Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/drbd/drbd_main.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
drbd.c
4
5
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8
Copyright (C) 1999-2008, Philipp Reisner <[email protected]>.
9
Copyright (C) 2002-2008, Lars Ellenberg <[email protected]>.
10
11
Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12
from Logicworks, Inc. for making SDP replication support possible.
13
14
15
*/
16
17
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19
#include <linux/module.h>
20
#include <linux/jiffies.h>
21
#include <linux/drbd.h>
22
#include <linux/uaccess.h>
23
#include <asm/types.h>
24
#include <net/sock.h>
25
#include <linux/ctype.h>
26
#include <linux/mutex.h>
27
#include <linux/fs.h>
28
#include <linux/file.h>
29
#include <linux/proc_fs.h>
30
#include <linux/init.h>
31
#include <linux/mm.h>
32
#include <linux/memcontrol.h>
33
#include <linux/mm_inline.h>
34
#include <linux/slab.h>
35
#include <linux/random.h>
36
#include <linux/reboot.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39
#include <linux/workqueue.h>
40
#include <linux/unistd.h>
41
#include <linux/vmalloc.h>
42
#include <linux/sched/signal.h>
43
44
#include <linux/drbd_limits.h>
45
#include "drbd_int.h"
46
#include "drbd_protocol.h"
47
#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48
#include "drbd_vli.h"
49
#include "drbd_debugfs.h"
50
51
static DEFINE_MUTEX(drbd_main_mutex);
52
static int drbd_open(struct gendisk *disk, blk_mode_t mode);
53
static void drbd_release(struct gendisk *gd);
54
static void md_sync_timer_fn(struct timer_list *t);
55
static int w_bitmap_io(struct drbd_work *w, int unused);
56
57
MODULE_AUTHOR("Philipp Reisner <[email protected]>, "
58
"Lars Ellenberg <[email protected]>");
59
MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60
MODULE_VERSION(REL_VERSION);
61
MODULE_LICENSE("GPL");
62
MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63
__stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64
MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65
66
#include <linux/moduleparam.h>
67
/* thanks to these macros, if compiled into the kernel (not-module),
68
* these become boot parameters (e.g., drbd.minor_count) */
69
70
#ifdef CONFIG_DRBD_FAULT_INJECTION
71
int drbd_enable_faults;
72
int drbd_fault_rate;
73
static int drbd_fault_count;
74
static int drbd_fault_devs;
75
/* bitmap of enabled faults */
76
module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77
/* fault rate % value - applies to all enabled faults */
78
module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79
/* count of faults inserted */
80
module_param_named(fault_count, drbd_fault_count, int, 0664);
81
/* bitmap of devices to insert faults on */
82
module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83
#endif
84
85
/* module parameters we can keep static */
86
static bool drbd_allow_oos; /* allow_open_on_secondary */
87
static bool drbd_disable_sendpage;
88
MODULE_PARM_DESC(allow_oos, "DONT USE!");
89
module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90
module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91
92
/* module parameters we share */
93
int drbd_proc_details; /* Detail level in proc drbd*/
94
module_param_named(proc_details, drbd_proc_details, int, 0644);
95
/* module parameters shared with defaults */
96
unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97
/* Module parameter for setting the user mode helper program
98
* to run. Default is /sbin/drbdadm */
99
char drbd_usermode_helper[80] = "/sbin/drbdadm";
100
module_param_named(minor_count, drbd_minor_count, uint, 0444);
101
module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102
103
/* in 2.6.x, our device mapping and config info contains our virtual gendisks
104
* as member "struct gendisk *vdisk;"
105
*/
106
struct idr drbd_devices;
107
struct list_head drbd_resources;
108
struct mutex resources_mutex;
109
110
struct kmem_cache *drbd_request_cache;
111
struct kmem_cache *drbd_ee_cache; /* peer requests */
112
struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
113
struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
114
mempool_t drbd_request_mempool;
115
mempool_t drbd_ee_mempool;
116
mempool_t drbd_md_io_page_pool;
117
mempool_t drbd_buffer_page_pool;
118
struct bio_set drbd_md_io_bio_set;
119
struct bio_set drbd_io_bio_set;
120
121
DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
122
123
static const struct block_device_operations drbd_ops = {
124
.owner = THIS_MODULE,
125
.submit_bio = drbd_submit_bio,
126
.open = drbd_open,
127
.release = drbd_release,
128
};
129
130
#ifdef __CHECKER__
131
/* When checking with sparse, and this is an inline function, sparse will
132
give tons of false positives. When this is a real functions sparse works.
133
*/
134
int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
135
{
136
int io_allowed;
137
138
atomic_inc(&device->local_cnt);
139
io_allowed = (device->state.disk >= mins);
140
if (!io_allowed) {
141
if (atomic_dec_and_test(&device->local_cnt))
142
wake_up(&device->misc_wait);
143
}
144
return io_allowed;
145
}
146
147
#endif
148
149
/**
150
* tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
151
* @connection: DRBD connection.
152
* @barrier_nr: Expected identifier of the DRBD write barrier packet.
153
* @set_size: Expected number of requests before that barrier.
154
*
155
* In case the passed barrier_nr or set_size does not match the oldest
156
* epoch of not yet barrier-acked requests, this function will cause a
157
* termination of the connection.
158
*/
159
void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
160
unsigned int set_size)
161
{
162
struct drbd_request *r;
163
struct drbd_request *req = NULL, *tmp = NULL;
164
int expect_epoch = 0;
165
int expect_size = 0;
166
167
spin_lock_irq(&connection->resource->req_lock);
168
169
/* find oldest not yet barrier-acked write request,
170
* count writes in its epoch. */
171
list_for_each_entry(r, &connection->transfer_log, tl_requests) {
172
const unsigned s = r->rq_state;
173
if (!req) {
174
if (!(s & RQ_WRITE))
175
continue;
176
if (!(s & RQ_NET_MASK))
177
continue;
178
if (s & RQ_NET_DONE)
179
continue;
180
req = r;
181
expect_epoch = req->epoch;
182
expect_size ++;
183
} else {
184
if (r->epoch != expect_epoch)
185
break;
186
if (!(s & RQ_WRITE))
187
continue;
188
/* if (s & RQ_DONE): not expected */
189
/* if (!(s & RQ_NET_MASK)): not expected */
190
expect_size++;
191
}
192
}
193
194
/* first some paranoia code */
195
if (req == NULL) {
196
drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
197
barrier_nr);
198
goto bail;
199
}
200
if (expect_epoch != barrier_nr) {
201
drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
202
barrier_nr, expect_epoch);
203
goto bail;
204
}
205
206
if (expect_size != set_size) {
207
drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
208
barrier_nr, set_size, expect_size);
209
goto bail;
210
}
211
212
/* Clean up list of requests processed during current epoch. */
213
/* this extra list walk restart is paranoia,
214
* to catch requests being barrier-acked "unexpectedly".
215
* It usually should find the same req again, or some READ preceding it. */
216
list_for_each_entry(req, &connection->transfer_log, tl_requests)
217
if (req->epoch == expect_epoch) {
218
tmp = req;
219
break;
220
}
221
req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
222
list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
223
struct drbd_peer_device *peer_device;
224
if (req->epoch != expect_epoch)
225
break;
226
peer_device = conn_peer_device(connection, req->device->vnr);
227
_req_mod(req, BARRIER_ACKED, peer_device);
228
}
229
spin_unlock_irq(&connection->resource->req_lock);
230
231
return;
232
233
bail:
234
spin_unlock_irq(&connection->resource->req_lock);
235
conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
236
}
237
238
239
/**
240
* _tl_restart() - Walks the transfer log, and applies an action to all requests
241
* @connection: DRBD connection to operate on.
242
* @what: The action/event to perform with all request objects
243
*
244
* @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
245
* RESTART_FROZEN_DISK_IO.
246
*/
247
/* must hold resource->req_lock */
248
void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
249
{
250
struct drbd_peer_device *peer_device;
251
struct drbd_request *req, *r;
252
253
list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
254
peer_device = conn_peer_device(connection, req->device->vnr);
255
_req_mod(req, what, peer_device);
256
}
257
}
258
259
void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
260
{
261
spin_lock_irq(&connection->resource->req_lock);
262
_tl_restart(connection, what);
263
spin_unlock_irq(&connection->resource->req_lock);
264
}
265
266
/**
267
* tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
268
* @connection: DRBD connection.
269
*
270
* This is called after the connection to the peer was lost. The storage covered
271
* by the requests on the transfer gets marked as our of sync. Called from the
272
* receiver thread and the worker thread.
273
*/
274
void tl_clear(struct drbd_connection *connection)
275
{
276
tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
277
}
278
279
/**
280
* tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
281
* @device: DRBD device.
282
*/
283
void tl_abort_disk_io(struct drbd_device *device)
284
{
285
struct drbd_connection *connection = first_peer_device(device)->connection;
286
struct drbd_request *req, *r;
287
288
spin_lock_irq(&connection->resource->req_lock);
289
list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
290
if (!(req->rq_state & RQ_LOCAL_PENDING))
291
continue;
292
if (req->device != device)
293
continue;
294
_req_mod(req, ABORT_DISK_IO, NULL);
295
}
296
spin_unlock_irq(&connection->resource->req_lock);
297
}
298
299
static int drbd_thread_setup(void *arg)
300
{
301
struct drbd_thread *thi = (struct drbd_thread *) arg;
302
struct drbd_resource *resource = thi->resource;
303
unsigned long flags;
304
int retval;
305
306
snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
307
thi->name[0],
308
resource->name);
309
310
allow_kernel_signal(DRBD_SIGKILL);
311
allow_kernel_signal(SIGXCPU);
312
restart:
313
retval = thi->function(thi);
314
315
spin_lock_irqsave(&thi->t_lock, flags);
316
317
/* if the receiver has been "EXITING", the last thing it did
318
* was set the conn state to "StandAlone",
319
* if now a re-connect request comes in, conn state goes C_UNCONNECTED,
320
* and receiver thread will be "started".
321
* drbd_thread_start needs to set "RESTARTING" in that case.
322
* t_state check and assignment needs to be within the same spinlock,
323
* so either thread_start sees EXITING, and can remap to RESTARTING,
324
* or thread_start see NONE, and can proceed as normal.
325
*/
326
327
if (thi->t_state == RESTARTING) {
328
drbd_info(resource, "Restarting %s thread\n", thi->name);
329
thi->t_state = RUNNING;
330
spin_unlock_irqrestore(&thi->t_lock, flags);
331
goto restart;
332
}
333
334
thi->task = NULL;
335
thi->t_state = NONE;
336
smp_mb();
337
complete_all(&thi->stop);
338
spin_unlock_irqrestore(&thi->t_lock, flags);
339
340
drbd_info(resource, "Terminating %s\n", current->comm);
341
342
/* Release mod reference taken when thread was started */
343
344
if (thi->connection)
345
kref_put(&thi->connection->kref, drbd_destroy_connection);
346
kref_put(&resource->kref, drbd_destroy_resource);
347
module_put(THIS_MODULE);
348
return retval;
349
}
350
351
static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
352
int (*func) (struct drbd_thread *), const char *name)
353
{
354
spin_lock_init(&thi->t_lock);
355
thi->task = NULL;
356
thi->t_state = NONE;
357
thi->function = func;
358
thi->resource = resource;
359
thi->connection = NULL;
360
thi->name = name;
361
}
362
363
int drbd_thread_start(struct drbd_thread *thi)
364
{
365
struct drbd_resource *resource = thi->resource;
366
struct task_struct *nt;
367
unsigned long flags;
368
369
/* is used from state engine doing drbd_thread_stop_nowait,
370
* while holding the req lock irqsave */
371
spin_lock_irqsave(&thi->t_lock, flags);
372
373
switch (thi->t_state) {
374
case NONE:
375
drbd_info(resource, "Starting %s thread (from %s [%d])\n",
376
thi->name, current->comm, current->pid);
377
378
/* Get ref on module for thread - this is released when thread exits */
379
if (!try_module_get(THIS_MODULE)) {
380
drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
381
spin_unlock_irqrestore(&thi->t_lock, flags);
382
return false;
383
}
384
385
kref_get(&resource->kref);
386
if (thi->connection)
387
kref_get(&thi->connection->kref);
388
389
init_completion(&thi->stop);
390
thi->reset_cpu_mask = 1;
391
thi->t_state = RUNNING;
392
spin_unlock_irqrestore(&thi->t_lock, flags);
393
flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
394
395
nt = kthread_create(drbd_thread_setup, (void *) thi,
396
"drbd_%c_%s", thi->name[0], thi->resource->name);
397
398
if (IS_ERR(nt)) {
399
drbd_err(resource, "Couldn't start thread\n");
400
401
if (thi->connection)
402
kref_put(&thi->connection->kref, drbd_destroy_connection);
403
kref_put(&resource->kref, drbd_destroy_resource);
404
module_put(THIS_MODULE);
405
return false;
406
}
407
spin_lock_irqsave(&thi->t_lock, flags);
408
thi->task = nt;
409
thi->t_state = RUNNING;
410
spin_unlock_irqrestore(&thi->t_lock, flags);
411
wake_up_process(nt);
412
break;
413
case EXITING:
414
thi->t_state = RESTARTING;
415
drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
416
thi->name, current->comm, current->pid);
417
fallthrough;
418
case RUNNING:
419
case RESTARTING:
420
default:
421
spin_unlock_irqrestore(&thi->t_lock, flags);
422
break;
423
}
424
425
return true;
426
}
427
428
429
void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
430
{
431
unsigned long flags;
432
433
enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
434
435
/* may be called from state engine, holding the req lock irqsave */
436
spin_lock_irqsave(&thi->t_lock, flags);
437
438
if (thi->t_state == NONE) {
439
spin_unlock_irqrestore(&thi->t_lock, flags);
440
if (restart)
441
drbd_thread_start(thi);
442
return;
443
}
444
445
if (thi->t_state != ns) {
446
if (thi->task == NULL) {
447
spin_unlock_irqrestore(&thi->t_lock, flags);
448
return;
449
}
450
451
thi->t_state = ns;
452
smp_mb();
453
init_completion(&thi->stop);
454
if (thi->task != current)
455
send_sig(DRBD_SIGKILL, thi->task, 1);
456
}
457
458
spin_unlock_irqrestore(&thi->t_lock, flags);
459
460
if (wait)
461
wait_for_completion(&thi->stop);
462
}
463
464
#ifdef CONFIG_SMP
465
/*
466
* drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
467
*
468
* Forces all threads of a resource onto the same CPU. This is beneficial for
469
* DRBD's performance. May be overwritten by user's configuration.
