Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/arch_topology.c
49939 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Arch specific cpu topology information
4
*
5
* Copyright (C) 2016, ARM Ltd.
6
* Written by: Juri Lelli, ARM Ltd.
7
*/
8
9
#include <linux/acpi.h>
10
#include <linux/cacheinfo.h>
11
#include <linux/cleanup.h>
12
#include <linux/cpu.h>
13
#include <linux/cpufreq.h>
14
#include <linux/cpu_smt.h>
15
#include <linux/device.h>
16
#include <linux/of.h>
17
#include <linux/slab.h>
18
#include <linux/sched/topology.h>
19
#include <linux/cpuset.h>
20
#include <linux/cpumask.h>
21
#include <linux/init.h>
22
#include <linux/rcupdate.h>
23
#include <linux/sched.h>
24
#include <linux/units.h>
25
26
#define CREATE_TRACE_POINTS
27
#include <trace/events/hw_pressure.h>
28
29
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
30
static struct cpumask scale_freq_counters_mask;
31
static bool scale_freq_invariant;
32
DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 0;
33
EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
34
35
static bool supports_scale_freq_counters(const struct cpumask *cpus)
36
{
37
int i;
38
39
for_each_cpu(i, cpus) {
40
if (cpumask_test_cpu(i, &scale_freq_counters_mask))
41
return true;
42
}
43
44
return false;
45
}
46
47
bool topology_scale_freq_invariant(void)
48
{
49
return cpufreq_supports_freq_invariance() ||
50
supports_scale_freq_counters(cpu_online_mask);
51
}
52
53
static void update_scale_freq_invariant(bool status)
54
{
55
if (scale_freq_invariant == status)
56
return;
57
58
/*
59
* Task scheduler behavior depends on frequency invariance support,
60
* either cpufreq or counter driven. If the support status changes as
61
* a result of counter initialisation and use, retrigger the build of
62
* scheduling domains to ensure the information is propagated properly.
63
*/
64
if (topology_scale_freq_invariant() == status) {
65
scale_freq_invariant = status;
66
rebuild_sched_domains_energy();
67
}
68
}
69
70
void topology_set_scale_freq_source(struct scale_freq_data *data,
71
const struct cpumask *cpus)
72
{
73
struct scale_freq_data *sfd;
74
int cpu;
75
76
/*
77
* Avoid calling rebuild_sched_domains() unnecessarily if FIE is
78
* supported by cpufreq.
79
*/
80
if (cpumask_empty(&scale_freq_counters_mask))
81
scale_freq_invariant = topology_scale_freq_invariant();
82
83
rcu_read_lock();
84
85
for_each_cpu(cpu, cpus) {
86
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
87
88
/* Use ARCH provided counters whenever possible */
89
if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
90
rcu_assign_pointer(per_cpu(sft_data, cpu), data);
91
cpumask_set_cpu(cpu, &scale_freq_counters_mask);
92
}
93
}
94
95
rcu_read_unlock();
96
97
update_scale_freq_invariant(true);
98
}
99
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
100
101
void topology_clear_scale_freq_source(enum scale_freq_source source,
102
const struct cpumask *cpus)
103
{
104
struct scale_freq_data *sfd;
105
int cpu;
106
107
rcu_read_lock();
108
109
for_each_cpu(cpu, cpus) {
110
sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
111
112
if (sfd && sfd->source == source) {
113
rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
114
cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
115
}
116
}
117
118
rcu_read_unlock();
119
120
/*
121
* Make sure all references to previous sft_data are dropped to avoid
122
* use-after-free races.
123
*/
124
synchronize_rcu();
125
126
update_scale_freq_invariant(false);
127
}
128
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
129
130
void topology_scale_freq_tick(void)
131
{
132
struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
133
134
if (sfd)
135
sfd->set_freq_scale();
136
}
137
138
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
139
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
140
141
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
142
unsigned long max_freq)
143
{
144
unsigned long scale;
145
int i;
146
147
if (WARN_ON_ONCE(!cur_freq || !max_freq))
148
return;
149
150
/*
151
* If the use of counters for FIE is enabled, just return as we don't
152
* want to update the scale factor with information from CPUFREQ.
