Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/firmware_loader/main.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* main.c - Multi purpose firmware loading support
4
*
5
* Copyright (c) 2003 Manuel Estrada Sainz
6
*
7
* Please see Documentation/driver-api/firmware/ for more information.
8
*
9
*/
10
11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13
#include <linux/capability.h>
14
#include <linux/device.h>
15
#include <linux/kernel_read_file.h>
16
#include <linux/module.h>
17
#include <linux/init.h>
18
#include <linux/initrd.h>
19
#include <linux/timer.h>
20
#include <linux/vmalloc.h>
21
#include <linux/interrupt.h>
22
#include <linux/bitops.h>
23
#include <linux/mutex.h>
24
#include <linux/workqueue.h>
25
#include <linux/highmem.h>
26
#include <linux/firmware.h>
27
#include <linux/slab.h>
28
#include <linux/sched.h>
29
#include <linux/file.h>
30
#include <linux/list.h>
31
#include <linux/fs.h>
32
#include <linux/async.h>
33
#include <linux/pm.h>
34
#include <linux/suspend.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/reboot.h>
37
#include <linux/security.h>
38
#include <linux/zstd.h>
39
#include <linux/xz.h>
40
41
#include <generated/utsrelease.h>
42
43
#include "../base.h"
44
#include "firmware.h"
45
#include "fallback.h"
46
47
MODULE_AUTHOR("Manuel Estrada Sainz");
48
MODULE_DESCRIPTION("Multi purpose firmware loading support");
49
MODULE_LICENSE("GPL");
50
51
struct firmware_cache {
52
/* firmware_buf instance will be added into the below list */
53
spinlock_t lock;
54
struct list_head head;
55
int state;
56
57
#ifdef CONFIG_FW_CACHE
58
/*
59
* Names of firmware images which have been cached successfully
60
* will be added into the below list so that device uncache
61
* helper can trace which firmware images have been cached
62
* before.
63
*/
64
spinlock_t name_lock;
65
struct list_head fw_names;
66
67
struct delayed_work work;
68
69
struct notifier_block pm_notify;
70
#endif
71
};
72
73
struct fw_cache_entry {
74
struct list_head list;
75
const char *name;
76
};
77
78
struct fw_name_devm {
79
unsigned long magic;
80
const char *name;
81
};
82
83
static inline struct fw_priv *to_fw_priv(struct kref *ref)
84
{
85
return container_of(ref, struct fw_priv, ref);
86
}
87
88
#define FW_LOADER_NO_CACHE 0
89
#define FW_LOADER_START_CACHE 1
90
91
/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92
* guarding for corner cases a global lock should be OK */
93
DEFINE_MUTEX(fw_lock);
94
95
struct firmware_cache fw_cache;
96
bool fw_load_abort_all;
97
98
void fw_state_init(struct fw_priv *fw_priv)
99
{
100
struct fw_state *fw_st = &fw_priv->fw_st;
101
102
init_completion(&fw_st->completion);
103
fw_st->status = FW_STATUS_UNKNOWN;
104
}
105
106
static inline int fw_state_wait(struct fw_priv *fw_priv)
107
{
108
return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109
}
110
111
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
113
static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114
struct firmware_cache *fwc,
115
void *dbuf,
116
size_t size,
117
size_t offset,
118
u32 opt_flags)
119
{
120
struct fw_priv *fw_priv;
121
122
/* For a partial read, the buffer must be preallocated. */
123
if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124
return NULL;
125
126
/* Only partial reads are allowed to use an offset. */
127
if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128
return NULL;
129
130
fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131
if (!fw_priv)
132
return NULL;
133
134
fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135
if (!fw_priv->fw_name) {
136
kfree(fw_priv);
137
return NULL;
138
}
139
140
kref_init(&fw_priv->ref);
141
fw_priv->fwc = fwc;
142
fw_priv->data = dbuf;
143
fw_priv->allocated_size = size;
144
fw_priv->offset = offset;
145
fw_priv->opt_flags = opt_flags;
146
fw_state_init(fw_priv);
147
#ifdef CONFIG_FW_LOADER_USER_HELPER
148
INIT_LIST_HEAD(&fw_priv->pending_list);
149
#endif
150
151
pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153
return fw_priv;
154
}
155
156
static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157
{
158
struct fw_priv *tmp;
159
struct firmware_cache *fwc = &fw_cache;
160
161
list_for_each_entry(tmp, &fwc->head, list)
162
if (!strcmp(tmp->fw_name, fw_name))
163
return tmp;
164
return NULL;
165
}
166
167
/* Returns 1 for batching firmware requests with the same name */
168
int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169
struct fw_priv **fw_priv, void *dbuf, size_t size,
170
size_t offset, u32 opt_flags)
171
{
172
struct fw_priv *tmp;
173
174
spin_lock(&fwc->lock);
175
/*
176
* Do not merge requests that are marked to be non-cached or
177
* are performing partial reads.