470
*/
471
static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
472
{
473
unsigned int *resources_per_cpu, min_index = ~0;
474
475
resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
476
GFP_KERNEL);
477
if (resources_per_cpu) {
478
struct drbd_resource *resource;
479
unsigned int cpu, min = ~0;
480
481
rcu_read_lock();
482
for_each_resource_rcu(resource, &drbd_resources) {
483
for_each_cpu(cpu, resource->cpu_mask)
484
resources_per_cpu[cpu]++;
485
}
486
rcu_read_unlock();
487
for_each_online_cpu(cpu) {
488
if (resources_per_cpu[cpu] < min) {
489
min = resources_per_cpu[cpu];
490
min_index = cpu;
491
}
492
}
493
kfree(resources_per_cpu);
494
}
495
if (min_index == ~0) {
496
cpumask_setall(*cpu_mask);
497
return;
498
}
499
cpumask_set_cpu(min_index, *cpu_mask);
500
}
501
502
/**
503
* drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
504
* @thi: drbd_thread object
505
*
506
* call in the "main loop" of _all_ threads, no need for any mutex, current won't die
507
* prematurely.
508
*/
509
void drbd_thread_current_set_cpu(struct drbd_thread *thi)
510
{
511
struct drbd_resource *resource = thi->resource;
512
struct task_struct *p = current;
513
514
if (!thi->reset_cpu_mask)
515
return;
516
thi->reset_cpu_mask = 0;
517
set_cpus_allowed_ptr(p, resource->cpu_mask);
518
}
519
#else
520
#define drbd_calc_cpu_mask(A) ({})
521
#endif
522
523
/*
524
* drbd_header_size - size of a packet header
525
*
526
* The header size is a multiple of 8, so any payload following the header is
527
* word aligned on 64-bit architectures. (The bitmap send and receive code
528
* relies on this.)
529
*/
530
unsigned int drbd_header_size(struct drbd_connection *connection)
531
{
532
if (connection->agreed_pro_version >= 100) {
533
BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
534
return sizeof(struct p_header100);
535
} else {
536
BUILD_BUG_ON(sizeof(struct p_header80) !=
537
sizeof(struct p_header95));
538
BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
539
return sizeof(struct p_header80);
540
}
541
}
542
543
static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
544
{
545
h->magic = cpu_to_be32(DRBD_MAGIC);
546
h->command = cpu_to_be16(cmd);
547
h->length = cpu_to_be16(size);
548
return sizeof(struct p_header80);
549
}
550
551
static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
552
{
553
h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
554
h->command = cpu_to_be16(cmd);
555
h->length = cpu_to_be32(size);
556
return sizeof(struct p_header95);
557
}
558
559
static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
560
int size, int vnr)
561
{
562
h->magic = cpu_to_be32(DRBD_MAGIC_100);
563
h->volume = cpu_to_be16(vnr);
564
h->command = cpu_to_be16(cmd);
565
h->length = cpu_to_be32(size);
566
h->pad = 0;
567
return sizeof(struct p_header100);
568
}
569
570
static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
571
void *buffer, enum drbd_packet cmd, int size)
572
{
573
if (connection->agreed_pro_version >= 100)
574
return prepare_header100(buffer, cmd, size, vnr);
575
else if (connection->agreed_pro_version >= 95 &&
576
size > DRBD_MAX_SIZE_H80_PACKET)
577
return prepare_header95(buffer, cmd, size);
578
else
579
return prepare_header80(buffer, cmd, size);
580
}
581
582
static void *__conn_prepare_command(struct drbd_connection *connection,
583
struct drbd_socket *sock)
584
{
585
if (!sock->socket)
586
return NULL;
587
return sock->sbuf + drbd_header_size(connection);
588
}
589
590
void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
591
{
592
void *p;
593
594
mutex_lock(&sock->mutex);
595
p = __conn_prepare_command(connection, sock);
596
if (!p)
597
mutex_unlock(&sock->mutex);
598
599
return p;
600
}
601
602
void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
603
{
604
return conn_prepare_command(peer_device->connection, sock);
605
}
606
607
static int __send_command(struct drbd_connection *connection, int vnr,
608
struct drbd_socket *sock, enum drbd_packet cmd,
609
unsigned int header_size, void *data,
610
unsigned int size)
611
{
612
int msg_flags;
613
int err;
614
615
/*
616
* Called with @data == NULL and the size of the data blocks in @size
617
* for commands that send data blocks. For those commands, omit the
618
* MSG_MORE flag: this will increase the likelihood that data blocks
619
* which are page aligned on the sender will end up page aligned on the
620
* receiver.
621
*/
622
msg_flags = data ? MSG_MORE : 0;
623
624
header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
625
header_size + size);
626
err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
627
msg_flags);
628
if (data && !err)
629
err = drbd_send_all(connection, sock->socket, data, size, 0);
630
/* DRBD protocol "pings" are latency critical.
631
* This is supposed to trigger tcp_push_pending_frames() */
632
if (!err && (cmd == P_PING || cmd == P_PING_ACK))
633
tcp_sock_set_nodelay(sock->socket->sk);
634
635
return err;
636
}
637
638
static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
639
enum drbd_packet cmd, unsigned int header_size,
640
void *data, unsigned int size)
641
{
642
return __send_command(connection, 0, sock, cmd, header_size, data, size);
643
}
644
645
int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
646
enum drbd_packet cmd, unsigned int header_size,
647
void *data, unsigned int size)
648
{
649
int err;
650
651
err = __conn_send_command(connection, sock, cmd, header_size, data, size);
652
mutex_unlock(&sock->mutex);
653
return err;
654
}
655
656
int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
657
enum drbd_packet cmd, unsigned int header_size,
658
void *data, unsigned int size)
659
{
660
int err;
661
662
err = __send_command(peer_device->connection, peer_device->device->vnr,
663
sock, cmd, header_size, data, size);
664
mutex_unlock(&sock->mutex);
665
return err;
666
}
667
668
int drbd_send_ping(struct drbd_connection *connection)
669
{
670
struct drbd_socket *sock;
671
672
sock = &connection->meta;
673
if (!conn_prepare_command(connection, sock))
674
return -EIO;
675
return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
676
}
677
678
int drbd_send_ping_ack(struct drbd_connection *connection)
679
{
680
struct drbd_socket *sock;
681
682
sock = &connection->meta;
683
if (!conn_prepare_command(connection, sock))
684
return -EIO;
685
return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
686
}
687
688
int drbd_send_sync_param(struct drbd_peer_device *peer_device)
689
{
690
struct drbd_socket *sock;
691
struct p_rs_param_95 *p;
692
int size;
693
const int apv = peer_device->connection->agreed_pro_version;
694
enum drbd_packet cmd;
695
struct net_conf *nc;
696
struct disk_conf *dc;
697
698
sock = &peer_device->connection->data;
699
p = drbd_prepare_command(peer_device, sock);
700
if (!p)
701
return -EIO;
702
703
rcu_read_lock();
704
nc = rcu_dereference(peer_device->connection->net_conf);
705
706
size = apv <= 87 ? sizeof(struct p_rs_param)
707
: apv == 88 ? sizeof(struct p_rs_param)
708
+ strlen(nc->verify_alg) + 1
709
: apv <= 94 ? sizeof(struct p_rs_param_89)
710
: /* apv >= 95 */ sizeof(struct p_rs_param_95);
711
712
cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
713
714
/* initialize verify_alg and csums_alg */
715
BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
716
memset(&p->algs, 0, sizeof(p->algs));
717
718
if (get_ldev(peer_device->device)) {
719
dc = rcu_dereference(peer_device->device->ldev->disk_conf);
720
p->resync_rate = cpu_to_be32(dc->resync_rate);
721
p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
722
p->c_delay_target = cpu_to_be32(dc->c_delay_target);
723
p->c_fill_target = cpu_to_be32(dc->c_fill_target);
724
p->c_max_rate = cpu_to_be32(dc->c_max_rate);
725
put_ldev(peer_device->device);
726
} else {
727
p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
728
p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
729
p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
730
p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
731
p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
732
}
733
734
if (apv >= 88)
735
strcpy(p->verify_alg, nc->verify_alg);
736
if (apv >= 89)
737
strcpy(p->csums_alg, nc->csums_alg);
738
rcu_read_unlock();
739
740
return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
741
}
742
743
int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
744
{
745
struct drbd_socket *sock;
746
struct p_protocol *p;
747
struct net_conf *nc;
748
int size, cf;
749
750
sock = &connection->data;
751
p = __conn_prepare_command(connection, sock);
752
if (!p)
753
return -EIO;
754
755
rcu_read_lock();
756
nc = rcu_dereference(connection->net_conf);
757
758
if (nc->tentative && connection->agreed_pro_version < 92) {
759
rcu_read_unlock();
760
drbd_err(connection, "--dry-run is not supported by peer");
761
return -EOPNOTSUPP;
762
}
763
764
size = sizeof(*p);
765
if (connection->agreed_pro_version >= 87)
766
size += strlen(nc->integrity_alg) + 1;
767
768
p->protocol = cpu_to_be32(nc->wire_protocol);
769
p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
770
p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
771
p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
772
p->two_primaries = cpu_to_be32(nc->two_primaries);
773
cf = 0;
774
if (nc->discard_my_data)
775
cf |= CF_DISCARD_MY_DATA;
776
if (nc->tentative)
777
cf |= CF_DRY_RUN;
778
p->conn_flags = cpu_to_be32(cf);
779
780
if (connection->agreed_pro_version >= 87)
781
strcpy(p->integrity_alg, nc->integrity_alg);
782
rcu_read_unlock();
783
784
return __conn_send_command(connection, sock, cmd, size, NULL, 0);
785
}
786
787
int drbd_send_protocol(struct drbd_connection *connection)
788
{
789
int err;
790
791
mutex_lock(&connection->data.mutex);
792
err = __drbd_send_protocol(connection, P_PROTOCOL);
793
mutex_unlock(&connection->data.mutex);
794
795
return err;
796
}
797
798
static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
799
{
800
struct drbd_device *device = peer_device->device;
801
struct drbd_socket *sock;
802
struct p_uuids *p;
803
int i;
804
805
if (!get_ldev_if_state(device, D_NEGOTIATING))
806
return 0;
807
808
sock = &peer_device->connection->data;
809
p = drbd_prepare_command(peer_device, sock);
810
if (!p) {
811
put_ldev(device);
812
return -EIO;
813
}
814
spin_lock_irq(&device->ldev->md.uuid_lock);
815
for (i = UI_CURRENT; i < UI_SIZE; i++)
816
p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
817
spin_unlock_irq(&device->ldev->md.uuid_lock);
818
819
device->comm_bm_set = drbd_bm_total_weight(device);
820
p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
821
rcu_read_lock();
822
uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
823
rcu_read_unlock();
824
uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
825
uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
826
p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
827
828
put_ldev(device);
829
return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
830
}
831
832
int drbd_send_uuids(struct drbd_peer_device *peer_device)
833
{
834
return _drbd_send_uuids(peer_device, 0);
835
}
836
837
int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
838
{
839
return _drbd_send_uuids(peer_device, 8);
840
}
841
842
void drbd_print_uuids(struct drbd_device *device, const char *text)
843
{
844
if (get_ldev_if_state(device, D_NEGOTIATING)) {
845
u64 *uuid = device->ldev->md.uuid;
846
drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
847
text,
848
(unsigned long long)uuid[UI_CURRENT],
849
(unsigned long long)uuid[UI_BITMAP],
850
(unsigned long long)uuid[UI_HISTORY_START],
851
(unsigned long long)uuid[UI_HISTORY_END]);
852
put_ldev(device);
853
} else {
854
drbd_info(device, "%s effective data uuid: %016llX\n",
855
text,
856
(unsigned long long)device->ed_uuid);
857
}
858
}
859
860
void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
861
{
862
struct drbd_device *device = peer_device->device;
863
struct drbd_socket *sock;
864
struct p_rs_uuid *p;
865
u64 uuid;
866
867
D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
868
869
uuid = device->ldev->md.uuid[UI_BITMAP];
870
if (uuid && uuid != UUID_JUST_CREATED)
871
uuid = uuid + UUID_NEW_BM_OFFSET;
872
else
873
get_random_bytes(&uuid, sizeof(u64));
874
drbd_uuid_set(device, UI_BITMAP, uuid);
875
drbd_print_uuids(device, "updated sync UUID");
876
drbd_md_sync(device);
877
878
sock = &peer_device->connection->data;
879
p = drbd_prepare_command(peer_device, sock);
880
if (p) {
881
p->uuid = cpu_to_be64(uuid);
882
drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
883
}
884
}
885
886
int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
887
{
888
struct drbd_device *device = peer_device->device;
889
struct drbd_socket *sock;
890
struct p_sizes *p;
891
sector_t d_size, u_size;
892
int q_order_type;
893
unsigned int max_bio_size;
894
unsigned int packet_size;
895
896
sock = &peer_device->connection->data;
897
p = drbd_prepare_command(peer_device, sock);
898
if (!p)
899
return -EIO;
900
901
packet_size = sizeof(*p);
902
if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
903
packet_size += sizeof(p->qlim[0]);
904
905
memset(p, 0, packet_size);
906
if (get_ldev_if_state(device, D_NEGOTIATING)) {
907
struct block_device *bdev = device->ldev->backing_bdev;
908
struct request_queue *q = bdev_get_queue(bdev);
909
910
d_size = drbd_get_max_capacity(device->ldev);
911
rcu_read_lock();
912
u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
913
rcu_read_unlock();
914
q_order_type = drbd_queue_order_type(device);
915
max_bio_size = queue_max_hw_sectors(q) << 9;
916
max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
917
p->qlim->physical_block_size =
918
cpu_to_be32(bdev_physical_block_size(bdev));
919
p->qlim->logical_block_size =
920
cpu_to_be32(bdev_logical_block_size(bdev));
921
p->qlim->alignment_offset =
922
cpu_to_be32(bdev_alignment_offset(bdev));
923
p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
924
p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
925
p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
926
put_ldev(device);
927
} else {
928
struct request_queue *q = device->rq_queue;
929
930
p->qlim->physical_block_size =
931
cpu_to_be32(queue_physical_block_size(q));
932
p->qlim->logical_block_size =
933
cpu_to_be32(queue_logical_block_size(q));
934
p->qlim->alignment_offset = 0;
935
p->qlim->io_min = cpu_to_be32(queue_io_min(q));
936
p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
937
p->qlim->discard_enabled = 0;
938
939
d_size = 0;
940
u_size = 0;
941
q_order_type = QUEUE_ORDERED_NONE;
942
max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
943
}
944
945
if (peer_device->connection->agreed_pro_version <= 94)
946
max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
947
else if (peer_device->connection->agreed_pro_version < 100)
948
max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
949
950
p->d_size = cpu_to_be64(d_size);
951
p->u_size = cpu_to_be64(u_size);
952
if (trigger_reply)
953
p->c_size = 0;
954
else
955
p->c_size = cpu_to_be64(get_capacity(device->vdisk));
956
p->max_bio_size = cpu_to_be32(max_bio_size);
957
p->queue_order_type = cpu_to_be16(q_order_type);
958
p->dds_flags = cpu_to_be16(flags);
959
960
return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
961
}
962
963
/**
964
* drbd_send_current_state() - Sends the drbd state to the peer
965
* @peer_device: DRBD peer device.
