Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/memory.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Memory subsystem support
4
*
5
* Written by Matt Tolentino <[email protected]>
6
* Dave Hansen <[email protected]>
7
*
8
* This file provides the necessary infrastructure to represent
9
* a SPARSEMEM-memory-model system's physical memory in /sysfs.
10
* All arch-independent code that assumes MEMORY_HOTPLUG requires
11
* SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12
*/
13
14
#include <linux/module.h>
15
#include <linux/init.h>
16
#include <linux/topology.h>
17
#include <linux/capability.h>
18
#include <linux/device.h>
19
#include <linux/memory.h>
20
#include <linux/memory_hotplug.h>
21
#include <linux/mm.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24
#include <linux/xarray.h>
25
#include <linux/export.h>
26
27
#include <linux/atomic.h>
28
#include <linux/uaccess.h>
29
30
#define MEMORY_CLASS_NAME "memory"
31
32
static const char *const online_type_to_str[] = {
33
[MMOP_OFFLINE] = "offline",
34
[MMOP_ONLINE] = "online",
35
[MMOP_ONLINE_KERNEL] = "online_kernel",
36
[MMOP_ONLINE_MOVABLE] = "online_movable",
37
};
38
39
int mhp_online_type_from_str(const char *str)
40
{
41
int i;
42
43
for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
44
if (sysfs_streq(str, online_type_to_str[i]))
45
return i;
46
}
47
return -EINVAL;
48
}
49
50
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
51
52
int sections_per_block;
53
EXPORT_SYMBOL(sections_per_block);
54
55
static int memory_subsys_online(struct device *dev);
56
static int memory_subsys_offline(struct device *dev);
57
58
static const struct bus_type memory_subsys = {
59
.name = MEMORY_CLASS_NAME,
60
.dev_name = MEMORY_CLASS_NAME,
61
.online = memory_subsys_online,
62
.offline = memory_subsys_offline,
63
};
64
65
/*
66
* Memory blocks are cached in a local radix tree to avoid
67
* a costly linear search for the corresponding device on
68
* the subsystem bus.
69
*/
70
static DEFINE_XARRAY(memory_blocks);
71
72
/*
73
* Memory groups, indexed by memory group id (mgid).
74
*/
75
static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
76
#define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1
77
78
static BLOCKING_NOTIFIER_HEAD(memory_chain);
79
80
int register_memory_notifier(struct notifier_block *nb)
81
{
82
return blocking_notifier_chain_register(&memory_chain, nb);
83
}
84
EXPORT_SYMBOL(register_memory_notifier);
85
86
void unregister_memory_notifier(struct notifier_block *nb)
87
{
88
blocking_notifier_chain_unregister(&memory_chain, nb);
89
}
90
EXPORT_SYMBOL(unregister_memory_notifier);
91
92
static void memory_block_release(struct device *dev)
93
{
94
struct memory_block *mem = to_memory_block(dev);
95
/* Verify that the altmap is freed */
96
WARN_ON(mem->altmap);
97
kfree(mem);
98
}
99
100
101
/* Max block size to be set by memory_block_advise_max_size */
102
static unsigned long memory_block_advised_size;
103
static bool memory_block_advised_size_queried;
104
105
/**
106
* memory_block_advise_max_size() - advise memory hotplug on the max suggested
107
* block size, usually for alignment.
108
* @size: suggestion for maximum block size. must be aligned on power of 2.
109
*
110
* Early boot software (pre-allocator init) may advise archs on the max block
111
* size. This value can only decrease after initialization, as the intent is
112
* to identify the largest supported alignment for all sources.
113
*
114
* Use of this value is arch-defined, as is min/max block size.
115
*
116
* Return: 0 on success
117
* -EINVAL if size is 0 or not pow2 aligned
118
* -EBUSY if value has already been probed
119
*/
120
int __init memory_block_advise_max_size(unsigned long size)
121
{
122
if (!size || !is_power_of_2(size))
123
return -EINVAL;
124
125
if (memory_block_advised_size_queried)
126
return -EBUSY;
127
128
if (memory_block_advised_size)
129
memory_block_advised_size = min(memory_block_advised_size, size);
130
else
131
memory_block_advised_size = size;
132
133
return 0;
134
}
135
136
/**
137
* memory_block_advised_max_size() - query advised max hotplug block size.
138
*
139
* After the first call, the value can never change. Callers looking for the
140
* actual block size should use memory_block_size_bytes. This interface is
141
* intended for use by arch-init when initializing the hotplug block size.
142
*
143
* Return: advised size in bytes, or 0 if never set.
