Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/base/regmap/regmap-irq.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// regmap based irq_chip
4
//
5
// Copyright 2011 Wolfson Microelectronics plc
6
//
7
// Author: Mark Brown <[email protected]>
8
9
#include <linux/array_size.h>
10
#include <linux/device.h>
11
#include <linux/export.h>
12
#include <linux/interrupt.h>
13
#include <linux/irq.h>
14
#include <linux/irqdomain.h>
15
#include <linux/overflow.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/regmap.h>
18
#include <linux/slab.h>
19
20
#include "internal.h"
21
22
struct regmap_irq_chip_data {
23
struct mutex lock;
24
struct lock_class_key lock_key;
25
struct irq_chip irq_chip;
26
27
struct regmap *map;
28
const struct regmap_irq_chip *chip;
29
30
int irq_base;
31
struct irq_domain *domain;
32
33
int irq;
34
int wake_count;
35
36
void *status_reg_buf;
37
unsigned int *main_status_buf;
38
unsigned int *status_buf;
39
unsigned int *prev_status_buf;
40
unsigned int *mask_buf;
41
unsigned int *mask_buf_def;
42
unsigned int *wake_buf;
43
unsigned int *type_buf;
44
unsigned int *type_buf_def;
45
unsigned int **config_buf;
46
47
unsigned int irq_reg_stride;
48
49
unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50
unsigned int base, int index);
51
52
unsigned int clear_status:1;
53
};
54
55
static inline const
56
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57
int irq)
58
{
59
return &data->chip->irqs[irq];
60
}
61
62
static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63
{
64
struct regmap *map = data->map;
65
66
/*
67
* While possible that a user-defined ->get_irq_reg() callback might
68
* be linear enough to support bulk reads, most of the time it won't.
69
* Therefore only allow them if the default callback is being used.
70
*/
71
return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72
data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73
!map->use_single_read;
74
}
75
76
static void regmap_irq_lock(struct irq_data *data)
77
{
78
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79
80
mutex_lock(&d->lock);
81
}
82
83
static void regmap_irq_sync_unlock(struct irq_data *data)
84
{
85
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86
struct regmap *map = d->map;
87
int i, j, ret;
88
u32 reg;
89
u32 val;
90
91
if (d->chip->runtime_pm) {
92
ret = pm_runtime_get_sync(map->dev);
93
if (ret < 0)
94
dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95
ret);
96
}
97
98
if (d->clear_status) {
99
for (i = 0; i < d->chip->num_regs; i++) {
100
reg = d->get_irq_reg(d, d->chip->status_base, i);
101
102
ret = regmap_read(map, reg, &val);
103
if (ret)
104
dev_err(d->map->dev,
105
"Failed to clear the interrupt status bits\n");
106
}
107
108
d->clear_status = false;
109
}
110
111
/*
112
* If there's been a change in the mask write it back to the
113
* hardware. We rely on the use of the regmap core cache to
114
* suppress pointless writes.
115
*/
116
for (i = 0; i < d->chip->num_regs; i++) {
117
if (d->chip->handle_mask_sync)
118
d->chip->handle_mask_sync(i, d->mask_buf_def[i],
119
d->mask_buf[i],
120
d->chip->irq_drv_data);
121
122
if (d->chip->mask_base && !d->chip->handle_mask_sync) {
123
reg = d->get_irq_reg(d, d->chip->mask_base, i);
124
ret = regmap_update_bits(d->map, reg,
125
d->mask_buf_def[i],
126
d->mask_buf[i]);
127
if (ret)
128
dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
129
}
130
131
if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
132
reg = d->get_irq_reg(d, d->chip->unmask_base, i);
133
ret = regmap_update_bits(d->map, reg,
134
d->mask_buf_def[i], ~d->mask_buf[i]);
135
if (ret)
136
dev_err(d->map->dev, "Failed to sync masks in %x\n",
137
reg);
138
}
139
140
reg = d->get_irq_reg(d, d->chip->wake_base, i);
141
if (d->wake_buf) {
142
if (d->chip->wake_invert)
143
ret = regmap_update_bits(d->map, reg,
144
d->mask_buf_def[i],
145
~d->wake_buf[i]);
146
else
147
ret = regmap_update_bits(d->map, reg,
148
d->mask_buf_def[i],
149
d->wake_buf[i]);
150
if (ret != 0)
151
dev_err(d->map->dev,
152
"Failed to sync wakes in %x: %d\n",
153
reg, ret);
154
}
155
156
if (!d->chip->init_ack_masked)
157
continue;
158
/*
159
* Ack all the masked interrupts unconditionally,
160
* OR if there is masked interrupt which hasn't been Acked,
161
* it'll be ignored in irq handler, then may introduce irq storm
162
*/
163
if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164
reg = d->get_irq_reg(d, d->chip->ack_base, i);
165
166
/* some chips ack by write 0 */
167
if (d->chip->ack_invert)
168
ret = regmap_write(map, reg, ~d->mask_buf[i]);
