Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/memory.c
48955 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Memory subsystem support
4
*
5
* Written by Matt Tolentino <[email protected]>
6
* Dave Hansen <[email protected]>
7
*
8
* This file provides the necessary infrastructure to represent
9
* a SPARSEMEM-memory-model system's physical memory in /sysfs.
10
* All arch-independent code that assumes MEMORY_HOTPLUG requires
11
* SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12
*/
13
14
#include <linux/module.h>
15
#include <linux/init.h>
16
#include <linux/topology.h>
17
#include <linux/capability.h>
18
#include <linux/device.h>
19
#include <linux/memory.h>
20
#include <linux/memory_hotplug.h>
21
#include <linux/mm.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24
#include <linux/xarray.h>
25
#include <linux/export.h>
26
27
#include <linux/atomic.h>
28
#include <linux/uaccess.h>
29
30
#define MEMORY_CLASS_NAME "memory"
31
32
static const char *const online_type_to_str[] = {
33
[MMOP_OFFLINE] = "offline",
34
[MMOP_ONLINE] = "online",
35
[MMOP_ONLINE_KERNEL] = "online_kernel",
36
[MMOP_ONLINE_MOVABLE] = "online_movable",
37
};
38
39
int mhp_online_type_from_str(const char *str)
40
{
41
int i;
42
43
for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
44
if (sysfs_streq(str, online_type_to_str[i]))
45
return i;
46
}
47
return -EINVAL;
48
}
49
50
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
51
52
int sections_per_block;
53
EXPORT_SYMBOL(sections_per_block);
54
55
static int memory_subsys_online(struct device *dev);
56
static int memory_subsys_offline(struct device *dev);
57
58
static const struct bus_type memory_subsys = {
59
.name = MEMORY_CLASS_NAME,
60
.dev_name = MEMORY_CLASS_NAME,
61
.online = memory_subsys_online,
62
.offline = memory_subsys_offline,
63
};
64
65
/*
66
* Memory blocks are cached in a local radix tree to avoid
67
* a costly linear search for the corresponding device on
68
* the subsystem bus.
69
*/
70
static DEFINE_XARRAY(memory_blocks);
71
72
/*
73
* Memory groups, indexed by memory group id (mgid).
74
*/
75
static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
76
#define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1
77
78
static BLOCKING_NOTIFIER_HEAD(memory_chain);
79
80
int register_memory_notifier(struct notifier_block *nb)
81
{
82
return blocking_notifier_chain_register(&memory_chain, nb);
83
}
84
EXPORT_SYMBOL(register_memory_notifier);
85
86
void unregister_memory_notifier(struct notifier_block *nb)
87
{
88
blocking_notifier_chain_unregister(&memory_chain, nb);
89
}
90
EXPORT_SYMBOL(unregister_memory_notifier);
91
92
static void memory_block_release(struct device *dev)
93
{
94
struct memory_block *mem = to_memory_block(dev);
95
/* Verify that the altmap is freed */
96
WARN_ON(mem->altmap);
97
kfree(mem);
98
}
99
100
101
/* Max block size to be set by memory_block_advise_max_size */
102
static unsigned long memory_block_advised_size;
103
static bool memory_block_advised_size_queried;
104
105
/**
106
* memory_block_advise_max_size() - advise memory hotplug on the max suggested
107
* block size, usually for alignment.
108
* @size: suggestion for maximum block size. must be aligned on power of 2.
109
*
110
* Early boot software (pre-allocator init) may advise archs on the max block
111
* size. This value can only decrease after initialization, as the intent is
112
* to identify the largest supported alignment for all sources.
113
*
114
* Use of this value is arch-defined, as is min/max block size.
115
*
116
* Return: 0 on success
117
* -EINVAL if size is 0 or not pow2 aligned
118
* -EBUSY if value has already been probed
119
*/
120
int __init memory_block_advise_max_size(unsigned long size)
121
{
122
if (!size || !is_power_of_2(size))
123
return -EINVAL;
124
125
if (memory_block_advised_size_queried)
126
return -EBUSY;
127
128
if (memory_block_advised_size)
129
memory_block_advised_size = min(memory_block_advised_size, size);
130
else
131
memory_block_advised_size = size;
132
133
return 0;
134
}
135
136
/**
137
* memory_block_advised_max_size() - query advised max hotplug block size.
138
*
139
* After the first call, the value can never change. Callers looking for the
140
* actual block size should use memory_block_size_bytes. This interface is
141
* intended for use by arch-init when initializing the hotplug block size.
142
*
143
* Return: advised size in bytes, or 0 if never set.