144
*/
145
unsigned long memory_block_advised_max_size(void)
146
{
147
memory_block_advised_size_queried = true;
148
return memory_block_advised_size;
149
}
150
151
unsigned long __weak memory_block_size_bytes(void)
152
{
153
return MIN_MEMORY_BLOCK_SIZE;
154
}
155
EXPORT_SYMBOL_GPL(memory_block_size_bytes);
156
157
/* Show the memory block ID, relative to the memory block size */
158
static ssize_t phys_index_show(struct device *dev,
159
struct device_attribute *attr, char *buf)
160
{
161
struct memory_block *mem = to_memory_block(dev);
162
163
return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
164
}
165
166
/*
167
* Legacy interface that we cannot remove. Always indicate "removable"
168
* with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
169
*/
170
static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
171
char *buf)
172
{
173
return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
174
}
175
176
/*
177
* online, offline, going offline, etc.
178
*/
179
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
180
char *buf)
181
{
182
struct memory_block *mem = to_memory_block(dev);
183
const char *output;
184
185
/*
186
* We can probably put these states in a nice little array
187
* so that they're not open-coded
188
*/
189
switch (mem->state) {
190
case MEM_ONLINE:
191
output = "online";
192
break;
193
case MEM_OFFLINE:
194
output = "offline";
195
break;
196
case MEM_GOING_OFFLINE:
197
output = "going-offline";
198
break;
199
default:
200
WARN_ON(1);
201
return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
202
}
203
204
return sysfs_emit(buf, "%s\n", output);
205
}
206
207
int memory_notify(unsigned long val, void *v)
208
{
209
return blocking_notifier_call_chain(&memory_chain, val, v);
210
}
211
212
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
213
static unsigned long memblk_nr_poison(struct memory_block *mem);
214
#else
215
static inline unsigned long memblk_nr_poison(struct memory_block *mem)
216
{
217
return 0;
218
}
219
#endif
220
221
/*
222
* Must acquire mem_hotplug_lock in write mode.
223
*/
224
static int memory_block_online(struct memory_block *mem)
225
{
226
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
227
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228
unsigned long nr_vmemmap_pages = 0;
229
struct memory_notify arg;
230
struct zone *zone;
231
int ret;
232
233
if (memblk_nr_poison(mem))
234
return -EHWPOISON;
235
236
zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
237
start_pfn, nr_pages);
238
239
/*
240
* Although vmemmap pages have a different lifecycle than the pages
241
* they describe (they remain until the memory is unplugged), doing
242
* their initialization and accounting at memory onlining/offlining
243
* stage helps to keep accounting easier to follow - e.g vmemmaps
244
* belong to the same zone as the memory they backed.
245
*/
246
if (mem->altmap)
247
nr_vmemmap_pages = mem->altmap->free;
248
249
arg.altmap_start_pfn = start_pfn;
250
arg.altmap_nr_pages = nr_vmemmap_pages;
251
arg.start_pfn = start_pfn + nr_vmemmap_pages;
252
arg.nr_pages = nr_pages - nr_vmemmap_pages;
253
mem_hotplug_begin();
254
ret = memory_notify(MEM_PREPARE_ONLINE, &arg);
255
ret = notifier_to_errno(ret);
256
if (ret)
257
goto out_notifier;
258
259
if (nr_vmemmap_pages) {
260
ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages,
261
zone, mem->altmap->inaccessible);
262
if (ret)
263
goto out;
264
}
265
266
ret = online_pages(start_pfn + nr_vmemmap_pages,
267
nr_pages - nr_vmemmap_pages, zone, mem->group);
268
if (ret) {
269
if (nr_vmemmap_pages)
270
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
271
goto out;
272
}
273
274
/*
275
* Account once onlining succeeded. If the zone was unpopulated, it is
276
* now already properly populated.
277
*/
278
if (nr_vmemmap_pages)
279
adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
280
nr_vmemmap_pages);
281
282
mem->zone = zone;
283
mem_hotplug_done();
284
return ret;
285
out:
286
memory_notify(MEM_FINISH_OFFLINE, &arg);
287
out_notifier:
288
mem_hotplug_done();
289
return ret;
290
}
291
292
/*
293
* Must acquire mem_hotplug_lock in write mode.
294
*/
295
static int memory_block_offline(struct memory_block *mem)
296
{
297
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
298
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
299
unsigned long nr_vmemmap_pages = 0;
300
struct memory_notify arg;
301
int ret;
302
303
if (!mem->zone)
304
return -EINVAL;
305
306
/*
307
* Unaccount before offlining, such that unpopulated zone and kthreads
308
* can properly be torn down in offline_pages().
