Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/firmware_loader/main.c
49363 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* main.c - Multi purpose firmware loading support
4
*
5
* Copyright (c) 2003 Manuel Estrada Sainz
6
*
7
* Please see Documentation/driver-api/firmware/ for more information.
8
*
9
*/
10
11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13
#include <linux/capability.h>
14
#include <linux/device.h>
15
#include <linux/kernel_read_file.h>
16
#include <linux/module.h>
17
#include <linux/init.h>
18
#include <linux/initrd.h>
19
#include <linux/timer.h>
20
#include <linux/vmalloc.h>
21
#include <linux/interrupt.h>
22
#include <linux/bitops.h>
23
#include <linux/mutex.h>
24
#include <linux/workqueue.h>
25
#include <linux/highmem.h>
26
#include <linux/firmware.h>
27
#include <linux/slab.h>
28
#include <linux/sched.h>
29
#include <linux/file.h>
30
#include <linux/list.h>
31
#include <linux/fs.h>
32
#include <linux/async.h>
33
#include <linux/pm.h>
34
#include <linux/suspend.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/reboot.h>
37
#include <linux/security.h>
38
#include <linux/zstd.h>
39
#include <linux/xz.h>
40
41
#include <generated/utsrelease.h>
42
43
#include "../base.h"
44
#include "firmware.h"
45
#include "fallback.h"
46
47
MODULE_AUTHOR("Manuel Estrada Sainz");
48
MODULE_DESCRIPTION("Multi purpose firmware loading support");
49
MODULE_LICENSE("GPL");
50
51
struct firmware_cache {
52
/* firmware_buf instance will be added into the below list */
53
spinlock_t lock;
54
struct list_head head;
55
int state;
56
57
#ifdef CONFIG_FW_CACHE
58
/*
59
* Names of firmware images which have been cached successfully
60
* will be added into the below list so that device uncache
61
* helper can trace which firmware images have been cached
62
* before.
63
*/
64
spinlock_t name_lock;
65
struct list_head fw_names;
66
67
struct delayed_work work;
68
69
struct notifier_block pm_notify;
70
#endif
71
};
72
73
struct fw_cache_entry {
74
struct list_head list;
75
const char *name;
76
};
77
78
struct fw_name_devm {
79
unsigned long magic;
80
const char *name;
81
};
82
83
static inline struct fw_priv *to_fw_priv(struct kref *ref)
84
{
85
return container_of(ref, struct fw_priv, ref);
86
}
87
88
#define FW_LOADER_NO_CACHE 0
89
#define FW_LOADER_START_CACHE 1
90
91
/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92
* guarding for corner cases a global lock should be OK */
93
DEFINE_MUTEX(fw_lock);
94
95
struct firmware_cache fw_cache;
96
bool fw_load_abort_all;
97
98
void fw_state_init(struct fw_priv *fw_priv)
99
{
100
struct fw_state *fw_st = &fw_priv->fw_st;
101
102
init_completion(&fw_st->completion);
103
fw_st->status = FW_STATUS_UNKNOWN;
104
}
105
106
static inline int fw_state_wait(struct fw_priv *fw_priv)
107
{
108
return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109
}
110
111
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
113
static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114
struct firmware_cache *fwc,
115
void *dbuf,
116
size_t size,
117
size_t offset,
118
u32 opt_flags)
119
{
120
struct fw_priv *fw_priv;
121
122
/* For a partial read, the buffer must be preallocated. */
123
if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124
return NULL;
125
126
/* Only partial reads are allowed to use an offset. */
127
if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128
return NULL;
129
130
fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131
if (!fw_priv)
132
return NULL;
133
134
fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135
if (!fw_priv->fw_name) {
136
kfree(fw_priv);
137
return NULL;
138
}
139
140
kref_init(&fw_priv->ref);
141
fw_priv->fwc = fwc;
142
fw_priv->data = dbuf;
143
fw_priv->allocated_size = size;
144
fw_priv->offset = offset;
145
fw_priv->opt_flags = opt_flags;
146
fw_state_init(fw_priv);
147
#ifdef CONFIG_FW_LOADER_USER_HELPER
148
INIT_LIST_HEAD(&fw_priv->pending_list);
149
#endif
150
151
pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153
return fw_priv;
154
}
155
156
static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157
{
158
struct fw_priv *tmp;
159
struct firmware_cache *fwc = &fw_cache;
160
161
list_for_each_entry(tmp, &fwc->head, list)
162
if (!strcmp(tmp->fw_name, fw_name))
163
return tmp;
164
return NULL;
165
}
166
167
/* Returns 1 for batching firmware requests with the same name */
168
int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169
struct fw_priv **fw_priv, void *dbuf, size_t size,
170
size_t offset, u32 opt_flags)
171
{
172
struct fw_priv *tmp;
173
174
spin_lock(&fwc->lock);
175
/*
176
* Do not merge requests that are marked to be non-cached or
177
* are performing partial reads.
