_name(cluster, name);
582
583
if (!c)
584
break;
585
586
has_cores = true;
587
588
if (depth == 0) {
589
pr_err("%pOF: cpu-map children should be clusters\n", c);
590
return -EINVAL;
591
}
592
593
if (leaf) {
594
ret = parse_core(c, package_id, cluster_id, core_id++);
595
if (ret != 0)
596
return ret;
597
} else {
598
pr_err("%pOF: Non-leaf cluster with core %s\n",
599
cluster, name);
600
return -EINVAL;
601
}
602
603
i++;
604
} while (1);
605
606
if (leaf && !has_cores)
607
pr_warn("%pOF: empty cluster\n", cluster);
608
609
return 0;
610
}
611
612
static int __init parse_socket(struct device_node *socket)
613
{
614
char name[20];
615
bool has_socket = false;
616
int package_id = 0, ret;
617
618
do {
619
snprintf(name, sizeof(name), "socket%d", package_id);
620
struct device_node *c __free(device_node) =
621
of_get_child_by_name(socket, name);
622
623
if (!c)
624
break;
625
626
has_socket = true;
627
ret = parse_cluster(c, package_id, -1, 0);
628
if (ret != 0)
629
return ret;
630
631
package_id++;
632
} while (1);
633
634
if (!has_socket)
635
ret = parse_cluster(socket, 0, -1, 0);
636
637
/*
638
* Reset the max_smt_thread_num to 1 on failure. Since on failure
639
* we need to notify the framework the SMT is not supported, but
640
* max_smt_thread_num can be initialized to the SMT thread number
641
* of the cores which are successfully parsed.
642
*/
643
if (ret)
644
max_smt_thread_num = 1;
645
646
cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
647
648
return ret;
649
}
650
651
static int __init parse_dt_topology(void)
652
{
653
int ret = 0;
654
int cpu;
655
struct device_node *cn __free(device_node) =
656
of_find_node_by_path("/cpus");
657
658
if (!cn) {
659
pr_err("No CPU information found in DT\n");
660
return 0;
661
}
662
663
/*
664
* When topology is provided cpu-map is essentially a root
665
* cluster with restricted subnodes.
666
*/
667
struct device_node *map __free(device_node) =
668
of_get_child_by_name(cn, "cpu-map");
669
670
if (!map)
671
return ret;
672
673
ret = parse_socket(map);
674
if (ret != 0)
675
return ret;
676
677
topology_normalize_cpu_scale();
678
679
/*
680
* Check that all cores are in the topology; the SMP code will
681
* only mark cores described in the DT as possible.
682
*/
683
for_each_possible_cpu(cpu)
684
if (cpu_topology[cpu].package_id < 0) {
685
return -EINVAL;
686
}
687
688
return ret;
689
}
690
#endif
691
692
/*
693
* cpu topology table
694
*/
695
struct cpu_topology cpu_topology[NR_CPUS];
696
EXPORT_SYMBOL_GPL(cpu_topology);
697
698
const struct cpumask *cpu_coregroup_mask(int cpu)
699
{
700
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
701
702
/* Find the smaller of NUMA, core or LLC siblings */
703
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
704
/* not numa in package, lets use the package siblings */
705
core_mask = &cpu_topology[cpu].core_sibling;
706
}
707
708
if (last_level_cache_is_valid(cpu)) {
709
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
710
core_mask = &cpu_topology[cpu].llc_sibling;
711
}
712
713
/*
714
* For systems with no shared cpu-side LLC but with clusters defined,
715
* extend core_mask to cluster_siblings. The sched domain builder will
716
* then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
717
*/
718
if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
719
cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
720
core_mask = &cpu_topology[cpu].cluster_sibling;
721
722
return core_mask;
723
}
724
725
const struct cpumask *cpu_clustergroup_mask(int cpu)
726
{
727
/*
728
* Forbid cpu_clustergroup_mask() to span more or the same CPUs as
729
* cpu_coregroup_mask().