178
*/
179
if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180
tmp = __lookup_fw_priv(fw_name);
181
if (tmp) {
182
kref_get(&tmp->ref);
183
spin_unlock(&fwc->lock);
184
*fw_priv = tmp;
185
pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186
return 1;
187
}
188
}
189
190
tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191
if (tmp) {
192
INIT_LIST_HEAD(&tmp->list);
193
if (!(opt_flags & FW_OPT_NOCACHE))
194
list_add(&tmp->list, &fwc->head);
195
}
196
spin_unlock(&fwc->lock);
197
198
*fw_priv = tmp;
199
200
return tmp ? 0 : -ENOMEM;
201
}
202
203
static void __free_fw_priv(struct kref *ref)
204
__releases(&fwc->lock)
205
{
206
struct fw_priv *fw_priv = to_fw_priv(ref);
207
struct firmware_cache *fwc = fw_priv->fwc;
208
209
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211
(unsigned int)fw_priv->size);
212
213
list_del(&fw_priv->list);
214
spin_unlock(&fwc->lock);
215
216
if (fw_is_paged_buf(fw_priv))
217
fw_free_paged_buf(fw_priv);
218
else if (!fw_priv->allocated_size)
219
vfree(fw_priv->data);
220
221
kfree_const(fw_priv->fw_name);
222
kfree(fw_priv);
223
}
224
225
void free_fw_priv(struct fw_priv *fw_priv)
226
{
227
struct firmware_cache *fwc = fw_priv->fwc;
228
spin_lock(&fwc->lock);
229
if (!kref_put(&fw_priv->ref, __free_fw_priv))
230
spin_unlock(&fwc->lock);
231
}
232
233
#ifdef CONFIG_FW_LOADER_PAGED_BUF
234
bool fw_is_paged_buf(struct fw_priv *fw_priv)
235
{
236
return fw_priv->is_paged_buf;
237
}
238
239
void fw_free_paged_buf(struct fw_priv *fw_priv)
240
{
241
int i;
242
243
if (!fw_priv->pages)
244
return;
245
246
vunmap(fw_priv->data);
247
248
for (i = 0; i < fw_priv->nr_pages; i++)
249
__free_page(fw_priv->pages[i]);
250
kvfree(fw_priv->pages);
251
fw_priv->pages = NULL;
252
fw_priv->page_array_size = 0;
253
fw_priv->nr_pages = 0;
254
fw_priv->data = NULL;
255
fw_priv->size = 0;
256
}
257
258
int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259
{
260
/* If the array of pages is too small, grow it */
261
if (fw_priv->page_array_size < pages_needed) {
262
int new_array_size = max(pages_needed,
263
fw_priv->page_array_size * 2);
264
struct page **new_pages;
265
266
new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267
GFP_KERNEL);
268
if (!new_pages)
269
return -ENOMEM;
270
memcpy(new_pages, fw_priv->pages,
271
fw_priv->page_array_size * sizeof(void *));
272
memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273
(new_array_size - fw_priv->page_array_size));
274
kvfree(fw_priv->pages);
275
fw_priv->pages = new_pages;
276
fw_priv->page_array_size = new_array_size;
277
}
278
279
while (fw_priv->nr_pages < pages_needed) {
280
fw_priv->pages[fw_priv->nr_pages] =
281
alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283
if (!fw_priv->pages[fw_priv->nr_pages])
284
return -ENOMEM;
285
fw_priv->nr_pages++;
286
}
287
288
return 0;
289
}
290
291
int fw_map_paged_buf(struct fw_priv *fw_priv)
292
{
293
/* one pages buffer should be mapped/unmapped only once */
294
if (!fw_priv->pages)
295
return 0;
296
297
vunmap(fw_priv->data);
298
fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299
PAGE_KERNEL_RO);
300
if (!fw_priv->data)
301
return -ENOMEM;
302
303
return 0;
304
}
305
#endif
306
307
/*
308
* ZSTD-compressed firmware support
309
*/
310
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311
static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312
size_t in_size, const void *in_buffer)
313
{
314
size_t len, out_size, workspace_size;
315
void *workspace, *out_buf;
316
zstd_dctx *ctx;
317
int err;
318
319
if (fw_priv->allocated_size) {
320
out_size = fw_priv->allocated_size;
321
out_buf = fw_priv->data;
322
} else {
323
zstd_frame_header params;
324
325
if (zstd_get_frame_header(&params, in_buffer, in_size) ||
326
params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327
dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328
return -EINVAL;
329
}
330
out_size = params.frameContentSize;
331
out_buf = vzalloc(out_size);
332
if (!out_buf)
333
return -ENOMEM;
334
}
335
336
workspace_size = zstd_dctx_workspace_bound();
337
workspace = kvzalloc(workspace_size, GFP_KERNEL);
338
if (!workspace) {
339
err = -ENOMEM;
340
goto error;
341
}
342
343
ctx = zstd_init_dctx(workspace, workspace_size);
344
if (!ctx) {
345
dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346
err = -EINVAL;
347
goto error;
348
}
349
350
len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351
if (zstd_is_error(len)) {
352
dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353
zstd_get_error_code(len));
354
err = -EINVAL;
355
goto error;
356
}
357
358
if (!fw_priv->allocated_size)
359
fw_priv->data = out_buf;
360
fw_priv->size = len;
361
err = 0;
362
363
error:
364
kvfree(workspace);
365
if (err && !fw_priv->allocated_size)
366
vfree(out_buf);
367
return err;
368
}
369
#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371
/*
372
* XZ-compressed firmware support
373
*/
374
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375
/* show an error and return the standard error code */
376
static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377
{
378
if (xz_ret != XZ_STREAM_END) {
379
dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380
return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381
}
382
return 0;
383
}
384
385
/* single-shot decompression onto the pre-allocated buffer */
386
static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387
size_t in_size, const void *in_buffer)
388
{
389
struct xz_dec *xz_dec;
390
struct xz_buf xz_buf;
391
enum xz_ret xz_ret;
392
393
xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394
if (!xz_dec)
395
return -ENOMEM;
396
397
xz_buf.in_size = in_size;
398
xz_buf.in = in_buffer;
399
xz_buf.in_pos = 0;
400
xz_buf.out_size = fw_priv->allocated_size;
401
xz_buf.out = fw_priv->data;
402
xz_buf.out_pos = 0;
403
404
xz_ret = xz_dec_run(xz_dec, &xz_buf);
405
xz_dec_end(xz_dec);
406
407
fw_priv->size = xz_buf.out_pos;
408
return fw_decompress_xz_error(dev, xz_ret);
409
}
410
411
/* decompression on paged buffer and map it */
412
static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413
size_t in_size, const void *in_buffer)
414
{
415
struct xz_dec *xz_dec;
416
struct xz_buf xz_buf;
417
enum xz_ret xz_ret;
418
struct page *page;
419
int err = 0;
420
421
xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422
if (!xz_dec)
423
return -ENOMEM;
424
425
xz_buf.in_size = in_size;
426
xz_buf.in = in_buffer;
427
xz_buf.in_pos = 0;
428
429
fw_priv->is_paged_buf = true;
430
fw_priv->size = 0;
431
do {
432
if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433
err = -ENOMEM;
434
goto out;
435
}
436
437
/* decompress onto the new allocated page */
438
page = fw_priv->pages[fw_priv->nr_pages - 1];
439
xz_buf.out = kmap_local_page(page);
440
xz_buf.out_pos = 0;
441
xz_buf.out_size = PAGE_SIZE;
442
xz_ret = xz_dec_run(xz_dec, &xz_buf);
443
kunmap_local(xz_buf.out);
444
fw_priv->size += xz_buf.out_pos;
445
/* partial decompression means either end or error */
446
if (xz_buf.out_pos != PAGE_SIZE)
447
break;
448
} while (xz_ret == XZ_OK);
449
450
err = fw_decompress_xz_error(dev, xz_ret);
451
if (!err)
452
err = fw_map_paged_buf(fw_priv);
453
454
out:
455
xz_dec_end(xz_dec);
456
return err;
457
}
458
459
static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460
size_t in_size, const void *in_buffer)
461
{
462
/* if the buffer is pre-allocated, we can perform in single-shot mode */
463
if (fw_priv->data)
464
return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465
else
466
return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467
}
468
#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470
/* direct firmware loading support */
471
static char fw_path_para[256];
472
static const char * const fw_path[] = {
473
fw_path_para,
474
"/lib/firmware/updates/" UTS_RELEASE,
475
"/lib/firmware/updates",
476
"/lib/firmware/" UTS_RELEASE,
477
"/lib/firmware"
478
};
479
480
/*
481
* Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482
* from kernel command line because firmware_class is generally built in
483
* kernel instead of module.
