Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/brd.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Ram backed block device driver.
4
*
5
* Copyright (C) 2007 Nick Piggin
6
* Copyright (C) 2007 Novell Inc.
7
*
8
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9
* of their respective owners.
10
*/
11
12
#include <linux/init.h>
13
#include <linux/initrd.h>
14
#include <linux/module.h>
15
#include <linux/moduleparam.h>
16
#include <linux/major.h>
17
#include <linux/blkdev.h>
18
#include <linux/bio.h>
19
#include <linux/highmem.h>
20
#include <linux/mutex.h>
21
#include <linux/pagemap.h>
22
#include <linux/xarray.h>
23
#include <linux/fs.h>
24
#include <linux/slab.h>
25
#include <linux/backing-dev.h>
26
#include <linux/debugfs.h>
27
28
#include <linux/uaccess.h>
29
30
/*
31
* Each block ramdisk device has a xarray brd_pages of pages that stores
32
* the pages containing the block device's contents.
33
*/
34
struct brd_device {
35
int brd_number;
36
struct gendisk *brd_disk;
37
struct list_head brd_list;
38
39
/*
40
* Backing store of pages. This is the contents of the block device.
41
*/
42
struct xarray brd_pages;
43
u64 brd_nr_pages;
44
};
45
46
/*
47
* Look up and return a brd's page for a given sector.
48
*/
49
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
50
{
51
return xa_load(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
52
}
53
54
/*
55
* Insert a new page for a given sector, if one does not already exist.
56
*/
57
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector,
58
blk_opf_t opf)
59
__releases(rcu)
60
__acquires(rcu)
61
{
62
gfp_t gfp = (opf & REQ_NOWAIT) ? GFP_NOWAIT : GFP_NOIO;
63
struct page *page, *ret;
64
65
rcu_read_unlock();
66
page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
67
if (!page) {
68
rcu_read_lock();
69
return ERR_PTR(-ENOMEM);
70
}
71
72
xa_lock(&brd->brd_pages);
73
ret = __xa_cmpxchg(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT, NULL,
74
page, gfp);
75
rcu_read_lock();
76
if (ret) {
77
xa_unlock(&brd->brd_pages);
78
__free_page(page);
79
if (xa_is_err(ret))
80
return ERR_PTR(xa_err(ret));
81
return ret;
82
}
83
brd->brd_nr_pages++;
84
xa_unlock(&brd->brd_pages);
85
return page;
86
}
87
88
/*
89
* Free all backing store pages and xarray. This must only be called when
90
* there are no other users of the device.
91
*/
92
static void brd_free_pages(struct brd_device *brd)
93
{
94
struct page *page;
95
pgoff_t idx;
96
97
xa_for_each(&brd->brd_pages, idx, page) {
98
__free_page(page);
99
cond_resched();
100
}
101
102
xa_destroy(&brd->brd_pages);
103
}
104
105
/*
106
* Process a single segment. The segment is capped to not cross page boundaries
107
* in both the bio and the brd backing memory.
