Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/devcoredump.c
48962 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright(c) 2014 Intel Mobile Communications GmbH
4
* Copyright(c) 2015 Intel Deutschland GmbH
5
*
6
* Author: Johannes Berg <[email protected]>
7
*/
8
#include <linux/module.h>
9
#include <linux/device.h>
10
#include <linux/devcoredump.h>
11
#include <linux/list.h>
12
#include <linux/slab.h>
13
#include <linux/fs.h>
14
#include <linux/workqueue.h>
15
16
static struct class devcd_class;
17
18
/* global disable flag, for security purposes */
19
static bool devcd_disabled;
20
21
struct devcd_entry {
22
struct device devcd_dev;
23
void *data;
24
size_t datalen;
25
/*
26
* There are 2 races for which mutex is required.
27
*
28
* The first race is between device creation and userspace writing to
29
* schedule immediately destruction.
30
*
31
* This race is handled by arming the timer before device creation, but
32
* when device creation fails the timer still exists.
33
*
34
* To solve this, hold the mutex during device_add(), and set
35
* init_completed on success before releasing the mutex.
36
*
37
* That way the timer will never fire until device_add() is called,
38
* it will do nothing if init_completed is not set. The timer is also
39
* cancelled in that case.
40
*
41
* The second race involves multiple parallel invocations of devcd_free(),
42
* add a deleted flag so only 1 can call the destructor.
43
*/
44
struct mutex mutex;
45
bool init_completed, deleted;
46
struct module *owner;
47
ssize_t (*read)(char *buffer, loff_t offset, size_t count,
48
void *data, size_t datalen);
49
void (*free)(void *data);
50
/*
51
* If nothing interferes and device_add() was returns success,
52
* del_wk will destroy the device after the timer fires.
53
*
54
* Multiple userspace processes can interfere in the working of the timer:
55
* - Writing to the coredump will reschedule the timer to run immediately,
56
* if still armed.
57
*
58
* This is handled by using "if (cancel_delayed_work()) {
59
* schedule_delayed_work() }", to prevent re-arming after having
60
* been previously fired.
61
* - Writing to /sys/class/devcoredump/disabled will destroy the
62
* coredump synchronously.
63
* This is handled by using disable_delayed_work_sync(), and then
64
* checking if deleted flag is set with &devcd->mutex held.
65
*/
66
struct delayed_work del_wk;
67
struct device *failing_dev;
68
};
69
70
static struct devcd_entry *dev_to_devcd(struct device *dev)
71
{
72
return container_of(dev, struct devcd_entry, devcd_dev);
73
}
74
75
static void devcd_dev_release(struct device *dev)
76
{
77
struct devcd_entry *devcd = dev_to_devcd(dev);
78
79
devcd->free(devcd->data);
80
module_put(devcd->owner);
81
82
/*
83
* this seems racy, but I don't see a notifier or such on
84
* a struct device to know when it goes away?
85
*/
86
if (devcd->failing_dev->kobj.sd)
87
sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
88
"devcoredump");
89
90
put_device(devcd->failing_dev);
91
kfree(devcd);
92
}
93
94
static void __devcd_del(struct devcd_entry *devcd)
95
{
96
devcd->deleted = true;
97
device_del(&devcd->devcd_dev);
98
put_device(&devcd->devcd_dev);
99
}
100
101
static void devcd_del(struct work_struct *wk)
102
{
103
struct devcd_entry *devcd;
104
bool init_completed;
105
106
devcd = container_of(wk, struct devcd_entry, del_wk.work);
107
108
/* devcd->mutex serializes against dev_coredumpm_timeout */
109
mutex_lock(&devcd->mutex);
110
init_completed = devcd->init_completed;
111
mutex_unlock(&devcd->mutex);
112
113
if (init_completed)
114
__devcd_del(devcd);
115
}
116
117
static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
118
const struct bin_attribute *bin_attr,
119
char *buffer, loff_t offset, size_t count)
120
{
121
struct device *dev = kobj_to_dev(kobj);
122
struct devcd_entry *devcd = dev_to_devcd(dev);
123
124
return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
125
}
126
127
static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
128
const struct bin_attribute *bin_attr,
129
char *buffer, loff_t offset, size_t count)
130
{
131
struct device *dev = kobj_to_dev(kobj);
132
struct devcd_entry *devcd = dev_to_devcd(dev);
133
134
/*
135
* Although it's tempting to use mod_delayed work here,
136
* that will cause a reschedule if the timer already fired.