144
*/
145
unsigned long memory_block_advised_max_size(void)
146
{
147
memory_block_advised_size_queried = true;
148
return memory_block_advised_size;
149
}
150
151
unsigned long __weak memory_block_size_bytes(void)
152
{
153
return MIN_MEMORY_BLOCK_SIZE;
154
}
155
EXPORT_SYMBOL_GPL(memory_block_size_bytes);
156
157
/* Show the memory block ID, relative to the memory block size */
158
static ssize_t phys_index_show(struct device *dev,
159
struct device_attribute *attr, char *buf)
160
{
161
struct memory_block *mem = to_memory_block(dev);
162
163
return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
164
}
165
166
/*
167
* Legacy interface that we cannot remove. Always indicate "removable"
168
* with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
169
*/
170
static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
171
char *buf)
172
{
173
return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
174
}
175
176
/*
177
* online, offline, going offline, etc.
178
*/
179
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
180
char *buf)
181
{
182
struct memory_block *mem = to_memory_block(dev);
183
const char *output;
184
185
/*
186
* We can probably put these states in a nice little array
187
* so that they're not open-coded
188
*/
189
switch (mem->state) {
190
case MEM_ONLINE:
191
output = "online";
192
break;
193
case MEM_OFFLINE:
194
output = "offline";
195
break;
196
case MEM_GOING_OFFLINE:
197
output = "going-offline";
198
break;
199
default:
200
WARN_ON(1);
201
return sysfs_emit(buf, "ERROR-UNKNOWN-%d\n", mem->state);
202
}
203
204
return sysfs_emit(buf, "%s\n", output);
205
}
206
207
int memory_notify(enum memory_block_state state, void *v)
208
{
209
return blocking_notifier_call_chain(&memory_chain, state, v);
210
}
211
212
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
213
static unsigned long memblk_nr_poison(struct memory_block *mem);
214
#else
215
static inline unsigned long memblk_nr_poison(struct memory_block *mem)
216
{
217
return 0;
218
}
219
#endif
220
221
/*
222
* Must acquire mem_hotplug_lock in write mode.
223
*/
224
static int memory_block_online(struct memory_block *mem)
225
{
226
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
227
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228
unsigned long nr_vmemmap_pages = 0;
229
struct zone *zone;
230
int ret;
231
232
if (memblk_nr_poison(mem))
233
return -EHWPOISON;
234
235
zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
236
start_pfn, nr_pages);
237
238
/*
239
* Although vmemmap pages have a different lifecycle than the pages
240
* they describe (they remain until the memory is unplugged), doing
241
* their initialization and accounting at memory onlining/offlining
242
* stage helps to keep accounting easier to follow - e.g vmemmaps
243
* belong to the same zone as the memory they backed.
244
*/
245
if (mem->altmap)
246
nr_vmemmap_pages = mem->altmap->free;
247
248
mem_hotplug_begin();
249
if (nr_vmemmap_pages) {
250
ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
251
if (ret)
252
goto out;
253
}
254
255
ret = online_pages(start_pfn + nr_vmemmap_pages,
256
nr_pages - nr_vmemmap_pages, zone, mem->group);
257
if (ret) {
258
if (nr_vmemmap_pages)
259
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
260
goto out;
261
}
262
263
/*
264
* Account once onlining succeeded. If the zone was unpopulated, it is
265
* now already properly populated.
266
*/
267
if (nr_vmemmap_pages)
268
adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
269
nr_vmemmap_pages);
270
271
mem->zone = zone;
272
out:
273
mem_hotplug_done();
274
return ret;
275
}
276
277
/*
278
* Must acquire mem_hotplug_lock in write mode.
279
*/
280
static int memory_block_offline(struct memory_block *mem)
281
{
282
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
283
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
284
unsigned long nr_vmemmap_pages = 0;
285
int ret;
286
287
if (!mem->zone)
288
return -EINVAL;
289
290
/*
291
* Unaccount before offlining, such that unpopulated zone and kthreads
292
* can properly be torn down in offline_pages().
293
*/
294
if (mem->altmap)
295
nr_vmemmap_pages = mem->altmap->free;
296
297
mem_hotplug_begin();
298
if (nr_vmemmap_pages)
299
adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
300
-nr_vmemmap_pages);
301
302
ret = offline_pages(start_pfn + nr_vmemmap_pages,
303
nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
304
if (ret) {
305
/* offline_pages() failed. Account back. */
306
if (nr_vmemmap_pages)
307
adjust_present_page_count(pfn_to_page(start_pfn),
308
mem->group, nr_vmemmap_pages);
309
goto out;
310
}
311
312
if (nr_vmemmap_pages)
313
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
314
315
mem->zone = NULL;
316
out:
317
mem_hotplug_done();
318
return ret;
319
}
320
321
/*
322
* MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
323
* OK to have direct references to sparsemem variables in here.