153
* Instead the scale factor will be updated from arch_scale_freq_tick.
154
*/
155
if (supports_scale_freq_counters(cpus))
156
return;
157
158
scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
159
160
for_each_cpu(i, cpus)
161
per_cpu(arch_freq_scale, i) = scale;
162
}
163
164
DEFINE_PER_CPU(unsigned long, hw_pressure);
165
166
/**
167
* topology_update_hw_pressure() - Update HW pressure for CPUs
168
* @cpus : The related CPUs for which capacity has been reduced
169
* @capped_freq : The maximum allowed frequency that CPUs can run at
170
*
171
* Update the value of HW pressure for all @cpus in the mask. The
172
* cpumask should include all (online+offline) affected CPUs, to avoid
173
* operating on stale data when hot-plug is used for some CPUs. The
174
* @capped_freq reflects the currently allowed max CPUs frequency due to
175
* HW capping. It might be also a boost frequency value, which is bigger
176
* than the internal 'capacity_freq_ref' max frequency. In such case the
177
* pressure value should simply be removed, since this is an indication that
178
* there is no HW throttling. The @capped_freq must be provided in kHz.
179
*/
180
void topology_update_hw_pressure(const struct cpumask *cpus,
181
unsigned long capped_freq)
182
{
183
unsigned long max_capacity, capacity, pressure;
184
u32 max_freq;
185
int cpu;
186
187
cpu = cpumask_first(cpus);
188
max_capacity = arch_scale_cpu_capacity(cpu);
189
max_freq = arch_scale_freq_ref(cpu);
190
191
/*
192
* Handle properly the boost frequencies, which should simply clean
193
* the HW pressure value.
194
*/
195
if (max_freq <= capped_freq)
196
capacity = max_capacity;
197
else
198
capacity = mult_frac(max_capacity, capped_freq, max_freq);
199
200
pressure = max_capacity - capacity;
201
202
trace_hw_pressure_update(cpu, pressure);
203
204
for_each_cpu(cpu, cpus)
205
WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
206
}
207
EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
208
209
static void update_topology_flags_workfn(struct work_struct *work);
210
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
211
212
static int update_topology;
213
214
int topology_update_cpu_topology(void)
215
{
216
return update_topology;
217
}
218
219
/*
220
* Updating the sched_domains can't be done directly from cpufreq callbacks
221
* due to locking, so queue the work for later.
222
*/
223
static void update_topology_flags_workfn(struct work_struct *work)
224
{
225
update_topology = 1;
226
rebuild_sched_domains();
227
pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
228
update_topology = 0;
229
}
230
231
static u32 *raw_capacity;
232
233
static int free_raw_capacity(void)
234
{
235
kfree(raw_capacity);
236
raw_capacity = NULL;
237
238
return 0;
239
}
240
241
void topology_normalize_cpu_scale(void)
242
{
243
u64 capacity;
244
u64 capacity_scale;
245
int cpu;
246
247
if (!raw_capacity)
248
return;
249
250
capacity_scale = 1;
251
for_each_possible_cpu(cpu) {
252
capacity = raw_capacity[cpu] *
253
(per_cpu(capacity_freq_ref, cpu) ?: 1);
254
capacity_scale = max(capacity, capacity_scale);
255
}
256
257
pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
258
for_each_possible_cpu(cpu) {
259
capacity = raw_capacity[cpu] *
260
(per_cpu(capacity_freq_ref, cpu) ?: 1);
261
capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
262
capacity_scale);
263
topology_set_cpu_scale(cpu, capacity);
264
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
265
cpu, topology_get_cpu_scale(cpu));
266
}
267
}
268
269
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
270
{
271
struct clk *cpu_clk;
272
static bool cap_parsing_failed;
273
int ret;
274
u32 cpu_capacity;
275
276
if (cap_parsing_failed)
277
return false;
278
279
ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
280
&cpu_capacity);
281
if (!ret) {
282
if (!raw_capacity) {
283
raw_capacity = kcalloc(num_possible_cpus(),
284
sizeof(*raw_capacity),
285
GFP_KERNEL);
286
if (!raw_capacity) {
287
cap_parsing_failed = true;
288
return false;
289
}
290
}
291
raw_capacity[cpu] = cpu_capacity;
292
pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
293
cpu_node, raw_capacity[cpu]);
294
295
/*
296
* Update capacity_freq_ref for calculating early boot CPU capacities.