169
else
170
ret = regmap_write(map, reg, d->mask_buf[i]);
171
if (d->chip->clear_ack) {
172
if (d->chip->ack_invert && !ret)
173
ret = regmap_write(map, reg, UINT_MAX);
174
else if (!ret)
175
ret = regmap_write(map, reg, 0);
176
}
177
if (ret != 0)
178
dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179
reg, ret);
180
}
181
}
182
183
for (i = 0; i < d->chip->num_config_bases; i++) {
184
for (j = 0; j < d->chip->num_config_regs; j++) {
185
reg = d->get_irq_reg(d, d->chip->config_base[i], j);
186
ret = regmap_write(map, reg, d->config_buf[i][j]);
187
if (ret)
188
dev_err(d->map->dev,
189
"Failed to write config %x: %d\n",
190
reg, ret);
191
}
192
}
193
194
if (d->chip->runtime_pm)
195
pm_runtime_put(map->dev);
196
197
/* If we've changed our wakeup count propagate it to the parent */
198
if (d->wake_count < 0)
199
for (i = d->wake_count; i < 0; i++)
200
disable_irq_wake(d->irq);
201
else if (d->wake_count > 0)
202
for (i = 0; i < d->wake_count; i++)
203
enable_irq_wake(d->irq);
204
205
d->wake_count = 0;
206
207
mutex_unlock(&d->lock);
208
}
209
210
static void regmap_irq_enable(struct irq_data *data)
211
{
212
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213
struct regmap *map = d->map;
214
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215
unsigned int reg = irq_data->reg_offset / map->reg_stride;
216
unsigned int mask;
217
218
/*
219
* The type_in_mask flag means that the underlying hardware uses
220
* separate mask bits for each interrupt trigger type, but we want
221
* to have a single logical interrupt with a configurable type.
222
*
223
* If the interrupt we're enabling defines any supported types
224
* then instead of using the regular mask bits for this interrupt,
225
* use the value previously written to the type buffer at the
226
* corresponding offset in regmap_irq_set_type().
227
*/
228
if (d->chip->type_in_mask && irq_data->type.types_supported)
229
mask = d->type_buf[reg] & irq_data->mask;
230
else
231
mask = irq_data->mask;
232
233
if (d->chip->clear_on_unmask)
234
d->clear_status = true;
235
236
d->mask_buf[reg] &= ~mask;
237
}
238
239
static void regmap_irq_disable(struct irq_data *data)
240
{
241
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
242
struct regmap *map = d->map;
243
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
244
245
d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
246
}
247
248
static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
249
{
250
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
251
struct regmap *map = d->map;
252
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
253
int reg, ret;
254
const struct regmap_irq_type *t = &irq_data->type;
255
256
if ((t->types_supported & type) != type)
257
return 0;
258
259
reg = t->type_reg_offset / map->reg_stride;
260
261
if (d->chip->type_in_mask) {
262
ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
263
irq_data, reg, d->chip->irq_drv_data);
264
if (ret)
265
return ret;
266
}
267
268
if (d->chip->set_type_config) {
269
ret = d->chip->set_type_config(d->config_buf, type, irq_data,
270
reg, d->chip->irq_drv_data);
271
if (ret)
272
return ret;
273
}
274
275
return 0;
276
}
277
278
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
279
{
280
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
281
struct regmap *map = d->map;
282
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
283
284
if (on) {
285
if (d->wake_buf)
286
d->wake_buf[irq_data->reg_offset / map->reg_stride]
287
&= ~irq_data->mask;
288
d->wake_count++;
289
} else {
290
if (d->wake_buf)
291
d->wake_buf[irq_data->reg_offset / map->reg_stride]
292
|= irq_data->mask;
293
d->wake_count--;
294
}
295
296
return 0;
297
}
298
299
static const struct irq_chip regmap_irq_chip = {
300
.irq_bus_lock = regmap_irq_lock,
301
.irq_bus_sync_unlock = regmap_irq_sync_unlock,
302
.irq_disable = regmap_irq_disable,
303
.irq_enable = regmap_irq_enable,
304
.irq_set_type = regmap_irq_set_type,
305
.irq_set_wake = regmap_irq_set_wake,
306
};
307
308
static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
309
unsigned int b)
310
{
311
const struct regmap_irq_chip *chip = data->chip;
312
const struct regmap_irq_sub_irq_map *subreg;
313
struct regmap *map = data->map;
314
unsigned int reg;
315
int i, ret = 0;
316
317
if (!chip->sub_reg_offsets) {
318
reg = data->get_irq_reg(data, chip->status_base, b);
319
ret = regmap_read(map, reg, &data->status_buf[b]);
320
} else {
321
/*
322
* Note we can't use ->get_irq_reg() here because the offsets
323
* in 'subreg' are *not* interchangeable with indices.