309
*/
310
if (mem->altmap)
311
nr_vmemmap_pages = mem->altmap->free;
312
313
mem_hotplug_begin();
314
if (nr_vmemmap_pages)
315
adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
316
-nr_vmemmap_pages);
317
318
ret = offline_pages(start_pfn + nr_vmemmap_pages,
319
nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
320
if (ret) {
321
/* offline_pages() failed. Account back. */
322
if (nr_vmemmap_pages)
323
adjust_present_page_count(pfn_to_page(start_pfn),
324
mem->group, nr_vmemmap_pages);
325
goto out;
326
}
327
328
if (nr_vmemmap_pages)
329
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
330
331
mem->zone = NULL;
332
arg.altmap_start_pfn = start_pfn;
333
arg.altmap_nr_pages = nr_vmemmap_pages;
334
arg.start_pfn = start_pfn + nr_vmemmap_pages;
335
arg.nr_pages = nr_pages - nr_vmemmap_pages;
336
memory_notify(MEM_FINISH_OFFLINE, &arg);
337
out:
338
mem_hotplug_done();
339
return ret;
340
}
341
342
/*
343
* MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
344
* OK to have direct references to sparsemem variables in here.
345
*/
346
static int
347
memory_block_action(struct memory_block *mem, unsigned long action)
348
{
349
int ret;
350
351
switch (action) {
352
case MEM_ONLINE:
353
ret = memory_block_online(mem);
354
break;
355
case MEM_OFFLINE:
356
ret = memory_block_offline(mem);
357
break;
358
default:
359
WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
360
"%ld\n", __func__, mem->start_section_nr, action, action);
361
ret = -EINVAL;
362
}
363
364
return ret;
365
}
366
367
static int memory_block_change_state(struct memory_block *mem,
368
unsigned long to_state, unsigned long from_state_req)
369
{
370
int ret = 0;
371
372
if (mem->state != from_state_req)
373
return -EINVAL;
374
375
if (to_state == MEM_OFFLINE)
376
mem->state = MEM_GOING_OFFLINE;
377
378
ret = memory_block_action(mem, to_state);
379
mem->state = ret ? from_state_req : to_state;
380
381
return ret;
382
}
383
384
/* The device lock serializes operations on memory_subsys_[online|offline] */
385
static int memory_subsys_online(struct device *dev)
386
{
387
struct memory_block *mem = to_memory_block(dev);
388
int ret;
389
390
if (mem->state == MEM_ONLINE)
391
return 0;
392
393
/*
394
* When called via device_online() without configuring the online_type,
395
* we want to default to MMOP_ONLINE.
396
*/
397
if (mem->online_type == MMOP_OFFLINE)
398
mem->online_type = MMOP_ONLINE;
399
400
ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
401
mem->online_type = MMOP_OFFLINE;
402
403
return ret;
404
}
405
406
static int memory_subsys_offline(struct device *dev)
407
{
408
struct memory_block *mem = to_memory_block(dev);
409
410
if (mem->state == MEM_OFFLINE)
411
return 0;
412
413
return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
414
}
415
416
static ssize_t state_store(struct device *dev, struct device_attribute *attr,
417
const char *buf, size_t count)
418
{
419
const int online_type = mhp_online_type_from_str(buf);
420
struct memory_block *mem = to_memory_block(dev);
421
int ret;
422
423
if (online_type < 0)
424
return -EINVAL;
425
426
ret = lock_device_hotplug_sysfs();
427
if (ret)
428
return ret;
429
430
switch (online_type) {
431
case MMOP_ONLINE_KERNEL:
432
case MMOP_ONLINE_MOVABLE:
433
case MMOP_ONLINE:
434
/* mem->online_type is protected by device_hotplug_lock */
435
mem->online_type = online_type;
436
ret = device_online(&mem->dev);
437
break;
438
case MMOP_OFFLINE:
439
ret = device_offline(&mem->dev);
440
break;
441
default:
442
ret = -EINVAL; /* should never happen */
443
}
444
445
unlock_device_hotplug();
446
447
if (ret < 0)
448
return ret;
449
if (ret)
450
return -EINVAL;
451
452
return count;
453
}
454
455
/*
456
* Legacy interface that we cannot remove: s390x exposes the storage increment
457
* covered by a memory block, allowing for identifying which memory blocks
458
* comprise a storage increment. Since a memory block spans complete
459
* storage increments nowadays, this interface is basically unused. Other
460
* archs never exposed != 0.
461
*/
462
static ssize_t phys_device_show(struct device *dev,
463
struct device_attribute *attr, char *buf)
464
{
465
struct memory_block *mem = to_memory_block(dev);
466
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
467
468
return sysfs_emit(buf, "%d\n",
469
arch_get_memory_phys_device(start_pfn));
470
}
471
472
#ifdef CONFIG_MEMORY_HOTREMOVE
473
static int print_allowed_zone(char *buf, int len, int nid,
474
struct memory_group *group,
475
unsigned long start_pfn, unsigned long nr_pages,
476
int online_type, struct zone *default_zone)
477
{
478
struct zone *zone;
479
480
zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
481
if (zone == default_zone)
482
return 0;
483
484
return sysfs_emit_at(buf, len, " %s", zone->name);
485
}
486
487
static ssize_t valid_zones_show(struct device *dev,
488
struct device_attribute *attr, char *buf)
489
{
490
struct memory_block *mem = to_memory_block(dev);
491
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
492
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
493
struct memory_group *group = mem->group;
494
struct zone *default_zone;
495
int nid = mem->nid;
496
int len;
497
498
/*
499
* Check the existing zone. Make sure that we do that only on the
500
* online nodes otherwise the page_zone is not reliable
501
*/
502
if (mem->state == MEM_ONLINE) {
503
/*
504
* If !mem->zone, the memory block spans multiple zones and
505
* cannot get offlined.