178
*/
179
if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180
tmp = __lookup_fw_priv(fw_name);
181
if (tmp) {
182
kref_get(&tmp->ref);
183
spin_unlock(&fwc->lock);
184
*fw_priv = tmp;
185
pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186
return 1;
187
}
188
}
189
190
tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191
if (tmp) {
192
INIT_LIST_HEAD(&tmp->list);
193
if (!(opt_flags & FW_OPT_NOCACHE))
194
list_add(&tmp->list, &fwc->head);
195
}
196
spin_unlock(&fwc->lock);
197
198
*fw_priv = tmp;
199
200
return tmp ? 0 : -ENOMEM;
201
}
202
203
static void __free_fw_priv(struct kref *ref)
204
__releases(&fwc->lock)
205
{
206
struct fw_priv *fw_priv = to_fw_priv(ref);
207
struct firmware_cache *fwc = fw_priv->fwc;
208
209
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211
(unsigned int)fw_priv->size);
212
213
list_del(&fw_priv->list);
214
spin_unlock(&fwc->lock);
215
216
if (fw_is_paged_buf(fw_priv))
217
fw_free_paged_buf(fw_priv);
218
else if (!fw_priv->allocated_size)
219
vfree(fw_priv->data);
220
221
kfree_const(fw_priv->fw_name);
222
kfree(fw_priv);
223
}
224
225
void free_fw_priv(struct fw_priv *fw_priv)
226
{
227
struct firmware_cache *fwc = fw_priv->fwc;
228
spin_lock(&fwc->lock);
229
if (!kref_put(&fw_priv->ref, __free_fw_priv))
230
spin_unlock(&fwc->lock);
231
}
232
233
#ifdef CONFIG_FW_LOADER_PAGED_BUF
234
bool fw_is_paged_buf(struct fw_priv *fw_priv)
235
{
236
return fw_priv->is_paged_buf;
237
}
238
239
void fw_free_paged_buf(struct fw_priv *fw_priv)
240
{
241
int i;
242
243
if (!fw_priv->pages)
244
return;
245
246
vunmap(fw_priv->data);
247
248
for (i = 0; i < fw_priv->nr_pages; i++)
249
__free_page(fw_priv->pages[i]);
250
kvfree(fw_priv->pages);
251
fw_priv->pages = NULL;
252
fw_priv->page_array_size = 0;
253
fw_priv->nr_pages = 0;
254
fw_priv->data = NULL;
255
fw_priv->size = 0;
256
}
257
258
int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259
{
260
/* If the array of pages is too small, grow it */
261
if (fw_priv->page_array_size < pages_needed) {
262
int new_array_size = max(pages_needed,
263
fw_priv->page_array_size * 2);
264
struct page **new_pages;
265
266
new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267
GFP_KERNEL);
268
if (!new_pages)
269
return -ENOMEM;
270
memcpy(new_pages, fw_priv->pages,
271
fw_priv->page_array_size * sizeof(void *));
272
memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273
(new_array_size - fw_priv->page_array_size));
274
kvfree(fw_priv->pages);
275
fw_priv->pages = new_pages;
276
fw_priv->page_array_size = new_array_size;
277
}
278
279
while (fw_priv->nr_pages < pages_needed) {
280
fw_priv->pages[fw_priv->nr_pages] =
281
alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283
if (!fw_priv->pages[fw_priv->nr_pages])
284
return -ENOMEM;
285
fw_priv->nr_pages++;
286
}
287
288
return 0;
289
}
290
291
int fw_map_paged_buf(struct fw_priv *fw_priv)
292
{
293
/* one pages buffer should be mapped/unmapped only once */
294
if (!fw_priv->pages)
295
return 0;
296
297
vunmap(fw_priv->data);
298
fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299
PAGE_KERNEL_RO);
300
if (!fw_priv->data)
301
return -ENOMEM;
302
303
return 0;
304
}
305
#endif
306
307
/*
308
* ZSTD-compressed firmware support
309
*/
310
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311
static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312
size_t in_size, const void *in_buffer)
313
{
314
size_t len, out_size, workspace_size;
315
void *workspace, *out_buf;
316
zstd_dctx *ctx;
317
int err;
318
319
if (fw_priv->allocated_size) {
320
out_size = fw_priv->allocated_size;
321
out_buf = fw_priv->data;
322
} else {
323
zstd_frame_header params;
324
325
if (zstd_get_frame_header(&params, in_buffer, in_size) ||
326
params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327
dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328
return -EINVAL;
329
}
330
out_size = params.frameContentSize;
331
out_buf = vzalloc(out_size);
332
if (!out_buf)
333
return -ENOMEM;
334
}
335
336
workspace_size = zstd_dctx_workspace_bound();
337
workspace = kvzalloc(workspace_size, GFP_KERNEL);
338
if (!workspace) {
339
err = -ENOMEM;
340
goto error;
341
}
342
343
ctx = zstd_init_dctx(workspace, workspace_size);
344
if (!ctx) {
345
dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346
err = -EINVAL;
347
goto error;
348
}
349
350
len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351
if (zstd_is_error(len)) {
352
dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353
zstd_get_error_code(len));
354
err = -EINVAL;
355
goto error;
356
}
357
358
if (!fw_priv->allocated_size)
359
fw_priv->data = out_buf;
360
fw_priv->size = len;
361
err = 0;
362
363
error:
364
kvfree(workspace);
365
if (err && !fw_priv->allocated_size)
366
vfree(out_buf);
367
return err;
368
}
369
#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371
/*
372
* XZ-compressed firmware support
373
*/
374
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375
/* show an error and return the standard error code */
376
static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377
{
378
if (xz_ret != XZ_STREAM_END) {
379
dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380
return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381
}
382
return 0;
383
}
384
385
/* single-shot decompression onto the pre-allocated buffer */
386
static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387
size_t in_size, const void *in_buffer)
388
{
389
struct xz_dec *xz_dec;
390
struct xz_buf xz_buf;
391
enum xz_ret xz_ret;
392
393
xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394
if (!xz_dec)
395
return -ENOMEM;
396
397
xz_buf.in_size = in_size;
398
xz_buf.in = in_buffer;
399
xz_buf.in_pos = 0;
400
xz_buf.out_size = fw_priv->allocated_size;
401
xz_buf.out = fw_priv->data;
402
xz_buf.out_pos = 0;
403
404
xz_ret = xz_dec_run(xz_dec, &xz_buf);
405
xz_dec_end(xz_dec);
406
407
fw_priv->size = xz_buf.out_pos;
408
return fw_decompress_xz_error(dev, xz_ret);
409
}
410
411
/* decompression on paged buffer and map it */
412
static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413
size_t in_size, const void *in_buffer)
414
{
415
struct xz_dec *xz_dec;
416
struct xz_buf xz_buf;
417
enum xz_ret xz_ret;
418
struct page *page;
419
int err = 0;
420
421
xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422
if (!xz_dec)
423
return -ENOMEM;
424
425
xz_buf.in_size = in_size;
426
xz_buf.in = in_buffer;
427
xz_buf.in_pos = 0;
428
429
fw_priv->is_paged_buf = true;
430
fw_priv->size = 0;
431
do {
432
if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433
err = -ENOMEM;
434
goto out;
435
}
436
437
/* decompress onto the new allocated page */
438
page = fw_priv->pages[fw_priv->nr_pages - 1];
439
xz_buf.out = kmap_local_page(page);
440
xz_buf.out_pos = 0;
441
xz_buf.out_size = PAGE_SIZE;
442
xz_ret = xz_dec_run(xz_dec, &xz_buf);
443
kunmap_local(xz_buf.out);
444
fw_priv->size += xz_buf.out_pos;
445
/* partial decompression means either end or error */
446
if (xz_buf.out_pos != PAGE_SIZE)
447
break;
448
} while (xz_ret == XZ_OK);
449
450
err = fw_decompress_xz_error(dev, xz_ret);
451
if (!err)
452
err = fw_map_paged_buf(fw_priv);
453
454
out:
455
xz_dec_end(xz_dec);
456
return err;
457
}
458
459
static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460
size_t in_size, const void *in_buffer)
461
{
462
/* if the buffer is pre-allocated, we can perform in single-shot mode */
463
if (fw_priv->data)
464
return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465
else
466
return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467
}
468
#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470
/* direct firmware loading support */
471
static char fw_path_para[256];
472
static const char * const fw_path[] = {
473
fw_path_para,
474
"/lib/firmware/updates/" UTS_RELEASE,
475
"/lib/firmware/updates",
476
"/lib/firmware/" UTS_RELEASE,
477
"/lib/firmware"
478
};
479
480
/*
481
* Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482
* from kernel command line because firmware_class is generally built in
483
* kernel instead of module.