324
*/
325
subreg = &chip->sub_reg_offsets[b];
326
for (i = 0; i < subreg->num_regs; i++) {
327
unsigned int offset = subreg->offset[i];
328
unsigned int index = offset / map->reg_stride;
329
330
ret = regmap_read(map, chip->status_base + offset,
331
&data->status_buf[index]);
332
if (ret)
333
break;
334
}
335
}
336
return ret;
337
}
338
339
static int read_irq_data(struct regmap_irq_chip_data *data)
340
{
341
const struct regmap_irq_chip *chip = data->chip;
342
struct regmap *map = data->map;
343
int ret, i;
344
u32 reg;
345
346
/*
347
* Read only registers with active IRQs if the chip has 'main status
348
* register'. Else read in the statuses, using a single bulk read if
349
* possible in order to reduce the I/O overheads.
350
*/
351
352
if (chip->no_status) {
353
/* no status register so default to all active */
354
memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
355
} else if (chip->num_main_regs) {
356
unsigned int max_main_bits;
357
358
max_main_bits = (chip->num_main_status_bits) ?
359
chip->num_main_status_bits : chip->num_regs;
360
/* Clear the status buf as we don't read all status regs */
361
memset32(data->status_buf, 0, chip->num_regs);
362
363
/* We could support bulk read for main status registers
364
* but I don't expect to see devices with really many main
365
* status registers so let's only support single reads for the
366
* sake of simplicity. and add bulk reads only if needed
367
*/
368
for (i = 0; i < chip->num_main_regs; i++) {
369
reg = data->get_irq_reg(data, chip->main_status, i);
370
ret = regmap_read(map, reg, &data->main_status_buf[i]);
371
if (ret) {
372
dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
373
return ret;
374
}
375
}
376
377
/* Read sub registers with active IRQs */
378
for (i = 0; i < chip->num_main_regs; i++) {
379
unsigned int b;
380
const unsigned long mreg = data->main_status_buf[i];
381
382
for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
383
if (i * map->format.val_bytes * 8 + b >
384
max_main_bits)
385
break;
386
ret = read_sub_irq_data(data, b);
387
388
if (ret != 0) {
389
dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
390
return ret;
391
}
392
}
393
394
}
395
} else if (regmap_irq_can_bulk_read_status(data)) {
396
397
u8 *buf8 = data->status_reg_buf;
398
u16 *buf16 = data->status_reg_buf;
399
u32 *buf32 = data->status_reg_buf;
400
401
BUG_ON(!data->status_reg_buf);
402
403
ret = regmap_bulk_read(map, chip->status_base,
404
data->status_reg_buf,
405
chip->num_regs);
406
if (ret != 0) {
407
dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
408
return ret;
409
}
410
411
for (i = 0; i < data->chip->num_regs; i++) {
412
switch (map->format.val_bytes) {
413
case 1:
414
data->status_buf[i] = buf8[i];
415
break;
416
case 2:
417
data->status_buf[i] = buf16[i];
418
break;
419
case 4:
420
data->status_buf[i] = buf32[i];
421
break;
422
default:
423
BUG();
424
return -EIO;
425
}
426
}
427
428
} else {
429
for (i = 0; i < data->chip->num_regs; i++) {
430
unsigned int reg = data->get_irq_reg(data,
431
data->chip->status_base, i);
432
ret = regmap_read(map, reg, &data->status_buf[i]);
433
434
if (ret != 0) {
435
dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
436
return ret;
437
}
438
}
439
}
440
441
if (chip->status_invert)
442
for (i = 0; i < data->chip->num_regs; i++)
443
data->status_buf[i] = ~data->status_buf[i];
444
445
return 0;
446
}
447
448
static irqreturn_t regmap_irq_thread(int irq, void *d)
449
{
450
struct regmap_irq_chip_data *data = d;
451
const struct regmap_irq_chip *chip = data->chip;
452
struct regmap *map = data->map;
453
int ret, i;
454
bool handled = false;
455
u32 reg;
456
457
if (chip->handle_pre_irq)
458
chip->handle_pre_irq(chip->irq_drv_data);
459
460
if (chip->runtime_pm) {
461
ret = pm_runtime_get_sync(map->dev);
462
if (ret < 0) {
463
dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret);
464
goto exit;
465
}
466
}
467
468
ret = read_irq_data(data);
469
if (ret < 0)
470
goto exit;
471
472
if (chip->status_is_level) {
473
for (i = 0; i < data->chip->num_regs; i++) {
474
unsigned int val = data->status_buf[i];
475
476
data->status_buf[i] ^= data->prev_status_buf[i];
477
data->prev_status_buf[i] = val;
478
}
479
}
480
481
/*
482
* Ignore masked IRQs and ack if we need to; we ack early so
483
* there is no race between handling and acknowledging the
484
* interrupt. We assume that typically few of the interrupts
485
* will fire simultaneously so don't worry about overhead from
486
* doing a write per register.