966
*/
967
int drbd_send_current_state(struct drbd_peer_device *peer_device)
968
{
969
struct drbd_socket *sock;
970
struct p_state *p;
971
972
sock = &peer_device->connection->data;
973
p = drbd_prepare_command(peer_device, sock);
974
if (!p)
975
return -EIO;
976
p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
977
return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
978
}
979
980
/**
981
* drbd_send_state() - After a state change, sends the new state to the peer
982
* @peer_device: DRBD peer device.
983
* @state: the state to send, not necessarily the current state.
984
*
985
* Each state change queues an "after_state_ch" work, which will eventually
986
* send the resulting new state to the peer. If more state changes happen
987
* between queuing and processing of the after_state_ch work, we still
988
* want to send each intermediary state in the order it occurred.
989
*/
990
int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
991
{
992
struct drbd_socket *sock;
993
struct p_state *p;
994
995
sock = &peer_device->connection->data;
996
p = drbd_prepare_command(peer_device, sock);
997
if (!p)
998
return -EIO;
999
p->state = cpu_to_be32(state.i); /* Within the send mutex */
1000
return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1001
}
1002
1003
int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1004
{
1005
struct drbd_socket *sock;
1006
struct p_req_state *p;
1007
1008
sock = &peer_device->connection->data;
1009
p = drbd_prepare_command(peer_device, sock);
1010
if (!p)
1011
return -EIO;
1012
p->mask = cpu_to_be32(mask.i);
1013
p->val = cpu_to_be32(val.i);
1014
return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1015
}
1016
1017
int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1018
{
1019
enum drbd_packet cmd;
1020
struct drbd_socket *sock;
1021
struct p_req_state *p;
1022
1023
cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1024
sock = &connection->data;
1025
p = conn_prepare_command(connection, sock);
1026
if (!p)
1027
return -EIO;
1028
p->mask = cpu_to_be32(mask.i);
1029
p->val = cpu_to_be32(val.i);
1030
return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1031
}
1032
1033
void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1034
{
1035
struct drbd_socket *sock;
1036
struct p_req_state_reply *p;
1037
1038
sock = &peer_device->connection->meta;
1039
p = drbd_prepare_command(peer_device, sock);
1040
if (p) {
1041
p->retcode = cpu_to_be32(retcode);
1042
drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1043
}
1044
}
1045
1046
void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1047
{
1048
struct drbd_socket *sock;
1049
struct p_req_state_reply *p;
1050
enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1051
1052
sock = &connection->meta;
1053
p = conn_prepare_command(connection, sock);
1054
if (p) {
1055
p->retcode = cpu_to_be32(retcode);
1056
conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1057
}
1058
}
1059
1060
static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1061
{
1062
BUG_ON(code & ~0xf);
1063
p->encoding = (p->encoding & ~0xf) | code;
1064
}
1065
1066
static void dcbp_set_start(struct p_compressed_bm *p, int set)
1067
{
1068
p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1069
}
1070
1071
static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1072
{
1073
BUG_ON(n & ~0x7);
1074
p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1075
}
1076
1077
static int fill_bitmap_rle_bits(struct drbd_device *device,
1078
struct p_compressed_bm *p,
1079
unsigned int size,
1080
struct bm_xfer_ctx *c)
1081
{
1082
struct bitstream bs;
1083
unsigned long plain_bits;
1084
unsigned long tmp;
1085
unsigned long rl;
1086
unsigned len;
1087
unsigned toggle;
1088
int bits, use_rle;
1089
1090
/* may we use this feature? */
1091
rcu_read_lock();
1092
use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1093
rcu_read_unlock();
1094
if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1095
return 0;
1096
1097
if (c->bit_offset >= c->bm_bits)
1098
return 0; /* nothing to do. */
1099
1100
/* use at most thus many bytes */
1101
bitstream_init(&bs, p->code, size, 0);
1102
memset(p->code, 0, size);
1103
/* plain bits covered in this code string */
1104
plain_bits = 0;
1105
1106
/* p->encoding & 0x80 stores whether the first run length is set.
1107
* bit offset is implicit.
1108
* start with toggle == 2 to be able to tell the first iteration */
1109
toggle = 2;
1110
1111
/* see how much plain bits we can stuff into one packet
1112
* using RLE and VLI. */
1113
do {
1114
tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1115
: _drbd_bm_find_next(device, c->bit_offset);
1116
if (tmp == -1UL)
1117
tmp = c->bm_bits;
1118
rl = tmp - c->bit_offset;
1119
1120
if (toggle == 2) { /* first iteration */
1121
if (rl == 0) {
1122
/* the first checked bit was set,
1123
* store start value, */
1124
dcbp_set_start(p, 1);
1125
/* but skip encoding of zero run length */
1126
toggle = !toggle;
1127
continue;
1128
}
1129
dcbp_set_start(p, 0);
1130
}
1131
1132
/* paranoia: catch zero runlength.
1133
* can only happen if bitmap is modified while we scan it. */
1134
if (rl == 0) {
1135
drbd_err(device, "unexpected zero runlength while encoding bitmap "
1136
"t:%u bo:%lu\n", toggle, c->bit_offset);
1137
return -1;
1138
}
1139
1140
bits = vli_encode_bits(&bs, rl);
1141
if (bits == -ENOBUFS) /* buffer full */
1142
break;
1143
if (bits <= 0) {
1144
drbd_err(device, "error while encoding bitmap: %d\n", bits);
1145
return 0;
1146
}
1147
1148
toggle = !toggle;
1149
plain_bits += rl;
1150
c->bit_offset = tmp;
1151
} while (c->bit_offset < c->bm_bits);
1152
1153
len = bs.cur.b - p->code + !!bs.cur.bit;
1154
1155
if (plain_bits < (len << 3)) {
1156
/* incompressible with this method.
1157
* we need to rewind both word and bit position. */
1158
c->bit_offset -= plain_bits;
1159
bm_xfer_ctx_bit_to_word_offset(c);
1160
c->bit_offset = c->word_offset * BITS_PER_LONG;
1161
return 0;
1162
}
1163
1164
/* RLE + VLI was able to compress it just fine.
1165
* update c->word_offset. */
1166
bm_xfer_ctx_bit_to_word_offset(c);
1167
1168
/* store pad_bits */
1169
dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1170
1171
return len;
1172
}
1173
1174
/*
1175
* send_bitmap_rle_or_plain
1176
*
1177
* Return 0 when done, 1 when another iteration is needed, and a negative error
1178
* code upon failure.
1179
*/
1180
static int
1181
send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1182
{
1183
struct drbd_device *device = peer_device->device;
1184
struct drbd_socket *sock = &peer_device->connection->data;
1185
unsigned int header_size = drbd_header_size(peer_device->connection);
1186
struct p_compressed_bm *p = sock->sbuf + header_size;
1187
int len, err;
1188
1189
len = fill_bitmap_rle_bits(device, p,
1190
DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1191
if (len < 0)
1192
return -EIO;
1193
1194
if (len) {
1195
dcbp_set_code(p, RLE_VLI_Bits);
1196
err = __send_command(peer_device->connection, device->vnr, sock,
1197
P_COMPRESSED_BITMAP, sizeof(*p) + len,
1198
NULL, 0);
1199
c->packets[0]++;
1200
c->bytes[0] += header_size + sizeof(*p) + len;
1201
1202
if (c->bit_offset >= c->bm_bits)
1203
len = 0; /* DONE */
1204
} else {
1205
/* was not compressible.
1206
* send a buffer full of plain text bits instead. */
1207
unsigned int data_size;
1208
unsigned long num_words;
1209
unsigned long *p = sock->sbuf + header_size;
1210
1211
data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1212
num_words = min_t(size_t, data_size / sizeof(*p),
1213
c->bm_words - c->word_offset);
1214
len = num_words * sizeof(*p);
1215
if (len)
1216
drbd_bm_get_lel(device, c->word_offset, num_words, p);
1217
err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP,
1218
len, NULL, 0);
1219
c->word_offset += num_words;
1220
c->bit_offset = c->word_offset * BITS_PER_LONG;
1221
1222
c->packets[1]++;
1223
c->bytes[1] += header_size + len;
1224
1225
if (c->bit_offset > c->bm_bits)
1226
c->bit_offset = c->bm_bits;
1227
}
1228
if (!err) {
1229
if (len == 0) {
1230
INFO_bm_xfer_stats(peer_device, "send", c);
1231
return 0;
1232
} else
1233
return 1;
1234
}
1235
return -EIO;
1236
}
1237
1238
/* See the comment at receive_bitmap() */
1239
static int _drbd_send_bitmap(struct drbd_device *device,
1240
struct drbd_peer_device *peer_device)
1241
{
1242
struct bm_xfer_ctx c;
1243
int err;
1244
1245
if (!expect(device, device->bitmap))
1246
return false;
1247
1248
if (get_ldev(device)) {
1249
if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1250
drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1251
drbd_bm_set_all(device);
1252
if (drbd_bm_write(device, peer_device)) {
1253
/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1254
* but otherwise process as per normal - need to tell other
1255
* side that a full resync is required! */
1256
drbd_err(device, "Failed to write bitmap to disk!\n");
1257
} else {
1258
drbd_md_clear_flag(device, MDF_FULL_SYNC);
1259
drbd_md_sync(device);
1260
}
1261
}
1262
put_ldev(device);
1263
}
1264
1265
c = (struct bm_xfer_ctx) {
1266
.bm_bits = drbd_bm_bits(device),
1267
.bm_words = drbd_bm_words(device),
1268
};
1269
1270
do {
1271
err = send_bitmap_rle_or_plain(peer_device, &c);
1272
} while (err > 0);
1273
1274
return err == 0;
1275
}
1276
1277
int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1278
{
1279
struct drbd_socket *sock = &peer_device->connection->data;
1280
int err = -1;
1281
1282
mutex_lock(&sock->mutex);
1283
if (sock->socket)
1284
err = !_drbd_send_bitmap(device, peer_device);
1285
mutex_unlock(&sock->mutex);
1286
return err;
1287
}
1288
1289
void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1290
{
1291
struct drbd_socket *sock;
1292
struct p_barrier_ack *p;
1293
1294
if (connection->cstate < C_WF_REPORT_PARAMS)
1295
return;
1296
1297
sock = &connection->meta;
1298
p = conn_prepare_command(connection, sock);
1299
if (!p)
1300
return;
1301
p->barrier = barrier_nr;
1302
p->set_size = cpu_to_be32(set_size);
1303
conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1304
}
1305
1306
/**
1307
* _drbd_send_ack() - Sends an ack packet
1308
* @peer_device: DRBD peer device.
1309
* @cmd: Packet command code.
1310
* @sector: sector, needs to be in big endian byte order
1311
* @blksize: size in byte, needs to be in big endian byte order
1312
* @block_id: Id, big endian byte order
1313
*/
1314
static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1315
u64 sector, u32 blksize, u64 block_id)
1316
{
1317
struct drbd_socket *sock;
1318
struct p_block_ack *p;
1319
1320
if (peer_device->device->state.conn < C_CONNECTED)
1321
return -EIO;
1322
1323
sock = &peer_device->connection->meta;
1324
p = drbd_prepare_command(peer_device, sock);
1325
if (!p)
1326
return -EIO;
1327
p->sector = sector;
1328
p->block_id = block_id;
1329
p->blksize = blksize;
1330
p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1331
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1332
}
1333
1334
/* dp->sector and dp->block_id already/still in network byte order,
1335
* data_size is payload size according to dp->head,
1336
* and may need to be corrected for digest size. */
1337
void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1338
struct p_data *dp, int data_size)
1339
{
1340
if (peer_device->connection->peer_integrity_tfm)
1341
data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1342
_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1343
dp->block_id);
1344
}
1345
1346
void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1347
struct p_block_req *rp)
1348
{
1349
_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1350
}
1351
1352
/**
1353
* drbd_send_ack() - Sends an ack packet
1354
* @peer_device: DRBD peer device
1355
* @cmd: packet command code
1356
* @peer_req: peer request
1357
*/
1358
int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1359
struct drbd_peer_request *peer_req)
1360
{
1361
return _drbd_send_ack(peer_device, cmd,
1362
cpu_to_be64(peer_req->i.sector),
1363
cpu_to_be32(peer_req->i.size),
1364
peer_req->block_id);
1365
}
1366
1367
/* This function misuses the block_id field to signal if the blocks
1368
* are is sync or not. */
1369
int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1370
sector_t sector, int blksize, u64 block_id)
1371
{
1372
return _drbd_send_ack(peer_device, cmd,
1373
cpu_to_be64(sector),
1374
cpu_to_be32(blksize),
1375
cpu_to_be64(block_id));
1376
}
1377
1378
int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1379
struct drbd_peer_request *peer_req)
1380
{
1381
struct drbd_socket *sock;
1382
struct p_block_desc *p;
1383
1384
sock = &peer_device->connection->data;
1385
p = drbd_prepare_command(peer_device, sock);
1386
if (!p)
1387
return -EIO;
1388
p->sector = cpu_to_be64(peer_req->i.sector);
1389
p->blksize = cpu_to_be32(peer_req->i.size);
1390
p->pad = 0;
1391
return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1392
}
1393
1394
int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1395
sector_t sector, int size, u64 block_id)
1396
{
1397
struct drbd_socket *sock;
1398
struct p_block_req *p;
1399
1400
sock = &peer_device->connection->data;
1401
p = drbd_prepare_command(peer_device, sock);
1402
if (!p)
1403
return -EIO;
1404
p->sector = cpu_to_be64(sector);
1405
p->block_id = block_id;
1406
p->blksize = cpu_to_be32(size);
1407
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1408
}
1409
1410
int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1411
void *digest, int digest_size, enum drbd_packet cmd)
1412
{
1413
struct drbd_socket *sock;
1414
struct p_block_req *p;
1415
1416
/* FIXME: Put the digest into the preallocated socket buffer. */
1417
1418
sock = &peer_device->connection->data;
1419
p = drbd_prepare_command(peer_device, sock);
1420
if (!p)
1421
return -EIO;
1422
p->sector = cpu_to_be64(sector);
1423
p->block_id = ID_SYNCER /* unused */;
1424
p->blksize = cpu_to_be32(size);
1425
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1426
}
1427
1428
int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1429
{
1430
struct drbd_socket *sock;
1431
struct p_block_req *p;
1432
1433
sock = &peer_device->connection->data;
1434
p = drbd_prepare_command(peer_device, sock);
1435
if (!p)
1436
return -EIO;
1437
p->sector = cpu_to_be64(sector);
1438
p->block_id = ID_SYNCER /* unused */;
1439
p->blksize = cpu_to_be32(size);
1440
return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1441
}
1442
1443
/* called on sndtimeo
1444
* returns false if we should retry,
1445
* true if we think connection is dead
1446
*/
1447
static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1448
{
1449
int drop_it;
1450
/* long elapsed = (long)(jiffies - device->last_received); */
1451
1452
drop_it = connection->meta.socket == sock
1453
|| !connection->ack_receiver.task
1454
|| get_t_state(&connection->ack_receiver) != RUNNING
1455
|| connection->cstate < C_WF_REPORT_PARAMS;
1456
1457
if (drop_it)
1458
return true;
1459
1460
drop_it = !--connection->ko_count;
1461
if (!drop_it) {
1462
drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1463
current->comm, current->pid, connection->ko_count);
1464
request_ping(connection);
1465
}
1466
1467
return drop_it; /* && (device->state == R_PRIMARY) */;
1468
}
1469
1470
static void drbd_update_congested(struct drbd_connection *connection)
1471
{
1472
struct sock *sk = connection->data.socket->sk;
1473
if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1474
set_bit(NET_CONGESTED, &connection->flags);
1475
}
1476
1477
/* The idea of sendpage seems to be to put some kind of reference
1478
* to the page into the skb, and to hand it over to the NIC. In
1479
* this process get_page() gets called.