506
*/
507
return sysfs_emit(buf, "%s\n",
508
mem->zone ? mem->zone->name : "none");
509
}
510
511
default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
512
start_pfn, nr_pages);
513
514
len = sysfs_emit(buf, "%s", default_zone->name);
515
len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
516
MMOP_ONLINE_KERNEL, default_zone);
517
len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
518
MMOP_ONLINE_MOVABLE, default_zone);
519
len += sysfs_emit_at(buf, len, "\n");
520
return len;
521
}
522
static DEVICE_ATTR_RO(valid_zones);
523
#endif
524
525
static DEVICE_ATTR_RO(phys_index);
526
static DEVICE_ATTR_RW(state);
527
static DEVICE_ATTR_RO(phys_device);
528
static DEVICE_ATTR_RO(removable);
529
530
/*
531
* Show the memory block size (shared by all memory blocks).
532
*/
533
static ssize_t block_size_bytes_show(struct device *dev,
534
struct device_attribute *attr, char *buf)
535
{
536
return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
537
}
538
539
static DEVICE_ATTR_RO(block_size_bytes);
540
541
/*
542
* Memory auto online policy.
543
*/
544
545
static ssize_t auto_online_blocks_show(struct device *dev,
546
struct device_attribute *attr, char *buf)
547
{
548
return sysfs_emit(buf, "%s\n",
549
online_type_to_str[mhp_get_default_online_type()]);
550
}
551
552
static ssize_t auto_online_blocks_store(struct device *dev,
553
struct device_attribute *attr,
554
const char *buf, size_t count)
555
{
556
const int online_type = mhp_online_type_from_str(buf);
557
558
if (online_type < 0)
559
return -EINVAL;
560
561
mhp_set_default_online_type(online_type);
562
return count;
563
}
564
565
static DEVICE_ATTR_RW(auto_online_blocks);
566
567
#ifdef CONFIG_CRASH_HOTPLUG
568
#include <linux/kexec.h>
569
static ssize_t crash_hotplug_show(struct device *dev,
570
struct device_attribute *attr, char *buf)
571
{
572
return sysfs_emit(buf, "%d\n", crash_check_hotplug_support());
573
}
574
static DEVICE_ATTR_RO(crash_hotplug);
575
#endif
576
577
/*
578
* Some architectures will have custom drivers to do this, and
579
* will not need to do it from userspace. The fake hot-add code
580
* as well as ppc64 will do all of their discovery in userspace
581
* and will require this interface.
582
*/
583
#ifdef CONFIG_ARCH_MEMORY_PROBE
584
static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
585
const char *buf, size_t count)
586
{
587
u64 phys_addr;
588
int nid, ret;
589
unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
590
591
ret = kstrtoull(buf, 0, &phys_addr);
592
if (ret)
593
return ret;
594
595
if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
596
return -EINVAL;
597
598
ret = lock_device_hotplug_sysfs();
599
if (ret)
600
return ret;
601
602
nid = memory_add_physaddr_to_nid(phys_addr);
603
ret = __add_memory(nid, phys_addr,
604
MIN_MEMORY_BLOCK_SIZE * sections_per_block,
605
MHP_NONE);
606
607
if (ret)
608
goto out;
609
610
ret = count;
611
out:
612
unlock_device_hotplug();
613
return ret;
614
}
615
616
static DEVICE_ATTR_WO(probe);
617
#endif
618
619
#ifdef CONFIG_MEMORY_FAILURE
620
/*
621
* Support for offlining pages of memory
622
*/
623
624
/* Soft offline a page */
625
static ssize_t soft_offline_page_store(struct device *dev,
626
struct device_attribute *attr,
627
const char *buf, size_t count)
628
{
629
int ret;
630
u64 pfn;
631
if (!capable(CAP_SYS_ADMIN))
632
return -EPERM;
633
if (kstrtoull(buf, 0, &pfn) < 0)
634
return -EINVAL;
635
pfn >>= PAGE_SHIFT;
636
ret = soft_offline_page(pfn, 0);
637
return ret == 0 ? count : ret;
638
}
639
640
/* Forcibly offline a page, including killing processes. */
641
static ssize_t hard_offline_page_store(struct device *dev,
642
struct device_attribute *attr,
643
const char *buf, size_t count)
644
{
645
int ret;
646
u64 pfn;
647
if (!capable(CAP_SYS_ADMIN))
648
return -EPERM;
649
if (kstrtoull(buf, 0, &pfn) < 0)
650
return -EINVAL;
651
pfn >>= PAGE_SHIFT;
652
ret = memory_failure(pfn, MF_SW_SIMULATED);
653
if (ret == -EOPNOTSUPP)
654
ret = 0;
655
return ret ? ret : count;
656
}
657
658
static DEVICE_ATTR_WO(soft_offline_page);
659
static DEVICE_ATTR_WO(hard_offline_page);
660
#endif
661
662
/* See phys_device_show(). */
663
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
664
{
665
return 0;
666
}
667
668
/*
669
* A reference for the returned memory block device is acquired.