487
*/
488
for (i = 0; i < data->chip->num_regs; i++) {
489
data->status_buf[i] &= ~data->mask_buf[i];
490
491
if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
492
reg = data->get_irq_reg(data, data->chip->ack_base, i);
493
494
if (chip->ack_invert)
495
ret = regmap_write(map, reg,
496
~data->status_buf[i]);
497
else
498
ret = regmap_write(map, reg,
499
data->status_buf[i]);
500
if (chip->clear_ack) {
501
if (chip->ack_invert && !ret)
502
ret = regmap_write(map, reg, UINT_MAX);
503
else if (!ret)
504
ret = regmap_write(map, reg, 0);
505
}
506
if (ret != 0)
507
dev_err(map->dev, "Failed to ack 0x%x: %d\n",
508
reg, ret);
509
}
510
}
511
512
for (i = 0; i < chip->num_irqs; i++) {
513
if (data->status_buf[chip->irqs[i].reg_offset /
514
map->reg_stride] & chip->irqs[i].mask) {
515
handle_nested_irq(irq_find_mapping(data->domain, i));
516
handled = true;
517
}
518
}
519
520
exit:
521
if (chip->handle_post_irq)
522
chip->handle_post_irq(chip->irq_drv_data);
523
524
if (chip->runtime_pm)
525
pm_runtime_put(map->dev);
526
527
if (handled)
528
return IRQ_HANDLED;
529
else
530
return IRQ_NONE;
531
}
532
533
static struct lock_class_key regmap_irq_lock_class;
534
static struct lock_class_key regmap_irq_request_class;
535
536
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
537
irq_hw_number_t hw)
538
{
539
struct regmap_irq_chip_data *data = h->host_data;
540
541
irq_set_chip_data(virq, data);
542
irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
543
irq_set_chip(virq, &data->irq_chip);
544
irq_set_nested_thread(virq, 1);
545
irq_set_parent(virq, data->irq);
546
irq_set_noprobe(virq);
547
548
return 0;
549
}
550
551
static const struct irq_domain_ops regmap_domain_ops = {
552
.map = regmap_irq_map,
553
.xlate = irq_domain_xlate_onetwocell,
554
};
555
556
/**
557
* regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
558
* @data: Data for the &struct regmap_irq_chip
559
* @base: Base register
560
* @index: Register index
561
*
562
* Returns the register address corresponding to the given @base and @index
563
* by the formula ``base + index * regmap_stride * irq_reg_stride``.
564
*/
565
unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
566
unsigned int base, int index)
567
{
568
struct regmap *map = data->map;
569
570
return base + index * map->reg_stride * data->irq_reg_stride;
571
}
572
EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
573
574
/**
575
* regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
576
* @buf: Buffer containing configuration register values, this is a 2D array of
577
* `num_config_bases` rows, each of `num_config_regs` elements.
578
* @type: The requested IRQ type.
579
* @irq_data: The IRQ being configured.
580
* @idx: Index of the irq's config registers within each array `buf[i]`
581
* @irq_drv_data: Driver specific IRQ data
582
*
583
* This is a &struct regmap_irq_chip->set_type_config callback suitable for
584
* chips with one config register. Register values are updated according to
585
* the &struct regmap_irq_type data associated with an IRQ.