484
*/
485
module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486
MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488
static int
489
fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490
const char *suffix,
491
int (*decompress)(struct device *dev,
492
struct fw_priv *fw_priv,
493
size_t in_size,
494
const void *in_buffer))
495
{
496
size_t size;
497
int i, len, maxlen = 0;
498
int rc = -ENOENT;
499
char *path, *nt = NULL;
500
size_t msize = INT_MAX;
501
void *buffer = NULL;
502
503
/* Already populated data member means we're loading into a buffer */
504
if (!decompress && fw_priv->data) {
505
buffer = fw_priv->data;
506
msize = fw_priv->allocated_size;
507
}
508
509
path = __getname();
510
if (!path)
511
return -ENOMEM;
512
513
wait_for_initramfs();
514
for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515
size_t file_size = 0;
516
size_t *file_size_ptr = NULL;
517
518
/* skip the unset customized path */
519
if (!fw_path[i][0])
520
continue;
521
522
/* strip off \n from customized path */
523
maxlen = strlen(fw_path[i]);
524
if (i == 0) {
525
nt = strchr(fw_path[i], '\n');
526
if (nt)
527
maxlen = nt - fw_path[i];
528
}
529
530
len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531
maxlen, fw_path[i],
532
fw_priv->fw_name, suffix);
533
if (len >= PATH_MAX) {
534
rc = -ENAMETOOLONG;
535
break;
536
}
537
538
fw_priv->size = 0;
539
540
/*
541
* The total file size is only examined when doing a partial
542
* read; the "full read" case needs to fail if the whole
543
* firmware was not completely loaded.
544
*/
545
if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546
file_size_ptr = &file_size;
547
548
/* load firmware files from the mount namespace of init */
549
rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550
&buffer, msize,
551
file_size_ptr,
552
READING_FIRMWARE);
553
if (rc < 0) {
554
if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555
if (rc != -ENOENT)
556
dev_warn(device,
557
"loading %s failed with error %d\n",
558
path, rc);
559
else
560
dev_dbg(device,
561
"loading %s failed for no such file or directory.\n",
562
path);
563
}
564
continue;
565
}
566
size = rc;
567
rc = 0;
568
569
dev_dbg(device, "Loading firmware from %s\n", path);
570
if (decompress) {
571
dev_dbg(device, "f/w decompressing %s\n",
572
fw_priv->fw_name);
573
rc = decompress(device, fw_priv, size, buffer);
574
/* discard the superfluous original content */
575
vfree(buffer);
576
buffer = NULL;
577
if (rc) {
578
fw_free_paged_buf(fw_priv);
579
continue;
580
}
581
} else {
582
dev_dbg(device, "direct-loading %s\n",
583
fw_priv->fw_name);
584
if (!fw_priv->data)
585
fw_priv->data = buffer;
586
fw_priv->size = size;
587
}
588
fw_state_done(fw_priv);
589
break;
590
}
591
__putname(path);
592
593
return rc;
594
}
595
596
/* firmware holds the ownership of pages */
597
static void firmware_free_data(const struct firmware *fw)
598
{
599
/* Loaded directly? */
600
if (!fw->priv) {
601
vfree(fw->data);
602
return;
603
}
604
free_fw_priv(fw->priv);
605
}
606
607
/* store the pages buffer info firmware from buf */
608
static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609
{
610
fw->priv = fw_priv;
611
fw->size = fw_priv->size;
612
fw->data = fw_priv->data;
613
614
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616
(unsigned int)fw_priv->size);
617
}
618
619
#ifdef CONFIG_FW_CACHE
620
static void fw_name_devm_release(struct device *dev, void *res)
621
{
622
struct fw_name_devm *fwn = res;
623
624
if (fwn->magic == (unsigned long)&fw_cache)
625
pr_debug("%s: fw_name-%s devm-%p released\n",
626
__func__, fwn->name, res);
627
kfree_const(fwn->name);
628
}
629
630
static int fw_devm_match(struct device *dev, void *res,
631
void *match_data)
632
{
633
struct fw_name_devm *fwn = res;
634
635
return (fwn->magic == (unsigned long)&fw_cache) &&
636
!strcmp(fwn->name, match_data);
637
}
638
639
static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640
const char *name)
641
{
642
struct fw_name_devm *fwn;
643
644
fwn = devres_find(dev, fw_name_devm_release,
645
fw_devm_match, (void *)name);
646
return fwn;
647
}
648
649
static bool fw_cache_is_setup(struct device *dev, const char *name)
650
{
651
struct fw_name_devm *fwn;
652
653
fwn = fw_find_devm_name(dev, name);
654
if (fwn)
655
return true;
656
657
return false;
658
}
659
660
/* add firmware name into devres list */
661
static int fw_add_devm_name(struct device *dev, const char *name)
662
{
663
struct fw_name_devm *fwn;
664
665
if (fw_cache_is_setup(dev, name))
666
return 0;
667
668
fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669
GFP_KERNEL);
670
if (!fwn)
671
return -ENOMEM;
672
fwn->name = kstrdup_const(name, GFP_KERNEL);
673
if (!fwn->name) {
674
devres_free(fwn);
675
return -ENOMEM;
676
}
677
678
fwn->magic = (unsigned long)&fw_cache;
679
devres_add(dev, fwn);
680
681
return 0;
682
}
683
#else
684
static bool fw_cache_is_setup(struct device *dev, const char *name)
685
{
686
return false;
687
}
688
689
static int fw_add_devm_name(struct device *dev, const char *name)
690
{
691
return 0;
692
}
693
#endif
694
695
int assign_fw(struct firmware *fw, struct device *device)
696
{
697
struct fw_priv *fw_priv = fw->priv;
698
int ret;
699
700
mutex_lock(&fw_lock);
701
if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702
mutex_unlock(&fw_lock);
703
return -ENOENT;
704
}
705
706
/*
707
* add firmware name into devres list so that we can auto cache
708
* and uncache firmware for device.