670
*
671
* Called under device_hotplug_lock.
672
*/
673
struct memory_block *find_memory_block_by_id(unsigned long block_id)
674
{
675
struct memory_block *mem;
676
677
mem = xa_load(&memory_blocks, block_id);
678
if (mem)
679
get_device(&mem->dev);
680
return mem;
681
}
682
683
/*
684
* Called under device_hotplug_lock.
685
*/
686
struct memory_block *find_memory_block(unsigned long section_nr)
687
{
688
unsigned long block_id = memory_block_id(section_nr);
689
690
return find_memory_block_by_id(block_id);
691
}
692
693
static struct attribute *memory_memblk_attrs[] = {
694
&dev_attr_phys_index.attr,
695
&dev_attr_state.attr,
696
&dev_attr_phys_device.attr,
697
&dev_attr_removable.attr,
698
#ifdef CONFIG_MEMORY_HOTREMOVE
699
&dev_attr_valid_zones.attr,
700
#endif
701
NULL
702
};
703
704
static const struct attribute_group memory_memblk_attr_group = {
705
.attrs = memory_memblk_attrs,
706
};
707
708
static const struct attribute_group *memory_memblk_attr_groups[] = {
709
&memory_memblk_attr_group,
710
NULL,
711
};
712
713
static int __add_memory_block(struct memory_block *memory)
714
{
715
int ret;
716
717
memory->dev.bus = &memory_subsys;
718
memory->dev.id = memory->start_section_nr / sections_per_block;
719
memory->dev.release = memory_block_release;
720
memory->dev.groups = memory_memblk_attr_groups;
721
memory->dev.offline = memory->state == MEM_OFFLINE;
722
723
ret = device_register(&memory->dev);
724
if (ret) {
725
put_device(&memory->dev);
726
return ret;
727
}
728
ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
729
GFP_KERNEL));
730
if (ret)
731
device_unregister(&memory->dev);
732
733
return ret;
734
}
735
736
static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
737
int nid)
738
{
739
const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
740
const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
741
struct zone *zone, *matching_zone = NULL;
742
pg_data_t *pgdat = NODE_DATA(nid);
743
int i;
744
745
/*
746
* This logic only works for early memory, when the applicable zones
747
* already span the memory block. We don't expect overlapping zones on
748
* a single node for early memory. So if we're told that some PFNs
749
* of a node fall into this memory block, we can assume that all node
750
* zones that intersect with the memory block are actually applicable.
751
* No need to look at the memmap.
752
*/
753
for (i = 0; i < MAX_NR_ZONES; i++) {
754
zone = pgdat->node_zones + i;
755
if (!populated_zone(zone))
756
continue;
757
if (!zone_intersects(zone, start_pfn, nr_pages))
758
continue;
759
if (!matching_zone) {
760
matching_zone = zone;
761
continue;
762
}
763
/* Spans multiple zones ... */
764
matching_zone = NULL;
765
break;
766
}
767
return matching_zone;
768
}
769
770
#ifdef CONFIG_NUMA
771
/**
772
* memory_block_add_nid() - Indicate that system RAM falling into this memory
773
* block device (partially) belongs to the given node.
774
* @mem: The memory block device.
775
* @nid: The node id.
776
* @context: The memory initialization context.
777
*
778
* Indicate that system RAM falling into this memory block (partially) belongs
779
* to the given node. If the context indicates ("early") that we are adding the
780
* node during node device subsystem initialization, this will also properly
781
* set/adjust mem->zone based on the zone ranges of the given node.
782
*/
783
void memory_block_add_nid(struct memory_block *mem, int nid,
784
enum meminit_context context)
785
{
786
if (context == MEMINIT_EARLY && mem->nid != nid) {
787
/*
788
* For early memory we have to determine the zone when setting
789
* the node id and handle multiple nodes spanning a single
790
* memory block by indicate via zone == NULL that we're not
791
* dealing with a single zone. So if we're setting the node id
792
* the first time, determine if there is a single zone. If we're
793
* setting the node id a second time to a different node,
794
* invalidate the single detected zone.
795
*/
796
if (mem->nid == NUMA_NO_NODE)
797
mem->zone = early_node_zone_for_memory_block(mem, nid);
798
else
799
mem->zone = NULL;
800
}
801
802
/*
803
* If this memory block spans multiple nodes, we only indicate
804
* the last processed node. If we span multiple nodes (not applicable
805
* to hotplugged memory), zone == NULL will prohibit memory offlining
806
* and consequently unplug.