586
*/
587
int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
588
const struct regmap_irq *irq_data,
589
int idx, void *irq_drv_data)
590
{
591
const struct regmap_irq_type *t = &irq_data->type;
592
593
if (t->type_reg_mask)
594
buf[0][idx] &= ~t->type_reg_mask;
595
else
596
buf[0][idx] &= ~(t->type_falling_val |
597
t->type_rising_val |
598
t->type_level_low_val |
599
t->type_level_high_val);
600
601
switch (type) {
602
case IRQ_TYPE_EDGE_FALLING:
603
buf[0][idx] |= t->type_falling_val;
604
break;
605
606
case IRQ_TYPE_EDGE_RISING:
607
buf[0][idx] |= t->type_rising_val;
608
break;
609
610
case IRQ_TYPE_EDGE_BOTH:
611
buf[0][idx] |= (t->type_falling_val |
612
t->type_rising_val);
613
break;
614
615
case IRQ_TYPE_LEVEL_HIGH:
616
buf[0][idx] |= t->type_level_high_val;
617
break;
618
619
case IRQ_TYPE_LEVEL_LOW:
620
buf[0][idx] |= t->type_level_low_val;
621
break;
622
623
default:
624
return -EINVAL;
625
}
626
627
return 0;
628
}
629
EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
630
631
static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
632
const struct regmap_irq_chip *chip,
633
struct regmap_irq_chip_data *d)
634
{
635
struct irq_domain_info info = {
636
.fwnode = fwnode,
637
.size = chip->num_irqs,
638
.hwirq_max = chip->num_irqs,
639
.virq_base = irq_base,
640
.ops = &regmap_domain_ops,
641
.host_data = d,
642
.name_suffix = chip->domain_suffix,
643
};
644
645
d->domain = irq_domain_instantiate(&info);
646
if (IS_ERR(d->domain)) {
647
dev_err(d->map->dev, "Failed to create IRQ domain\n");
648
return PTR_ERR(d->domain);
649
}
650
651
return 0;
652
}
653
654
655
/**
656
* regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
657
*
658
* @fwnode: The firmware node where the IRQ domain should be added to.
659
* @map: The regmap for the device.
660
* @irq: The IRQ the device uses to signal interrupts.
661
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
662
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
663
* @chip: Configuration for the interrupt controller.
664
* @data: Runtime data structure for the controller, allocated on success.
665
*
666
* Returns 0 on success or an errno on failure.
667
*
668
* In order for this to be efficient the chip really should use a
669
* register cache. The chip driver is responsible for restoring the
670
* register values used by the IRQ controller over suspend and resume.
671
*/
672
int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
673
struct regmap *map, int irq,
674
int irq_flags, int irq_base,
675
const struct regmap_irq_chip *chip,
676
struct regmap_irq_chip_data **data)
677
{
678
struct regmap_irq_chip_data *d;
679
int i;
680
int ret = -ENOMEM;
681
u32 reg;
682
683
if (chip->num_regs <= 0)
684
return -EINVAL;
685
686
if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
687
return -EINVAL;
688
689
if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
690
return -EINVAL;
691
692
for (i = 0; i < chip->num_irqs; i++) {
693
if (chip->irqs[i].reg_offset % map->reg_stride)
694
return -EINVAL;
695
if (chip->irqs[i].reg_offset / map->reg_stride >=
696
chip->num_regs)
697
return -EINVAL;
698
}
699
700
if (irq_base) {
701
irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
702
if (irq_base < 0) {
703
dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
704
irq_base);
705
return irq_base;
706
}
707
}
708
709
d = kzalloc(sizeof(*d), GFP_KERNEL);
710
if (!d)
711
return -ENOMEM;
712
713
if (chip->num_main_regs) {
714
d->main_status_buf = kcalloc(chip->num_main_regs,
715
sizeof(*d->main_status_buf),
716
GFP_KERNEL);
717
718
if (!d->main_status_buf)
719
goto err_alloc;
720
}
721
722
d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
723
GFP_KERNEL);
724
if (!d->status_buf)
725
goto err_alloc;
726
727
if (chip->status_is_level) {
728
d->prev_status_buf = kcalloc(chip->num_regs, sizeof(*d->prev_status_buf),
729
GFP_KERNEL);
730
if (!d->prev_status_buf)
731
goto err_alloc;
732
}
733
734
d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
735
GFP_KERNEL);
736
if (!d->mask_buf)
737
goto err_alloc;
738
739
d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
740
GFP_KERNEL);
741
if (!d->mask_buf_def)
742
goto err_alloc;
743
744
if (chip->wake_base) {
745
d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
746
GFP_KERNEL);
747
if (!d->wake_buf)
748
goto err_alloc;