709
*
710
* device may has been deleted already, but the problem
711
* should be fixed in devres or driver core.
712
*/
713
/* don't cache firmware handled without uevent */
714
if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715
!(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716
ret = fw_add_devm_name(device, fw_priv->fw_name);
717
if (ret) {
718
mutex_unlock(&fw_lock);
719
return ret;
720
}
721
}
722
723
/*
724
* After caching firmware image is started, let it piggyback
725
* on request firmware.
726
*/
727
if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728
fw_priv->fwc->state == FW_LOADER_START_CACHE)
729
fw_cache_piggyback_on_request(fw_priv);
730
731
/* pass the pages buffer to driver at the last minute */
732
fw_set_page_data(fw_priv, fw);
733
mutex_unlock(&fw_lock);
734
return 0;
735
}
736
737
/* prepare firmware and firmware_buf structs;
738
* return 0 if a firmware is already assigned, 1 if need to load one,
739
* or a negative error code
740
*/
741
static int
742
_request_firmware_prepare(struct firmware **firmware_p, const char *name,
743
struct device *device, void *dbuf, size_t size,
744
size_t offset, u32 opt_flags)
745
{
746
struct firmware *firmware;
747
struct fw_priv *fw_priv;
748
int ret;
749
750
*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751
if (!firmware) {
752
dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753
__func__);
754
return -ENOMEM;
755
}
756
757
if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758
dev_dbg(device, "using built-in %s\n", name);
759
return 0; /* assigned */
760
}
761
762
ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763
offset, opt_flags);
764
765
/*
766
* bind with 'priv' now to avoid warning in failure path
767
* of requesting firmware.
768
*/
769
firmware->priv = fw_priv;
770
771
if (ret > 0) {
772
ret = fw_state_wait(fw_priv);
773
if (!ret) {
774
fw_set_page_data(fw_priv, firmware);
775
return 0; /* assigned */
776
}
777
}
778
779
if (ret < 0)
780
return ret;
781
return 1; /* need to load */
782
}
783
784
/*
785
* Batched requests need only one wake, we need to do this step last due to the
786
* fallback mechanism. The buf is protected with kref_get(), and it won't be
787
* released until the last user calls release_firmware().
788
*
789
* Failed batched requests are possible as well, in such cases we just share
790
* the struct fw_priv and won't release it until all requests are woken
791
* and have gone through this same path.
792
*/
793
static void fw_abort_batch_reqs(struct firmware *fw)
794
{
795
struct fw_priv *fw_priv;
796
797
/* Loaded directly? */
798
if (!fw || !fw->priv)
799
return;
800
801
fw_priv = fw->priv;
802
mutex_lock(&fw_lock);
803
if (!fw_state_is_aborted(fw_priv))
804
fw_state_aborted(fw_priv);
805
mutex_unlock(&fw_lock);
806
}
807
808
#if defined(CONFIG_FW_LOADER_DEBUG)
809
#include <crypto/sha2.h>
810
811
static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
812
{
813
u8 digest[SHA256_DIGEST_SIZE];
814
815
sha256(fw->data, fw->size, digest);
816
dev_dbg(device, "Loaded FW: %s, sha256: %*phN\n",
817
name, SHA256_DIGEST_SIZE, digest);
818
}
819
#else
820
static void fw_log_firmware_info(const struct firmware *fw, const char *name,
821
struct device *device)
822
{}
823
#endif
824
825
/* called from request_firmware() and request_firmware_work_func() */
826
static int
827
_request_firmware(const struct firmware **firmware_p, const char *name,
828
struct device *device, void *buf, size_t size,
829
size_t offset, u32 opt_flags)
830
{
831
struct firmware *fw = NULL;
832
bool nondirect = false;
833
int ret;
834
835
if (!firmware_p)
836
return -EINVAL;
837
838
if (!name || name[0] == '\0') {
839
ret = -EINVAL;
840
goto out;
841
}
842
843
844
/*
845
* Reject firmware file names with ".." path components.
846
* There are drivers that construct firmware file names from
847
* device-supplied strings, and we don't want some device to be
848
* able to tell us "I would like to be sent my firmware from
849
* ../../../etc/shadow, please".
850
*
851
* This intentionally only looks at the firmware name, not at
852
* the firmware base directory or at symlink contents.
853
*/
854
if (name_contains_dotdot(name)) {
855
dev_warn(device,
856
"Firmware load for '%s' refused, path contains '..' component\n",
857
name);
858
ret = -EINVAL;
859
goto out;
860
}
861
862
ret = _request_firmware_prepare(&fw, name, device, buf, size,
863
offset, opt_flags);
864
if (ret <= 0) /* error or already assigned */
865
goto out;
866
867
/*
868
* We are about to try to access the firmware file. Because we may have been
869
* called by a driver when serving an unrelated request from userland, we use
870
* the kernel credentials to read the file.
871
*/
872
scoped_with_kernel_creds() {
873
ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
874
875
/* Only full reads can support decompression, platform, and sysfs. */
876
if (!(opt_flags & FW_OPT_PARTIAL))
877
nondirect = true;
878
879
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
880
if (ret == -ENOENT && nondirect)
881
ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
882
fw_decompress_zstd);
883
#endif
884
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
885
if (ret == -ENOENT && nondirect)
886
ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
887
fw_decompress_xz);
888
#endif
889
if (ret == -ENOENT && nondirect)
890
ret = firmware_fallback_platform(fw->priv);
891
892
if (ret) {
893
if (!(opt_flags & FW_OPT_NO_WARN))
894
dev_warn(device,
895
"Direct firmware load for %s failed with error %d\n",
896
name, ret);
897
if (nondirect)
898
ret = firmware_fallback_sysfs(fw, name, device,
899
opt_flags, ret);
900
} else {
901
ret = assign_fw(fw, device);
902
}
903
}
904
905
out:
906
if (ret < 0) {
907
fw_abort_batch_reqs(fw);
908
release_firmware(fw);
909
fw = NULL;
910
} else {
911
fw_log_firmware_info(fw, name, device);
912
}
913
914
*firmware_p = fw;
915
return ret;
916
}
917
918
/**
919
* request_firmware() - send firmware request and wait for it
920
* @firmware_p: pointer to firmware image
921
* @name: name of firmware file
922
* @device: device for which firmware is being loaded
923
*
924
* @firmware_p will be used to return a firmware image by the name
925
* of @name for device @device.