807
*/
808
mem->nid = nid;
809
}
810
#endif
811
812
static int add_memory_block(unsigned long block_id, unsigned long state,
813
struct vmem_altmap *altmap,
814
struct memory_group *group)
815
{
816
struct memory_block *mem;
817
int ret = 0;
818
819
mem = find_memory_block_by_id(block_id);
820
if (mem) {
821
put_device(&mem->dev);
822
return -EEXIST;
823
}
824
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
825
if (!mem)
826
return -ENOMEM;
827
828
mem->start_section_nr = block_id * sections_per_block;
829
mem->state = state;
830
mem->nid = NUMA_NO_NODE;
831
mem->altmap = altmap;
832
INIT_LIST_HEAD(&mem->group_next);
833
834
#ifndef CONFIG_NUMA
835
if (state == MEM_ONLINE)
836
/*
837
* MEM_ONLINE at this point implies early memory. With NUMA,
838
* we'll determine the zone when setting the node id via
839
* memory_block_add_nid(). Memory hotplug updated the zone
840
* manually when memory onlining/offlining succeeds.
841
*/
842
mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
843
#endif /* CONFIG_NUMA */
844
845
ret = __add_memory_block(mem);
846
if (ret)
847
return ret;
848
849
if (group) {
850
mem->group = group;
851
list_add(&mem->group_next, &group->memory_blocks);
852
}
853
854
return 0;
855
}
856
857
static int add_hotplug_memory_block(unsigned long block_id,
858
struct vmem_altmap *altmap,
859
struct memory_group *group)
860
{
861
return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
862
}
863
864
static void remove_memory_block(struct memory_block *memory)
865
{
866
if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
867
return;
868
869
WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
870
871
if (memory->group) {
872
list_del(&memory->group_next);
873
memory->group = NULL;
874
}
875
876
/* drop the ref. we got via find_memory_block() */
877
put_device(&memory->dev);
878
device_unregister(&memory->dev);
879
}
880
881
/*
882
* Create memory block devices for the given memory area. Start and size
883
* have to be aligned to memory block granularity. Memory block devices
884
* will be initialized as offline.
885
*
886
* Called under device_hotplug_lock.
887
*/
888
int create_memory_block_devices(unsigned long start, unsigned long size,
889
struct vmem_altmap *altmap,
890
struct memory_group *group)
891
{
892
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
893
unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
894
struct memory_block *mem;
895
unsigned long block_id;
896
int ret = 0;
897
898
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
899
!IS_ALIGNED(size, memory_block_size_bytes())))
900
return -EINVAL;
901
902
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
903
ret = add_hotplug_memory_block(block_id, altmap, group);
904
if (ret)
905
break;
906
}
907
if (ret) {
908
end_block_id = block_id;
909
for (block_id = start_block_id; block_id != end_block_id;
910
block_id++) {
911
mem = find_memory_block_by_id(block_id);
912
if (WARN_ON_ONCE(!mem))
913
continue;
914
remove_memory_block(mem);
915
}
916
}
917
return ret;
918
}
919
920
/*
921
* Remove memory block devices for the given memory area. Start and size
922
* have to be aligned to memory block granularity. Memory block devices
923
* have to be offline.
924
*
925
* Called under device_hotplug_lock.
926
*/
927
void remove_memory_block_devices(unsigned long start, unsigned long size)
928
{
929
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
930
const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
931
struct memory_block *mem;
932
unsigned long block_id;
933
934
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
935
!IS_ALIGNED(size, memory_block_size_bytes())))
936
return;
937
938
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
939
mem = find_memory_block_by_id(block_id);
940
if (WARN_ON_ONCE(!mem))
941
continue;
942
num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
943
unregister_memory_block_under_nodes(mem);
944
remove_memory_block(mem);
945
}
946
}
947
948
static struct attribute *memory_root_attrs[] = {
949
#ifdef CONFIG_ARCH_MEMORY_PROBE
950
&dev_attr_probe.attr,
951
#endif
952
953
#ifdef CONFIG_MEMORY_FAILURE
954
&dev_attr_soft_offline_page.attr,
955
&dev_attr_hard_offline_page.attr,
956
#endif
957
958
&dev_attr_block_size_bytes.attr,
959
&dev_attr_auto_online_blocks.attr,
960
#ifdef CONFIG_CRASH_HOTPLUG
961
&dev_attr_crash_hotplug.attr,
962
#endif
963
NULL
964
};
965
966
static const struct attribute_group memory_root_attr_group = {
967
.attrs = memory_root_attrs,
968
};
969
970
static const struct attribute_group *memory_root_attr_groups[] = {
971
&memory_root_attr_group,
972
NULL,
973
};
974
975
/*
976
* Initialize the sysfs support for memory devices. At the time this function
977
* is called, we cannot have concurrent creation/deletion of memory block
978
* devices, the device_hotplug_lock is not needed.