749
}
750
751
if (chip->type_in_mask) {
752
d->type_buf_def = kcalloc(chip->num_regs,
753
sizeof(*d->type_buf_def), GFP_KERNEL);
754
if (!d->type_buf_def)
755
goto err_alloc;
756
757
d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
758
if (!d->type_buf)
759
goto err_alloc;
760
}
761
762
if (chip->num_config_bases && chip->num_config_regs) {
763
/*
764
* Create config_buf[num_config_bases][num_config_regs]
765
*/
766
d->config_buf = kcalloc(chip->num_config_bases,
767
sizeof(*d->config_buf), GFP_KERNEL);
768
if (!d->config_buf)
769
goto err_alloc;
770
771
for (i = 0; i < chip->num_config_bases; i++) {
772
d->config_buf[i] = kcalloc(chip->num_config_regs,
773
sizeof(**d->config_buf),
774
GFP_KERNEL);
775
if (!d->config_buf[i])
776
goto err_alloc;
777
}
778
}
779
780
d->irq_chip = regmap_irq_chip;
781
d->irq_chip.name = chip->name;
782
d->irq = irq;
783
d->map = map;
784
d->chip = chip;
785
d->irq_base = irq_base;
786
787
if (chip->irq_reg_stride)
788
d->irq_reg_stride = chip->irq_reg_stride;
789
else
790
d->irq_reg_stride = 1;
791
792
if (chip->get_irq_reg)
793
d->get_irq_reg = chip->get_irq_reg;
794
else
795
d->get_irq_reg = regmap_irq_get_irq_reg_linear;
796
797
if (regmap_irq_can_bulk_read_status(d)) {
798
d->status_reg_buf = kmalloc_array(chip->num_regs,
799
map->format.val_bytes,
800
GFP_KERNEL);
801
if (!d->status_reg_buf)
802
goto err_alloc;
803
}
804
805
/*
806
* If one regmap-irq is the parent of another then we'll try
807
* to lock the child with the parent locked, use an explicit
808
* lock_key so lockdep can figure out what's going on.
809
*/
810
lockdep_register_key(&d->lock_key);
811
mutex_init_with_key(&d->lock, &d->lock_key);
812
813
for (i = 0; i < chip->num_irqs; i++)
814
d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
815
|= chip->irqs[i].mask;
816
817
/* Mask all the interrupts by default */
818
for (i = 0; i < chip->num_regs; i++) {
819
d->mask_buf[i] = d->mask_buf_def[i];
820
821
if (chip->handle_mask_sync) {
822
ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
823
d->mask_buf[i],
824
chip->irq_drv_data);
825
if (ret)
826
goto err_mutex;
827
}
828
829
if (chip->mask_base && !chip->handle_mask_sync) {
830
reg = d->get_irq_reg(d, chip->mask_base, i);
831
ret = regmap_update_bits(d->map, reg,
832
d->mask_buf_def[i],
833
d->mask_buf[i]);
834
if (ret) {
835
dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
836
reg, ret);
837
goto err_mutex;
838
}
839
}
840
841
if (chip->unmask_base && !chip->handle_mask_sync) {
842
reg = d->get_irq_reg(d, chip->unmask_base, i);
843
ret = regmap_update_bits(d->map, reg,
844
d->mask_buf_def[i], ~d->mask_buf[i]);
845
if (ret) {
846
dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
847
reg, ret);
848
goto err_mutex;
849
}
850
}
851
852
if (!chip->init_ack_masked)
853
continue;
854
855
/* Ack masked but set interrupts */
856
if (d->chip->no_status) {
857
/* no status register so default to all active */
858
d->status_buf[i] = UINT_MAX;
859
} else {
860
reg = d->get_irq_reg(d, d->chip->status_base, i);
861
ret = regmap_read(map, reg, &d->status_buf[i]);
862
if (ret != 0) {
863
dev_err(map->dev, "Failed to read IRQ status: %d\n",
864
ret);
865
goto err_mutex;
866
}
867
}
868
869
if (chip->status_invert)
870
d->status_buf[i] = ~d->status_buf[i];
871
872
if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
873
reg = d->get_irq_reg(d, d->chip->ack_base, i);
874
if (chip->ack_invert)
875
ret = regmap_write(map, reg,
876
~(d->status_buf[i] & d->mask_buf[i]));
877
else
878
ret = regmap_write(map, reg,
879
d->status_buf[i] & d->mask_buf[i]);
880
if (chip->clear_ack) {
881
if (chip->ack_invert && !ret)
882
ret = regmap_write(map, reg, UINT_MAX);
883
else if (!ret)
884
ret = regmap_write(map, reg, 0);
885
}
886
if (ret != 0) {
887
dev_err(map->dev, "Failed to ack 0x%x: %d\n",
888
reg, ret);
889
goto err_mutex;
890
}
891
}
892
}
893
894
/* Wake is disabled by default */
895
if (d->wake_buf) {
896
for (i = 0; i < chip->num_regs; i++) {
897
d->wake_buf[i] = d->mask_buf_def[i];
898
reg = d->get_irq_reg(d, d->chip->wake_base, i);
899
900
if (chip->wake_invert)
901
ret = regmap_update_bits(d->map, reg,
902
d->mask_buf_def[i],
903
0);
904
else
905
ret = regmap_update_bits(d->map, reg,
906
d->mask_buf_def[i],
907
d->wake_buf[i]);
908
if (ret != 0) {
909
dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