926
*
927
* Should be called from user context where sleeping is allowed.
928
*
929
* @name will be used as $FIRMWARE in the uevent environment and
930
* should be distinctive enough not to be confused with any other
931
* firmware image for this or any other device.
932
* It must not contain any ".." path components - "foo/bar..bin" is
933
* allowed, but "foo/../bar.bin" is not.
934
*
935
* Caller must hold the reference count of @device.
936
*
937
* The function can be called safely inside device's suspend and
938
* resume callback.
939
**/
940
int
941
request_firmware(const struct firmware **firmware_p, const char *name,
942
struct device *device)
943
{
944
int ret;
945
946
/* Need to pin this module until return */
947
__module_get(THIS_MODULE);
948
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
949
FW_OPT_UEVENT);
950
module_put(THIS_MODULE);
951
return ret;
952
}
953
EXPORT_SYMBOL(request_firmware);
954
955
/**
956
* firmware_request_nowarn() - request for an optional fw module
957
* @firmware: pointer to firmware image
958
* @name: name of firmware file
959
* @device: device for which firmware is being loaded
960
*
961
* This function is similar in behaviour to request_firmware(), except it
962
* doesn't produce warning messages when the file is not found. The sysfs
963
* fallback mechanism is enabled if direct filesystem lookup fails. However,
964
* failures to find the firmware file with it are still suppressed. It is
965
* therefore up to the driver to check for the return value of this call and to
966
* decide when to inform the users of errors.
967
**/
968
int firmware_request_nowarn(const struct firmware **firmware, const char *name,
969
struct device *device)
970
{
971
int ret;
972
973
/* Need to pin this module until return */
974
__module_get(THIS_MODULE);
975
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
976
FW_OPT_UEVENT | FW_OPT_NO_WARN);
977
module_put(THIS_MODULE);
978
return ret;
979
}
980
EXPORT_SYMBOL_GPL(firmware_request_nowarn);
981
982
/**
983
* request_firmware_direct() - load firmware directly without usermode helper
984
* @firmware_p: pointer to firmware image
985
* @name: name of firmware file
986
* @device: device for which firmware is being loaded
987
*
988
* This function works pretty much like request_firmware(), but this doesn't
989
* fall back to usermode helper even if the firmware couldn't be loaded
990
* directly from fs. Hence it's useful for loading optional firmwares, which
991
* aren't always present, without extra long timeouts of udev.
992
**/
993
int request_firmware_direct(const struct firmware **firmware_p,
994
const char *name, struct device *device)
995
{
996
int ret;
997
998
__module_get(THIS_MODULE);
999
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1000
FW_OPT_UEVENT | FW_OPT_NO_WARN |
1001
FW_OPT_NOFALLBACK_SYSFS);
1002
module_put(THIS_MODULE);
1003
return ret;
1004
}
1005
EXPORT_SYMBOL_GPL(request_firmware_direct);
1006
1007
/**
1008
* firmware_request_platform() - request firmware with platform-fw fallback
1009
* @firmware: pointer to firmware image
1010
* @name: name of firmware file
1011
* @device: device for which firmware is being loaded
1012
*
1013
* This function is similar in behaviour to request_firmware, except that if
1014
* direct filesystem lookup fails, it will fallback to looking for a copy of the
1015
* requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1016
**/
1017
int firmware_request_platform(const struct firmware **firmware,
1018
const char *name, struct device *device)
1019
{
1020
int ret;
1021
1022
/* Need to pin this module until return */
1023
__module_get(THIS_MODULE);
1024
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1025
FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1026
module_put(THIS_MODULE);
1027
return ret;
1028
}
1029
EXPORT_SYMBOL_GPL(firmware_request_platform);
1030
1031
/**
1032
* firmware_request_cache() - cache firmware for suspend so resume can use it
1033
* @device: device for which firmware should be cached for
1034
* @name: name of firmware file
1035
*
1036
* There are some devices with an optimization that enables the device to not
1037
* require loading firmware on system reboot. This optimization may still
1038
* require the firmware present on resume from suspend. This routine can be
1039
* used to ensure the firmware is present on resume from suspend in these
1040
* situations. This helper is not compatible with drivers which use
1041
* request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1042
**/
1043
int firmware_request_cache(struct device *device, const char *name)
1044
{
1045
int ret;
1046
1047
mutex_lock(&fw_lock);
1048
ret = fw_add_devm_name(device, name);
1049
mutex_unlock(&fw_lock);
1050
1051
return ret;
1052
}
1053
EXPORT_SYMBOL_GPL(firmware_request_cache);
1054
1055
/**
1056
* request_firmware_into_buf() - load firmware into a previously allocated buffer
1057
* @firmware_p: pointer to firmware image
1058
* @name: name of firmware file
1059
* @device: device for which firmware is being loaded and DMA region allocated
1060
* @buf: address of buffer to load firmware into
1061
* @size: size of buffer
1062
*
1063
* This function works pretty much like request_firmware(), but it doesn't
1064
* allocate a buffer to hold the firmware data. Instead, the firmware
1065
* is loaded directly into the buffer pointed to by @buf and the @firmware_p
1066
* data member is pointed at @buf.
1067
*
1068
* This function doesn't cache firmware either.
1069
*/
1070
int
1071
request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1072
struct device *device, void *buf, size_t size)
1073
{
1074
int ret;
1075
1076
if (fw_cache_is_setup(device, name))
1077
return -EOPNOTSUPP;
1078
1079
__module_get(THIS_MODULE);
1080
ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1081
FW_OPT_UEVENT | FW_OPT_NOCACHE);
1082
module_put(THIS_MODULE);
1083
return ret;
1084
}
1085
EXPORT_SYMBOL(request_firmware_into_buf);
1086
1087
/**
1088
* request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1089
* @firmware_p: pointer to firmware image
1090
* @name: name of firmware file
1091
* @device: device for which firmware is being loaded and DMA region allocated
1092
* @buf: address of buffer to load firmware into
1093
* @size: size of buffer
1094
* @offset: offset into file to read
1095
*
1096
* This function works pretty much like request_firmware_into_buf except
1097
* it allows a partial read of the file.