484
*/
485
module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486
MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488
static int
489
fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490
const char *suffix,
491
int (*decompress)(struct device *dev,
492
struct fw_priv *fw_priv,
493
size_t in_size,
494
const void *in_buffer))
495
{
496
size_t size;
497
int i, len, maxlen = 0;
498
int rc = -ENOENT;
499
char *path, *nt = NULL;
500
size_t msize = INT_MAX;
501
void *buffer = NULL;
502
503
/* Already populated data member means we're loading into a buffer */
504
if (!decompress && fw_priv->data) {
505
buffer = fw_priv->data;
506
msize = fw_priv->allocated_size;
507
}
508
509
path = __getname();
510
if (!path)
511
return -ENOMEM;
512
513
wait_for_initramfs();
514
for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515
size_t file_size = 0;
516
size_t *file_size_ptr = NULL;
517
518
/* skip the unset customized path */
519
if (!fw_path[i][0])
520
continue;
521
522
/* strip off \n from customized path */
523
maxlen = strlen(fw_path[i]);
524
if (i == 0) {
525
nt = strchr(fw_path[i], '\n');
526
if (nt)
527
maxlen = nt - fw_path[i];
528
}
529
530
len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531
maxlen, fw_path[i],
532
fw_priv->fw_name, suffix);
533
if (len >= PATH_MAX) {
534
rc = -ENAMETOOLONG;
535
break;
536
}
537
538
fw_priv->size = 0;
539
540
/*
541
* The total file size is only examined when doing a partial
542
* read; the "full read" case needs to fail if the whole
543
* firmware was not completely loaded.
544
*/
545
if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546
file_size_ptr = &file_size;
547
548
/* load firmware files from the mount namespace of init */
549
rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550
&buffer, msize,
551
file_size_ptr,
552
READING_FIRMWARE);
553
if (rc < 0) {
554
if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555
if (rc != -ENOENT)
556
dev_warn(device,
557
"loading %s failed with error %d\n",
558
path, rc);
559
else
560
dev_dbg(device,
561
"loading %s failed for no such file or directory.\n",
562
path);
563
}
564
continue;
565
}
566
size = rc;
567
rc = 0;
568
569
dev_dbg(device, "Loading firmware from %s\n", path);
570
if (decompress) {
571
dev_dbg(device, "f/w decompressing %s\n",
572
fw_priv->fw_name);
573
rc = decompress(device, fw_priv, size, buffer);
574
/* discard the superfluous original content */
575
vfree(buffer);
576
buffer = NULL;
577
if (rc) {
578
fw_free_paged_buf(fw_priv);
579
continue;
580
}
581
} else {
582
dev_dbg(device, "direct-loading %s\n",
583
fw_priv->fw_name);
584
if (!fw_priv->data)
585
fw_priv->data = buffer;
586
fw_priv->size = size;
587
}
588
fw_state_done(fw_priv);
589
break;
590
}
591
__putname(path);
592
593
return rc;
594
}
595
596
/* firmware holds the ownership of pages */
597
static void firmware_free_data(const struct firmware *fw)
598
{
599
/* Loaded directly? */
600
if (!fw->priv) {
601
vfree(fw->data);
602
return;
603
}
604
free_fw_priv(fw->priv);
605
}
606
607
/* store the pages buffer info firmware from buf */
608
static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609
{
610
fw->priv = fw_priv;
611
fw->size = fw_priv->size;
612
fw->data = fw_priv->data;
613
614
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616
(unsigned int)fw_priv->size);
617
}
618
619
#ifdef CONFIG_FW_CACHE
620
static void fw_name_devm_release(struct device *dev, void *res)
621
{
622
struct fw_name_devm *fwn = res;
623
624
if (fwn->magic == (unsigned long)&fw_cache)
625
pr_debug("%s: fw_name-%s devm-%p released\n",
626
__func__, fwn->name, res);
627
kfree_const(fwn->name);
628
}
629
630
static int fw_devm_match(struct device *dev, void *res,
631
void *match_data)
632
{
633
struct fw_name_devm *fwn = res;
634
635
return (fwn->magic == (unsigned long)&fw_cache) &&
636
!strcmp(fwn->name, match_data);
637
}
638
639
static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640
const char *name)
641
{
642
struct fw_name_devm *fwn;
643
644
fwn = devres_find(dev, fw_name_devm_release,
645
fw_devm_match, (void *)name);
646
return fwn;
647
}
648
649
static bool fw_cache_is_setup(struct device *dev, const char *name)
650
{
651
struct fw_name_devm *fwn;
652
653
fwn = fw_find_devm_name(dev, name);
654
if (fwn)
655
return true;
656
657
return false;
658
}
659
660
/* add firmware name into devres list */
661
static int fw_add_devm_name(struct device *dev, const char *name)
662
{
663
struct fw_name_devm *fwn;
664
665
if (fw_cache_is_setup(dev, name))
666
return 0;
667
668
fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669
GFP_KERNEL);
670
if (!fwn)
671
return -ENOMEM;
672
fwn->name = kstrdup_const(name, GFP_KERNEL);
673
if (!fwn->name) {
674
devres_free(fwn);
675
return -ENOMEM;
676
}
677
678
fwn->magic = (unsigned long)&fw_cache;
679
devres_add(dev, fwn);
680
681
return 0;
682
}
683
#else
684
static bool fw_cache_is_setup(struct device *dev, const char *name)
685
{
686
return false;
687
}
688
689
static int fw_add_devm_name(struct device *dev, const char *name)
690
{
691
return 0;
692
}
693
#endif
694
695
int assign_fw(struct firmware *fw, struct device *device)
696
{
697
struct fw_priv *fw_priv = fw->priv;
698
int ret;
699
700
mutex_lock(&fw_lock);
701
if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702
mutex_unlock(&fw_lock);
703
return -ENOENT;
704
}
705
706
/*
707
* add firmware name into devres list so that we can auto cache
708
* and uncache firmware for device.