297
* For non-clk CPU DVFS mechanism, there's no way to get the
298
* frequency value now, assuming they are running at the same
299
* frequency (by keeping the initial capacity_freq_ref value).
300
*/
301
cpu_clk = of_clk_get(cpu_node, 0);
302
if (!IS_ERR_OR_NULL(cpu_clk)) {
303
per_cpu(capacity_freq_ref, cpu) =
304
clk_get_rate(cpu_clk) / HZ_PER_KHZ;
305
clk_put(cpu_clk);
306
}
307
} else {
308
if (raw_capacity) {
309
pr_err("cpu_capacity: missing %pOF raw capacity\n",
310
cpu_node);
311
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
312
}
313
cap_parsing_failed = true;
314
free_raw_capacity();
315
}
316
317
return !ret;
318
}
319
320
void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
321
{
322
}
323
324
#ifdef CONFIG_ACPI_CPPC_LIB
325
#include <acpi/cppc_acpi.h>
326
327
static inline void topology_init_cpu_capacity_cppc(void)
328
{
329
u64 capacity, capacity_scale = 0;
330
struct cppc_perf_caps perf_caps;
331
int cpu;
332
333
if (likely(!acpi_cpc_valid()))
334
return;
335
336
raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
337
GFP_KERNEL);
338
if (!raw_capacity)
339
return;
340
341
for_each_possible_cpu(cpu) {
342
if (!cppc_get_perf_caps(cpu, &perf_caps) &&
343
(perf_caps.highest_perf >= perf_caps.nominal_perf) &&
344
(perf_caps.highest_perf >= perf_caps.lowest_perf)) {
345
raw_capacity[cpu] = perf_caps.highest_perf;
346
capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
347
348
per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
349
350
pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
351
cpu, raw_capacity[cpu]);
352
continue;
353
}
354
355
pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
356
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
357
goto exit;
358
}
359
360
for_each_possible_cpu(cpu) {
361
freq_inv_set_max_ratio(cpu,
362
per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
363
364
capacity = raw_capacity[cpu];
365
capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
366
capacity_scale);
367
topology_set_cpu_scale(cpu, capacity);
368
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
369
cpu, topology_get_cpu_scale(cpu));
370
}
371
372
schedule_work(&update_topology_flags_work);
373
pr_debug("cpu_capacity: cpu_capacity initialization done\n");
374
375
exit:
376
free_raw_capacity();
377
}
378
void acpi_processor_init_invariance_cppc(void)
379
{
380
topology_init_cpu_capacity_cppc();
381
}
382
#endif
383
384
#ifdef CONFIG_CPU_FREQ
385
static cpumask_var_t cpus_to_visit;
386
static void parsing_done_workfn(struct work_struct *work);
387
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
388
389
static int
390
init_cpu_capacity_callback(struct notifier_block *nb,
391
unsigned long val,
392
void *data)
393
{
394
struct cpufreq_policy *policy = data;
395
int cpu;
396
397
if (val != CPUFREQ_CREATE_POLICY)
398
return 0;
399
400
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
401
cpumask_pr_args(policy->related_cpus),
402
cpumask_pr_args(cpus_to_visit));
403
404
cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
405
406
for_each_cpu(cpu, policy->related_cpus) {
407
per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
408
freq_inv_set_max_ratio(cpu,
409
per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
410
}
411
412
if (cpumask_empty(cpus_to_visit)) {
413
if (raw_capacity) {
414
topology_normalize_cpu_scale();
415
schedule_work(&update_topology_flags_work);
416
free_raw_capacity();
417
}
418
pr_debug("cpu_capacity: parsing done\n");
419
schedule_work(&parsing_done_work);
420
}
421
422
return 0;
423
}
424
425
static struct notifier_block init_cpu_capacity_notifier = {
426
.notifier_call = init_cpu_capacity_callback,
427
};
428
429
static int __init register_cpufreq_notifier(void)
430
{
431
int ret;
432
433
/*
434
* On ACPI-based systems skip registering cpufreq notifier as cpufreq
435
* information is not needed for cpu capacity initialization.