1098
*/
1099
int
1100
request_partial_firmware_into_buf(const struct firmware **firmware_p,
1101
const char *name, struct device *device,
1102
void *buf, size_t size, size_t offset)
1103
{
1104
int ret;
1105
1106
if (fw_cache_is_setup(device, name))
1107
return -EOPNOTSUPP;
1108
1109
__module_get(THIS_MODULE);
1110
ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1111
FW_OPT_UEVENT | FW_OPT_NOCACHE |
1112
FW_OPT_PARTIAL);
1113
module_put(THIS_MODULE);
1114
return ret;
1115
}
1116
EXPORT_SYMBOL(request_partial_firmware_into_buf);
1117
1118
/**
1119
* release_firmware() - release the resource associated with a firmware image
1120
* @fw: firmware resource to release
1121
**/
1122
void release_firmware(const struct firmware *fw)
1123
{
1124
if (fw) {
1125
if (!firmware_is_builtin(fw))
1126
firmware_free_data(fw);
1127
kfree(fw);
1128
}
1129
}
1130
EXPORT_SYMBOL(release_firmware);
1131
1132
/* Async support */
1133
struct firmware_work {
1134
struct work_struct work;
1135
struct module *module;
1136
const char *name;
1137
struct device *device;
1138
void *context;
1139
void (*cont)(const struct firmware *fw, void *context);
1140
u32 opt_flags;
1141
};
1142
1143
static void request_firmware_work_func(struct work_struct *work)
1144
{
1145
struct firmware_work *fw_work;
1146
const struct firmware *fw;
1147
1148
fw_work = container_of(work, struct firmware_work, work);
1149
1150
_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1151
fw_work->opt_flags);
1152
fw_work->cont(fw, fw_work->context);
1153
put_device(fw_work->device); /* taken in request_firmware_nowait() */
1154
1155
module_put(fw_work->module);
1156
kfree_const(fw_work->name);
1157
kfree(fw_work);
1158
}
1159
1160
1161
static int _request_firmware_nowait(
1162
struct module *module, bool uevent,
1163
const char *name, struct device *device, gfp_t gfp, void *context,
1164
void (*cont)(const struct firmware *fw, void *context), bool nowarn)
1165
{
1166
struct firmware_work *fw_work;
1167
1168
fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1169
if (!fw_work)
1170
return -ENOMEM;
1171
1172
fw_work->module = module;
1173
fw_work->name = kstrdup_const(name, gfp);
1174
if (!fw_work->name) {
1175
kfree(fw_work);
1176
return -ENOMEM;
1177
}
1178
fw_work->device = device;
1179
fw_work->context = context;
1180
fw_work->cont = cont;
1181
fw_work->opt_flags = FW_OPT_NOWAIT |
1182
(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER) |
1183
(nowarn ? FW_OPT_NO_WARN : 0);
1184
1185
if (!uevent && fw_cache_is_setup(device, name)) {
1186
kfree_const(fw_work->name);
1187
kfree(fw_work);
1188
return -EOPNOTSUPP;
1189
}
1190
1191
if (!try_module_get(module)) {
1192
kfree_const(fw_work->name);
1193
kfree(fw_work);
1194
return -EFAULT;
1195
}
1196
1197
get_device(fw_work->device);
1198
INIT_WORK(&fw_work->work, request_firmware_work_func);
1199
schedule_work(&fw_work->work);
1200
return 0;
1201
}
1202
1203
/**
1204
* request_firmware_nowait() - asynchronous version of request_firmware
1205
* @module: module requesting the firmware
1206
* @uevent: sends uevent to copy the firmware image if this flag
1207
* is non-zero else the firmware copy must be done manually.
1208
* @name: name of firmware file
1209
* @device: device for which firmware is being loaded
1210
* @gfp: allocation flags
1211
* @context: will be passed over to @cont, and
1212
* @fw may be %NULL if firmware request fails.
1213
* @cont: function will be called asynchronously when the firmware
1214
* request is over.
1215
*
1216
* Caller must hold the reference count of @device.
1217
*
1218
* Asynchronous variant of request_firmware() for user contexts:
1219
* - sleep for as small periods as possible since it may
1220
* increase kernel boot time of built-in device drivers
1221
* requesting firmware in their ->probe() methods, if
1222
* @gfp is GFP_KERNEL.
1223
*
1224
* - can't sleep at all if @gfp is GFP_ATOMIC.
1225
**/
1226
int request_firmware_nowait(
1227
struct module *module, bool uevent,
1228
const char *name, struct device *device, gfp_t gfp, void *context,
1229
void (*cont)(const struct firmware *fw, void *context))
1230
{
1231
return _request_firmware_nowait(module, uevent, name, device, gfp,
1232
context, cont, false);
1233
1234
}
1235
EXPORT_SYMBOL(request_firmware_nowait);
1236
1237
/**
1238
* firmware_request_nowait_nowarn() - async version of request_firmware_nowarn
1239
* @module: module requesting the firmware
1240
* @name: name of firmware file
1241
* @device: device for which firmware is being loaded
1242
* @gfp: allocation flags
1243
* @context: will be passed over to @cont, and
1244
* @fw may be %NULL if firmware request fails.
1245
* @cont: function will be called asynchronously when the firmware
1246
* request is over.
1247
*
1248
* Similar in function to request_firmware_nowait(), but doesn't print a warning
1249
* when the firmware file could not be found and always sends a uevent to copy
1250
* the firmware image.
1251
*/
1252
int firmware_request_nowait_nowarn(
1253
struct module *module, const char *name,
1254
struct device *device, gfp_t gfp, void *context,
1255
void (*cont)(const struct firmware *fw, void *context))
1256
{
1257
return _request_firmware_nowait(module, FW_ACTION_UEVENT, name, device,
1258
gfp, context, cont, true);
1259
}
1260
EXPORT_SYMBOL_GPL(firmware_request_nowait_nowarn);
1261
1262
#ifdef CONFIG_FW_CACHE
1263
static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1264
1265
/**
1266
* cache_firmware() - cache one firmware image in kernel memory space
1267
* @fw_name: the firmware image name
1268
*
1269
* Cache firmware in kernel memory so that drivers can use it when
1270
* system isn't ready for them to request firmware image from userspace.