709
*
710
* device may has been deleted already, but the problem
711
* should be fixed in devres or driver core.
712
*/
713
/* don't cache firmware handled without uevent */
714
if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715
!(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716
ret = fw_add_devm_name(device, fw_priv->fw_name);
717
if (ret) {
718
mutex_unlock(&fw_lock);
719
return ret;
720
}
721
}
722
723
/*
724
* After caching firmware image is started, let it piggyback
725
* on request firmware.
726
*/
727
if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728
fw_priv->fwc->state == FW_LOADER_START_CACHE)
729
fw_cache_piggyback_on_request(fw_priv);
730
731
/* pass the pages buffer to driver at the last minute */
732
fw_set_page_data(fw_priv, fw);
733
mutex_unlock(&fw_lock);
734
return 0;
735
}
736
737
/* prepare firmware and firmware_buf structs;
738
* return 0 if a firmware is already assigned, 1 if need to load one,
739
* or a negative error code
740
*/
741
static int
742
_request_firmware_prepare(struct firmware **firmware_p, const char *name,
743
struct device *device, void *dbuf, size_t size,
744
size_t offset, u32 opt_flags)
745
{
746
struct firmware *firmware;
747
struct fw_priv *fw_priv;
748
int ret;
749
750
*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751
if (!firmware) {
752
dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753
__func__);
754
return -ENOMEM;
755
}
756
757
if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758
dev_dbg(device, "using built-in %s\n", name);
759
return 0; /* assigned */
760
}
761
762
ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763
offset, opt_flags);
764
765
/*
766
* bind with 'priv' now to avoid warning in failure path
767
* of requesting firmware.
768
*/
769
firmware->priv = fw_priv;
770
771
if (ret > 0) {
772
ret = fw_state_wait(fw_priv);
773
if (!ret) {
774
fw_set_page_data(fw_priv, firmware);
775
return 0; /* assigned */
776
}
777
}
778
779
if (ret < 0)
780
return ret;
781
return 1; /* need to load */
782
}
783
784
/*
785
* Batched requests need only one wake, we need to do this step last due to the
786
* fallback mechanism. The buf is protected with kref_get(), and it won't be
787
* released until the last user calls release_firmware().
788
*
789
* Failed batched requests are possible as well, in such cases we just share
790
* the struct fw_priv and won't release it until all requests are woken
791
* and have gone through this same path.
792
*/
793
static void fw_abort_batch_reqs(struct firmware *fw)
794
{
795
struct fw_priv *fw_priv;
796
797
/* Loaded directly? */
798
if (!fw || !fw->priv)
799
return;
800
801
fw_priv = fw->priv;
802
mutex_lock(&fw_lock);
803
if (!fw_state_is_aborted(fw_priv))
804
fw_state_aborted(fw_priv);
805
mutex_unlock(&fw_lock);
806
}
807
808
#if defined(CONFIG_FW_LOADER_DEBUG)
809
#include <crypto/sha2.h>
810
811
static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
812
{
813
u8 digest[SHA256_DIGEST_SIZE];
814
815
sha256(fw->data, fw->size, digest);
816
dev_dbg(device, "Loaded FW: %s, sha256: %*phN\n",
817
name, SHA256_DIGEST_SIZE, digest);
818
}
819
#else
820
static void fw_log_firmware_info(const struct firmware *fw, const char *name,
821
struct device *device)
822
{}
823
#endif
824
825
/* called from request_firmware() and request_firmware_work_func() */
826
static int
827
_request_firmware(const struct firmware **firmware_p, const char *name,
828
struct device *device, void *buf, size_t size,
829
size_t offset, u32 opt_flags)
830
{
831
struct firmware *fw = NULL;
832
struct cred *kern_cred = NULL;
833
const struct cred *old_cred;
834
bool nondirect = false;
835
int ret;
836
837
if (!firmware_p)
838
return -EINVAL;
839
840
if (!name || name[0] == '\0') {
841
ret = -EINVAL;
842
goto out;
843
}
844
845
846
/*
847
* Reject firmware file names with ".." path components.
848
* There are drivers that construct firmware file names from
849
* device-supplied strings, and we don't want some device to be
850
* able to tell us "I would like to be sent my firmware from
851
* ../../../etc/shadow, please".
852
*
853
* This intentionally only looks at the firmware name, not at
854
* the firmware base directory or at symlink contents.
855
*/
856
if (name_contains_dotdot(name)) {
857
dev_warn(device,
858
"Firmware load for '%s' refused, path contains '..' component\n",
859
name);
860
ret = -EINVAL;
861
goto out;
862
}
863
864
ret = _request_firmware_prepare(&fw, name, device, buf, size,
865
offset, opt_flags);
866
if (ret <= 0) /* error or already assigned */
867
goto out;
868
869
/*
870
* We are about to try to access the firmware file. Because we may have been
871
* called by a driver when serving an unrelated request from userland, we use
872
* the kernel credentials to read the file.
873
*/
874
kern_cred = prepare_kernel_cred(&init_task);
875
if (!kern_cred) {
876
ret = -ENOMEM;
877
goto out;
878
}
879
old_cred = override_creds(kern_cred);
880
881
ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
882
883
/* Only full reads can support decompression, platform, and sysfs. */
884
if (!(opt_flags & FW_OPT_PARTIAL))
885
nondirect = true;
886
887
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
888
if (ret == -ENOENT && nondirect)
889
ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
890
fw_decompress_zstd);
891
#endif
892
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
893
if (ret == -ENOENT && nondirect)
894
ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
895
fw_decompress_xz);
896
#endif
897
if (ret == -ENOENT && nondirect)
898
ret = firmware_fallback_platform(fw->priv);
899
900
if (ret) {
901
if (!(opt_flags & FW_OPT_NO_WARN))
902
dev_warn(device,
903
"Direct firmware load for %s failed with error %d\n",
904
name, ret);
905
if (nondirect)
906
ret = firmware_fallback_sysfs(fw, name, device,
907
opt_flags, ret);
908
} else
909
ret = assign_fw(fw, device);
910
911
revert_creds(old_cred);
912
put_cred(kern_cred);
913
914
out:
915
if (ret < 0) {
916
fw_abort_batch_reqs(fw);
917
release_firmware(fw);
918
fw = NULL;
919
} else {
920
fw_log_firmware_info(fw, name, device);
921
}
922
923
*firmware_p = fw;
924
return ret;
925
}
926
927
/**
928
* request_firmware() - send firmware request and wait for it
929
* @firmware_p: pointer to firmware image
930
* @name: name of firmware file
931
* @device: device for which firmware is being loaded
932
*
933
* @firmware_p will be used to return a firmware image by the name
934
* of @name for device @device.