436
*/
437
if (!acpi_disabled)
438
return -EINVAL;
439
440
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
441
return -ENOMEM;
442
443
cpumask_copy(cpus_to_visit, cpu_possible_mask);
444
445
ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
446
CPUFREQ_POLICY_NOTIFIER);
447
448
if (ret)
449
free_cpumask_var(cpus_to_visit);
450
451
return ret;
452
}
453
core_initcall(register_cpufreq_notifier);
454
455
static void parsing_done_workfn(struct work_struct *work)
456
{
457
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
458
CPUFREQ_POLICY_NOTIFIER);
459
free_cpumask_var(cpus_to_visit);
460
}
461
462
#else
463
core_initcall(free_raw_capacity);
464
#endif
465
466
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
467
468
/* Used to enable the SMT control */
469
static unsigned int max_smt_thread_num = 1;
470
471
/*
472
* This function returns the logic cpu number of the node.
473
* There are basically three kinds of return values:
474
* (1) logic cpu number which is > 0.
475
* (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
476
* there is no possible logical CPU in the kernel to match. This happens
477
* when CONFIG_NR_CPUS is configure to be smaller than the number of
478
* CPU nodes in DT. We need to just ignore this case.
479
* (3) -1 if the node does not exist in the device tree
480
*/
481
static int __init get_cpu_for_node(struct device_node *node)
482
{
483
int cpu;
484
struct device_node *cpu_node __free(device_node) =
485
of_parse_phandle(node, "cpu", 0);
486
487
if (!cpu_node)
488
return -1;
489
490
cpu = of_cpu_node_to_id(cpu_node);
491
if (cpu >= 0)
492
topology_parse_cpu_capacity(cpu_node, cpu);
493
else
494
pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
495
cpu_node, cpumask_pr_args(cpu_possible_mask));
496
497
return cpu;
498
}
499
500
static int __init parse_core(struct device_node *core, int package_id,
501
int cluster_id, int core_id)
502
{
503
char name[20];
504
bool leaf = true;
505
int i = 0;
506
int cpu;
507
508
do {
509
snprintf(name, sizeof(name), "thread%d", i);
510
struct device_node *t __free(device_node) =
511
of_get_child_by_name(core, name);
512
513
if (!t)
514
break;
515
516
leaf = false;
517
cpu = get_cpu_for_node(t);
518
if (cpu >= 0) {
519
cpu_topology[cpu].package_id = package_id;
520
cpu_topology[cpu].cluster_id = cluster_id;
521
cpu_topology[cpu].core_id = core_id;
522
cpu_topology[cpu].thread_id = i;
523
} else if (cpu != -ENODEV) {
524
pr_err("%pOF: Can't get CPU for thread\n", t);
525
return -EINVAL;
526
}
527
i++;
528
} while (1);
529
530
max_smt_thread_num = max_t(unsigned int, max_smt_thread_num, i);
531
532
cpu = get_cpu_for_node(core);
533
if (cpu >= 0) {
534
if (!leaf) {
535
pr_err("%pOF: Core has both threads and CPU\n",
536
core);
537
return -EINVAL;
538
}
539
540
cpu_topology[cpu].package_id = package_id;
541
cpu_topology[cpu].cluster_id = cluster_id;
542
cpu_topology[cpu].core_id = core_id;
543
} else if (leaf && cpu != -ENODEV) {
544
pr_err("%pOF: Can't get CPU for leaf core\n", core);
545
return -EINVAL;
546
}
547
548
return 0;
549
}
550
551
static int __init parse_cluster(struct device_node *cluster, int package_id,
552
int cluster_id, int depth)
553
{
554
char name[20];
555
bool leaf = true;
556
bool has_cores = false;
557
int core_id = 0;
558
int i, ret;
559
560
/*
561
* First check for child clusters; we currently ignore any
562
* information about the nesting of clusters and present the
563
* scheduler with a flat list of them.