108
*/
109
static bool brd_rw_bvec(struct brd_device *brd, struct bio *bio)
110
{
111
struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
112
sector_t sector = bio->bi_iter.bi_sector;
113
u32 offset = (sector & (PAGE_SECTORS - 1)) << SECTOR_SHIFT;
114
blk_opf_t opf = bio->bi_opf;
115
struct page *page;
116
void *kaddr;
117
118
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
119
120
rcu_read_lock();
121
page = brd_lookup_page(brd, sector);
122
if (!page && op_is_write(opf)) {
123
page = brd_insert_page(brd, sector, opf);
124
if (IS_ERR(page))
125
goto out_error;
126
}
127
128
kaddr = bvec_kmap_local(&bv);
129
if (op_is_write(opf)) {
130
memcpy_to_page(page, offset, kaddr, bv.bv_len);
131
} else {
132
if (page)
133
memcpy_from_page(kaddr, page, offset, bv.bv_len);
134
else
135
memset(kaddr, 0, bv.bv_len);
136
}
137
kunmap_local(kaddr);
138
rcu_read_unlock();
139
140
bio_advance_iter_single(bio, &bio->bi_iter, bv.bv_len);
141
return true;
142
143
out_error:
144
rcu_read_unlock();
145
if (PTR_ERR(page) == -ENOMEM && (opf & REQ_NOWAIT))
146
bio_wouldblock_error(bio);
147
else
148
bio_io_error(bio);
149
return false;
150
}
151
152
static void brd_free_one_page(struct rcu_head *head)
153
{
154
struct page *page = container_of(head, struct page, rcu_head);
155
156
__free_page(page);
157
}
158
159
static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
160
{
161
sector_t aligned_sector = round_up(sector, PAGE_SECTORS);
162
sector_t aligned_end = round_down(
163
sector + (size >> SECTOR_SHIFT), PAGE_SECTORS);
164
struct page *page;
165
166
if (aligned_end <= aligned_sector)
167
return;
168
169
xa_lock(&brd->brd_pages);
170
while (aligned_sector < aligned_end && aligned_sector < rd_size * 2) {
171
page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
172
if (page) {
173
call_rcu(&page->rcu_head, brd_free_one_page);
174
brd->brd_nr_pages--;
175
}
176
aligned_sector += PAGE_SECTORS;
177
}
178
xa_unlock(&brd->brd_pages);
179
}
180
181
static void brd_submit_bio(struct bio *bio)
182
{
183
struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
184
185
if (unlikely(op_is_discard(bio->bi_opf))) {
186
brd_do_discard(brd, bio->bi_iter.bi_sector,
187
bio->bi_iter.bi_size);
188
bio_endio(bio);
189
return;
190
}
191
192
do {
193
if (!brd_rw_bvec(brd, bio))
194
return;
195
} while (bio->bi_iter.bi_size);
196
197
bio_endio(bio);
198
}
199
200
static const struct block_device_operations brd_fops = {
201
.owner = THIS_MODULE,
202
.submit_bio = brd_submit_bio,
203
};
204
205
/*
206
* And now the modules code and kernel interface.
207
*/
208
static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
209
module_param(rd_nr, int, 0444);
210
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
211
212
unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
213
module_param(rd_size, ulong, 0444);
214
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
215
216
static int max_part = 1;
217
module_param(max_part, int, 0444);
218
MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
219
220
MODULE_DESCRIPTION("Ram backed block device driver");
221
MODULE_LICENSE("GPL");
222
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
223
MODULE_ALIAS("rd");
224
225
#ifndef MODULE
226
/* Legacy boot options - nonmodular */
227
static int __init ramdisk_size(char *str)
228
{
229
rd_size = simple_strtol(str, NULL, 0);
230
return 1;
231
}
232
__setup("ramdisk_size=", ramdisk_size);
233
#endif
234
235
/*
236
* The device scheme is derived from loop.c. Keep them in synch where possible
237
* (should share code eventually).
238
*/
239
static LIST_HEAD(brd_devices);
240
static DEFINE_MUTEX(brd_devices_mutex);
241
static struct dentry *brd_debugfs_dir;
242
243
static struct brd_device *brd_find_or_alloc_device(int i)
244
{
245
struct brd_device *brd;
246
247
mutex_lock(&brd_devices_mutex);
248
list_for_each_entry(brd, &brd_devices, brd_list) {
249
if (brd->brd_number == i) {
250
mutex_unlock(&brd_devices_mutex);
251
return ERR_PTR(-EEXIST);
252
}
253
}
254
255
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
256
if (!brd) {
257
mutex_unlock(&brd_devices_mutex);
258
return ERR_PTR(-ENOMEM);
259
}
260