1480
*
1481
* As soon as the page was really sent over the network put_page()
1482
* gets called by some part of the network layer. [ NIC driver? ]
1483
*
1484
* [ get_page() / put_page() increment/decrement the count. If count
1485
* reaches 0 the page will be freed. ]
1486
*
1487
* This works nicely with pages from FSs.
1488
* But this means that in protocol A we might signal IO completion too early!
1489
*
1490
* In order not to corrupt data during a resync we must make sure
1491
* that we do not reuse our own buffer pages (EEs) to early, therefore
1492
* we have the net_ee list.
1493
*
1494
* XFS seems to have problems, still, it submits pages with page_count == 0!
1495
* As a workaround, we disable sendpage on pages
1496
* with page_count == 0 or PageSlab.
1497
*/
1498
static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1499
int offset, size_t size, unsigned msg_flags)
1500
{
1501
struct socket *socket;
1502
void *addr;
1503
int err;
1504
1505
socket = peer_device->connection->data.socket;
1506
addr = kmap(page) + offset;
1507
err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1508
kunmap(page);
1509
if (!err)
1510
peer_device->device->send_cnt += size >> 9;
1511
return err;
1512
}
1513
1514
static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1515
int offset, size_t size, unsigned msg_flags)
1516
{
1517
struct socket *socket = peer_device->connection->data.socket;
1518
struct msghdr msg = { .msg_flags = msg_flags, };
1519
struct bio_vec bvec;
1520
int len = size;
1521
int err = -EIO;
1522
1523
/* e.g. XFS meta- & log-data is in slab pages, which have a
1524
* page_count of 0 and/or have PageSlab() set.
1525
* we cannot use send_page for those, as that does get_page();
1526
* put_page(); and would cause either a VM_BUG directly, or
1527
* __page_cache_release a page that would actually still be referenced
1528
* by someone, leading to some obscure delayed Oops somewhere else. */
1529
if (!drbd_disable_sendpage && sendpages_ok(page, len, offset))
1530
msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
1531
1532
drbd_update_congested(peer_device->connection);
1533
do {
1534
int sent;
1535
1536
bvec_set_page(&bvec, page, len, offset);
1537
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1538
1539
sent = sock_sendmsg(socket, &msg);
1540
if (sent <= 0) {
1541
if (sent == -EAGAIN) {
1542
if (we_should_drop_the_connection(peer_device->connection, socket))
1543
break;
1544
continue;
1545
}
1546
drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1547
__func__, (int)size, len, sent);
1548
if (sent < 0)
1549
err = sent;
1550
break;
1551
}
1552
len -= sent;
1553
offset += sent;
1554
} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1555
clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1556
1557
if (len == 0) {
1558
err = 0;
1559
peer_device->device->send_cnt += size >> 9;
1560
}
1561
return err;
1562
}
1563
1564
static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1565
{
1566
struct bio_vec bvec;
1567
struct bvec_iter iter;
1568
1569
/* hint all but last page with MSG_MORE */
1570
bio_for_each_segment(bvec, bio, iter) {
1571
int err;
1572
1573
err = _drbd_no_send_page(peer_device, bvec.bv_page,
1574
bvec.bv_offset, bvec.bv_len,
1575
bio_iter_last(bvec, iter)
1576
? 0 : MSG_MORE);
1577
if (err)
1578
return err;
1579
}
1580
return 0;
1581
}
1582
1583
static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1584
{
1585
struct bio_vec bvec;
1586
struct bvec_iter iter;
1587
1588
/* hint all but last page with MSG_MORE */
1589
bio_for_each_segment(bvec, bio, iter) {
1590
int err;
1591
1592
err = _drbd_send_page(peer_device, bvec.bv_page,
1593
bvec.bv_offset, bvec.bv_len,
1594
bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1595
if (err)
1596
return err;
1597
}
1598
return 0;
1599
}
1600
1601
static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1602
struct drbd_peer_request *peer_req)
1603
{
1604
bool use_sendpage = !(peer_req->flags & EE_RELEASE_TO_MEMPOOL);
1605
struct page *page = peer_req->pages;
1606
unsigned len = peer_req->i.size;
1607
int err;
1608
1609
/* hint all but last page with MSG_MORE */
1610
page_chain_for_each(page) {
1611
unsigned l = min_t(unsigned, len, PAGE_SIZE);
1612
1613
if (likely(use_sendpage))
1614
err = _drbd_send_page(peer_device, page, 0, l,
1615
page_chain_next(page) ? MSG_MORE : 0);
1616
else
1617
err = _drbd_no_send_page(peer_device, page, 0, l,
1618
page_chain_next(page) ? MSG_MORE : 0);
1619
1620
if (err)
1621
return err;
1622
len -= l;
1623
}
1624
return 0;
1625
}
1626
1627
static u32 bio_flags_to_wire(struct drbd_connection *connection,
1628
struct bio *bio)
1629
{
1630
if (connection->agreed_pro_version >= 95)
1631
return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1632
(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1633
(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1634
(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1635
(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1636
((connection->agreed_features & DRBD_FF_WZEROES) ?
1637
(DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1638
: DP_DISCARD)
1639
: 0);
1640
else
1641
return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1642
}
1643
1644
/* Used to send write or TRIM aka REQ_OP_DISCARD requests
1645
* R_PRIMARY -> Peer (P_DATA, P_TRIM)
1646
*/
1647
int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1648
{
1649
struct drbd_device *device = peer_device->device;
1650
struct drbd_socket *sock;
1651
struct p_data *p;
1652
void *digest_out;
1653
unsigned int dp_flags = 0;
1654
int digest_size;
1655
int err;
1656
1657
sock = &peer_device->connection->data;
1658
p = drbd_prepare_command(peer_device, sock);
1659
digest_size = peer_device->connection->integrity_tfm ?
1660
crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1661
1662
if (!p)
1663
return -EIO;
1664
p->sector = cpu_to_be64(req->i.sector);
1665
p->block_id = (unsigned long)req;
1666
p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1667
dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1668
if (device->state.conn >= C_SYNC_SOURCE &&
1669
device->state.conn <= C_PAUSED_SYNC_T)
1670
dp_flags |= DP_MAY_SET_IN_SYNC;
1671
if (peer_device->connection->agreed_pro_version >= 100) {
1672
if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1673
dp_flags |= DP_SEND_RECEIVE_ACK;
1674
/* During resync, request an explicit write ack,
1675
* even in protocol != C */
1676
if (req->rq_state & RQ_EXP_WRITE_ACK
1677
|| (dp_flags & DP_MAY_SET_IN_SYNC))
1678
dp_flags |= DP_SEND_WRITE_ACK;
1679
}
1680
p->dp_flags = cpu_to_be32(dp_flags);
1681
1682
if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1683
enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1684
struct p_trim *t = (struct p_trim*)p;
1685
t->size = cpu_to_be32(req->i.size);
1686
err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1687
goto out;
1688
}
1689
digest_out = p + 1;
1690
1691
/* our digest is still only over the payload.
1692
* TRIM does not carry any payload. */
1693
if (digest_size)
1694
drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1695
err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1696
sizeof(*p) + digest_size, NULL, req->i.size);
1697
if (!err) {
1698
/* For protocol A, we have to memcpy the payload into
1699
* socket buffers, as we may complete right away
1700
* as soon as we handed it over to tcp, at which point the data
1701
* pages may become invalid.
1702
*
1703
* For data-integrity enabled, we copy it as well, so we can be
1704
* sure that even if the bio pages may still be modified, it
1705
* won't change the data on the wire, thus if the digest checks
1706
* out ok after sending on this side, but does not fit on the
1707
* receiving side, we sure have detected corruption elsewhere.
1708
*/
1709
if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1710
err = _drbd_send_bio(peer_device, req->master_bio);
1711
else
1712
err = _drbd_send_zc_bio(peer_device, req->master_bio);
1713
1714
/* double check digest, sometimes buffers have been modified in flight. */
1715
if (digest_size > 0 && digest_size <= 64) {
1716
/* 64 byte, 512 bit, is the largest digest size
1717
* currently supported in kernel crypto. */
1718
unsigned char digest[64];
1719
drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1720
if (memcmp(p + 1, digest, digest_size)) {
1721
drbd_warn(device,
1722
"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1723
(unsigned long long)req->i.sector, req->i.size);
1724
}
1725
} /* else if (digest_size > 64) {
1726
... Be noisy about digest too large ...
1727
} */
1728
}
1729
out:
1730
mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1731
1732
return err;
1733
}
1734
1735
/* answer packet, used to send data back for read requests:
1736
* Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1737
* C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1738
*/
1739
int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1740
struct drbd_peer_request *peer_req)
1741
{
1742
struct drbd_device *device = peer_device->device;
1743
struct drbd_socket *sock;
1744
struct p_data *p;
1745
int err;
1746
int digest_size;
1747
1748
sock = &peer_device->connection->data;
1749
p = drbd_prepare_command(peer_device, sock);
1750
1751
digest_size = peer_device->connection->integrity_tfm ?
1752
crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1753
1754
if (!p)
1755
return -EIO;
1756
p->sector = cpu_to_be64(peer_req->i.sector);
1757
p->block_id = peer_req->block_id;
1758
p->seq_num = 0; /* unused */
1759
p->dp_flags = 0;
1760
if (digest_size)
1761
drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1762
err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1763
if (!err)
1764
err = _drbd_send_zc_ee(peer_device, peer_req);
1765
mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1766
1767
return err;
1768
}
1769
1770
int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1771
{
1772
struct drbd_socket *sock;
1773
struct p_block_desc *p;
1774
1775
sock = &peer_device->connection->data;
1776
p = drbd_prepare_command(peer_device, sock);
1777
if (!p)
1778
return -EIO;
1779
p->sector = cpu_to_be64(req->i.sector);
1780
p->blksize = cpu_to_be32(req->i.size);
1781
return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1782
}
1783
1784
/*
1785
drbd_send distinguishes two cases:
1786
1787
Packets sent via the data socket "sock"
1788
and packets sent via the meta data socket "msock"
1789
1790
sock msock
1791
-----------------+-------------------------+------------------------------
1792
timeout conf.timeout / 2 conf.timeout / 2
1793
timeout action send a ping via msock Abort communication
1794
and close all sockets
1795
*/
1796
1797
/*
1798
* you must have down()ed the appropriate [m]sock_mutex elsewhere!
1799
*/
1800
int drbd_send(struct drbd_connection *connection, struct socket *sock,
1801
void *buf, size_t size, unsigned msg_flags)
1802
{
1803
struct kvec iov = {.iov_base = buf, .iov_len = size};
1804
struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1805
int rv, sent = 0;
1806
1807
if (!sock)
1808
return -EBADR;
1809
1810
/* THINK if (signal_pending) return ... ? */
1811
1812
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size);
1813
1814
if (sock == connection->data.socket) {
1815
rcu_read_lock();
1816
connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1817
rcu_read_unlock();
1818
drbd_update_congested(connection);
1819
}
1820
do {
1821
rv = sock_sendmsg(sock, &msg);
1822
if (rv == -EAGAIN) {
1823
if (we_should_drop_the_connection(connection, sock))
1824
break;
1825
else
1826
continue;
1827
}
1828
if (rv == -EINTR) {
1829
flush_signals(current);
1830
rv = 0;
1831
}
1832
if (rv < 0)
1833
break;
1834
sent += rv;
1835
} while (sent < size);
1836
1837
if (sock == connection->data.socket)
1838
clear_bit(NET_CONGESTED, &connection->flags);
1839
1840
if (rv <= 0) {
1841
if (rv != -EAGAIN) {
1842
drbd_err(connection, "%s_sendmsg returned %d\n",
1843
sock == connection->meta.socket ? "msock" : "sock",
1844
rv);
1845
conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1846
} else
1847
conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1848
}
1849
1850
return sent;
1851
}
1852
1853
/*
1854
* drbd_send_all - Send an entire buffer
1855
*
1856
* Returns 0 upon success and a negative error value otherwise.
1857
*/
1858
int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1859
size_t size, unsigned msg_flags)
1860
{
1861
int err;
1862
1863
err = drbd_send(connection, sock, buffer, size, msg_flags);
1864
if (err < 0)
1865
return err;
1866
if (err != size)
1867
return -EIO;
1868
return 0;
1869
}
1870
1871
static int drbd_open(struct gendisk *disk, blk_mode_t mode)
1872
{
1873
struct drbd_device *device = disk->private_data;
1874
unsigned long flags;
1875
int rv = 0;
1876
1877
mutex_lock(&drbd_main_mutex);
1878
spin_lock_irqsave(&device->resource->req_lock, flags);
1879
/* to have a stable device->state.role
1880
* and no race with updating open_cnt */
1881
1882
if (device->state.role != R_PRIMARY) {
1883
if (mode & BLK_OPEN_WRITE)
1884
rv = -EROFS;
1885
else if (!drbd_allow_oos)
1886
rv = -EMEDIUMTYPE;
1887
}
1888
1889
if (!rv)
1890
device->open_cnt++;
1891
spin_unlock_irqrestore(&device->resource->req_lock, flags);
1892
mutex_unlock(&drbd_main_mutex);
1893
1894
return rv;
1895
}
1896
1897
static void drbd_release(struct gendisk *gd)
1898
{
1899
struct drbd_device *device = gd->private_data;
1900
1901
mutex_lock(&drbd_main_mutex);
1902
device->open_cnt--;
1903
mutex_unlock(&drbd_main_mutex);
1904
}
1905
1906
/* need to hold resource->req_lock */
1907
void drbd_queue_unplug(struct drbd_device *device)
1908
{
1909
if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1910
D_ASSERT(device, device->state.role == R_PRIMARY);
1911
if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1912
drbd_queue_work_if_unqueued(
1913
&first_peer_device(device)->connection->sender_work,
1914
&device->unplug_work);
1915
}
1916
}
1917
}
1918
1919
static void drbd_set_defaults(struct drbd_device *device)
1920
{
1921
/* Beware! The actual layout differs
1922
* between big endian and little endian */
1923
device->state = (union drbd_dev_state) {
1924
{ .role = R_SECONDARY,
1925
.peer = R_UNKNOWN,
1926
.conn = C_STANDALONE,
1927
.disk = D_DISKLESS,
1928
.pdsk = D_UNKNOWN,
1929
} };
1930
}
1931
1932
void drbd_init_set_defaults(struct drbd_device *device)
1933
{
1934
/* the memset(,0,) did most of this.