1271
* Once it returns successfully, driver can use request_firmware or its
1272
* nowait version to get the cached firmware without any interacting
1273
* with userspace
1274
*
1275
* Return 0 if the firmware image has been cached successfully
1276
* Return !0 otherwise
1277
*
1278
*/
1279
static int cache_firmware(const char *fw_name)
1280
{
1281
int ret;
1282
const struct firmware *fw;
1283
1284
pr_debug("%s: %s\n", __func__, fw_name);
1285
1286
ret = request_firmware(&fw, fw_name, NULL);
1287
if (!ret)
1288
kfree(fw);
1289
1290
pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1291
1292
return ret;
1293
}
1294
1295
static struct fw_priv *lookup_fw_priv(const char *fw_name)
1296
{
1297
struct fw_priv *tmp;
1298
struct firmware_cache *fwc = &fw_cache;
1299
1300
spin_lock(&fwc->lock);
1301
tmp = __lookup_fw_priv(fw_name);
1302
spin_unlock(&fwc->lock);
1303
1304
return tmp;
1305
}
1306
1307
/**
1308
* uncache_firmware() - remove one cached firmware image
1309
* @fw_name: the firmware image name
1310
*
1311
* Uncache one firmware image which has been cached successfully
1312
* before.
1313
*
1314
* Return 0 if the firmware cache has been removed successfully
1315
* Return !0 otherwise
1316
*
1317
*/
1318
static int uncache_firmware(const char *fw_name)
1319
{
1320
struct fw_priv *fw_priv;
1321
struct firmware fw;
1322
1323
pr_debug("%s: %s\n", __func__, fw_name);
1324
1325
if (firmware_request_builtin(&fw, fw_name))
1326
return 0;
1327
1328
fw_priv = lookup_fw_priv(fw_name);
1329
if (fw_priv) {
1330
free_fw_priv(fw_priv);
1331
return 0;
1332
}
1333
1334
return -EINVAL;
1335
}
1336
1337
static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1338
{
1339
struct fw_cache_entry *fce;
1340
1341
fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1342
if (!fce)
1343
goto exit;
1344
1345
fce->name = kstrdup_const(name, GFP_ATOMIC);
1346
if (!fce->name) {
1347
kfree(fce);
1348
fce = NULL;
1349
goto exit;
1350
}
1351
exit:
1352
return fce;
1353
}
1354
1355
static int __fw_entry_found(const char *name)
1356
{
1357
struct firmware_cache *fwc = &fw_cache;
1358
struct fw_cache_entry *fce;
1359
1360
list_for_each_entry(fce, &fwc->fw_names, list) {
1361
if (!strcmp(fce->name, name))
1362
return 1;
1363
}
1364
return 0;
1365
}
1366
1367
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1368
{
1369
const char *name = fw_priv->fw_name;
1370
struct firmware_cache *fwc = fw_priv->fwc;
1371
struct fw_cache_entry *fce;
1372
1373
spin_lock(&fwc->name_lock);
1374
if (__fw_entry_found(name))
1375
goto found;
1376
1377
fce = alloc_fw_cache_entry(name);
1378
if (fce) {
1379
list_add(&fce->list, &fwc->fw_names);
1380
kref_get(&fw_priv->ref);
1381
pr_debug("%s: fw: %s\n", __func__, name);
1382
}
1383
found:
1384
spin_unlock(&fwc->name_lock);
1385
}
1386
1387
static void free_fw_cache_entry(struct fw_cache_entry *fce)
1388
{
1389
kfree_const(fce->name);
1390
kfree(fce);
1391
}
1392
1393
static void __async_dev_cache_fw_image(void *fw_entry,
1394
async_cookie_t cookie)
1395
{
1396
struct fw_cache_entry *fce = fw_entry;
1397
struct firmware_cache *fwc = &fw_cache;
1398
int ret;
1399
1400
ret = cache_firmware(fce->name);
1401
if (ret) {
1402
spin_lock(&fwc->name_lock);
1403
list_del(&fce->list);
1404
spin_unlock(&fwc->name_lock);
1405
1406
free_fw_cache_entry(fce);
1407
}
1408
}
1409
1410
/* called with dev->devres_lock held */
1411
static void dev_create_fw_entry(struct device *dev, void *res,
1412
void *data)
1413
{
1414
struct fw_name_devm *fwn = res;
1415
const char *fw_name = fwn->name;
1416
struct list_head *head = data;
1417
struct fw_cache_entry *fce;
1418
1419
fce = alloc_fw_cache_entry(fw_name);
1420
if (fce)
1421
list_add(&fce->list, head);
1422
}
1423
1424
static int devm_name_match(struct device *dev, void *res,
1425
void *match_data)
1426
{
1427
struct fw_name_devm *fwn = res;
1428
return (fwn->magic == (unsigned long)match_data);
1429
}
1430
1431
static void dev_cache_fw_image(struct device *dev, void *data)
1432
{
1433
LIST_HEAD(todo);
1434
struct fw_cache_entry *fce;
1435
struct fw_cache_entry *fce_next;
1436
struct firmware_cache *fwc = &fw_cache;
1437
1438
devres_for_each_res(dev, fw_name_devm_release,
1439
devm_name_match, &fw_cache,
1440
dev_create_fw_entry, &todo);
1441
1442
list_for_each_entry_safe(fce, fce_next, &todo, list) {
1443
list_del(&fce->list);
1444
1445
spin_lock(&fwc->name_lock);
1446
/* only one cache entry for one firmware */
1447
if (!__fw_entry_found(fce->name)) {
1448
list_add(&fce->list, &fwc->fw_names);
1449
} else {
1450
free_fw_cache_entry(fce);
1451
fce = NULL;
1452
}
1453
spin_unlock(&fwc->name_lock);
1454
1455
if (fce)
1456
async_schedule_domain(__async_dev_cache_fw_image,
1457
(void *)fce,
1458
&fw_cache_domain);
1459
}
1460
}
1461
1462
static void __device_uncache_fw_images(void)
1463
{
1464
struct firmware_cache *fwc = &fw_cache;
1465
struct fw_cache_entry *fce;
1466
1467
spin_lock(&fwc->name_lock);
1468
while (!list_empty(&fwc->fw_names)) {
1469
fce = list_entry(fwc->fw_names.next,
1470
struct fw_cache_entry, list);
1471
list_del(&fce->list);
1472
spin_unlock(&fwc->name_lock);
1473
1474
uncache_firmware(fce->name);
1475
free_fw_cache_entry(fce);
1476
1477
spin_lock(&fwc->name_lock);
1478
}
1479
spin_unlock(&fwc->name_lock);
1480
}
1481
1482
/**
1483
* device_cache_fw_images() - cache devices' firmware
1484
*
1485
* If one device called request_firmware or its nowait version
1486
* successfully before, the firmware names are recored into the
1487
* device's devres link list, so device_cache_fw_images can call
1488
* cache_firmware() to cache these firmwares for the device,
1489
* then the device driver can load its firmwares easily at
1490
* time when system is not ready to complete loading firmware.