564
*/
565
i = 0;
566
do {
567
snprintf(name, sizeof(name), "cluster%d", i);
568
struct device_node *c __free(device_node) =
569
of_get_child_by_name(cluster, name);
570
571
if (!c)
572
break;
573
574
leaf = false;
575
ret = parse_cluster(c, package_id, i, depth + 1);
576
if (depth > 0)
577
pr_warn("Topology for clusters of clusters not yet supported\n");
578
if (ret != 0)
579
return ret;
580
i++;
581
} while (1);
582
583
/* Now check for cores */
584
i = 0;
585
do {
586
snprintf(name, sizeof(name), "core%d", i);
587
struct device_node *c __free(device_node) =
588
of_get_child_by_name(cluster, name);
589
590
if (!c)
591
break;
592
593
has_cores = true;
594
595
if (depth == 0) {
596
pr_err("%pOF: cpu-map children should be clusters\n", c);
597
return -EINVAL;
598
}
599
600
if (leaf) {
601
ret = parse_core(c, package_id, cluster_id, core_id++);
602
if (ret != 0)
603
return ret;
604
} else {
605
pr_err("%pOF: Non-leaf cluster with core %s\n",
606
cluster, name);
607
return -EINVAL;
608
}
609
610
i++;
611
} while (1);
612
613
if (leaf && !has_cores)
614
pr_warn("%pOF: empty cluster\n", cluster);
615
616
return 0;
617
}
618
619
static int __init parse_socket(struct device_node *socket)
620
{
621
char name[20];
622
bool has_socket = false;
623
int package_id = 0, ret;
624
625
do {
626
snprintf(name, sizeof(name), "socket%d", package_id);
627
struct device_node *c __free(device_node) =
628
of_get_child_by_name(socket, name);
629
630
if (!c)
631
break;
632
633
has_socket = true;
634
ret = parse_cluster(c, package_id, -1, 0);
635
if (ret != 0)
636
return ret;
637
638
package_id++;
639
} while (1);
640
641
if (!has_socket)
642
ret = parse_cluster(socket, 0, -1, 0);
643
644
/*
645
* Reset the max_smt_thread_num to 1 on failure. Since on failure
646
* we need to notify the framework the SMT is not supported, but
647
* max_smt_thread_num can be initialized to the SMT thread number
648
* of the cores which are successfully parsed.
649
*/
650
if (ret)
651
max_smt_thread_num = 1;
652
653
cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
654
655
return ret;
656
}
657
658
static int __init parse_dt_topology(void)
659
{
660
int ret = 0;
661
int cpu;
662
struct device_node *cn __free(device_node) =
663
of_find_node_by_path("/cpus");
664
665
if (!cn) {
666
pr_err("No CPU information found in DT\n");
667
return 0;
668
}
669
670
/*
671
* When topology is provided cpu-map is essentially a root
672
* cluster with restricted subnodes.
673
*/
674
struct device_node *map __free(device_node) =
675
of_get_child_by_name(cn, "cpu-map");
676
677
if (!map)
678
return ret;
679
680
ret = parse_socket(map);
681
if (ret != 0)
682
return ret;
683
684
topology_normalize_cpu_scale();
685
686
/*
687
* Check that all cores are in the topology; the SMP code will
688
* only mark cores described in the DT as possible.