1935
* note: only assignments, no allocation in here */
1936
1937
drbd_set_defaults(device);
1938
1939
atomic_set(&device->ap_bio_cnt, 0);
1940
atomic_set(&device->ap_actlog_cnt, 0);
1941
atomic_set(&device->ap_pending_cnt, 0);
1942
atomic_set(&device->rs_pending_cnt, 0);
1943
atomic_set(&device->unacked_cnt, 0);
1944
atomic_set(&device->local_cnt, 0);
1945
atomic_set(&device->pp_in_use_by_net, 0);
1946
atomic_set(&device->rs_sect_in, 0);
1947
atomic_set(&device->rs_sect_ev, 0);
1948
atomic_set(&device->ap_in_flight, 0);
1949
atomic_set(&device->md_io.in_use, 0);
1950
1951
mutex_init(&device->own_state_mutex);
1952
device->state_mutex = &device->own_state_mutex;
1953
1954
spin_lock_init(&device->al_lock);
1955
spin_lock_init(&device->peer_seq_lock);
1956
1957
INIT_LIST_HEAD(&device->active_ee);
1958
INIT_LIST_HEAD(&device->sync_ee);
1959
INIT_LIST_HEAD(&device->done_ee);
1960
INIT_LIST_HEAD(&device->read_ee);
1961
INIT_LIST_HEAD(&device->resync_reads);
1962
INIT_LIST_HEAD(&device->resync_work.list);
1963
INIT_LIST_HEAD(&device->unplug_work.list);
1964
INIT_LIST_HEAD(&device->bm_io_work.w.list);
1965
INIT_LIST_HEAD(&device->pending_master_completion[0]);
1966
INIT_LIST_HEAD(&device->pending_master_completion[1]);
1967
INIT_LIST_HEAD(&device->pending_completion[0]);
1968
INIT_LIST_HEAD(&device->pending_completion[1]);
1969
1970
device->resync_work.cb = w_resync_timer;
1971
device->unplug_work.cb = w_send_write_hint;
1972
device->bm_io_work.w.cb = w_bitmap_io;
1973
1974
timer_setup(&device->resync_timer, resync_timer_fn, 0);
1975
timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1976
timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1977
timer_setup(&device->request_timer, request_timer_fn, 0);
1978
1979
init_waitqueue_head(&device->misc_wait);
1980
init_waitqueue_head(&device->state_wait);
1981
init_waitqueue_head(&device->ee_wait);
1982
init_waitqueue_head(&device->al_wait);
1983
init_waitqueue_head(&device->seq_wait);
1984
1985
device->resync_wenr = LC_FREE;
1986
device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1987
device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1988
}
1989
1990
void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
1991
{
1992
char ppb[10];
1993
1994
set_capacity_and_notify(device->vdisk, size);
1995
1996
drbd_info(device, "size = %s (%llu KB)\n",
1997
ppsize(ppb, size>>1), (unsigned long long)size>>1);
1998
}
1999
2000
void drbd_device_cleanup(struct drbd_device *device)
2001
{
2002
int i;
2003
if (first_peer_device(device)->connection->receiver.t_state != NONE)
2004
drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2005
first_peer_device(device)->connection->receiver.t_state);
2006
2007
device->al_writ_cnt =
2008
device->bm_writ_cnt =
2009
device->read_cnt =
2010
device->recv_cnt =
2011
device->send_cnt =
2012
device->writ_cnt =
2013
device->p_size =
2014
device->rs_start =
2015
device->rs_total =
2016
device->rs_failed = 0;
2017
device->rs_last_events = 0;
2018
device->rs_last_sect_ev = 0;
2019
for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2020
device->rs_mark_left[i] = 0;
2021
device->rs_mark_time[i] = 0;
2022
}
2023
D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2024
2025
set_capacity_and_notify(device->vdisk, 0);
2026
if (device->bitmap) {
2027
/* maybe never allocated. */
2028
drbd_bm_resize(device, 0, 1);
2029
drbd_bm_cleanup(device);
2030
}
2031
2032
drbd_backing_dev_free(device, device->ldev);
2033
device->ldev = NULL;
2034
2035
clear_bit(AL_SUSPENDED, &device->flags);
2036
2037
D_ASSERT(device, list_empty(&device->active_ee));
2038
D_ASSERT(device, list_empty(&device->sync_ee));
2039
D_ASSERT(device, list_empty(&device->done_ee));
2040
D_ASSERT(device, list_empty(&device->read_ee));
2041
D_ASSERT(device, list_empty(&device->resync_reads));
2042
D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2043
D_ASSERT(device, list_empty(&device->resync_work.list));
2044
D_ASSERT(device, list_empty(&device->unplug_work.list));
2045
2046
drbd_set_defaults(device);
2047
}
2048
2049
2050
static void drbd_destroy_mempools(void)
2051
{
2052
/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2053
2054
bioset_exit(&drbd_io_bio_set);
2055
bioset_exit(&drbd_md_io_bio_set);
2056
mempool_exit(&drbd_buffer_page_pool);
2057
mempool_exit(&drbd_md_io_page_pool);
2058
mempool_exit(&drbd_ee_mempool);
2059
mempool_exit(&drbd_request_mempool);
2060
kmem_cache_destroy(drbd_ee_cache);
2061
kmem_cache_destroy(drbd_request_cache);
2062
kmem_cache_destroy(drbd_bm_ext_cache);
2063
kmem_cache_destroy(drbd_al_ext_cache);
2064
2065
drbd_ee_cache = NULL;
2066
drbd_request_cache = NULL;
2067
drbd_bm_ext_cache = NULL;
2068
drbd_al_ext_cache = NULL;
2069
2070
return;
2071
}
2072
2073
static int drbd_create_mempools(void)
2074
{
2075
const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2076
int ret;
2077
2078
/* caches */
2079
drbd_request_cache = kmem_cache_create(
2080
"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2081
if (drbd_request_cache == NULL)
2082
goto Enomem;
2083
2084
drbd_ee_cache = kmem_cache_create(
2085
"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2086
if (drbd_ee_cache == NULL)
2087
goto Enomem;
2088
2089
drbd_bm_ext_cache = kmem_cache_create(
2090
"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2091
if (drbd_bm_ext_cache == NULL)
2092
goto Enomem;
2093
2094
drbd_al_ext_cache = kmem_cache_create(
2095
"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2096
if (drbd_al_ext_cache == NULL)
2097
goto Enomem;
2098
2099
/* mempools */
2100
ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2101
if (ret)
2102
goto Enomem;
2103
2104
ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2105
BIOSET_NEED_BVECS);
2106
if (ret)
2107
goto Enomem;
2108
2109
ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2110
if (ret)
2111
goto Enomem;
2112
2113
ret = mempool_init_page_pool(&drbd_buffer_page_pool, number, 0);
2114
if (ret)
2115
goto Enomem;
2116
2117
ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2118
drbd_request_cache);
2119
if (ret)
2120
goto Enomem;
2121
2122
ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2123
if (ret)
2124
goto Enomem;
2125
2126
return 0;
2127
2128
Enomem:
2129
drbd_destroy_mempools(); /* in case we allocated some */
2130
return -ENOMEM;
2131
}
2132
2133
static void drbd_release_all_peer_reqs(struct drbd_device *device)
2134
{
2135
int rr;
2136
2137
rr = drbd_free_peer_reqs(device, &device->active_ee);
2138
if (rr)
2139
drbd_err(device, "%d EEs in active list found!\n", rr);
2140
2141
rr = drbd_free_peer_reqs(device, &device->sync_ee);
2142
if (rr)
2143
drbd_err(device, "%d EEs in sync list found!\n", rr);
2144
2145
rr = drbd_free_peer_reqs(device, &device->read_ee);
2146
if (rr)
2147
drbd_err(device, "%d EEs in read list found!\n", rr);
2148
2149
rr = drbd_free_peer_reqs(device, &device->done_ee);
2150
if (rr)
2151
drbd_err(device, "%d EEs in done list found!\n", rr);
2152
}
2153
2154
/* caution. no locking. */
2155
void drbd_destroy_device(struct kref *kref)
2156
{
2157
struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2158
struct drbd_resource *resource = device->resource;
2159
struct drbd_peer_device *peer_device, *tmp_peer_device;
2160
2161
timer_shutdown_sync(&device->request_timer);
2162
2163
/* paranoia asserts */
2164
D_ASSERT(device, device->open_cnt == 0);
2165
/* end paranoia asserts */
2166
2167
/* cleanup stuff that may have been allocated during
2168
* device (re-)configuration or state changes */
2169
2170
drbd_backing_dev_free(device, device->ldev);
2171
device->ldev = NULL;
2172
2173
drbd_release_all_peer_reqs(device);
2174
2175
lc_destroy(device->act_log);
2176
lc_destroy(device->resync);
2177
2178
kfree(device->p_uuid);
2179
/* device->p_uuid = NULL; */
2180
2181
if (device->bitmap) /* should no longer be there. */
2182
drbd_bm_cleanup(device);
2183
__free_page(device->md_io.page);
2184
put_disk(device->vdisk);
2185
kfree(device->rs_plan_s);
2186
2187
/* not for_each_connection(connection, resource):
2188
* those may have been cleaned up and disassociated already.
2189
*/
2190
for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2191
kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2192
kfree(peer_device);
2193
}
2194
if (device->submit.wq)
2195
destroy_workqueue(device->submit.wq);
2196
kfree(device);
2197
kref_put(&resource->kref, drbd_destroy_resource);
2198
}
2199
2200
/* One global retry thread, if we need to push back some bio and have it
2201
* reinserted through our make request function.
2202
*/
2203
static struct retry_worker {
2204
struct workqueue_struct *wq;
2205
struct work_struct worker;
2206
2207
spinlock_t lock;
2208
struct list_head writes;
2209
} retry;
2210
2211
static void do_retry(struct work_struct *ws)
2212
{
2213
struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2214
LIST_HEAD(writes);
2215
struct drbd_request *req, *tmp;
2216
2217
spin_lock_irq(&retry->lock);
2218
list_splice_init(&retry->writes, &writes);
2219
spin_unlock_irq(&retry->lock);
2220
2221
list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2222
struct drbd_device *device = req->device;
2223
struct bio *bio = req->master_bio;
2224
bool expected;
2225
2226
expected =
2227
expect(device, atomic_read(&req->completion_ref) == 0) &&
2228
expect(device, req->rq_state & RQ_POSTPONED) &&
2229
expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2230
(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2231
2232
if (!expected)
2233
drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2234
req, atomic_read(&req->completion_ref),
2235
req->rq_state);
2236
2237
/* We still need to put one kref associated with the
2238
* "completion_ref" going zero in the code path that queued it
2239
* here. The request object may still be referenced by a
2240
* frozen local req->private_bio, in case we force-detached.
2241
*/
2242
kref_put(&req->kref, drbd_req_destroy);
2243
2244
/* A single suspended or otherwise blocking device may stall
2245
* all others as well. Fortunately, this code path is to
2246
* recover from a situation that "should not happen":
2247
* concurrent writes in multi-primary setup.
2248
* In a "normal" lifecycle, this workqueue is supposed to be
2249
* destroyed without ever doing anything.
2250
* If it turns out to be an issue anyways, we can do per
2251
* resource (replication group) or per device (minor) retry
2252
* workqueues instead.
2253
*/
2254
2255
/* We are not just doing submit_bio_noacct(),
2256
* as we want to keep the start_time information. */
2257
inc_ap_bio(device);
2258
__drbd_make_request(device, bio);
2259
}
2260
}
2261
2262
/* called via drbd_req_put_completion_ref(),
2263
* holds resource->req_lock */
2264
void drbd_restart_request(struct drbd_request *req)
2265
{
2266
unsigned long flags;
2267
spin_lock_irqsave(&retry.lock, flags);
2268
list_move_tail(&req->tl_requests, &retry.writes);
2269
spin_unlock_irqrestore(&retry.lock, flags);
2270
2271
/* Drop the extra reference that would otherwise
2272
* have been dropped by complete_master_bio.
2273
* do_retry() needs to grab a new one. */
2274
dec_ap_bio(req->device);
2275
2276
queue_work(retry.wq, &retry.worker);
2277
}
2278
2279
void drbd_destroy_resource(struct kref *kref)
2280
{
2281
struct drbd_resource *resource =
2282
container_of(kref, struct drbd_resource, kref);
2283
2284
idr_destroy(&resource->devices);
2285
free_cpumask_var(resource->cpu_mask);
2286
kfree(resource->name);
2287
kfree(resource);
2288
}
2289
2290
void drbd_free_resource(struct drbd_resource *resource)
2291
{
2292
struct drbd_connection *connection, *tmp;
2293
2294
for_each_connection_safe(connection, tmp, resource) {
2295
list_del(&connection->connections);
2296
drbd_debugfs_connection_cleanup(connection);
2297
kref_put(&connection->kref, drbd_destroy_connection);
2298
}
2299
drbd_debugfs_resource_cleanup(resource);
2300
kref_put(&resource->kref, drbd_destroy_resource);
2301
}
2302
2303
static void drbd_cleanup(void)
2304
{
2305
unsigned int i;
2306
struct drbd_device *device;
2307
struct drbd_resource *resource, *tmp;
2308
2309
/* first remove proc,
2310
* drbdsetup uses it's presence to detect
2311
* whether DRBD is loaded.
2312
* If we would get stuck in proc removal,
2313
* but have netlink already deregistered,
2314
* some drbdsetup commands may wait forever
2315
* for an answer.