979
*/
980
void __init memory_dev_init(void)
981
{
982
int ret;
983
unsigned long block_sz, block_id, nr;
984
985
/* Validate the configured memory block size */
986
block_sz = memory_block_size_bytes();
987
if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
988
panic("Memory block size not suitable: 0x%lx\n", block_sz);
989
sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
990
991
ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
992
if (ret)
993
panic("%s() failed to register subsystem: %d\n", __func__, ret);
994
995
/*
996
* Create entries for memory sections that were found during boot
997
* and have been initialized. Use @block_id to track the last
998
* handled block and initialize it to an invalid value (ULONG_MAX)
999
* to bypass the block ID matching check for the first present
1000
* block so that it can be covered.
1001
*/
1002
block_id = ULONG_MAX;
1003
for_each_present_section_nr(0, nr) {
1004
if (block_id != ULONG_MAX && memory_block_id(nr) == block_id)
1005
continue;
1006
1007
block_id = memory_block_id(nr);
1008
ret = add_memory_block(block_id, MEM_ONLINE, NULL, NULL);
1009
if (ret) {
1010
panic("%s() failed to add memory block: %d\n",
1011
__func__, ret);
1012
}
1013
}
1014
}
1015
1016
/**
1017
* walk_memory_blocks - walk through all present memory blocks overlapped
1018
* by the range [start, start + size)
1019
*
1020
* @start: start address of the memory range
1021
* @size: size of the memory range
1022
* @arg: argument passed to func
1023
* @func: callback for each memory section walked
1024
*
1025
* This function walks through all present memory blocks overlapped by the
1026
* range [start, start + size), calling func on each memory block.
1027
*
1028
* In case func() returns an error, walking is aborted and the error is
1029
* returned.
1030
*
1031
* Called under device_hotplug_lock.
1032
*/
1033
int walk_memory_blocks(unsigned long start, unsigned long size,
1034
void *arg, walk_memory_blocks_func_t func)
1035
{
1036
const unsigned long start_block_id = phys_to_block_id(start);
1037
const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1038
struct memory_block *mem;
1039
unsigned long block_id;
1040
int ret = 0;
1041
1042
if (!size)
1043
return 0;
1044
1045
for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1046
mem = find_memory_block_by_id(block_id);
1047
if (!mem)
1048
continue;
1049
1050
ret = func(mem, arg);
1051
put_device(&mem->dev);
1052
if (ret)
1053
break;
1054
}
1055
return ret;
1056
}
1057
1058
struct for_each_memory_block_cb_data {
1059
walk_memory_blocks_func_t func;
1060
void *arg;
1061
};
1062
1063
static int for_each_memory_block_cb(struct device *dev, void *data)
1064
{
1065
struct memory_block *mem = to_memory_block(dev);
1066
struct for_each_memory_block_cb_data *cb_data = data;
1067
1068
return cb_data->func(mem, cb_data->arg);
1069
}
1070
1071
/**
1072
* for_each_memory_block - walk through all present memory blocks
1073
*
1074
* @arg: argument passed to func
1075
* @func: callback for each memory block walked
1076
*
1077
* This function walks through all present memory blocks, calling func on
1078
* each memory block.
1079
*
1080
* In case func() returns an error, walking is aborted and the error is
1081
* returned.
1082
*/
1083
int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1084
{
1085
struct for_each_memory_block_cb_data cb_data = {
1086
.func = func,
1087
.arg = arg,
1088
};
1089
1090
return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1091
for_each_memory_block_cb);
1092
}
1093
1094
/*
1095
* This is an internal helper to unify allocation and initialization of
1096
* memory groups. Note that the passed memory group will be copied to a
1097
* dynamically allocated memory group. After this call, the passed
1098
* memory group should no longer be used.
1099
*/
1100
static int memory_group_register(struct memory_group group)
1101
{
1102
struct memory_group *new_group;
1103
uint32_t mgid;
1104
int ret;
1105
1106
if (!node_possible(group.nid))
1107
return -EINVAL;
1108
1109
new_group = kzalloc(sizeof(group), GFP_KERNEL);
1110
if (!new_group)
1111
return -ENOMEM;
1112
*new_group = group;
1113
INIT_LIST_HEAD(&new_group->memory_blocks);
1114
1115
ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1116
GFP_KERNEL);
1117
if (ret) {
1118
kfree(new_group);
1119
return ret;
1120
} else if (group.is_dynamic) {
1121
xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1122
}
1123
return mgid;
1124
}
1125
1126
/**
1127
* memory_group_register_static() - Register a static memory group.
1128
* @nid: The node id.
1129
* @max_pages: The maximum number of pages we'll have in this static memory
1130
* group.
1131
*
1132
* Register a new static memory group and return the memory group id.