324
*/
325
static int
326
memory_block_action(struct memory_block *mem, unsigned long action)
327
{
328
int ret;
329
330
switch (action) {
331
case MEM_ONLINE:
332
ret = memory_block_online(mem);
333
break;
334
case MEM_OFFLINE:
335
ret = memory_block_offline(mem);
336
break;
337
default:
338
WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
339
"%ld\n", __func__, mem->start_section_nr, action, action);
340
ret = -EINVAL;
341
}
342
343
return ret;
344
}
345
346
static int memory_block_change_state(struct memory_block *mem,
347
unsigned long to_state, unsigned long from_state_req)
348
{
349
int ret = 0;
350
351
if (mem->state != from_state_req)
352
return -EINVAL;
353
354
if (to_state == MEM_OFFLINE)
355
mem->state = MEM_GOING_OFFLINE;
356
357
ret = memory_block_action(mem, to_state);
358
mem->state = ret ? from_state_req : to_state;
359
360
return ret;
361
}
362
363
/* The device lock serializes operations on memory_subsys_[online|offline] */
364
static int memory_subsys_online(struct device *dev)
365
{
366
struct memory_block *mem = to_memory_block(dev);
367
int ret;
368
369
if (mem->state == MEM_ONLINE)
370
return 0;
371
372
/*
373
* When called via device_online() without configuring the online_type,
374
* we want to default to MMOP_ONLINE.
375
*/
376
if (mem->online_type == MMOP_OFFLINE)
377
mem->online_type = MMOP_ONLINE;
378
379
ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
380
mem->online_type = MMOP_OFFLINE;
381
382
return ret;
383
}
384
385
static int memory_subsys_offline(struct device *dev)
386
{
387
struct memory_block *mem = to_memory_block(dev);
388
389
if (mem->state == MEM_OFFLINE)
390
return 0;
391
392
return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
393
}
394
395
static ssize_t state_store(struct device *dev, struct device_attribute *attr,
396
const char *buf, size_t count)
397
{
398
const int online_type = mhp_online_type_from_str(buf);
399
struct memory_block *mem = to_memory_block(dev);
400
int ret;
401
402
if (online_type < 0)
403
return -EINVAL;
404
405
ret = lock_device_hotplug_sysfs();
406
if (ret)
407
return ret;
408
409
switch (online_type) {
410
case MMOP_ONLINE_KERNEL:
411
case MMOP_ONLINE_MOVABLE:
412
case MMOP_ONLINE:
413
/* mem->online_type is protected by device_hotplug_lock */
414
mem->online_type = online_type;
415
ret = device_online(&mem->dev);
416
break;
417
case MMOP_OFFLINE:
418
ret = device_offline(&mem->dev);
419
break;
420
default:
421
ret = -EINVAL; /* should never happen */
422
}
423
424
unlock_device_hotplug();
425
426
if (ret < 0)
427
return ret;
428
if (ret)
429
return -EINVAL;
430
431
return count;
432
}
433
434
/*
435
* Legacy interface that we cannot remove: s390x exposes the storage increment
436
* covered by a memory block, allowing for identifying which memory blocks
437
* comprise a storage increment. Since a memory block spans complete
438
* storage increments nowadays, this interface is basically unused. Other
439
* archs never exposed != 0.
440
*/
441
static ssize_t phys_device_show(struct device *dev,
442
struct device_attribute *attr, char *buf)
443
{
444
struct memory_block *mem = to_memory_block(dev);
445
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
446
447
return sysfs_emit(buf, "%d\n",
448
arch_get_memory_phys_device(start_pfn));
449
}
450
451
#ifdef CONFIG_MEMORY_HOTREMOVE
452
static int print_allowed_zone(char *buf, int len, int nid,
453
struct memory_group *group,
454
unsigned long start_pfn, unsigned long nr_pages,
455
int online_type, struct zone *default_zone)
456
{
457
struct zone *zone;
458
459
zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
460
if (zone == default_zone)
461
return 0;
462
463
return sysfs_emit_at(buf, len, " %s", zone->name);
464
}
465
466
static ssize_t valid_zones_show(struct device *dev,
467
struct device_attribute *attr, char *buf)
468
{
469
struct memory_block *mem = to_memory_block(dev);
470
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
471
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
472
struct memory_group *group = mem->group;
473
struct zone *default_zone;
474
int nid = mem->nid;
475
int len;
476
477
/*
478
* Check the existing zone. Make sure that we do that only on the
479
* online nodes otherwise the page_zone is not reliable
480
*/
481
if (mem->state == MEM_ONLINE) {
482
/*
483
* If !mem->zone, the memory block spans multiple zones and
484
* cannot get offlined.