2316
*/
2317
if (drbd_proc)
2318
remove_proc_entry("drbd", NULL);
2319
2320
if (retry.wq)
2321
destroy_workqueue(retry.wq);
2322
2323
drbd_genl_unregister();
2324
2325
idr_for_each_entry(&drbd_devices, device, i)
2326
drbd_delete_device(device);
2327
2328
/* not _rcu since, no other updater anymore. Genl already unregistered */
2329
for_each_resource_safe(resource, tmp, &drbd_resources) {
2330
list_del(&resource->resources);
2331
drbd_free_resource(resource);
2332
}
2333
2334
drbd_debugfs_cleanup();
2335
2336
drbd_destroy_mempools();
2337
unregister_blkdev(DRBD_MAJOR, "drbd");
2338
2339
idr_destroy(&drbd_devices);
2340
2341
pr_info("module cleanup done.\n");
2342
}
2343
2344
static void drbd_init_workqueue(struct drbd_work_queue* wq)
2345
{
2346
spin_lock_init(&wq->q_lock);
2347
INIT_LIST_HEAD(&wq->q);
2348
init_waitqueue_head(&wq->q_wait);
2349
}
2350
2351
struct completion_work {
2352
struct drbd_work w;
2353
struct completion done;
2354
};
2355
2356
static int w_complete(struct drbd_work *w, int cancel)
2357
{
2358
struct completion_work *completion_work =
2359
container_of(w, struct completion_work, w);
2360
2361
complete(&completion_work->done);
2362
return 0;
2363
}
2364
2365
void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2366
{
2367
struct completion_work completion_work;
2368
2369
completion_work.w.cb = w_complete;
2370
init_completion(&completion_work.done);
2371
drbd_queue_work(work_queue, &completion_work.w);
2372
wait_for_completion(&completion_work.done);
2373
}
2374
2375
struct drbd_resource *drbd_find_resource(const char *name)
2376
{
2377
struct drbd_resource *resource;
2378
2379
if (!name || !name[0])
2380
return NULL;
2381
2382
rcu_read_lock();
2383
for_each_resource_rcu(resource, &drbd_resources) {
2384
if (!strcmp(resource->name, name)) {
2385
kref_get(&resource->kref);
2386
goto found;
2387
}
2388
}
2389
resource = NULL;
2390
found:
2391
rcu_read_unlock();
2392
return resource;
2393
}
2394
2395
struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2396
void *peer_addr, int peer_addr_len)
2397
{
2398
struct drbd_resource *resource;
2399
struct drbd_connection *connection;
2400
2401
rcu_read_lock();
2402
for_each_resource_rcu(resource, &drbd_resources) {
2403
for_each_connection_rcu(connection, resource) {
2404
if (connection->my_addr_len == my_addr_len &&
2405
connection->peer_addr_len == peer_addr_len &&
2406
!memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2407
!memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2408
kref_get(&connection->kref);
2409
goto found;
2410
}
2411
}
2412
}
2413
connection = NULL;
2414
found:
2415
rcu_read_unlock();
2416
return connection;
2417
}
2418
2419
static int drbd_alloc_socket(struct drbd_socket *socket)
2420
{
2421
socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2422
if (!socket->rbuf)
2423
return -ENOMEM;
2424
socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2425
if (!socket->sbuf)
2426
return -ENOMEM;
2427
return 0;
2428
}
2429
2430
static void drbd_free_socket(struct drbd_socket *socket)
2431
{
2432
free_page((unsigned long) socket->sbuf);
2433
free_page((unsigned long) socket->rbuf);
2434
}
2435
2436
void conn_free_crypto(struct drbd_connection *connection)
2437
{
2438
drbd_free_sock(connection);
2439
2440
crypto_free_shash(connection->csums_tfm);
2441
crypto_free_shash(connection->verify_tfm);
2442
crypto_free_shash(connection->cram_hmac_tfm);
2443
crypto_free_shash(connection->integrity_tfm);
2444
crypto_free_shash(connection->peer_integrity_tfm);
2445
kfree(connection->int_dig_in);
2446
kfree(connection->int_dig_vv);
2447
2448
connection->csums_tfm = NULL;
2449
connection->verify_tfm = NULL;
2450
connection->cram_hmac_tfm = NULL;
2451
connection->integrity_tfm = NULL;
2452
connection->peer_integrity_tfm = NULL;
2453
connection->int_dig_in = NULL;
2454
connection->int_dig_vv = NULL;
2455
}
2456
2457
int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2458
{
2459
struct drbd_connection *connection;
2460
cpumask_var_t new_cpu_mask;
2461
int err;
2462
2463
if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2464
return -ENOMEM;
2465
2466
/* silently ignore cpu mask on UP kernel */
2467
if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2468
err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2469
cpumask_bits(new_cpu_mask), nr_cpu_ids);
2470
if (err == -EOVERFLOW) {
2471
/* So what. mask it out. */
2472
cpumask_var_t tmp_cpu_mask;
2473
if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2474
cpumask_setall(tmp_cpu_mask);
2475
cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2476
drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2477
res_opts->cpu_mask,
2478
strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2479
nr_cpu_ids);
2480
free_cpumask_var(tmp_cpu_mask);
2481
err = 0;
2482
}
2483
}
2484
if (err) {
2485
drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2486
/* retcode = ERR_CPU_MASK_PARSE; */
2487
goto fail;
2488
}
2489
}
2490
resource->res_opts = *res_opts;
2491
if (cpumask_empty(new_cpu_mask))
2492
drbd_calc_cpu_mask(&new_cpu_mask);
2493
if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2494
cpumask_copy(resource->cpu_mask, new_cpu_mask);
2495
for_each_connection_rcu(connection, resource) {
2496
connection->receiver.reset_cpu_mask = 1;
2497
connection->ack_receiver.reset_cpu_mask = 1;
2498
connection->worker.reset_cpu_mask = 1;
2499
}
2500
}
2501
err = 0;
2502
2503
fail:
2504
free_cpumask_var(new_cpu_mask);
2505
return err;
2506
2507
}
2508
2509
struct drbd_resource *drbd_create_resource(const char *name)
2510
{
2511
struct drbd_resource *resource;
2512
2513
resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2514
if (!resource)
2515
goto fail;
2516
resource->name = kstrdup(name, GFP_KERNEL);
2517
if (!resource->name)
2518
goto fail_free_resource;
2519
if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2520
goto fail_free_name;
2521
kref_init(&resource->kref);
2522
idr_init(&resource->devices);
2523
INIT_LIST_HEAD(&resource->connections);
2524
resource->write_ordering = WO_BDEV_FLUSH;
2525
list_add_tail_rcu(&resource->resources, &drbd_resources);
2526
mutex_init(&resource->conf_update);
2527
mutex_init(&resource->adm_mutex);
2528
spin_lock_init(&resource->req_lock);
2529
drbd_debugfs_resource_add(resource);
2530
return resource;
2531
2532
fail_free_name:
2533
kfree(resource->name);
2534
fail_free_resource:
2535
kfree(resource);
2536
fail:
2537
return NULL;
2538
}
2539
2540
/* caller must be under adm_mutex */
2541
struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2542
{
2543
struct drbd_resource *resource;
2544
struct drbd_connection *connection;
2545
2546
connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2547
if (!connection)
2548
return NULL;
2549
2550
if (drbd_alloc_socket(&connection->data))
2551
goto fail;
2552
if (drbd_alloc_socket(&connection->meta))
2553
goto fail;
2554
2555
connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2556
if (!connection->current_epoch)
2557
goto fail;
2558
2559
INIT_LIST_HEAD(&connection->transfer_log);
2560
2561
INIT_LIST_HEAD(&connection->current_epoch->list);
2562
connection->epochs = 1;
2563
spin_lock_init(&connection->epoch_lock);
2564
2565
connection->send.seen_any_write_yet = false;
2566
connection->send.current_epoch_nr = 0;
2567
connection->send.current_epoch_writes = 0;
2568
2569
resource = drbd_create_resource(name);
2570
if (!resource)
2571
goto fail;
2572
2573
connection->cstate = C_STANDALONE;
2574
mutex_init(&connection->cstate_mutex);
2575
init_waitqueue_head(&connection->ping_wait);
2576
idr_init(&connection->peer_devices);
2577
2578
drbd_init_workqueue(&connection->sender_work);
2579
mutex_init(&connection->data.mutex);
2580
mutex_init(&connection->meta.mutex);
2581
2582
drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2583
connection->receiver.connection = connection;
2584
drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2585
connection->worker.connection = connection;
2586
drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2587
connection->ack_receiver.connection = connection;
2588
2589
kref_init(&connection->kref);
2590
2591
connection->resource = resource;
2592
2593
if (set_resource_options(resource, res_opts))
2594
goto fail_resource;
2595
2596
kref_get(&resource->kref);
2597
list_add_tail_rcu(&connection->connections, &resource->connections);
2598
drbd_debugfs_connection_add(connection);
2599
return connection;
2600
2601
fail_resource:
2602
list_del(&resource->resources);
2603
drbd_free_resource(resource);
2604
fail:
2605
kfree(connection->current_epoch);
2606
drbd_free_socket(&connection->meta);
2607
drbd_free_socket(&connection->data);
2608
kfree(connection);
2609
return NULL;
2610
}
2611
2612
void drbd_destroy_connection(struct kref *kref)
2613
{
2614
struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2615
struct drbd_resource *resource = connection->resource;
2616
2617
if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2618
drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2619
kfree(connection->current_epoch);
2620
2621
idr_destroy(&connection->peer_devices);
2622
2623
drbd_free_socket(&connection->meta);
2624
drbd_free_socket(&connection->data);
2625
kfree(connection->int_dig_in);
2626
kfree(connection->int_dig_vv);
2627
kfree(connection);
2628
kref_put(&resource->kref, drbd_destroy_resource);
2629
}
2630
2631
static int init_submitter(struct drbd_device *device)
2632
{
2633
/* opencoded create_singlethread_workqueue(),
2634
* to be able to say "drbd%d", ..., minor */
2635
device->submit.wq =
2636
alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2637
if (!device->submit.wq)
2638
return -ENOMEM;
2639
2640
INIT_WORK(&device->submit.worker, do_submit);
2641
INIT_LIST_HEAD(&device->submit.writes);
2642
return 0;
2643
}
2644
2645
enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2646
{
2647
struct drbd_resource *resource = adm_ctx->resource;
2648
struct drbd_connection *connection, *n;
2649
struct drbd_device *device;
2650
struct drbd_peer_device *peer_device, *tmp_peer_device;
2651
struct gendisk *disk;
2652
int id;
2653
int vnr = adm_ctx->volume;
2654
enum drbd_ret_code err = ERR_NOMEM;
2655
struct queue_limits lim = {
2656
/*
2657
* Setting the max_hw_sectors to an odd value of 8kibyte here.
2658
* This triggers a max_bio_size message upon first attach or
2659
* connect.
2660
*/
2661
.max_hw_sectors = DRBD_MAX_BIO_SIZE_SAFE >> 8,
2662
.features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA |
2663
BLK_FEAT_ROTATIONAL |
2664
BLK_FEAT_STABLE_WRITES,
2665
};
2666
2667
device = minor_to_device(minor);
2668
if (device)
2669
return ERR_MINOR_OR_VOLUME_EXISTS;
2670
2671
/* GFP_KERNEL, we are outside of all write-out paths */
2672
device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2673
if (!device)
2674
return ERR_NOMEM;
2675
kref_init(&device->kref);
2676
2677
kref_get(&resource->kref);
2678
device->resource = resource;
2679
device->minor = minor;
2680
device->vnr = vnr;
2681
2682
drbd_init_set_defaults(device);
2683
2684
disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2685
if (IS_ERR(disk)) {
2686
err = PTR_ERR(disk);
2687
goto out_no_disk;
2688
}
2689
2690
device->vdisk = disk;
2691
device->rq_queue = disk->queue;
2692
2693
set_disk_ro(disk, true);
2694
2695
disk->major = DRBD_MAJOR;
2696
disk->first_minor = minor;
2697
disk->minors = 1;
2698
disk->fops = &drbd_ops;
2699
disk->flags |= GENHD_FL_NO_PART;
2700
sprintf(disk->disk_name, "drbd%d", minor);
2701
disk->private_data = device;
2702
2703
device->md_io.page = alloc_page(GFP_KERNEL);
2704
if (!device->md_io.page)
2705
goto out_no_io_page;
2706
2707
if (drbd_bm_init(device))
2708
goto out_no_bitmap;
2709
device->read_requests = RB_ROOT;
2710
device->write_requests = RB_ROOT;
2711
2712
id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2713
if (id < 0) {
2714
if (id == -ENOSPC)
2715
err = ERR_MINOR_OR_VOLUME_EXISTS;
2716
goto out_no_minor_idr;
2717
}
2718
kref_get(&device->kref);
2719
2720
id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2721
if (id < 0) {
2722
if (id == -ENOSPC)
2723
err = ERR_MINOR_OR_VOLUME_EXISTS;
2724
goto out_idr_remove_minor;
2725
}
2726
kref_get(&device->kref);
2727
2728
INIT_LIST_HEAD(&device->peer_devices);
2729
INIT_LIST_HEAD(&device->pending_bitmap_io);
2730
for_each_connection(connection, resource) {
2731
peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2732
if (!peer_device)
2733
goto out_idr_remove_from_resource;
2734
peer_device->connection = connection;
2735
peer_device->device = device;
2736
2737
list_add(&peer_device->peer_devices, &device->peer_devices);
2738
kref_get(&device->kref);
2739
2740
id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2741
if (id < 0) {
2742
if (id == -ENOSPC)
2743
err = ERR_INVALID_REQUEST;
2744
goto out_idr_remove_from_resource;
2745
}
2746
kref_get(&connection->kref);
2747
INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2748
}
2749
2750
if (init_submitter(device)) {
2751
err = ERR_NOMEM;
2752
goto out_idr_remove_from_resource;
2753
}
2754
2755
err = add_disk(disk);
2756
if (err)
2757
goto out_destroy_workqueue;
2758
2759
/* inherit the connection state */
2760
device->state.conn = first_connection(resource)->cstate;
2761
if (device->state.conn == C_WF_REPORT_PARAMS) {
2762
for_each_peer_device(peer_device, device)
2763
drbd_connected(peer_device);
2764
}
2765
/* move to create_peer_device() */
2766
for_each_peer_device(peer_device, device)
2767
drbd_debugfs_peer_device_add(peer_device);
2768
drbd_debugfs_device_add(device);
2769
return NO_ERROR;
2770
2771
out_destroy_workqueue:
2772
destroy_workqueue(device->submit.wq);
2773
out_idr_remove_from_resource:
2774
for_each_connection_safe(connection, n, resource) {
2775
peer_device = idr_remove(&connection->peer_devices, vnr);
2776
if (peer_device)
2777
kref_put(&connection->kref, drbd_destroy_connection);
2778
}
2779
for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2780
list_del(&peer_device->peer_devices);
2781
kfree(peer_device);
2782
}
2783
idr_remove(&resource->devices, vnr);
2784
out_idr_remove_minor:
2785
idr_remove(&drbd_devices, minor);
2786
synchronize_rcu();
2787
out_no_minor_idr:
2788
drbd_bm_cleanup(device);
2789
out_no_bitmap:
2790
__free_page(device->md_io.page);
2791
out_no_io_page:
2792
put_disk(disk);
2793
out_no_disk:
2794
kref_put(&resource->kref, drbd_destroy_resource);
2795
kfree(device);
2796
return err;
2797
}
2798
2799
void drbd_delete_device(struct drbd_device *device)
2800
{
2801
struct drbd_resource *resource = device->resource;
2802
struct drbd_connection *connection;
2803
struct drbd_peer_device *peer_device;
2804
2805
/* move to free_peer_device() */
2806
for_each_peer_device(peer_device, device)
2807
drbd_debugfs_peer_device_cleanup(peer_device);
2808
drbd_debugfs_device_cleanup(device);
2809
for_each_connection(connection, resource) {
2810
idr_remove(&connection->peer_devices, device->vnr);
2811
kref_put(&device->kref, drbd_destroy_device);
2812
}
2813
idr_remove(&resource->devices, device->vnr);
2814
kref_put(&device->kref, drbd_destroy_device);
2815
idr_remove(&drbd_devices, device_to_minor(device));
2816
kref_put(&device->kref, drbd_destroy_device);
2817
del_gendisk(device->vdisk);
2818
synchronize_rcu();
2819
kref_put(&device->kref, drbd_destroy_device);
2820
}
2821
2822
static int __init drbd_init(void)
2823
{
2824
int err;
2825
2826
if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2827
pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2828
#ifdef MODULE
2829
return -EINVAL;
2830
#else
2831
drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2832
#endif
2833
}
2834
2835
err = register_blkdev(DRBD_MAJOR, "drbd");
2836
if (err) {
2837
pr_err("unable to register block device major %d\n",
2838
DRBD_MAJOR);
2839
return err;
2840
}
2841
2842
drbd_proc = NULL; /* play safe for drbd_cleanup */
2843