935
*
936
* Should be called from user context where sleeping is allowed.
937
*
938
* @name will be used as $FIRMWARE in the uevent environment and
939
* should be distinctive enough not to be confused with any other
940
* firmware image for this or any other device.
941
* It must not contain any ".." path components - "foo/bar..bin" is
942
* allowed, but "foo/../bar.bin" is not.
943
*
944
* Caller must hold the reference count of @device.
945
*
946
* The function can be called safely inside device's suspend and
947
* resume callback.
948
**/
949
int
950
request_firmware(const struct firmware **firmware_p, const char *name,
951
struct device *device)
952
{
953
int ret;
954
955
/* Need to pin this module until return */
956
__module_get(THIS_MODULE);
957
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
958
FW_OPT_UEVENT);
959
module_put(THIS_MODULE);
960
return ret;
961
}
962
EXPORT_SYMBOL(request_firmware);
963
964
/**
965
* firmware_request_nowarn() - request for an optional fw module
966
* @firmware: pointer to firmware image
967
* @name: name of firmware file
968
* @device: device for which firmware is being loaded
969
*
970
* This function is similar in behaviour to request_firmware(), except it
971
* doesn't produce warning messages when the file is not found. The sysfs
972
* fallback mechanism is enabled if direct filesystem lookup fails. However,
973
* failures to find the firmware file with it are still suppressed. It is
974
* therefore up to the driver to check for the return value of this call and to
975
* decide when to inform the users of errors.
976
**/
977
int firmware_request_nowarn(const struct firmware **firmware, const char *name,
978
struct device *device)
979
{
980
int ret;
981
982
/* Need to pin this module until return */
983
__module_get(THIS_MODULE);
984
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
985
FW_OPT_UEVENT | FW_OPT_NO_WARN);
986
module_put(THIS_MODULE);
987
return ret;
988
}
989
EXPORT_SYMBOL_GPL(firmware_request_nowarn);
990
991
/**
992
* request_firmware_direct() - load firmware directly without usermode helper
993
* @firmware_p: pointer to firmware image
994
* @name: name of firmware file
995
* @device: device for which firmware is being loaded
996
*
997
* This function works pretty much like request_firmware(), but this doesn't
998
* fall back to usermode helper even if the firmware couldn't be loaded
999
* directly from fs. Hence it's useful for loading optional firmwares, which
1000
* aren't always present, without extra long timeouts of udev.
1001
**/
1002
int request_firmware_direct(const struct firmware **firmware_p,
1003
const char *name, struct device *device)
1004
{
1005
int ret;
1006
1007
__module_get(THIS_MODULE);
1008
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1009
FW_OPT_UEVENT | FW_OPT_NO_WARN |
1010
FW_OPT_NOFALLBACK_SYSFS);
1011
module_put(THIS_MODULE);
1012
return ret;
1013
}
1014
EXPORT_SYMBOL_GPL(request_firmware_direct);
1015
1016
/**
1017
* firmware_request_platform() - request firmware with platform-fw fallback
1018
* @firmware: pointer to firmware image
1019
* @name: name of firmware file
1020
* @device: device for which firmware is being loaded
1021
*
1022
* This function is similar in behaviour to request_firmware, except that if
1023
* direct filesystem lookup fails, it will fallback to looking for a copy of the
1024
* requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1025
**/
1026
int firmware_request_platform(const struct firmware **firmware,
1027
const char *name, struct device *device)
1028
{
1029
int ret;
1030
1031
/* Need to pin this module until return */
1032
__module_get(THIS_MODULE);
1033
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1034
FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1035
module_put(THIS_MODULE);
1036
return ret;
1037
}
1038
EXPORT_SYMBOL_GPL(firmware_request_platform);
1039
1040
/**
1041
* firmware_request_cache() - cache firmware for suspend so resume can use it
1042
* @device: device for which firmware should be cached for
1043
* @name: name of firmware file
1044
*
1045
* There are some devices with an optimization that enables the device to not
1046
* require loading firmware on system reboot. This optimization may still
1047
* require the firmware present on resume from suspend. This routine can be
1048
* used to ensure the firmware is present on resume from suspend in these
1049
* situations. This helper is not compatible with drivers which use
1050
* request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1051
**/
1052
int firmware_request_cache(struct device *device, const char *name)
1053
{
1054
int ret;
1055
1056
mutex_lock(&fw_lock);
1057
ret = fw_add_devm_name(device, name);
1058
mutex_unlock(&fw_lock);
1059
1060
return ret;
1061
}
1062
EXPORT_SYMBOL_GPL(firmware_request_cache);
1063
1064
/**
1065
* request_firmware_into_buf() - load firmware into a previously allocated buffer
1066
* @firmware_p: pointer to firmware image
1067
* @name: name of firmware file
1068
* @device: device for which firmware is being loaded and DMA region allocated
1069
* @buf: address of buffer to load firmware into
1070
* @size: size of buffer
1071
*
1072
* This function works pretty much like request_firmware(), but it doesn't
1073
* allocate a buffer to hold the firmware data. Instead, the firmware
1074
* is loaded directly into the buffer pointed to by @buf and the @firmware_p
1075
* data member is pointed at @buf.
1076
*
1077
* This function doesn't cache firmware either.
1078
*/
1079
int
1080
request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1081
struct device *device, void *buf, size_t size)
1082
{
1083
int ret;
1084
1085
if (fw_cache_is_setup(device, name))
1086
return -EOPNOTSUPP;
1087
1088
__module_get(THIS_MODULE);
1089
ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1090
FW_OPT_UEVENT | FW_OPT_NOCACHE);
1091
module_put(THIS_MODULE);
1092
return ret;
1093
}
1094
EXPORT_SYMBOL(request_firmware_into_buf);
1095
1096
/**
1097
* request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1098
* @firmware_p: pointer to firmware image
1099
* @name: name of firmware file
1100
* @device: device for which firmware is being loaded and DMA region allocated
1101
* @buf: address of buffer to load firmware into
1102
* @size: size of buffer
1103
* @offset: offset into file to read
1104
*
1105
* This function works pretty much like request_firmware_into_buf except
1106
* it allows a partial read of the file.