910
reg, ret);
911
goto err_mutex;
912
}
913
}
914
}
915
916
/* Store current levels */
917
if (chip->status_is_level) {
918
ret = read_irq_data(d);
919
if (ret < 0)
920
goto err_mutex;
921
922
memcpy(d->prev_status_buf, d->status_buf,
923
array_size(d->chip->num_regs, sizeof(d->prev_status_buf[0])));
924
}
925
926
ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
927
if (ret)
928
goto err_mutex;
929
930
ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
931
irq_flags | IRQF_ONESHOT,
932
chip->name, d);
933
if (ret != 0) {
934
dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
935
irq, chip->name, ret);
936
goto err_domain;
937
}
938
939
*data = d;
940
941
return 0;
942
943
err_domain:
944
/* Should really dispose of the domain but... */
945
err_mutex:
946
mutex_destroy(&d->lock);
947
lockdep_unregister_key(&d->lock_key);
948
err_alloc:
949
kfree(d->type_buf);
950
kfree(d->type_buf_def);
951
kfree(d->wake_buf);
952
kfree(d->mask_buf_def);
953
kfree(d->mask_buf);
954
kfree(d->main_status_buf);
955
kfree(d->status_buf);
956
kfree(d->prev_status_buf);
957
kfree(d->status_reg_buf);
958
if (d->config_buf) {
959
for (i = 0; i < chip->num_config_bases; i++)
960
kfree(d->config_buf[i]);
961
kfree(d->config_buf);
962
}
963
kfree(d);
964
return ret;
965
}
966
EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
967
968
/**
969
* regmap_add_irq_chip() - Use standard regmap IRQ controller handling
970
*
971
* @map: The regmap for the device.
972
* @irq: The IRQ the device uses to signal interrupts.
973
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
974
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
975
* @chip: Configuration for the interrupt controller.
976
* @data: Runtime data structure for the controller, allocated on success.
977
*
978
* Returns 0 on success or an errno on failure.
979
*
980
* This is the same as regmap_add_irq_chip_fwnode, except that the firmware
981
* node of the regmap is used.
982
*/
983
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
984
int irq_base, const struct regmap_irq_chip *chip,
985
struct regmap_irq_chip_data **data)
986
{
987
return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
988
irq_flags, irq_base, chip, data);
989
}
990
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
991
992
/**
993
* regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
994
*
995
* @irq: Primary IRQ for the device
996
* @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
997
*
998
* This function also disposes of all mapped IRQs on the chip.
999
*/
1000
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1001
{
1002
unsigned int virq;
1003
int i, hwirq;
1004
1005
if (!d)
1006
return;
1007
1008
free_irq(irq, d);
1009
1010
/* Dispose all virtual irq from irq domain before removing it */
1011
for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1012
/* Ignore hwirq if holes in the IRQ list */
1013
if (!d->chip->irqs[hwirq].mask)
1014
continue;
1015
1016
/*
1017
* Find the virtual irq of hwirq on chip and if it is
1018
* there then dispose it
1019
*/
1020
virq = irq_find_mapping(d->domain, hwirq);
1021
if (virq)
1022
irq_dispose_mapping(virq);
1023
}
1024
1025
irq_domain_remove(d->domain);
1026
kfree(d->type_buf);
1027
kfree(d->type_buf_def);
1028
kfree(d->wake_buf);
1029
kfree(d->mask_buf_def);
1030
kfree(d->mask_buf);
1031
kfree(d->main_status_buf);
1032
kfree(d->status_reg_buf);
1033
kfree(d->status_buf);
1034
kfree(d->prev_status_buf);
1035
if (d->config_buf) {
1036
for (i = 0; i < d->chip->num_config_bases; i++)
1037
kfree(d->config_buf[i]);
1038
kfree(d->config_buf);
1039
}
1040
mutex_destroy(&d->lock);
1041
lockdep_unregister_key(&d->lock_key);
1042
kfree(d);
1043
}
1044
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1045
1046
static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1047
{
1048
struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1049
1050
regmap_del_irq_chip(d->irq, d);
1051
}
1052
1053
static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1054
1055
{
1056
struct regmap_irq_chip_data **r = res;
1057
1058
if (!r || !*r) {
1059
WARN_ON(!r || !*r);
1060
return 0;
1061
}
1062
return *r == data;
1063
}
1064
1065
/**
1066
* devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1067
*
1068
* @dev: The device pointer on which irq_chip belongs to.