689
*/
690
for_each_possible_cpu(cpu)
691
if (cpu_topology[cpu].package_id < 0) {
692
return -EINVAL;
693
}
694
695
return ret;
696
}
697
#endif
698
699
/*
700
* cpu topology table
701
*/
702
struct cpu_topology cpu_topology[NR_CPUS];
703
EXPORT_SYMBOL_GPL(cpu_topology);
704
705
const struct cpumask *cpu_coregroup_mask(int cpu)
706
{
707
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
708
709
/* Find the smaller of NUMA, core or LLC siblings */
710
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
711
/* not numa in package, lets use the package siblings */
712
core_mask = &cpu_topology[cpu].core_sibling;
713
}
714
715
if (last_level_cache_is_valid(cpu)) {
716
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
717
core_mask = &cpu_topology[cpu].llc_sibling;
718
}
719
720
/*
721
* For systems with no shared cpu-side LLC but with clusters defined,
722
* extend core_mask to cluster_siblings. The sched domain builder will
723
* then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
724
*/
725
if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
726
cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
727
core_mask = &cpu_topology[cpu].cluster_sibling;
728
729
return core_mask;
730
}
731
732
const struct cpumask *cpu_clustergroup_mask(int cpu)
733
{
734
/*
735
* Forbid cpu_clustergroup_mask() to span more or the same CPUs as
736
* cpu_coregroup_mask().
737
*/
738
if (cpumask_subset(cpu_coregroup_mask(cpu),
739
&cpu_topology[cpu].cluster_sibling))
740
return topology_sibling_cpumask(cpu);
741
742
return &cpu_topology[cpu].cluster_sibling;
743
}
744
745
void update_siblings_masks(unsigned int cpuid)
746
{
747
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
748
int cpu, ret;
749
750
ret = detect_cache_attributes(cpuid);
751
if (ret && ret != -ENOENT)
752
pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
753
754
/* update core and thread sibling masks */
755
for_each_online_cpu(cpu) {
756
cpu_topo = &cpu_topology[cpu];
757
758
if (last_level_cache_is_shared(cpu, cpuid)) {
759
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
760
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
761
}
762
763
if (cpuid_topo->package_id != cpu_topo->package_id)
764
continue;
765
766
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
767
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
768
769
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
770
continue;
771
772
if (cpuid_topo->cluster_id >= 0) {
773
cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
774
cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
775
}
776
777
if (cpuid_topo->core_id != cpu_topo->core_id)
778
continue;
779
780
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
781
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
782
}
783
}
784
785
static void clear_cpu_topology(int cpu)
786
{
787
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
788
789
cpumask_clear(&cpu_topo->llc_sibling);
790
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
791
792
cpumask_clear(&cpu_topo->cluster_sibling);
793
cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
794
795
cpumask_clear(&cpu_topo->core_sibling);
796
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
797
cpumask_clear(&cpu_topo->thread_sibling);
798
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
799
}
800
801
void __init reset_cpu_topology(void)
802
{
803
unsigned int cpu;
804
805
for_each_possible_cpu(cpu) {
806
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
807
808
cpu_topo->thread_id = -1;
809
cpu_topo->core_id = -1;
810
cpu_topo->cluster_id = -1;
811
cpu_topo->package_id = -1;
812
813
clear_cpu_topology(cpu);
814
}
815
}
816
817
void remove_cpu_topology(unsigned int cpu)
818
{
819
int sibling;
820
821
for_each_cpu(sibling, topology_core_cpumask(cpu))
822
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
823
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
824
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
825
for_each_cpu(sibling, topology_cluster_cpumask(cpu))
826
cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
827
for_each_cpu(sibling, topology_llc_cpumask(cpu))
828
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
829
830
clear_cpu_topology(cpu);
831
}
832
833
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
834
struct cpu_smt_info {
835
unsigned int thread_num;
836
int core_id;
837
};
838
839
static bool __init acpi_cpu_is_threaded(int cpu)
840
{
841
int is_threaded = acpi_pptt_cpu_is_thread(cpu);
842
843
/*
844
* if the PPTT doesn't have thread information, check for architecture
845
* specific fallback if available
846
*/
847
if (is_threaded < 0)
848
is_threaded = arch_cpu_is_threaded();
849
850
return !!is_threaded;
851
}
852
853
/*
854
* Propagate the topology information of the processor_topology_node tree to the
855
* cpu_topology array.