485
*/
486
return sysfs_emit(buf, "%s\n",
487
mem->zone ? mem->zone->name : "none");
488
}
489
490
default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
491
start_pfn, nr_pages);
492
493
len = sysfs_emit(buf, "%s", default_zone->name);
494
len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
495
MMOP_ONLINE_KERNEL, default_zone);
496
len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
497
MMOP_ONLINE_MOVABLE, default_zone);
498
len += sysfs_emit_at(buf, len, "\n");
499
return len;
500
}
501
static DEVICE_ATTR_RO(valid_zones);
502
#endif
503
504
static DEVICE_ATTR_RO(phys_index);
505
static DEVICE_ATTR_RW(state);
506
static DEVICE_ATTR_RO(phys_device);
507
static DEVICE_ATTR_RO(removable);
508
509
/*
510
* Show the memory block size (shared by all memory blocks).
511
*/
512
static ssize_t block_size_bytes_show(struct device *dev,
513
struct device_attribute *attr, char *buf)
514
{
515
return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
516
}
517
518
static DEVICE_ATTR_RO(block_size_bytes);
519
520
/*
521
* Memory auto online policy.
522
*/
523
524
static ssize_t auto_online_blocks_show(struct device *dev,
525
struct device_attribute *attr, char *buf)
526
{
527
return sysfs_emit(buf, "%s\n",
528
online_type_to_str[mhp_get_default_online_type()]);
529
}
530
531
static ssize_t auto_online_blocks_store(struct device *dev,
532
struct device_attribute *attr,
533
const char *buf, size_t count)
534
{
535
const int online_type = mhp_online_type_from_str(buf);
536
537
if (online_type < 0)
538
return -EINVAL;
539
540
mhp_set_default_online_type(online_type);
541
return count;
542
}
543
544
static DEVICE_ATTR_RW(auto_online_blocks);
545
546
#ifdef CONFIG_CRASH_HOTPLUG
547
#include <linux/kexec.h>
548
static ssize_t crash_hotplug_show(struct device *dev,
549
struct device_attribute *attr, char *buf)
550
{
551
return sysfs_emit(buf, "%d\n", crash_check_hotplug_support());
552
}
553
static DEVICE_ATTR_RO(crash_hotplug);
554
#endif
555
556
/*
557
* Some architectures will have custom drivers to do this, and
558
* will not need to do it from userspace. The fake hot-add code
559
* as well as ppc64 will do all of their discovery in userspace
560
* and will require this interface.
561
*/
562
#ifdef CONFIG_ARCH_MEMORY_PROBE
563
static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
564
const char *buf, size_t count)
565
{
566
u64 phys_addr;
567
int nid, ret;
568
unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
569
570
ret = kstrtoull(buf, 0, &phys_addr);
571
if (ret)
572
return ret;
573
574
if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
575
return -EINVAL;
576
577
ret = lock_device_hotplug_sysfs();
578
if (ret)
579
return ret;
580
581
nid = memory_add_physaddr_to_nid(phys_addr);
582
ret = __add_memory(nid, phys_addr,
583
MIN_MEMORY_BLOCK_SIZE * sections_per_block,
584
MHP_NONE);
585
586
if (ret)
587
goto out;
588
589
ret = count;
590
out:
591
unlock_device_hotplug();
592
return ret;
593
}
594
595
static DEVICE_ATTR_WO(probe);
596
#endif
597
598
#ifdef CONFIG_MEMORY_FAILURE
599
/*
600
* Support for offlining pages of memory
601
*/
602
603
/* Soft offline a page */
604
static ssize_t soft_offline_page_store(struct device *dev,
605
struct device_attribute *attr,
606
const char *buf, size_t count)
607
{
608
int ret;
609
u64 pfn;
610
if (!capable(CAP_SYS_ADMIN))
611
return -EPERM;
612
if (kstrtoull(buf, 0, &pfn) < 0)
613
return -EINVAL;
614
pfn >>= PAGE_SHIFT;
615
ret = soft_offline_page(pfn, 0);
616
return ret == 0 ? count : ret;
617
}
618
619
/* Forcibly offline a page, including killing processes. */
620
static ssize_t hard_offline_page_store(struct device *dev,
621
struct device_attribute *attr,
622
const char *buf, size_t count)
623
{
624
int ret;
625
u64 pfn;
626
if (!capable(CAP_SYS_ADMIN))
627
return -EPERM;
628
if (kstrtoull(buf, 0, &pfn) < 0)
629
return -EINVAL;
630
pfn >>= PAGE_SHIFT;
631
ret = memory_failure(pfn, MF_SW_SIMULATED);
632
if (ret == -EOPNOTSUPP)
633
ret = 0;
634
return ret ? ret : count;
635
}
636
637
static DEVICE_ATTR_WO(soft_offline_page);
638
static DEVICE_ATTR_WO(hard_offline_page);
639
#endif
640
641
/* See phys_device_show(). */
642
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
643
{
644
return 0;
645
}
646
647
/*
648
* A reference for the returned memory block device is acquired.