1069
* @fwnode: The firmware node where the IRQ domain should be added to.
1070
* @map: The regmap for the device.
1071
* @irq: The IRQ the device uses to signal interrupts
1072
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
1073
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
1074
* @chip: Configuration for the interrupt controller.
1075
* @data: Runtime data structure for the controller, allocated on success
1076
*
1077
* Returns 0 on success or an errno on failure.
1078
*
1079
* The &regmap_irq_chip_data will be automatically released when the device is
1080
* unbound.
1081
*/
1082
int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1083
struct fwnode_handle *fwnode,
1084
struct regmap *map, int irq,
1085
int irq_flags, int irq_base,
1086
const struct regmap_irq_chip *chip,
1087
struct regmap_irq_chip_data **data)
1088
{
1089
struct regmap_irq_chip_data **ptr, *d;
1090
int ret;
1091
1092
ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1093
GFP_KERNEL);
1094
if (!ptr)
1095
return -ENOMEM;
1096
1097
ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1098
chip, &d);
1099
if (ret < 0) {
1100
devres_free(ptr);
1101
return ret;
1102
}
1103
1104
*ptr = d;
1105
devres_add(dev, ptr);
1106
*data = d;
1107
return 0;
1108
}
1109
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1110
1111
/**
1112
* devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1113
*
1114
* @dev: The device pointer on which irq_chip belongs to.
1115
* @map: The regmap for the device.
1116
* @irq: The IRQ the device uses to signal interrupts
1117
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
1118
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
1119
* @chip: Configuration for the interrupt controller.
1120
* @data: Runtime data structure for the controller, allocated on success
1121
*
1122
* Returns 0 on success or an errno on failure.
1123
*
1124
* The &regmap_irq_chip_data will be automatically released when the device is
1125
* unbound.
1126
*/
1127
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1128
int irq_flags, int irq_base,
1129
const struct regmap_irq_chip *chip,
1130
struct regmap_irq_chip_data **data)
1131
{
1132
return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1133
irq, irq_flags, irq_base, chip,
1134
data);
1135
}
1136
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1137
1138
/**
1139
* devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1140
*
1141
* @dev: Device for which the resource was allocated.
1142
* @irq: Primary IRQ for the device.
1143
* @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1144
*
1145
* A resource managed version of regmap_del_irq_chip().
1146
*/
1147
void devm_regmap_del_irq_chip(struct device *dev, int irq,
1148
struct regmap_irq_chip_data *data)
1149
{
1150
int rc;
1151
1152
WARN_ON(irq != data->irq);
1153
rc = devres_release(dev, devm_regmap_irq_chip_release,
1154
devm_regmap_irq_chip_match, data);
1155
1156
if (rc != 0)
1157
WARN_ON(rc);
1158
}
1159
EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1160
1161
/**
1162
* regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1163
*
1164
* @data: regmap irq controller to operate on.
1165
*
1166
* Useful for drivers to request their own IRQs.
1167
*/
1168
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1169
{
1170
WARN_ON(!data->irq_base);
1171
return data->irq_base;
1172
}
1173
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1174
1175
/**
1176
* regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1177
*
1178
* @data: regmap irq controller to operate on.
1179
* @irq: index of the interrupt requested in the chip IRQs.
1180
*
1181
* Useful for drivers to request their own IRQs.
1182
*/
1183
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1184
{
1185
/* Handle holes in the IRQ list */
1186
if (!data->chip->irqs[irq].mask)
1187
return -EINVAL;
1188
1189
return irq_create_mapping(data->domain, irq);
1190
}
1191
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1192
1193
/**
1194
* regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1195
*
1196
* @data: regmap_irq controller to operate on.
1197
*
1198
* Useful for drivers to request their own IRQs and for integration
1199
* with subsystems. For ease of integration NULL is accepted as a
1200
* domain, allowing devices to just call this even if no domain is
1201
* allocated.
1202
*/
1203
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1204
{
1205
if (data)
1206
return data->domain;
1207
else
1208
return NULL;
1209
}
1210
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1211
1212