137
*/
138
if (cancel_delayed_work(&devcd->del_wk))
139
schedule_delayed_work(&devcd->del_wk, 0);
140
141
return count;
142
}
143
144
static const struct bin_attribute devcd_attr_data =
145
__BIN_ATTR(data, 0600, devcd_data_read, devcd_data_write, 0);
146
147
static const struct bin_attribute *const devcd_dev_bin_attrs[] = {
148
&devcd_attr_data, NULL,
149
};
150
151
static const struct attribute_group devcd_dev_group = {
152
.bin_attrs = devcd_dev_bin_attrs,
153
};
154
155
static const struct attribute_group *devcd_dev_groups[] = {
156
&devcd_dev_group, NULL,
157
};
158
159
static int devcd_free(struct device *dev, void *data)
160
{
161
struct devcd_entry *devcd = dev_to_devcd(dev);
162
163
/*
164
* To prevent a race with devcd_data_write(), disable work and
165
* complete manually instead.
166
*
167
* We cannot rely on the return value of
168
* disable_delayed_work_sync() here, because it might be in the
169
* middle of a cancel_delayed_work + schedule_delayed_work pair.
170
*
171
* devcd->mutex here guards against multiple parallel invocations
172
* of devcd_free().
173
*/
174
disable_delayed_work_sync(&devcd->del_wk);
175
mutex_lock(&devcd->mutex);
176
if (!devcd->deleted)
177
__devcd_del(devcd);
178
mutex_unlock(&devcd->mutex);
179
return 0;
180
}
181
182
static ssize_t disabled_show(const struct class *class, const struct class_attribute *attr,
183
char *buf)
184
{
185
return sysfs_emit(buf, "%d\n", devcd_disabled);
186
}
187
188
/*
189
*
190
* disabled_store() worker()
191
* class_for_each_device(&devcd_class,
192
* NULL, NULL, devcd_free)
193
* ...
194
* ...
195
* while ((dev = class_dev_iter_next(&iter))
196
* devcd_del()
197
* device_del()
198
* put_device() <- last reference
199
* error = fn(dev, data) devcd_dev_release()
200
* devcd_free(dev, data) kfree(devcd)
201
*
202
*
203
* In the above diagram, it looks like disabled_store() would be racing with parallelly
204
* running devcd_del() and result in memory abort after dropping its last reference with
205
* put_device(). However, this will not happens as fn(dev, data) runs
206
* with its own reference to device via klist_node so it is not its last reference.
207
* so, above situation would not occur.
208
*/
209
210
static ssize_t disabled_store(const struct class *class, const struct class_attribute *attr,
211
const char *buf, size_t count)
212
{
213
long tmp = simple_strtol(buf, NULL, 10);
214
215
/*
216
* This essentially makes the attribute write-once, since you can't
217
* go back to not having it disabled. This is intentional, it serves
218
* as a system lockdown feature.