649
*
650
* Called under device_hotplug_lock.
651
*/
652
struct memory_block *find_memory_block_by_id(unsigned long block_id)
653
{
654
struct memory_block *mem;
655
656
mem = xa_load(&memory_blocks, block_id);
657
if (mem)
658
get_device(&mem->dev);
659
return mem;
660
}
661
662
/*
663
* Called under device_hotplug_lock.
664
*/
665
struct memory_block *find_memory_block(unsigned long section_nr)
666
{
667
unsigned long block_id = memory_block_id(section_nr);
668
669
return find_memory_block_by_id(block_id);
670
}
671
672
static struct attribute *memory_memblk_attrs[] = {
673
&dev_attr_phys_index.attr,
674
&dev_attr_state.attr,
675
&dev_attr_phys_device.attr,
676
&dev_attr_removable.attr,
677
#ifdef CONFIG_MEMORY_HOTREMOVE
678
&dev_attr_valid_zones.attr,
679
#endif
680
NULL
681
};
682
683
static const struct attribute_group memory_memblk_attr_group = {
684
.attrs = memory_memblk_attrs,
685
};
686
687
static const struct attribute_group *memory_memblk_attr_groups[] = {
688
&memory_memblk_attr_group,
689
NULL,
690
};
691
692
static int __add_memory_block(struct memory_block *memory)
693
{
694
int ret;
695
696
memory->dev.bus = &memory_subsys;
697
memory->dev.id = memory->start_section_nr / sections_per_block;
698
memory->dev.release = memory_block_release;
699
memory->dev.groups = memory_memblk_attr_groups;
700
memory->dev.offline = memory->state == MEM_OFFLINE;
701
702
ret = device_register(&memory->dev);
703
if (ret) {
704
put_device(&memory->dev);
705
return ret;
706
}
707
ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
708
GFP_KERNEL));
709
if (ret)
710
device_unregister(&memory->dev);
711
712
return ret;
713
}
714
715
static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
716
int nid)
717
{
718
const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
719
const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
720
struct zone *zone, *matching_zone = NULL;
721
pg_data_t *pgdat = NODE_DATA(nid);
722
int i;
723
724
/*
725
* This logic only works for early memory, when the applicable zones
726
* already span the memory block. We don't expect overlapping zones on
727
* a single node for early memory. So if we're told that some PFNs
728
* of a node fall into this memory block, we can assume that all node
729
* zones that intersect with the memory block are actually applicable.
730
* No need to look at the memmap.
731
*/
732
for (i = 0; i < MAX_NR_ZONES; i++) {
733
zone = pgdat->node_zones + i;
734
if (!populated_zone(zone))
735
continue;
736
if (!zone_intersects(zone, start_pfn, nr_pages))
737
continue;
738
if (!matching_zone) {
739
matching_zone = zone;
740
continue;
741
}
742
/* Spans multiple zones ... */
743
matching_zone = NULL;
744
break;
745
}
746
return matching_zone;
747
}
748
749
#ifdef CONFIG_NUMA
750
/**
751
* memory_block_add_nid_early() - Indicate that early system RAM falling into
752
* this memory block device (partially) belongs
753
* to the given node.
754
* @mem: The memory block device.
755
* @nid: The node id.
756
*
757
* Indicate that early system RAM falling into this memory block (partially)
758
* belongs to the given node. This will also properly set/adjust mem->zone based
759
* on the zone ranges of the given node.
760
*
761
* Memory hotplug handles this on memory block creation, where we can only have
762
* a single nid span a memory block.
763
*/
764
void memory_block_add_nid_early(struct memory_block *mem, int nid)
765
{
766
if (mem->nid != nid) {
767
/*
768
* For early memory we have to determine the zone when setting
769
* the node id and handle multiple nodes spanning a single
770
* memory block by indicate via zone == NULL that we're not
771
* dealing with a single zone. So if we're setting the node id
772
* the first time, determine if there is a single zone. If we're
773
* setting the node id a second time to a different node,
774
* invalidate the single detected zone.
775
*/
776
if (mem->nid == NUMA_NO_NODE)
777
mem->zone = early_node_zone_for_memory_block(mem, nid);
778
else
779
mem->zone = NULL;
780
/*
781
* If this memory block spans multiple nodes, we only indicate
782
* the last processed node. If we span multiple nodes (not applicable
783
* to hotplugged memory), zone == NULL will prohibit memory offlining
784
* and consequently unplug.