1107
*/
1108
int
1109
request_partial_firmware_into_buf(const struct firmware **firmware_p,
1110
const char *name, struct device *device,
1111
void *buf, size_t size, size_t offset)
1112
{
1113
int ret;
1114
1115
if (fw_cache_is_setup(device, name))
1116
return -EOPNOTSUPP;
1117
1118
__module_get(THIS_MODULE);
1119
ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1120
FW_OPT_UEVENT | FW_OPT_NOCACHE |
1121
FW_OPT_PARTIAL);
1122
module_put(THIS_MODULE);
1123
return ret;
1124
}
1125
EXPORT_SYMBOL(request_partial_firmware_into_buf);
1126
1127
/**
1128
* release_firmware() - release the resource associated with a firmware image
1129
* @fw: firmware resource to release
1130
**/
1131
void release_firmware(const struct firmware *fw)
1132
{
1133
if (fw) {
1134
if (!firmware_is_builtin(fw))
1135
firmware_free_data(fw);
1136
kfree(fw);
1137
}
1138
}
1139
EXPORT_SYMBOL(release_firmware);
1140
1141
/* Async support */
1142
struct firmware_work {
1143
struct work_struct work;
1144
struct module *module;
1145
const char *name;
1146
struct device *device;
1147
void *context;
1148
void (*cont)(const struct firmware *fw, void *context);
1149
u32 opt_flags;
1150
};
1151
1152
static void request_firmware_work_func(struct work_struct *work)
1153
{
1154
struct firmware_work *fw_work;
1155
const struct firmware *fw;
1156
1157
fw_work = container_of(work, struct firmware_work, work);
1158
1159
_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1160
fw_work->opt_flags);
1161
fw_work->cont(fw, fw_work->context);
1162
put_device(fw_work->device); /* taken in request_firmware_nowait() */
1163
1164
module_put(fw_work->module);
1165
kfree_const(fw_work->name);
1166
kfree(fw_work);
1167
}
1168
1169
1170
static int _request_firmware_nowait(
1171
struct module *module, bool uevent,
1172
const char *name, struct device *device, gfp_t gfp, void *context,
1173
void (*cont)(const struct firmware *fw, void *context), bool nowarn)
1174
{
1175
struct firmware_work *fw_work;
1176
1177
fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1178
if (!fw_work)
1179
return -ENOMEM;
1180
1181
fw_work->module = module;
1182
fw_work->name = kstrdup_const(name, gfp);
1183
if (!fw_work->name) {
1184
kfree(fw_work);
1185
return -ENOMEM;
1186
}
1187
fw_work->device = device;
1188
fw_work->context = context;
1189
fw_work->cont = cont;
1190
fw_work->opt_flags = FW_OPT_NOWAIT |
1191
(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER) |
1192
(nowarn ? FW_OPT_NO_WARN : 0);
1193
1194
if (!uevent && fw_cache_is_setup(device, name)) {
1195
kfree_const(fw_work->name);
1196
kfree(fw_work);
1197
return -EOPNOTSUPP;
1198
}
1199
1200
if (!try_module_get(module)) {
1201
kfree_const(fw_work->name);
1202
kfree(fw_work);
1203
return -EFAULT;
1204
}
1205
1206
get_device(fw_work->device);
1207
INIT_WORK(&fw_work->work, request_firmware_work_func);
1208
schedule_work(&fw_work->work);
1209
return 0;
1210
}
1211
1212
/**
1213
* request_firmware_nowait() - asynchronous version of request_firmware
1214
* @module: module requesting the firmware
1215
* @uevent: sends uevent to copy the firmware image if this flag
1216
* is non-zero else the firmware copy must be done manually.
1217
* @name: name of firmware file
1218
* @device: device for which firmware is being loaded
1219
* @gfp: allocation flags
1220
* @context: will be passed over to @cont, and
1221
* @fw may be %NULL if firmware request fails.
1222
* @cont: function will be called asynchronously when the firmware
1223
* request is over.
1224
*
1225
* Caller must hold the reference count of @device.
1226
*
1227
* Asynchronous variant of request_firmware() for user contexts:
1228
* - sleep for as small periods as possible since it may
1229
* increase kernel boot time of built-in device drivers
1230
* requesting firmware in their ->probe() methods, if
1231
* @gfp is GFP_KERNEL.
1232
*
1233
* - can't sleep at all if @gfp is GFP_ATOMIC.
1234
**/
1235
int request_firmware_nowait(
1236
struct module *module, bool uevent,
1237
const char *name, struct device *device, gfp_t gfp, void *context,
1238
void (*cont)(const struct firmware *fw, void *context))
1239
{
1240
return _request_firmware_nowait(module, uevent, name, device, gfp,
1241
context, cont, false);
1242
1243
}
1244
EXPORT_SYMBOL(request_firmware_nowait);
1245
1246
/**
1247
* firmware_request_nowait_nowarn() - async version of request_firmware_nowarn
1248
* @module: module requesting the firmware
1249
* @name: name of firmware file
1250
* @device: device for which firmware is being loaded
1251
* @gfp: allocation flags
1252
* @context: will be passed over to @cont, and
1253
* @fw may be %NULL if firmware request fails.
1254
* @cont: function will be called asynchronously when the firmware
1255
* request is over.
1256
*
1257
* Similar in function to request_firmware_nowait(), but doesn't print a warning
1258
* when the firmware file could not be found and always sends a uevent to copy
1259
* the firmware image.
1260
*/
1261
int firmware_request_nowait_nowarn(
1262
struct module *module, const char *name,
1263
struct device *device, gfp_t gfp, void *context,
1264
void (*cont)(const struct firmware *fw, void *context))
1265
{
1266
return _request_firmware_nowait(module, FW_ACTION_UEVENT, name, device,
1267
gfp, context, cont, true);
1268
}
1269
EXPORT_SYMBOL_GPL(firmware_request_nowait_nowarn);
1270
1271
#ifdef CONFIG_FW_CACHE
1272
static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1273
1274
/**
1275
* cache_firmware() - cache one firmware image in kernel memory space
1276
* @fw_name: the firmware image name
1277
*
1278
* Cache firmware in kernel memory so that drivers can use it when
1279
* system isn't ready for them to request firmware image from userspace.