730
*/
731
if (cpumask_subset(cpu_coregroup_mask(cpu),
732
&cpu_topology[cpu].cluster_sibling))
733
return topology_sibling_cpumask(cpu);
734
735
return &cpu_topology[cpu].cluster_sibling;
736
}
737
738
void update_siblings_masks(unsigned int cpuid)
739
{
740
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
741
int cpu, ret;
742
743
ret = detect_cache_attributes(cpuid);
744
if (ret && ret != -ENOENT)
745
pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
746
747
/* update core and thread sibling masks */
748
for_each_online_cpu(cpu) {
749
cpu_topo = &cpu_topology[cpu];
750
751
if (last_level_cache_is_shared(cpu, cpuid)) {
752
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
753
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
754
}
755
756
if (cpuid_topo->package_id != cpu_topo->package_id)
757
continue;
758
759
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
760
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
761
762
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
763
continue;
764
765
if (cpuid_topo->cluster_id >= 0) {
766
cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
767
cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
768
}
769
770
if (cpuid_topo->core_id != cpu_topo->core_id)
771
continue;
772
773
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
774
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
775
}
776
}
777
778
static void clear_cpu_topology(int cpu)
779
{
780
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
781
782
cpumask_clear(&cpu_topo->llc_sibling);
783
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
784
785
cpumask_clear(&cpu_topo->cluster_sibling);
786
cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
787
788
cpumask_clear(&cpu_topo->core_sibling);
789
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
790
cpumask_clear(&cpu_topo->thread_sibling);
791
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
792
}
793
794
void __init reset_cpu_topology(void)
795
{
796
unsigned int cpu;
797
798
for_each_possible_cpu(cpu) {
799
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
800
801
cpu_topo->thread_id = -1;
802
cpu_topo->core_id = -1;
803
cpu_topo->cluster_id = -1;
804
cpu_topo->package_id = -1;
805
806
clear_cpu_topology(cpu);
807
}
808
}
809
810
void remove_cpu_topology(unsigned int cpu)
811
{
812
int sibling;
813
814
for_each_cpu(sibling, topology_core_cpumask(cpu))
815
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
816
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
817
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
818
for_each_cpu(sibling, topology_cluster_cpumask(cpu))
819
cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
820
for_each_cpu(sibling, topology_llc_cpumask(cpu))
821
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
822
823
clear_cpu_topology(cpu);
824
}
825
826
__weak int __init parse_acpi_topology(void)
827
{
828
return 0;
829
}
830
831
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
832
void __init init_cpu_topology(void)
833
{
834
int cpu, ret;
835
836
reset_cpu_topology();
837
ret = parse_acpi_topology();
838
if (!ret)
839
ret = of_have_populated_dt() && parse_dt_topology();
840
841
if (ret) {
842
/*
843
* Discard anything that was parsed if we hit an error so we
844
* don't use partial information. But do not return yet to give
845
* arch-specific early cache level detection a chance to run.
846
*/
847
reset_cpu_topology();
848
}
849
850
for_each_possible_cpu(cpu) {
851
ret = fetch_cache_info(cpu);
852
if (!ret)
853
continue;
854
else if (ret != -ENOENT)
855
pr_err("Early cacheinfo failed, ret = %d\n", ret);
856
return;
857
}
858
}
859
860
void store_cpu_topology(unsigned int cpuid)
861
{
862
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
863
864
if (cpuid_topo->package_id != -1)
865
goto topology_populated;
866
867
cpuid_topo->thread_id = -1;
868
cpuid_topo->core_id = cpuid;
869
cpuid_topo->package_id = cpu_to_node(cpuid);
870
871
pr_debug("CPU%u: package %d core %d thread %d\n",
872
cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
873
cpuid_topo->thread_id);
874
875
topology_populated:
876
update_siblings_masks(cpuid);
877
}
878
#endif
879
880