idr_init(&drbd_devices);
2844
2845
mutex_init(&resources_mutex);
2846
INIT_LIST_HEAD(&drbd_resources);
2847
2848
err = drbd_genl_register();
2849
if (err) {
2850
pr_err("unable to register generic netlink family\n");
2851
goto fail;
2852
}
2853
2854
err = drbd_create_mempools();
2855
if (err)
2856
goto fail;
2857
2858
err = -ENOMEM;
2859
drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2860
if (!drbd_proc) {
2861
pr_err("unable to register proc file\n");
2862
goto fail;
2863
}
2864
2865
retry.wq = create_singlethread_workqueue("drbd-reissue");
2866
if (!retry.wq) {
2867
pr_err("unable to create retry workqueue\n");
2868
goto fail;
2869
}
2870
INIT_WORK(&retry.worker, do_retry);
2871
spin_lock_init(&retry.lock);
2872
INIT_LIST_HEAD(&retry.writes);
2873
2874
drbd_debugfs_init();
2875
2876
pr_info("initialized. "
2877
"Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2878
GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2879
pr_info("%s\n", drbd_buildtag());
2880
pr_info("registered as block device major %d\n", DRBD_MAJOR);
2881
return 0; /* Success! */
2882
2883
fail:
2884
drbd_cleanup();
2885
if (err == -ENOMEM)
2886
pr_err("ran out of memory\n");
2887
else
2888
pr_err("initialization failure\n");
2889
return err;
2890
}
2891
2892
static void drbd_free_one_sock(struct drbd_socket *ds)
2893
{
2894
struct socket *s;
2895
mutex_lock(&ds->mutex);
2896
s = ds->socket;
2897
ds->socket = NULL;
2898
mutex_unlock(&ds->mutex);
2899
if (s) {
2900
/* so debugfs does not need to mutex_lock() */
2901
synchronize_rcu();
2902
kernel_sock_shutdown(s, SHUT_RDWR);
2903
sock_release(s);
2904
}
2905
}
2906
2907
void drbd_free_sock(struct drbd_connection *connection)
2908
{
2909
if (connection->data.socket)
2910
drbd_free_one_sock(&connection->data);
2911
if (connection->meta.socket)
2912
drbd_free_one_sock(&connection->meta);
2913
}
2914
2915
/* meta data management */
2916
2917
void conn_md_sync(struct drbd_connection *connection)
2918
{
2919
struct drbd_peer_device *peer_device;
2920
int vnr;
2921
2922
rcu_read_lock();
2923
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2924
struct drbd_device *device = peer_device->device;
2925
2926
kref_get(&device->kref);
2927
rcu_read_unlock();
2928
drbd_md_sync(device);
2929
kref_put(&device->kref, drbd_destroy_device);
2930
rcu_read_lock();
2931
}
2932
rcu_read_unlock();
2933
}
2934
2935
/* aligned 4kByte */
2936
struct meta_data_on_disk {
2937
u64 la_size_sect; /* last agreed size. */
2938
u64 uuid[UI_SIZE]; /* UUIDs. */
2939
u64 device_uuid;
2940
u64 reserved_u64_1;
2941
u32 flags; /* MDF */
2942
u32 magic;
2943
u32 md_size_sect;
2944
u32 al_offset; /* offset to this block */
2945
u32 al_nr_extents; /* important for restoring the AL (userspace) */
2946
/* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2947
u32 bm_offset; /* offset to the bitmap, from here */
2948
u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2949
u32 la_peer_max_bio_size; /* last peer max_bio_size */
2950
2951
/* see al_tr_number_to_on_disk_sector() */
2952
u32 al_stripes;
2953
u32 al_stripe_size_4k;
2954
2955
u8 reserved_u8[4096 - (7*8 + 10*4)];
2956
} __packed;
2957
2958
2959
2960
void drbd_md_write(struct drbd_device *device, void *b)
2961
{
2962
struct meta_data_on_disk *buffer = b;
2963
sector_t sector;
2964
int i;
2965
2966
memset(buffer, 0, sizeof(*buffer));
2967
2968
buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2969
for (i = UI_CURRENT; i < UI_SIZE; i++)
2970
buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
2971
buffer->flags = cpu_to_be32(device->ldev->md.flags);
2972
buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2973
2974
buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
2975
buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
2976
buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
2977
buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2978
buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
2979
2980
buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
2981
buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
2982
2983
buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
2984
buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
2985
2986
D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
2987
sector = device->ldev->md.md_offset;
2988
2989
if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
2990
/* this was a try anyways ... */
2991
drbd_err(device, "meta data update failed!\n");
2992
drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
2993
}
2994
}
2995
2996
/**
2997
* drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2998
* @device: DRBD device.
2999
*/
3000
void drbd_md_sync(struct drbd_device *device)
3001
{
3002
struct meta_data_on_disk *buffer;
3003
3004
/* Don't accidentally change the DRBD meta data layout. */
3005
BUILD_BUG_ON(UI_SIZE != 4);
3006
BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3007
3008
timer_delete(&device->md_sync_timer);
3009
/* timer may be rearmed by drbd_md_mark_dirty() now. */
3010
if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3011
return;
3012
3013
/* We use here D_FAILED and not D_ATTACHING because we try to write
3014
* metadata even if we detach due to a disk failure! */
3015
if (!get_ldev_if_state(device, D_FAILED))
3016
return;
3017
3018
buffer = drbd_md_get_buffer(device, __func__);
3019
if (!buffer)
3020
goto out;
3021
3022
drbd_md_write(device, buffer);
3023
3024
/* Update device->ldev->md.la_size_sect,
3025
* since we updated it on metadata. */
3026
device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3027
3028
drbd_md_put_buffer(device);
3029
out:
3030
put_ldev(device);
3031
}
3032
3033
static int check_activity_log_stripe_size(struct drbd_device *device,
3034
struct meta_data_on_disk *on_disk,
3035
struct drbd_md *in_core)
3036
{
3037
u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3038
u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3039
u64 al_size_4k;
3040
3041
/* both not set: default to old fixed size activity log */
3042
if (al_stripes == 0 && al_stripe_size_4k == 0) {
3043
al_stripes = 1;
3044
al_stripe_size_4k = MD_32kB_SECT/8;
3045
}
3046
3047
/* some paranoia plausibility checks */
3048
3049
/* we need both values to be set */
3050
if (al_stripes == 0 || al_stripe_size_4k == 0)
3051
goto err;
3052
3053
al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3054
3055
/* Upper limit of activity log area, to avoid potential overflow
3056
* problems in al_tr_number_to_on_disk_sector(). As right now, more
3057
* than 72 * 4k blocks total only increases the amount of history,
3058
* limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3059
if (al_size_4k > (16 * 1024 * 1024/4))
3060
goto err;
3061
3062
/* Lower limit: we need at least 8 transaction slots (32kB)
3063
* to not break existing setups */
3064
if (al_size_4k < MD_32kB_SECT/8)
3065
goto err;
3066
3067
in_core->al_stripe_size_4k = al_stripe_size_4k;
3068
in_core->al_stripes = al_stripes;
3069
in_core->al_size_4k = al_size_4k;
3070
3071
return 0;
3072
err:
3073
drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3074
al_stripes, al_stripe_size_4k);
3075
return -EINVAL;
3076
}
3077
3078
static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3079
{
3080
sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3081
struct drbd_md *in_core = &bdev->md;
3082
s32 on_disk_al_sect;
3083
s32 on_disk_bm_sect;
3084
3085
/* The on-disk size of the activity log, calculated from offsets, and
3086
* the size of the activity log calculated from the stripe settings,
3087
* should match.
3088
* Though we could relax this a bit: it is ok, if the striped activity log
3089
* fits in the available on-disk activity log size.
3090
* Right now, that would break how resize is implemented.
3091
* TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3092
* of possible unused padding space in the on disk layout. */
3093
if (in_core->al_offset < 0) {
3094
if (in_core->bm_offset > in_core->al_offset)
3095
goto err;
3096
on_disk_al_sect = -in_core->al_offset;
3097
on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3098
} else {
3099
if (in_core->al_offset != MD_4kB_SECT)
3100
goto err;
3101
if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3102
goto err;
3103
3104
on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3105
on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3106
}
3107
3108
/* old fixed size meta data is exactly that: fixed. */
3109
if (in_core->meta_dev_idx >= 0) {
3110
if (in_core->md_size_sect != MD_128MB_SECT
3111
|| in_core->al_offset != MD_4kB_SECT
3112
|| in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3113
|| in_core->al_stripes != 1
3114
|| in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3115
goto err;
3116
}
3117
3118
if (capacity < in_core->md_size_sect)
3119
goto err;
3120
if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3121
goto err;
3122
3123
/* should be aligned, and at least 32k */
3124
if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3125
goto err;
3126
3127
/* should fit (for now: exactly) into the available on-disk space;
3128
* overflow prevention is in check_activity_log_stripe_size() above. */
3129
if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3130
goto err;
3131
3132
/* again, should be aligned */
3133
if (in_core->bm_offset & 7)
3134
goto err;
3135
3136
/* FIXME check for device grow with flex external meta data? */
3137
3138
/* can the available bitmap space cover the last agreed device size? */
3139
if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3140
goto err;
3141
3142
return 0;
3143
3144
err:
3145
drbd_err(device, "meta data offsets don't make sense: idx=%d "
3146
"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3147
"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3148
in_core->meta_dev_idx,
3149
in_core->al_stripes, in_core->al_stripe_size_4k,
3150
in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3151
(unsigned long long)in_core->la_size_sect,
3152
(unsigned long long)capacity);
3153
3154
return -EINVAL;
3155
}
3156
3157
3158
/**
3159
* drbd_md_read() - Reads in the meta data super block
3160
* @device: DRBD device.
3161
* @bdev: Device from which the meta data should be read in.
3162
*
3163
* Return NO_ERROR on success, and an enum drbd_ret_code in case
3164
* something goes wrong.
3165
*
3166
* Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3167
* even before @bdev is assigned to @device->ldev.
3168
*/
3169
int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3170
{
3171
struct meta_data_on_disk *buffer;
3172
u32 magic, flags;
3173
int i, rv = NO_ERROR;
3174
3175
if (device->state.disk != D_DISKLESS)
3176
return ERR_DISK_CONFIGURED;
3177
3178
buffer = drbd_md_get_buffer(device, __func__);
3179
if (!buffer)
3180
return ERR_NOMEM;
3181
3182
/* First, figure out where our meta data superblock is located,
3183
* and read it. */
3184
bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3185
bdev->md.md_offset = drbd_md_ss(bdev);
3186
/* Even for (flexible or indexed) external meta data,
3187
* initially restrict us to the 4k superblock for now.
3188
* Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3189
bdev->md.md_size_sect = 8;
3190
3191
if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3192
REQ_OP_READ)) {
3193
/* NOTE: can't do normal error processing here as this is
3194
called BEFORE disk is attached */
3195
drbd_err(device, "Error while reading metadata.\n");
3196
rv = ERR_IO_MD_DISK;
3197
goto err;
3198
}
3199
3200
magic = be32_to_cpu(buffer->magic);
3201
flags = be32_to_cpu(buffer->flags);
3202
if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3203
(magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3204
/* btw: that's Activity Log clean, not "all" clean. */
3205
drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3206
rv = ERR_MD_UNCLEAN;
3207
goto err;
3208
}
3209
3210
rv = ERR_MD_INVALID;
3211
if (magic != DRBD_MD_MAGIC_08) {
3212
if (magic == DRBD_MD_MAGIC_07)
3213
drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3214
else
3215
drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3216
goto err;
3217
}
3218
3219
if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3220
drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3221
be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3222
goto err;
3223
}
3224
3225
3226
/* convert to in_core endian */
3227
bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3228
for (i = UI_CURRENT; i < UI_SIZE; i++)
3229
bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3230
bdev->md.flags = be32_to_cpu(buffer->flags);
3231
bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3232
3233
bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3234
bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3235
bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3236
3237
if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3238
goto err;
3239
if (check_offsets_and_sizes(device, bdev))
3240
goto err;
3241
3242
if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3243
drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3244
be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3245
goto err;
3246
}
3247
if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3248
drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3249
be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3250
goto err;
3251
}
3252
3253
rv = NO_ERROR;
3254
3255
spin_lock_irq(&device->resource->req_lock);
3256
if (device->state.conn < C_CONNECTED) {
3257
unsigned int peer;
3258
peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3259
peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3260
device->peer_max_bio_size = peer;
3261
}
3262
spin_unlock_irq(&device->resource->req_lock);
3263
3264
err:
3265
drbd_md_put_buffer(device);
3266
3267
return rv;
3268
}
3269
3270
/**
3271
* drbd_md_mark_dirty() - Mark meta data super block as dirty
3272
* @device: DRBD device.
3273
*
3274
* Call this function if you change anything that should be written to
3275
* the meta-data super block. This function sets MD_DIRTY, and starts a
3276
* timer that ensures that within five seconds you have to call drbd_md_sync().
3277
*/
3278
void drbd_md_mark_dirty(struct drbd_device *device)
3279
{
3280
if (!test_and_set_bit(MD_DIRTY, &device->flags))
3281
mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3282
}
3283
3284
void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3285
{
3286
int i;
3287
3288
for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3289
device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3290
}
3291
3292
void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3293
{
3294
if (idx == UI_CURRENT) {
3295
if (device->state.role == R_PRIMARY)
3296
val |= 1;
3297
else
3298
val &= ~((u64)1);
3299
3300
drbd_set_ed_uuid(device, val);
3301
}
3302
3303
device->ldev->md.uuid[idx] = val;
3304
drbd_md_mark_dirty(device);
3305
}
3306
3307
void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3308
{
3309
unsigned long flags;
3310
spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3311
__drbd_uuid_set(device, idx, val);
3312
spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3313
}
3314
3315
void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3316
{
3317
unsigned long flags;
3318
spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3319
if (device->ldev->md.uuid[idx]) {
3320
drbd_uuid_move_history(device);
3321
device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3322
}
3323
__drbd_uuid_set(device, idx, val);
3324
spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3325
}
3326
3327
/**
3328
* drbd_uuid_new_current() - Creates a new current UUID
3329
* @device: DRBD device.
3330
*
3331
* Creates a new current UUID, and rotates the old current UUID into
3332
* the bitmap slot. Causes an incremental resync upon next connect.