1491
*/
1492
static void device_cache_fw_images(void)
1493
{
1494
struct firmware_cache *fwc = &fw_cache;
1495
DEFINE_WAIT(wait);
1496
1497
pr_debug("%s\n", __func__);
1498
1499
/* cancel uncache work */
1500
cancel_delayed_work_sync(&fwc->work);
1501
1502
fw_fallback_set_cache_timeout();
1503
1504
mutex_lock(&fw_lock);
1505
fwc->state = FW_LOADER_START_CACHE;
1506
dpm_for_each_dev(NULL, dev_cache_fw_image);
1507
mutex_unlock(&fw_lock);
1508
1509
/* wait for completion of caching firmware for all devices */
1510
async_synchronize_full_domain(&fw_cache_domain);
1511
1512
fw_fallback_set_default_timeout();
1513
}
1514
1515
/**
1516
* device_uncache_fw_images() - uncache devices' firmware
1517
*
1518
* uncache all firmwares which have been cached successfully
1519
* by device_uncache_fw_images earlier
1520
*/
1521
static void device_uncache_fw_images(void)
1522
{
1523
pr_debug("%s\n", __func__);
1524
__device_uncache_fw_images();
1525
}
1526
1527
static void device_uncache_fw_images_work(struct work_struct *work)
1528
{
1529
device_uncache_fw_images();
1530
}
1531
1532
/**
1533
* device_uncache_fw_images_delay() - uncache devices firmwares
1534
* @delay: number of milliseconds to delay uncache device firmwares
1535
*
1536
* uncache all devices's firmwares which has been cached successfully
1537
* by device_cache_fw_images after @delay milliseconds.
1538
*/
1539
static void device_uncache_fw_images_delay(unsigned long delay)
1540
{
1541
queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1542
msecs_to_jiffies(delay));
1543
}
1544
1545
static int fw_pm_notify(struct notifier_block *notify_block,
1546
unsigned long mode, void *unused)
1547
{
1548
switch (mode) {
1549
case PM_HIBERNATION_PREPARE:
1550
case PM_SUSPEND_PREPARE:
1551
case PM_RESTORE_PREPARE:
1552
/*
1553
* Here, kill pending fallback requests will only kill
1554
* non-uevent firmware request to avoid stalling suspend.
1555
*/
1556
kill_pending_fw_fallback_reqs(false);
1557
device_cache_fw_images();
1558
break;
1559
1560
case PM_POST_SUSPEND:
1561
case PM_POST_HIBERNATION:
1562
case PM_POST_RESTORE:
1563
/*
1564
* In case that system sleep failed and syscore_suspend is
1565
* not called.
1566
*/
1567
mutex_lock(&fw_lock);
1568
fw_cache.state = FW_LOADER_NO_CACHE;
1569
mutex_unlock(&fw_lock);
1570
1571
device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1572
break;
1573
}
1574
1575
return 0;
1576
}
1577
1578
/* stop caching firmware once syscore_suspend is reached */
1579
static int fw_suspend(void *data)
1580
{
1581
fw_cache.state = FW_LOADER_NO_CACHE;
1582
return 0;
1583
}
1584
1585
static const struct syscore_ops fw_syscore_ops = {
1586
.suspend = fw_suspend,
1587
};
1588
1589
static struct syscore fw_syscore = {
1590
.ops = &fw_syscore_ops,
1591
};
1592
1593
static int __init register_fw_pm_ops(void)
1594
{
1595
int ret;
1596
1597
spin_lock_init(&fw_cache.name_lock);
1598
INIT_LIST_HEAD(&fw_cache.fw_names);
1599
1600
INIT_DELAYED_WORK(&fw_cache.work,
1601
device_uncache_fw_images_work);
1602
1603
fw_cache.pm_notify.notifier_call = fw_pm_notify;
1604
ret = register_pm_notifier(&fw_cache.pm_notify);
1605
if (ret)
1606
return ret;
1607
1608
register_syscore(&fw_syscore);
1609
1610
return ret;
1611
}
1612
1613
static inline void unregister_fw_pm_ops(void)
1614
{
1615
unregister_syscore(&fw_syscore);
1616
unregister_pm_notifier(&fw_cache.pm_notify);
1617
}
1618
#else
1619
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1620
{
1621
}
1622
static inline int register_fw_pm_ops(void)
1623
{
1624
return 0;
1625
}
1626
static inline void unregister_fw_pm_ops(void)
1627
{
1628
}
1629
#endif
1630
1631
static void __init fw_cache_init(void)
1632
{
1633
spin_lock_init(&fw_cache.lock);
1634
INIT_LIST_HEAD(&fw_cache.head);
1635
fw_cache.state = FW_LOADER_NO_CACHE;
1636
}
1637
1638
static int fw_shutdown_notify(struct notifier_block *unused1,
1639
unsigned long unused2, void *unused3)
1640
{
1641
/*
1642
* Kill all pending fallback requests to avoid both stalling shutdown,
1643
* and avoid a deadlock with the usermode_lock.
1644
*/
1645
kill_pending_fw_fallback_reqs(true);
1646
1647
return NOTIFY_DONE;
1648
}
1649
1650
static struct notifier_block fw_shutdown_nb = {
1651
.notifier_call = fw_shutdown_notify,
1652
};
1653
1654
static int __init firmware_class_init(void)
1655
{
1656
int ret;
1657
1658
/* No need to unfold these on exit */
1659
fw_cache_init();
1660
1661
ret = register_fw_pm_ops();
1662
if (ret)
1663
return ret;
1664
1665
ret = register_reboot_notifier(&fw_shutdown_nb);
1666
if (ret)
1667
goto out;
1668
1669
return register_sysfs_loader();
1670
1671
out:
1672
unregister_fw_pm_ops();
1673
return ret;
1674
}
1675
1676
static void __exit firmware_class_exit(void)
1677
{
1678
unregister_fw_pm_ops();
1679
unregister_reboot_notifier(&fw_shutdown_nb);
1680
unregister_sysfs_loader();
1681
}
1682
1683
fs_initcall(firmware_class_init);
1684
module_exit(firmware_class_exit);
1685
1686