785
*/
786
mem->nid = nid;
787
}
788
}
789
#endif
790
791
static int add_memory_block(unsigned long block_id, int nid, unsigned long state,
792
struct vmem_altmap *altmap,
793
struct memory_group *group)
794
{
795
struct memory_block *mem;
796
int ret = 0;
797
798
mem = find_memory_block_by_id(block_id);
799
if (mem) {
800
put_device(&mem->dev);
801
return -EEXIST;
802
}
803
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
804
if (!mem)
805
return -ENOMEM;
806
807
mem->start_section_nr = block_id * sections_per_block;
808
mem->state = state;
809
mem->nid = nid;
810
mem->altmap = altmap;
811
INIT_LIST_HEAD(&mem->group_next);
812
813
#ifndef CONFIG_NUMA
814
if (state == MEM_ONLINE)
815
/*
816
* MEM_ONLINE at this point implies early memory. With NUMA,
817
* we'll determine the zone when setting the node id via
818
* memory_block_add_nid(). Memory hotplug updated the zone
819
* manually when memory onlining/offlining succeeds.
820
*/
821
mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
822
#endif /* CONFIG_NUMA */
823
824
ret = __add_memory_block(mem);
825
if (ret)
826
return ret;
827
828
if (group) {
829
mem->group = group;
830
list_add(&mem->group_next, &group->memory_blocks);
831
}
832
833
return 0;
834
}
835
836
static void remove_memory_block(struct memory_block *memory)
837
{
838
if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
839
return;
840
841
WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
842
843
if (memory->group) {
844
list_del(&memory->group_next);
845
memory->group = NULL;
846
}
847
848
/* drop the ref. we got via find_memory_block() */
849
put_device(&memory->dev);
850
device_unregister(&memory->dev);
851
}
852
853
/*
854
* Create memory block devices for the given memory area. Start and size
855
* have to be aligned to memory block granularity. Memory block devices
856
* will be initialized as offline.
857
*
858
* Called under device_hotplug_lock.
859
*/
860
int create_memory_block_devices(unsigned long start, unsigned long size,
861
int nid, struct vmem_altmap *altmap,
862
struct memory_group *group)
863
{
864
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
865
unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
866
struct memory_block *mem;
867
unsigned long block_id;
868
int ret = 0;
869
870
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
871
!IS_ALIGNED(size, memory_block_size_bytes())))
872
return -EINVAL;
873
874
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
875
ret = add_memory_block(block_id, nid, MEM_OFFLINE, altmap, group);
876
if (ret)
877
break;
878
}
879
if (ret) {
880
end_block_id = block_id;
881
for (block_id = start_block_id; block_id != end_block_id;
882
block_id++) {
883
mem = find_memory_block_by_id(block_id);
884
if (WARN_ON_ONCE(!mem))
885
continue;
886
remove_memory_block(mem);
887
}
888
}
889
return ret;
890
}
891
892
/*
893
* Remove memory block devices for the given memory area. Start and size
894
* have to be aligned to memory block granularity. Memory block devices
895
* have to be offline.
896
*
897
* Called under device_hotplug_lock.
898
*/
899
void remove_memory_block_devices(unsigned long start, unsigned long size)
900
{
901
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
902
const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
903
struct memory_block *mem;
904
unsigned long block_id;
905
906
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
907
!IS_ALIGNED(size, memory_block_size_bytes())))
908
return;
909
910
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
911
mem = find_memory_block_by_id(block_id);
912
if (WARN_ON_ONCE(!mem))
913
continue;
914
num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
915
unregister_memory_block_under_nodes(mem);
916
remove_memory_block(mem);
917
}
918
}
919
920
static struct attribute *memory_root_attrs[] = {
921
#ifdef CONFIG_ARCH_MEMORY_PROBE
922
&dev_attr_probe.attr,
923
#endif
924
925
#ifdef CONFIG_MEMORY_FAILURE
926
&dev_attr_soft_offline_page.attr,
927
&dev_attr_hard_offline_page.attr,
928
#endif
929
930
&dev_attr_block_size_bytes.attr,
931
&dev_attr_auto_online_blocks.attr,
932
#ifdef CONFIG_CRASH_HOTPLUG
933
&dev_attr_crash_hotplug.attr,
934
#endif
935
NULL
936
};
937
938
static const struct attribute_group memory_root_attr_group = {
939
.attrs = memory_root_attrs,
940
};
941
942
static const struct attribute_group *memory_root_attr_groups[] = {
943
&memory_root_attr_group,
944
NULL,
945
};
946
947
/*
948
* Initialize the sysfs support for memory devices. At the time this function
949
* is called, we cannot have concurrent creation/deletion of memory block
950
* devices, the device_hotplug_lock is not needed.