1280
* Once it returns successfully, driver can use request_firmware or its
1281
* nowait version to get the cached firmware without any interacting
1282
* with userspace
1283
*
1284
* Return 0 if the firmware image has been cached successfully
1285
* Return !0 otherwise
1286
*
1287
*/
1288
static int cache_firmware(const char *fw_name)
1289
{
1290
int ret;
1291
const struct firmware *fw;
1292
1293
pr_debug("%s: %s\n", __func__, fw_name);
1294
1295
ret = request_firmware(&fw, fw_name, NULL);
1296
if (!ret)
1297
kfree(fw);
1298
1299
pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1300
1301
return ret;
1302
}
1303
1304
static struct fw_priv *lookup_fw_priv(const char *fw_name)
1305
{
1306
struct fw_priv *tmp;
1307
struct firmware_cache *fwc = &fw_cache;
1308
1309
spin_lock(&fwc->lock);
1310
tmp = __lookup_fw_priv(fw_name);
1311
spin_unlock(&fwc->lock);
1312
1313
return tmp;
1314
}
1315
1316
/**
1317
* uncache_firmware() - remove one cached firmware image
1318
* @fw_name: the firmware image name
1319
*
1320
* Uncache one firmware image which has been cached successfully
1321
* before.
1322
*
1323
* Return 0 if the firmware cache has been removed successfully
1324
* Return !0 otherwise
1325
*
1326
*/
1327
static int uncache_firmware(const char *fw_name)
1328
{
1329
struct fw_priv *fw_priv;
1330
struct firmware fw;
1331
1332
pr_debug("%s: %s\n", __func__, fw_name);
1333
1334
if (firmware_request_builtin(&fw, fw_name))
1335
return 0;
1336
1337
fw_priv = lookup_fw_priv(fw_name);
1338
if (fw_priv) {
1339
free_fw_priv(fw_priv);
1340
return 0;
1341
}
1342
1343
return -EINVAL;
1344
}
1345
1346
static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1347
{
1348
struct fw_cache_entry *fce;
1349
1350
fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1351
if (!fce)
1352
goto exit;
1353
1354
fce->name = kstrdup_const(name, GFP_ATOMIC);
1355
if (!fce->name) {
1356
kfree(fce);
1357
fce = NULL;
1358
goto exit;
1359
}
1360
exit:
1361
return fce;
1362
}
1363
1364
static int __fw_entry_found(const char *name)
1365
{
1366
struct firmware_cache *fwc = &fw_cache;
1367
struct fw_cache_entry *fce;
1368
1369
list_for_each_entry(fce, &fwc->fw_names, list) {
1370
if (!strcmp(fce->name, name))
1371
return 1;
1372
}
1373
return 0;
1374
}
1375
1376
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1377
{
1378
const char *name = fw_priv->fw_name;
1379
struct firmware_cache *fwc = fw_priv->fwc;
1380
struct fw_cache_entry *fce;
1381
1382
spin_lock(&fwc->name_lock);
1383
if (__fw_entry_found(name))
1384
goto found;
1385
1386
fce = alloc_fw_cache_entry(name);
1387
if (fce) {
1388
list_add(&fce->list, &fwc->fw_names);
1389
kref_get(&fw_priv->ref);
1390
pr_debug("%s: fw: %s\n", __func__, name);
1391
}
1392
found:
1393
spin_unlock(&fwc->name_lock);
1394
}
1395
1396
static void free_fw_cache_entry(struct fw_cache_entry *fce)
1397
{
1398
kfree_const(fce->name);
1399
kfree(fce);
1400
}
1401
1402
static void __async_dev_cache_fw_image(void *fw_entry,
1403
async_cookie_t cookie)
1404
{
1405
struct fw_cache_entry *fce = fw_entry;
1406
struct firmware_cache *fwc = &fw_cache;
1407
int ret;
1408
1409
ret = cache_firmware(fce->name);
1410
if (ret) {
1411
spin_lock(&fwc->name_lock);
1412
list_del(&fce->list);
1413
spin_unlock(&fwc->name_lock);
1414
1415
free_fw_cache_entry(fce);
1416
}
1417
}
1418
1419
/* called with dev->devres_lock held */
1420
static void dev_create_fw_entry(struct device *dev, void *res,
1421
void *data)
1422
{
1423
struct fw_name_devm *fwn = res;
1424
const char *fw_name = fwn->name;
1425
struct list_head *head = data;
1426
struct fw_cache_entry *fce;
1427
1428
fce = alloc_fw_cache_entry(fw_name);
1429
if (fce)
1430
list_add(&fce->list, head);
1431
}
1432
1433
static int devm_name_match(struct device *dev, void *res,
1434
void *match_data)
1435
{
1436
struct fw_name_devm *fwn = res;
1437
return (fwn->magic == (unsigned long)match_data);
1438
}
1439
1440
static void dev_cache_fw_image(struct device *dev, void *data)
1441
{
1442
LIST_HEAD(todo);
1443
struct fw_cache_entry *fce;
1444
struct fw_cache_entry *fce_next;
1445
struct firmware_cache *fwc = &fw_cache;
1446
1447
devres_for_each_res(dev, fw_name_devm_release,
1448
devm_name_match, &fw_cache,
1449
dev_create_fw_entry, &todo);
1450
1451
list_for_each_entry_safe(fce, fce_next, &todo, list) {
1452
list_del(&fce->list);
1453
1454
spin_lock(&fwc->name_lock);
1455
/* only one cache entry for one firmware */
1456
if (!__fw_entry_found(fce->name)) {
1457
list_add(&fce->list, &fwc->fw_names);
1458
} else {
1459
free_fw_cache_entry(fce);
1460
fce = NULL;
1461
}
1462
spin_unlock(&fwc->name_lock);
1463
1464
if (fce)
1465
async_schedule_domain(__async_dev_cache_fw_image,
1466
(void *)fce,
1467
&fw_cache_domain);
1468
}
1469
}
1470
1471
static void __device_uncache_fw_images(void)
1472
{
1473
struct firmware_cache *fwc = &fw_cache;
1474
struct fw_cache_entry *fce;
1475
1476
spin_lock(&fwc->name_lock);
1477
while (!list_empty(&fwc->fw_names)) {
1478
fce = list_entry(fwc->fw_names.next,
1479
struct fw_cache_entry, list);
1480
list_del(&fce->list);
1481
spin_unlock(&fwc->name_lock);
1482
1483
uncache_firmware(fce->name);
1484
free_fw_cache_entry(fce);
1485
1486
spin_lock(&fwc->name_lock);
1487
}
1488
spin_unlock(&fwc->name_lock);
1489
}
1490
1491
/**
1492
* device_cache_fw_images() - cache devices' firmware
1493
*
1494
* If one device called request_firmware or its nowait version
1495
* successfully before, the firmware names are recored into the
1496
* device's devres link list, so device_cache_fw_images can call
1497
* cache_firmware() to cache these firmwares for the device,
1498
* then the device driver can load its firmwares easily at
1499
* time when system is not ready to complete loading firmware.