219
*/
220
if (tmp != 1)
221
return -EINVAL;
222
223
devcd_disabled = true;
224
225
class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
226
227
return count;
228
}
229
static CLASS_ATTR_RW(disabled);
230
231
static struct attribute *devcd_class_attrs[] = {
232
&class_attr_disabled.attr,
233
NULL,
234
};
235
ATTRIBUTE_GROUPS(devcd_class);
236
237
static struct class devcd_class = {
238
.name = "devcoredump",
239
.dev_release = devcd_dev_release,
240
.dev_groups = devcd_dev_groups,
241
.class_groups = devcd_class_groups,
242
};
243
244
static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
245
void *data, size_t datalen)
246
{
247
return memory_read_from_buffer(buffer, count, &offset, data, datalen);
248
}
249
250
static void devcd_freev(void *data)
251
{
252
vfree(data);
253
}
254
255
/**
256
* dev_coredumpv - create device coredump with vmalloc data
257
* @dev: the struct device for the crashed device
258
* @data: vmalloc data containing the device coredump
259
* @datalen: length of the data
260
* @gfp: allocation flags
261
*
262
* This function takes ownership of the vmalloc'ed data and will free
263
* it when it is no longer used. See dev_coredumpm() for more information.
264
*/
265
void dev_coredumpv(struct device *dev, void *data, size_t datalen,
266
gfp_t gfp)
267
{
268
dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
269
}
270
EXPORT_SYMBOL_GPL(dev_coredumpv);
271
272
static int devcd_match_failing(struct device *dev, const void *failing)
273
{
274
struct devcd_entry *devcd = dev_to_devcd(dev);
275
276
return devcd->failing_dev == failing;
277
}
278
279
/**
280
* devcd_free_sgtable - free all the memory of the given scatterlist table
281
* (i.e. both pages and scatterlist instances)
282
* NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
283
* using the sg_chain function then that function should be called only once
284
* on the chained table
285
* @data: pointer to sg_table to free
286
*/
287
static void devcd_free_sgtable(void *data)
288
{
289
_devcd_free_sgtable(data);
290
}
291
292
/**
293
* devcd_read_from_sgtable - copy data from sg_table to a given buffer
294
* and return the number of bytes read
295
* @buffer: the buffer to copy the data to it
296
* @buf_len: the length of the buffer
297
* @data: the scatterlist table to copy from
298
* @offset: start copy from @offset@ bytes from the head of the data
299
* in the given scatterlist
300
* @data_len: the length of the data in the sg_table
301
*
302
* Returns: the number of bytes copied
303
*/
304
static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
305
size_t buf_len, void *data,
306
size_t data_len)
307
{
308
struct scatterlist *table = data;
309
310
if (offset > data_len)
311
return -EINVAL;
312
313
if (offset + buf_len > data_len)
314
buf_len = data_len - offset;
315
return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
316
offset);
317
}
318
319
/**
320
* dev_coredump_put - remove device coredump
321
* @dev: the struct device for the crashed device
322
*
323
* dev_coredump_put() removes coredump, if exists, for a given device from
324
* the file system and free its associated data otherwise, does nothing.
325
*
326
* It is useful for modules that do not want to keep coredump
327
* available after its unload.
328
*/
329
void dev_coredump_put(struct device *dev)
330
{
331
struct device *existing;
332
333
existing = class_find_device(&devcd_class, NULL, dev,
334
devcd_match_failing);
335
if (existing) {
336
devcd_free(existing, NULL);
337
put_device(existing);
338
}
339
}
340
EXPORT_SYMBOL_GPL(dev_coredump_put);
341
342
/**
343
* dev_coredumpm_timeout - create device coredump with read/free methods with a
344
* custom timeout.
345
* @dev: the struct device for the crashed device
346
* @owner: the module that contains the read/free functions, use %THIS_MODULE
347
* @data: data cookie for the @read/@free functions
348
* @datalen: length of the data
349
* @gfp: allocation flags
350
* @read: function to read from the given buffer
351
* @free: function to free the given buffer
352
* @timeout: time in jiffies to remove coredump
353
*
354
* Creates a new device coredump for the given device. If a previous one hasn't
355
* been read yet, the new coredump is discarded. The data lifetime is determined
356
* by the device coredump framework and when it is no longer needed the @free
357
* function will be called to free the data.