951
*/
952
void __init memory_dev_init(void)
953
{
954
int ret;
955
unsigned long block_sz, block_id, nr;
956
957
/* Validate the configured memory block size */
958
block_sz = memory_block_size_bytes();
959
if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
960
panic("Memory block size not suitable: 0x%lx\n", block_sz);
961
sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
962
963
ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
964
if (ret)
965
panic("%s() failed to register subsystem: %d\n", __func__, ret);
966
967
/*
968
* Create entries for memory sections that were found during boot
969
* and have been initialized. Use @block_id to track the last
970
* handled block and initialize it to an invalid value (ULONG_MAX)
971
* to bypass the block ID matching check for the first present
972
* block so that it can be covered.
973
*/
974
block_id = ULONG_MAX;
975
for_each_present_section_nr(0, nr) {
976
if (block_id != ULONG_MAX && memory_block_id(nr) == block_id)
977
continue;
978
979
block_id = memory_block_id(nr);
980
ret = add_memory_block(block_id, NUMA_NO_NODE, MEM_ONLINE, NULL, NULL);
981
if (ret) {
982
panic("%s() failed to add memory block: %d\n",
983
__func__, ret);
984
}
985
}
986
}
987
988
/**
989
* walk_memory_blocks - walk through all present memory blocks overlapped
990
* by the range [start, start + size)
991
*
992
* @start: start address of the memory range
993
* @size: size of the memory range
994
* @arg: argument passed to func
995
* @func: callback for each memory section walked
996
*
997
* This function walks through all present memory blocks overlapped by the
998
* range [start, start + size), calling func on each memory block.
999
*
1000
* In case func() returns an error, walking is aborted and the error is
1001
* returned.
1002
*
1003
* Called under device_hotplug_lock.
1004
*/
1005
int walk_memory_blocks(unsigned long start, unsigned long size,
1006
void *arg, walk_memory_blocks_func_t func)
1007
{
1008
const unsigned long start_block_id = phys_to_block_id(start);
1009
const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1010
struct memory_block *mem;
1011
unsigned long block_id;
1012
int ret = 0;
1013
1014
if (!size)
1015
return 0;
1016
1017
for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1018
mem = find_memory_block_by_id(block_id);
1019
if (!mem)
1020
continue;
1021
1022
ret = func(mem, arg);
1023
put_device(&mem->dev);
1024
if (ret)
1025
break;
1026
}
1027
return ret;
1028
}
1029
1030
struct for_each_memory_block_cb_data {
1031
walk_memory_blocks_func_t func;
1032
void *arg;
1033
};
1034
1035
static int for_each_memory_block_cb(struct device *dev, void *data)
1036
{
1037
struct memory_block *mem = to_memory_block(dev);
1038
struct for_each_memory_block_cb_data *cb_data = data;
1039
1040
return cb_data->func(mem, cb_data->arg);
1041
}
1042
1043
/**
1044
* for_each_memory_block - walk through all present memory blocks
1045
*
1046
* @arg: argument passed to func
1047
* @func: callback for each memory block walked
1048
*
1049
* This function walks through all present memory blocks, calling func on
1050
* each memory block.
1051
*
1052
* In case func() returns an error, walking is aborted and the error is
1053
* returned.
1054
*/
1055
int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1056
{
1057
struct for_each_memory_block_cb_data cb_data = {
1058
.func = func,
1059
.arg = arg,
1060
};
1061
1062
return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1063
for_each_memory_block_cb);
1064
}
1065
1066
/*
1067
* This is an internal helper to unify allocation and initialization of
1068
* memory groups. Note that the passed memory group will be copied to a
1069
* dynamically allocated memory group. After this call, the passed
1070
* memory group should no longer be used.
1071
*/
1072
static int memory_group_register(struct memory_group group)
1073
{
1074
struct memory_group *new_group;
1075
uint32_t mgid;
1076
int ret;
1077
1078
if (!node_possible(group.nid))
1079
return -EINVAL;
1080
1081
new_group = kzalloc(sizeof(group), GFP_KERNEL);
1082
if (!new_group)
1083
return -ENOMEM;
1084
*new_group = group;
1085
INIT_LIST_HEAD(&new_group->memory_blocks);
1086
1087
ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1088
GFP_KERNEL);
1089
if (ret) {
1090
kfree(new_group);
1091
return ret;
1092
} else if (group.is_dynamic) {
1093
xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1094
}
1095
return mgid;
1096
}
1097
1098
/**
1099
* memory_group_register_static() - Register a static memory group.
1100
* @nid: The node id.
1101
* @max_pages: The maximum number of pages we'll have in this static memory
1102
* group.
1103
*
1104
* Register a new static memory group and return the memory group id.
1105
* All memory in the group belongs to a single unit, such as a DIMM. All
1106
* memory belonging to a static memory group is added in one go to be removed
1107
* in one go -- it's static.