brd->brd_number = i;
261
list_add_tail(&brd->brd_list, &brd_devices);
262
mutex_unlock(&brd_devices_mutex);
263
return brd;
264
}
265
266
static void brd_free_device(struct brd_device *brd)
267
{
268
mutex_lock(&brd_devices_mutex);
269
list_del(&brd->brd_list);
270
mutex_unlock(&brd_devices_mutex);
271
kfree(brd);
272
}
273
274
static int brd_alloc(int i)
275
{
276
struct brd_device *brd;
277
struct gendisk *disk;
278
char buf[DISK_NAME_LEN];
279
int err = -ENOMEM;
280
struct queue_limits lim = {
281
/*
282
* This is so fdisk will align partitions on 4k, because of
283
* direct_access API needing 4k alignment, returning a PFN
284
* (This is only a problem on very small devices <= 4M,
285
* otherwise fdisk will align on 1M. Regardless this call
286
* is harmless)
287
*/
288
.physical_block_size = PAGE_SIZE,
289
.max_hw_discard_sectors = UINT_MAX,
290
.max_discard_segments = 1,
291
.discard_granularity = PAGE_SIZE,
292
.features = BLK_FEAT_SYNCHRONOUS |
293
BLK_FEAT_NOWAIT,
294
};
295
296
brd = brd_find_or_alloc_device(i);
297
if (IS_ERR(brd))
298
return PTR_ERR(brd);
299
300
xa_init(&brd->brd_pages);
301
302
snprintf(buf, DISK_NAME_LEN, "ram%d", i);
303
if (!IS_ERR_OR_NULL(brd_debugfs_dir))
304
debugfs_create_u64(buf, 0444, brd_debugfs_dir,
305
&brd->brd_nr_pages);
306
307
disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
308
if (IS_ERR(disk)) {
309
err = PTR_ERR(disk);
310
goto out_free_dev;
311
}
312
disk->major = RAMDISK_MAJOR;
313
disk->first_minor = i * max_part;
314
disk->minors = max_part;
315
disk->fops = &brd_fops;
316
disk->private_data = brd;
317
strscpy(disk->disk_name, buf, DISK_NAME_LEN);
318
set_capacity(disk, rd_size * 2);
319
320
err = add_disk(disk);
321
if (err)
322
goto out_cleanup_disk;
323
324
return 0;
325
326
out_cleanup_disk:
327
put_disk(disk);
328
out_free_dev:
329
brd_free_device(brd);
330
return err;
331
}
332
333
static void brd_probe(dev_t dev)
334
{
335
brd_alloc(MINOR(dev) / max_part);
336
}
337
338
static void brd_cleanup(void)
339
{
340
struct brd_device *brd, *next;
341
342
debugfs_remove_recursive(brd_debugfs_dir);
343
344
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
345
del_gendisk(brd->brd_disk);
346
put_disk(brd->brd_disk);
347
brd_free_pages(brd);
348
brd_free_device(brd);
349
}
350
}
351
352
static inline void brd_check_and_reset_par(void)
353
{
354
if (unlikely(!max_part))
355
max_part = 1;
356
357
/*
358
* make sure 'max_part' can be divided exactly by (1U << MINORBITS),
359
* otherwise, it is possiable to get same dev_t when adding partitions.
360
*/
361
if ((1U << MINORBITS) % max_part != 0)
362
max_part = 1UL << fls(max_part);
363
364
if (max_part > DISK_MAX_PARTS) {
365
pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
366
DISK_MAX_PARTS, DISK_MAX_PARTS);
367
max_part = DISK_MAX_PARTS;
368
}
369
}
370
371
static int __init brd_init(void)
372
{
373
int err, i;
374
375
/*
376
* brd module now has a feature to instantiate underlying device
377
* structure on-demand, provided that there is an access dev node.
378
*
379
* (1) if rd_nr is specified, create that many upfront. else
380
* it defaults to CONFIG_BLK_DEV_RAM_COUNT
381
* (2) User can further extend brd devices by create dev node themselves
382
* and have kernel automatically instantiate actual device
383
* on-demand. Example:
384
* mknod /path/devnod_name b 1 X # 1 is the rd major
385
* fdisk -l /path/devnod_name
386
* If (X / max_part) was not already created it will be created
387
* dynamically.
388
*/
389
390
brd_check_and_reset_par();
391
392
brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
393
394
if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
395
err = -EIO;
396
goto out_free;
397
}
398
399
for (i = 0; i < rd_nr; i++)
400
brd_alloc(i);
401
402
pr_info("brd: module loaded\n");
403
return 0;
404
405
out_free:
406
brd_cleanup();
407
408
pr_info("brd: module NOT loaded !!!\n");
409
return err;
410
}
411
412
static void __exit brd_exit(void)
413
{
414
415
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
416
brd_cleanup();
417
418
pr_info("brd: module unloaded\n");
419
}
420
421
module_init(brd_init);
422
module_exit(brd_exit);
423
424
425