358
*/
359
void dev_coredumpm_timeout(struct device *dev, struct module *owner,
360
void *data, size_t datalen, gfp_t gfp,
361
ssize_t (*read)(char *buffer, loff_t offset,
362
size_t count, void *data,
363
size_t datalen),
364
void (*free)(void *data),
365
unsigned long timeout)
366
{
367
static atomic_t devcd_count = ATOMIC_INIT(0);
368
struct devcd_entry *devcd;
369
struct device *existing;
370
371
if (devcd_disabled)
372
goto free;
373
374
existing = class_find_device(&devcd_class, NULL, dev,
375
devcd_match_failing);
376
if (existing) {
377
put_device(existing);
378
goto free;
379
}
380
381
if (!try_module_get(owner))
382
goto free;
383
384
devcd = kzalloc(sizeof(*devcd), gfp);
385
if (!devcd)
386
goto put_module;
387
388
devcd->owner = owner;
389
devcd->data = data;
390
devcd->datalen = datalen;
391
devcd->read = read;
392
devcd->free = free;
393
devcd->failing_dev = get_device(dev);
394
devcd->deleted = false;
395
396
mutex_init(&devcd->mutex);
397
device_initialize(&devcd->devcd_dev);
398
399
dev_set_name(&devcd->devcd_dev, "devcd%d",
400
atomic_inc_return(&devcd_count));
401
devcd->devcd_dev.class = &devcd_class;
402
403
dev_set_uevent_suppress(&devcd->devcd_dev, true);
404
405
/* devcd->mutex prevents devcd_del() completing until init finishes */
406
mutex_lock(&devcd->mutex);
407
devcd->init_completed = false;
408
INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
409
schedule_delayed_work(&devcd->del_wk, timeout);
410
411
if (device_add(&devcd->devcd_dev))
412
goto put_device;
413
414
/*
415
* These should normally not fail, but there is no problem
416
* continuing without the links, so just warn instead of
417
* failing.
418
*/
419
if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
420
"failing_device") ||
421
sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
422
"devcoredump"))
423
dev_warn(dev, "devcoredump create_link failed\n");
424
425
dev_set_uevent_suppress(&devcd->devcd_dev, false);
426
kobject_uevent(&devcd->devcd_dev.kobj, KOBJ_ADD);
427
428
/*
429
* Safe to run devcd_del() now that we are done with devcd_dev.
430
* Alternatively we could have taken a ref on devcd_dev before
431
* dropping the lock.
432
*/
433
devcd->init_completed = true;
434
mutex_unlock(&devcd->mutex);
435
return;
436
put_device:
437
mutex_unlock(&devcd->mutex);
438
cancel_delayed_work_sync(&devcd->del_wk);
439
put_device(&devcd->devcd_dev);
440
441
put_module:
442
module_put(owner);
443
free:
444
free(data);
445
}
446
EXPORT_SYMBOL_GPL(dev_coredumpm_timeout);
447
448
/**
449
* dev_coredumpsg - create device coredump that uses scatterlist as data
450
* parameter
451
* @dev: the struct device for the crashed device
452
* @table: the dump data
453
* @datalen: length of the data
454
* @gfp: allocation flags
455
*
456
* Creates a new device coredump for the given device. If a previous one hasn't
457
* been read yet, the new coredump is discarded. The data lifetime is determined
458
* by the device coredump framework and when it is no longer needed
459
* it will free the data.
460
*/
461
void dev_coredumpsg(struct device *dev, struct scatterlist *table,
462
size_t datalen, gfp_t gfp)
463
{
464
dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
465
devcd_free_sgtable);
466
}
467
EXPORT_SYMBOL_GPL(dev_coredumpsg);
468
469
static int __init devcoredump_init(void)
470
{
471
return class_register(&devcd_class);
472
}
473
__initcall(devcoredump_init);
474
475
static void __exit devcoredump_exit(void)
476
{
477
class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
478
class_unregister(&devcd_class);
479
}
480
__exitcall(devcoredump_exit);
481
482