1108
*
1109
* Returns an error if out of memory, if the node id is invalid, if no new
1110
* memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1111
* returns the new memory group id.
1112
*/
1113
int memory_group_register_static(int nid, unsigned long max_pages)
1114
{
1115
struct memory_group group = {
1116
.nid = nid,
1117
.s = {
1118
.max_pages = max_pages,
1119
},
1120
};
1121
1122
if (!max_pages)
1123
return -EINVAL;
1124
return memory_group_register(group);
1125
}
1126
EXPORT_SYMBOL_GPL(memory_group_register_static);
1127
1128
/**
1129
* memory_group_register_dynamic() - Register a dynamic memory group.
1130
* @nid: The node id.
1131
* @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1132
* memory group.
1133
*
1134
* Register a new dynamic memory group and return the memory group id.
1135
* Memory within a dynamic memory group is added/removed dynamically
1136
* in unit_pages.
1137
*
1138
* Returns an error if out of memory, if the node id is invalid, if no new
1139
* memory groups can be registered, or if unit_pages is invalid (0, not a
1140
* power of two, smaller than a single memory block). Otherwise, returns the
1141
* new memory group id.
1142
*/
1143
int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1144
{
1145
struct memory_group group = {
1146
.nid = nid,
1147
.is_dynamic = true,
1148
.d = {
1149
.unit_pages = unit_pages,
1150
},
1151
};
1152
1153
if (!unit_pages || !is_power_of_2(unit_pages) ||
1154
unit_pages < PHYS_PFN(memory_block_size_bytes()))
1155
return -EINVAL;
1156
return memory_group_register(group);
1157
}
1158
EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1159
1160
/**
1161
* memory_group_unregister() - Unregister a memory group.
1162
* @mgid: the memory group id
1163
*
1164
* Unregister a memory group. If any memory block still belongs to this
1165
* memory group, unregistering will fail.
1166
*
1167
* Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1168
* memory blocks still belong to this memory group and returns 0 if
1169
* unregistering succeeded.
1170
*/
1171
int memory_group_unregister(int mgid)
1172
{
1173
struct memory_group *group;
1174
1175
if (mgid < 0)
1176
return -EINVAL;
1177
1178
group = xa_load(&memory_groups, mgid);
1179
if (!group)
1180
return -EINVAL;
1181
if (!list_empty(&group->memory_blocks))
1182
return -EBUSY;
1183
xa_erase(&memory_groups, mgid);
1184
kfree(group);
1185
return 0;
1186
}
1187
EXPORT_SYMBOL_GPL(memory_group_unregister);
1188
1189
/*
1190
* This is an internal helper only to be used in core memory hotplug code to
1191
* lookup a memory group. We don't care about locking, as we don't expect a
1192
* memory group to get unregistered while adding memory to it -- because
1193
* the group and the memory is managed by the same driver.
1194
*/
1195
struct memory_group *memory_group_find_by_id(int mgid)
1196
{
1197
return xa_load(&memory_groups, mgid);
1198
}
1199
1200
/*
1201
* This is an internal helper only to be used in core memory hotplug code to
1202
* walk all dynamic memory groups excluding a given memory group, either
1203
* belonging to a specific node, or belonging to any node.
1204
*/
1205
int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1206
struct memory_group *excluded, void *arg)
1207
{
1208
struct memory_group *group;
1209
unsigned long index;
1210
int ret = 0;
1211
1212
xa_for_each_marked(&memory_groups, index, group,
1213
MEMORY_GROUP_MARK_DYNAMIC) {
1214
if (group == excluded)
1215
continue;
1216
#ifdef CONFIG_NUMA
1217
if (nid != NUMA_NO_NODE && group->nid != nid)
1218
continue;
1219
#endif /* CONFIG_NUMA */
1220
ret = func(group, arg);
1221
if (ret)
1222
break;
1223
}
1224
return ret;
1225
}
1226
1227
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1228
void memblk_nr_poison_inc(unsigned long pfn)
1229
{
1230
const unsigned long block_id = pfn_to_block_id(pfn);
1231
struct memory_block *mem = find_memory_block_by_id(block_id);
1232
1233
if (mem)
1234
atomic_long_inc(&mem->nr_hwpoison);
1235
}
1236
1237
void memblk_nr_poison_sub(unsigned long pfn, long i)
1238
{
1239
const unsigned long block_id = pfn_to_block_id(pfn);
1240
struct memory_block *mem = find_memory_block_by_id(block_id);
1241
1242
if (mem)
1243
atomic_long_sub(i, &mem->nr_hwpoison);
1244
}
1245
1246
static unsigned long memblk_nr_poison(struct memory_block *mem)
1247
{
1248
return atomic_long_read(&mem->nr_hwpoison);
1249
}
1250
#endif
1251
1252