1500
*/
1501
static void device_cache_fw_images(void)
1502
{
1503
struct firmware_cache *fwc = &fw_cache;
1504
DEFINE_WAIT(wait);
1505
1506
pr_debug("%s\n", __func__);
1507
1508
/* cancel uncache work */
1509
cancel_delayed_work_sync(&fwc->work);
1510
1511
fw_fallback_set_cache_timeout();
1512
1513
mutex_lock(&fw_lock);
1514
fwc->state = FW_LOADER_START_CACHE;
1515
dpm_for_each_dev(NULL, dev_cache_fw_image);
1516
mutex_unlock(&fw_lock);
1517
1518
/* wait for completion of caching firmware for all devices */
1519
async_synchronize_full_domain(&fw_cache_domain);
1520
1521
fw_fallback_set_default_timeout();
1522
}
1523
1524
/**
1525
* device_uncache_fw_images() - uncache devices' firmware
1526
*
1527
* uncache all firmwares which have been cached successfully
1528
* by device_uncache_fw_images earlier
1529
*/
1530
static void device_uncache_fw_images(void)
1531
{
1532
pr_debug("%s\n", __func__);
1533
__device_uncache_fw_images();
1534
}
1535
1536
static void device_uncache_fw_images_work(struct work_struct *work)
1537
{
1538
device_uncache_fw_images();
1539
}
1540
1541
/**
1542
* device_uncache_fw_images_delay() - uncache devices firmwares
1543
* @delay: number of milliseconds to delay uncache device firmwares
1544
*
1545
* uncache all devices's firmwares which has been cached successfully
1546
* by device_cache_fw_images after @delay milliseconds.
1547
*/
1548
static void device_uncache_fw_images_delay(unsigned long delay)
1549
{
1550
queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1551
msecs_to_jiffies(delay));
1552
}
1553
1554
static int fw_pm_notify(struct notifier_block *notify_block,
1555
unsigned long mode, void *unused)
1556
{
1557
switch (mode) {
1558
case PM_HIBERNATION_PREPARE:
1559
case PM_SUSPEND_PREPARE:
1560
case PM_RESTORE_PREPARE:
1561
/*
1562
* Here, kill pending fallback requests will only kill
1563
* non-uevent firmware request to avoid stalling suspend.
1564
*/
1565
kill_pending_fw_fallback_reqs(false);
1566
device_cache_fw_images();
1567
break;
1568
1569
case PM_POST_SUSPEND:
1570
case PM_POST_HIBERNATION:
1571
case PM_POST_RESTORE:
1572
/*
1573
* In case that system sleep failed and syscore_suspend is
1574
* not called.
1575
*/
1576
mutex_lock(&fw_lock);
1577
fw_cache.state = FW_LOADER_NO_CACHE;
1578
mutex_unlock(&fw_lock);
1579
1580
device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1581
break;
1582
}
1583
1584
return 0;
1585
}
1586
1587
/* stop caching firmware once syscore_suspend is reached */
1588
static int fw_suspend(void)
1589
{
1590
fw_cache.state = FW_LOADER_NO_CACHE;
1591
return 0;
1592
}
1593
1594
static struct syscore_ops fw_syscore_ops = {
1595
.suspend = fw_suspend,
1596
};
1597
1598
static int __init register_fw_pm_ops(void)
1599
{
1600
int ret;
1601
1602
spin_lock_init(&fw_cache.name_lock);
1603
INIT_LIST_HEAD(&fw_cache.fw_names);
1604
1605
INIT_DELAYED_WORK(&fw_cache.work,
1606
device_uncache_fw_images_work);
1607
1608
fw_cache.pm_notify.notifier_call = fw_pm_notify;
1609
ret = register_pm_notifier(&fw_cache.pm_notify);
1610
if (ret)
1611
return ret;
1612
1613
register_syscore_ops(&fw_syscore_ops);
1614
1615
return ret;
1616
}
1617
1618
static inline void unregister_fw_pm_ops(void)
1619
{
1620
unregister_syscore_ops(&fw_syscore_ops);
1621
unregister_pm_notifier(&fw_cache.pm_notify);
1622
}
1623
#else
1624
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1625
{
1626
}
1627
static inline int register_fw_pm_ops(void)
1628
{
1629
return 0;
1630
}
1631
static inline void unregister_fw_pm_ops(void)
1632
{
1633
}
1634
#endif
1635
1636
static void __init fw_cache_init(void)
1637
{
1638
spin_lock_init(&fw_cache.lock);
1639
INIT_LIST_HEAD(&fw_cache.head);
1640
fw_cache.state = FW_LOADER_NO_CACHE;
1641
}
1642
1643
static int fw_shutdown_notify(struct notifier_block *unused1,
1644
unsigned long unused2, void *unused3)
1645
{
1646
/*
1647
* Kill all pending fallback requests to avoid both stalling shutdown,
1648
* and avoid a deadlock with the usermode_lock.
1649
*/
1650
kill_pending_fw_fallback_reqs(true);
1651
1652
return NOTIFY_DONE;
1653
}
1654
1655
static struct notifier_block fw_shutdown_nb = {
1656
.notifier_call = fw_shutdown_notify,
1657
};
1658
1659
static int __init firmware_class_init(void)
1660
{
1661
int ret;
1662
1663
/* No need to unfold these on exit */
1664
fw_cache_init();
1665
1666
ret = register_fw_pm_ops();
1667
if (ret)
1668
return ret;
1669
1670
ret = register_reboot_notifier(&fw_shutdown_nb);
1671
if (ret)
1672
goto out;
1673
1674
return register_sysfs_loader();
1675
1676
out:
1677
unregister_fw_pm_ops();
1678
return ret;
1679
}
1680
1681
static void __exit firmware_class_exit(void)
1682
{
1683
unregister_fw_pm_ops();
1684
unregister_reboot_notifier(&fw_shutdown_nb);
1685
unregister_sysfs_loader();
1686
}
1687
1688
fs_initcall(firmware_class_init);
1689
module_exit(firmware_class_exit);
1690
1691