1133
* All memory in the group belongs to a single unit, such as a DIMM. All
1134
* memory belonging to a static memory group is added in one go to be removed
1135
* in one go -- it's static.
1136
*
1137
* Returns an error if out of memory, if the node id is invalid, if no new
1138
* memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1139
* returns the new memory group id.
1140
*/
1141
int memory_group_register_static(int nid, unsigned long max_pages)
1142
{
1143
struct memory_group group = {
1144
.nid = nid,
1145
.s = {
1146
.max_pages = max_pages,
1147
},
1148
};
1149
1150
if (!max_pages)
1151
return -EINVAL;
1152
return memory_group_register(group);
1153
}
1154
EXPORT_SYMBOL_GPL(memory_group_register_static);
1155
1156
/**
1157
* memory_group_register_dynamic() - Register a dynamic memory group.
1158
* @nid: The node id.
1159
* @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1160
* memory group.
1161
*
1162
* Register a new dynamic memory group and return the memory group id.
1163
* Memory within a dynamic memory group is added/removed dynamically
1164
* in unit_pages.
1165
*
1166
* Returns an error if out of memory, if the node id is invalid, if no new
1167
* memory groups can be registered, or if unit_pages is invalid (0, not a
1168
* power of two, smaller than a single memory block). Otherwise, returns the
1169
* new memory group id.
1170
*/
1171
int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1172
{
1173
struct memory_group group = {
1174
.nid = nid,
1175
.is_dynamic = true,
1176
.d = {
1177
.unit_pages = unit_pages,
1178
},
1179
};
1180
1181
if (!unit_pages || !is_power_of_2(unit_pages) ||
1182
unit_pages < PHYS_PFN(memory_block_size_bytes()))
1183
return -EINVAL;
1184
return memory_group_register(group);
1185
}
1186
EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1187
1188
/**
1189
* memory_group_unregister() - Unregister a memory group.
1190
* @mgid: the memory group id
1191
*
1192
* Unregister a memory group. If any memory block still belongs to this
1193
* memory group, unregistering will fail.
1194
*
1195
* Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1196
* memory blocks still belong to this memory group and returns 0 if
1197
* unregistering succeeded.
1198
*/
1199
int memory_group_unregister(int mgid)
1200
{
1201
struct memory_group *group;
1202
1203
if (mgid < 0)
1204
return -EINVAL;
1205
1206
group = xa_load(&memory_groups, mgid);
1207
if (!group)
1208
return -EINVAL;
1209
if (!list_empty(&group->memory_blocks))
1210
return -EBUSY;
1211
xa_erase(&memory_groups, mgid);
1212
kfree(group);
1213
return 0;
1214
}
1215
EXPORT_SYMBOL_GPL(memory_group_unregister);
1216
1217
/*
1218
* This is an internal helper only to be used in core memory hotplug code to
1219
* lookup a memory group. We don't care about locking, as we don't expect a
1220
* memory group to get unregistered while adding memory to it -- because
1221
* the group and the memory is managed by the same driver.
1222
*/
1223
struct memory_group *memory_group_find_by_id(int mgid)
1224
{
1225
return xa_load(&memory_groups, mgid);
1226
}
1227
1228
/*
1229
* This is an internal helper only to be used in core memory hotplug code to
1230
* walk all dynamic memory groups excluding a given memory group, either
1231
* belonging to a specific node, or belonging to any node.
1232
*/
1233
int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1234
struct memory_group *excluded, void *arg)
1235
{
1236
struct memory_group *group;
1237
unsigned long index;
1238
int ret = 0;
1239
1240
xa_for_each_marked(&memory_groups, index, group,
1241
MEMORY_GROUP_MARK_DYNAMIC) {
1242
if (group == excluded)
1243
continue;
1244
#ifdef CONFIG_NUMA
1245
if (nid != NUMA_NO_NODE && group->nid != nid)
1246
continue;
1247
#endif /* CONFIG_NUMA */
1248
ret = func(group, arg);
1249
if (ret)
1250
break;
1251
}
1252
return ret;
1253
}
1254
1255
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1256
void memblk_nr_poison_inc(unsigned long pfn)
1257
{
1258
const unsigned long block_id = pfn_to_block_id(pfn);
1259
struct memory_block *mem = find_memory_block_by_id(block_id);
1260
1261
if (mem)
1262
atomic_long_inc(&mem->nr_hwpoison);
1263
}
1264
1265
void memblk_nr_poison_sub(unsigned long pfn, long i)
1266
{
1267
const unsigned long block_id = pfn_to_block_id(pfn);
1268
struct memory_block *mem = find_memory_block_by_id(block_id);
1269
1270
if (mem)
1271
atomic_long_sub(i, &mem->nr_hwpoison);
1272
}
1273
1274
static unsigned long memblk_nr_poison(struct memory_block *mem)
1275
{
1276
return atomic_long_read(&mem->nr_hwpoison);
1277
}
1278
#endif
1279
1280