856
*/
857
__weak int __init parse_acpi_topology(void)
858
{
859
unsigned int max_smt_thread_num = 1;
860
struct cpu_smt_info *entry;
861
struct xarray hetero_cpu;
862
unsigned long hetero_id;
863
int cpu, topology_id;
864
865
if (acpi_disabled)
866
return 0;
867
868
xa_init(&hetero_cpu);
869
870
for_each_possible_cpu(cpu) {
871
topology_id = find_acpi_cpu_topology(cpu, 0);
872
if (topology_id < 0)
873
return topology_id;
874
875
if (acpi_cpu_is_threaded(cpu)) {
876
cpu_topology[cpu].thread_id = topology_id;
877
topology_id = find_acpi_cpu_topology(cpu, 1);
878
cpu_topology[cpu].core_id = topology_id;
879
880
/*
881
* In the PPTT, CPUs below a node with the 'identical
882
* implementation' flag have the same number of threads.
883
* Count the number of threads for only one CPU (i.e.
884
* one core_id) among those with the same hetero_id.
885
* See the comment of find_acpi_cpu_topology_hetero_id()
886
* for more details.
887
*
888
* One entry is created for each node having:
889
* - the 'identical implementation' flag
890
* - its parent not having the flag
891
*/
892
hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
893
entry = xa_load(&hetero_cpu, hetero_id);
894
if (!entry) {
895
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
896
WARN_ON_ONCE(!entry);
897
898
if (entry) {
899
entry->core_id = topology_id;
900
entry->thread_num = 1;
901
xa_store(&hetero_cpu, hetero_id,
902
entry, GFP_KERNEL);
903
}
904
} else if (entry->core_id == topology_id) {
905
entry->thread_num++;
906
}
907
} else {
908
cpu_topology[cpu].thread_id = -1;
909
cpu_topology[cpu].core_id = topology_id;
910
}
911
topology_id = find_acpi_cpu_topology_cluster(cpu);
912
cpu_topology[cpu].cluster_id = topology_id;
913
topology_id = find_acpi_cpu_topology_package(cpu);
914
cpu_topology[cpu].package_id = topology_id;
915
}
916
917
/*
918
* This is a short loop since the number of XArray elements is the
919
* number of heterogeneous CPU clusters. On a homogeneous system
920
* there's only one entry in the XArray.
921
*/
922
xa_for_each(&hetero_cpu, hetero_id, entry) {
923
max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
924
xa_erase(&hetero_cpu, hetero_id);
925
kfree(entry);
926
}
927
928
cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
929
xa_destroy(&hetero_cpu);
930
return 0;
931
}
932
933
void __init init_cpu_topology(void)
934
{
935
int cpu, ret;
936
937
reset_cpu_topology();
938
ret = parse_acpi_topology();
939
if (!ret)
940
ret = of_have_populated_dt() && parse_dt_topology();
941
942
if (ret) {
943
/*
944
* Discard anything that was parsed if we hit an error so we
945
* don't use partial information. But do not return yet to give
946
* arch-specific early cache level detection a chance to run.
947
*/
948
reset_cpu_topology();
949
}
950
951
for_each_possible_cpu(cpu) {
952
ret = fetch_cache_info(cpu);
953
if (!ret)
954
continue;
955
else if (ret != -ENOENT)
956
pr_err("Early cacheinfo failed, ret = %d\n", ret);
957
return;
958
}
959
}
960
961
void store_cpu_topology(unsigned int cpuid)
962
{
963
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
964
965
if (cpuid_topo->package_id != -1)
966
goto topology_populated;
967
968
cpuid_topo->thread_id = -1;
969
cpuid_topo->core_id = cpuid;
970
cpuid_topo->package_id = cpu_to_node(cpuid);
971
972
pr_debug("CPU%u: package %d core %d thread %d\n",
973
cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
974
cpuid_topo->thread_id);
975
976
topology_populated:
977
update_siblings_masks(cpuid);
978
}
979
#endif
980
981