3333
*/
3334
void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3335
{
3336
u64 val;
3337
unsigned long long bm_uuid;
3338
3339
get_random_bytes(&val, sizeof(u64));
3340
3341
spin_lock_irq(&device->ldev->md.uuid_lock);
3342
bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3343
3344
if (bm_uuid)
3345
drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3346
3347
device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3348
__drbd_uuid_set(device, UI_CURRENT, val);
3349
spin_unlock_irq(&device->ldev->md.uuid_lock);
3350
3351
drbd_print_uuids(device, "new current UUID");
3352
/* get it to stable storage _now_ */
3353
drbd_md_sync(device);
3354
}
3355
3356
void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3357
{
3358
unsigned long flags;
3359
spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3360
if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) {
3361
spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3362
return;
3363
}
3364
3365
if (val == 0) {
3366
drbd_uuid_move_history(device);
3367
device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3368
device->ldev->md.uuid[UI_BITMAP] = 0;
3369
} else {
3370
unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3371
if (bm_uuid)
3372
drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3373
3374
device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3375
}
3376
spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3377
3378
drbd_md_mark_dirty(device);
3379
}
3380
3381
/**
3382
* drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3383
* @device: DRBD device.
3384
* @peer_device: Peer DRBD device.
3385
*
3386
* Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3387
*/
3388
int drbd_bmio_set_n_write(struct drbd_device *device,
3389
struct drbd_peer_device *peer_device) __must_hold(local)
3390
3391
{
3392
int rv = -EIO;
3393
3394
drbd_md_set_flag(device, MDF_FULL_SYNC);
3395
drbd_md_sync(device);
3396
drbd_bm_set_all(device);
3397
3398
rv = drbd_bm_write(device, peer_device);
3399
3400
if (!rv) {
3401
drbd_md_clear_flag(device, MDF_FULL_SYNC);
3402
drbd_md_sync(device);
3403
}
3404
3405
return rv;
3406
}
3407
3408
/**
3409
* drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3410
* @device: DRBD device.
3411
* @peer_device: Peer DRBD device.
3412
*
3413
* Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3414
*/
3415
int drbd_bmio_clear_n_write(struct drbd_device *device,
3416
struct drbd_peer_device *peer_device) __must_hold(local)
3417
3418
{
3419
drbd_resume_al(device);
3420
drbd_bm_clear_all(device);
3421
return drbd_bm_write(device, peer_device);
3422
}
3423
3424
static int w_bitmap_io(struct drbd_work *w, int unused)
3425
{
3426
struct drbd_device *device =
3427
container_of(w, struct drbd_device, bm_io_work.w);
3428
struct bm_io_work *work = &device->bm_io_work;
3429
int rv = -EIO;
3430
3431
if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3432
int cnt = atomic_read(&device->ap_bio_cnt);
3433
if (cnt)
3434
drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3435
cnt, work->why);
3436
}
3437
3438
if (get_ldev(device)) {
3439
drbd_bm_lock(device, work->why, work->flags);
3440
rv = work->io_fn(device, work->peer_device);
3441
drbd_bm_unlock(device);
3442
put_ldev(device);
3443
}
3444
3445
clear_bit_unlock(BITMAP_IO, &device->flags);
3446
wake_up(&device->misc_wait);
3447
3448
if (work->done)
3449
work->done(device, rv);
3450
3451
clear_bit(BITMAP_IO_QUEUED, &device->flags);
3452
work->why = NULL;
3453
work->flags = 0;
3454
3455
return 0;
3456
}
3457
3458
/**
3459
* drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3460
* @device: DRBD device.
3461
* @io_fn: IO callback to be called when bitmap IO is possible
3462
* @done: callback to be called after the bitmap IO was performed
3463
* @why: Descriptive text of the reason for doing the IO
3464
* @flags: Bitmap flags
3465
* @peer_device: Peer DRBD device.
3466
*
3467
* While IO on the bitmap happens we freeze application IO thus we ensure
3468
* that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3469
* called from worker context. It MUST NOT be used while a previous such
3470
* work is still pending!
3471
*
3472
* Its worker function encloses the call of io_fn() by get_ldev() and
3473
* put_ldev().
3474
*/
3475
void drbd_queue_bitmap_io(struct drbd_device *device,
3476
int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3477
void (*done)(struct drbd_device *, int),
3478
char *why, enum bm_flag flags,
3479
struct drbd_peer_device *peer_device)
3480
{
3481
D_ASSERT(device, current == peer_device->connection->worker.task);
3482
3483
D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3484
D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3485
D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3486
if (device->bm_io_work.why)
3487
drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3488
why, device->bm_io_work.why);
3489
3490
device->bm_io_work.peer_device = peer_device;
3491
device->bm_io_work.io_fn = io_fn;
3492
device->bm_io_work.done = done;
3493
device->bm_io_work.why = why;
3494
device->bm_io_work.flags = flags;
3495
3496
spin_lock_irq(&device->resource->req_lock);
3497
set_bit(BITMAP_IO, &device->flags);
3498
/* don't wait for pending application IO if the caller indicates that
3499
* application IO does not conflict anyways. */
3500
if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3501
if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3502
drbd_queue_work(&peer_device->connection->sender_work,
3503
&device->bm_io_work.w);
3504
}
3505
spin_unlock_irq(&device->resource->req_lock);
3506
}
3507
3508
/**
3509
* drbd_bitmap_io() - Does an IO operation on the whole bitmap
3510
* @device: DRBD device.
3511
* @io_fn: IO callback to be called when bitmap IO is possible
3512
* @why: Descriptive text of the reason for doing the IO
3513
* @flags: Bitmap flags
3514
* @peer_device: Peer DRBD device.
3515
*
3516
* freezes application IO while that the actual IO operations runs. This
3517
* functions MAY NOT be called from worker context.
3518
*/
3519
int drbd_bitmap_io(struct drbd_device *device,
3520
int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3521
char *why, enum bm_flag flags,
3522
struct drbd_peer_device *peer_device)
3523
{
3524
/* Only suspend io, if some operation is supposed to be locked out */
3525
const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3526
int rv;
3527
3528
D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3529
3530
if (do_suspend_io)
3531
drbd_suspend_io(device);
3532
3533
drbd_bm_lock(device, why, flags);
3534
rv = io_fn(device, peer_device);
3535
drbd_bm_unlock(device);
3536
3537
if (do_suspend_io)
3538
drbd_resume_io(device);
3539
3540
return rv;
3541
}
3542
3543
void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3544
{
3545
if ((device->ldev->md.flags & flag) != flag) {
3546
drbd_md_mark_dirty(device);
3547
device->ldev->md.flags |= flag;
3548
}
3549
}
3550
3551
void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3552
{
3553
if ((device->ldev->md.flags & flag) != 0) {
3554
drbd_md_mark_dirty(device);
3555
device->ldev->md.flags &= ~flag;
3556
}
3557
}
3558
int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3559
{
3560
return (bdev->md.flags & flag) != 0;
3561
}
3562
3563
static void md_sync_timer_fn(struct timer_list *t)
3564
{
3565
struct drbd_device *device = timer_container_of(device, t,
3566
md_sync_timer);
3567
drbd_device_post_work(device, MD_SYNC);
3568
}
3569
3570
const char *cmdname(enum drbd_packet cmd)
3571
{
3572
/* THINK may need to become several global tables
3573
* when we want to support more than
3574
* one PRO_VERSION */
3575
static const char *cmdnames[] = {
3576
3577
[P_DATA] = "Data",
3578
[P_DATA_REPLY] = "DataReply",
3579
[P_RS_DATA_REPLY] = "RSDataReply",
3580
[P_BARRIER] = "Barrier",
3581
[P_BITMAP] = "ReportBitMap",
3582
[P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3583
[P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3584
[P_UNPLUG_REMOTE] = "UnplugRemote",
3585
[P_DATA_REQUEST] = "DataRequest",
3586
[P_RS_DATA_REQUEST] = "RSDataRequest",
3587
[P_SYNC_PARAM] = "SyncParam",
3588
[P_PROTOCOL] = "ReportProtocol",
3589
[P_UUIDS] = "ReportUUIDs",
3590
[P_SIZES] = "ReportSizes",
3591
[P_STATE] = "ReportState",
3592
[P_SYNC_UUID] = "ReportSyncUUID",
3593
[P_AUTH_CHALLENGE] = "AuthChallenge",
3594
[P_AUTH_RESPONSE] = "AuthResponse",
3595
[P_STATE_CHG_REQ] = "StateChgRequest",
3596
[P_PING] = "Ping",
3597
[P_PING_ACK] = "PingAck",
3598
[P_RECV_ACK] = "RecvAck",
3599
[P_WRITE_ACK] = "WriteAck",
3600
[P_RS_WRITE_ACK] = "RSWriteAck",
3601
[P_SUPERSEDED] = "Superseded",
3602
[P_NEG_ACK] = "NegAck",
3603
[P_NEG_DREPLY] = "NegDReply",
3604
[P_NEG_RS_DREPLY] = "NegRSDReply",
3605
[P_BARRIER_ACK] = "BarrierAck",
3606
[P_STATE_CHG_REPLY] = "StateChgReply",
3607
[P_OV_REQUEST] = "OVRequest",
3608
[P_OV_REPLY] = "OVReply",
3609
[P_OV_RESULT] = "OVResult",
3610
[P_CSUM_RS_REQUEST] = "CsumRSRequest",
3611
[P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3612
[P_SYNC_PARAM89] = "SyncParam89",
3613
[P_COMPRESSED_BITMAP] = "CBitmap",
3614
[P_DELAY_PROBE] = "DelayProbe",
3615
[P_OUT_OF_SYNC] = "OutOfSync",
3616
[P_RS_CANCEL] = "RSCancel",
3617
[P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3618
[P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3619
[P_PROTOCOL_UPDATE] = "protocol_update",
3620
[P_TRIM] = "Trim",
3621
[P_RS_THIN_REQ] = "rs_thin_req",
3622
[P_RS_DEALLOCATED] = "rs_deallocated",
3623
[P_WSAME] = "WriteSame",
3624
[P_ZEROES] = "Zeroes",
3625
3626
/* enum drbd_packet, but not commands - obsoleted flags:
3627
* P_MAY_IGNORE
3628
* P_MAX_OPT_CMD
3629
*/
3630
};
3631
3632
/* too big for the array: 0xfffX */
3633
if (cmd == P_INITIAL_META)
3634
return "InitialMeta";
3635
if (cmd == P_INITIAL_DATA)
3636
return "InitialData";
3637
if (cmd == P_CONNECTION_FEATURES)
3638
return "ConnectionFeatures";
3639
if (cmd >= ARRAY_SIZE(cmdnames))
3640
return "Unknown";
3641
return cmdnames[cmd];
3642
}
3643
3644
/**
3645
* drbd_wait_misc - wait for a request to make progress
3646
* @device: device associated with the request
3647
* @i: the struct drbd_interval embedded in struct drbd_request or
3648
* struct drbd_peer_request
3649
*/
3650
int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3651
{
3652
struct net_conf *nc;
3653
DEFINE_WAIT(wait);
3654
long timeout;
3655
3656
rcu_read_lock();
3657
nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3658
if (!nc) {
3659
rcu_read_unlock();
3660
return -ETIMEDOUT;
3661
}
3662
timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3663
rcu_read_unlock();
3664
3665
/* Indicate to wake up device->misc_wait on progress. */
3666
i->waiting = true;
3667
prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3668
spin_unlock_irq(&device->resource->req_lock);
3669
timeout = schedule_timeout(timeout);
3670
finish_wait(&device->misc_wait, &wait);
3671
spin_lock_irq(&device->resource->req_lock);
3672
if (!timeout || device->state.conn < C_CONNECTED)
3673
return -ETIMEDOUT;
3674
if (signal_pending(current))
3675
return -ERESTARTSYS;
3676
return 0;
3677
}
3678
3679
void lock_all_resources(void)
3680
{
3681
struct drbd_resource *resource;
3682
int __maybe_unused i = 0;
3683
3684
mutex_lock(&resources_mutex);
3685
local_irq_disable();
3686
for_each_resource(resource, &drbd_resources)
3687
spin_lock_nested(&resource->req_lock, i++);
3688
}
3689
3690
void unlock_all_resources(void)
3691
{
3692
struct drbd_resource *resource;
3693
3694
for_each_resource(resource, &drbd_resources)
3695
spin_unlock(&resource->req_lock);
3696
local_irq_enable();
3697
mutex_unlock(&resources_mutex);
3698
}
3699
3700
#ifdef CONFIG_DRBD_FAULT_INJECTION
3701
/* Fault insertion support including random number generator shamelessly
3702
* stolen from kernel/rcutorture.c */
3703
struct fault_random_state {
3704
unsigned long state;
3705
unsigned long count;
3706
};
3707
3708
#define FAULT_RANDOM_MULT 39916801 /* prime */
3709
#define FAULT_RANDOM_ADD 479001701 /* prime */
3710
#define FAULT_RANDOM_REFRESH 10000
3711
3712
/*
3713
* Crude but fast random-number generator. Uses a linear congruential
3714
* generator, with occasional help from get_random_bytes().
3715
*/
3716
static unsigned long
3717
_drbd_fault_random(struct fault_random_state *rsp)
3718
{
3719
long refresh;
3720
3721
if (!rsp->count--) {
3722
get_random_bytes(&refresh, sizeof(refresh));
3723
rsp->state += refresh;
3724
rsp->count = FAULT_RANDOM_REFRESH;
3725
}
3726
rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3727
return swahw32(rsp->state);
3728
}
3729
3730
static char *
3731
_drbd_fault_str(unsigned int type) {
3732
static char *_faults[] = {
3733
[DRBD_FAULT_MD_WR] = "Meta-data write",
3734
[DRBD_FAULT_MD_RD] = "Meta-data read",
3735
[DRBD_FAULT_RS_WR] = "Resync write",
3736
[DRBD_FAULT_RS_RD] = "Resync read",
3737
[DRBD_FAULT_DT_WR] = "Data write",
3738
[DRBD_FAULT_DT_RD] = "Data read",
3739
[DRBD_FAULT_DT_RA] = "Data read ahead",
3740
[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3741
[DRBD_FAULT_AL_EE] = "EE allocation",
3742
[DRBD_FAULT_RECEIVE] = "receive data corruption",
3743
};
3744
3745
return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3746
}
3747
3748
unsigned int
3749
_drbd_insert_fault(struct drbd_device *device, unsigned int type)
3750
{
3751
static struct fault_random_state rrs = {0, 0};
3752
3753
unsigned int ret = (
3754
(drbd_fault_devs == 0 ||
3755
((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3756
(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3757
3758
if (ret) {
3759
drbd_fault_count++;
3760
3761
if (drbd_ratelimit())
3762
drbd_warn(device, "***Simulating %s failure\n",
3763
_drbd_fault_str(type));
3764
}
3765
3766
return ret;
3767
}
3768
#endif
3769
3770
module_init(drbd_init)
3771
module_exit(drbd_cleanup)
3772
3773
EXPORT_SYMBOL(drbd_conn_str);
3774
EXPORT_SYMBOL(drbd_role_str);
3775
EXPORT_SYMBOL(drbd_disk_str);
3776
EXPORT_SYMBOL(drbd_set_st_err_str);
3777
3778