Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/loop.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 1993 by Theodore Ts'o.
4
*/
5
#include <linux/module.h>
6
#include <linux/moduleparam.h>
7
#include <linux/sched.h>
8
#include <linux/fs.h>
9
#include <linux/pagemap.h>
10
#include <linux/file.h>
11
#include <linux/stat.h>
12
#include <linux/errno.h>
13
#include <linux/major.h>
14
#include <linux/wait.h>
15
#include <linux/blkpg.h>
16
#include <linux/init.h>
17
#include <linux/swap.h>
18
#include <linux/slab.h>
19
#include <linux/compat.h>
20
#include <linux/suspend.h>
21
#include <linux/freezer.h>
22
#include <linux/mutex.h>
23
#include <linux/writeback.h>
24
#include <linux/completion.h>
25
#include <linux/highmem.h>
26
#include <linux/splice.h>
27
#include <linux/sysfs.h>
28
#include <linux/miscdevice.h>
29
#include <linux/falloc.h>
30
#include <linux/uio.h>
31
#include <linux/ioprio.h>
32
#include <linux/blk-cgroup.h>
33
#include <linux/sched/mm.h>
34
#include <linux/statfs.h>
35
#include <linux/uaccess.h>
36
#include <linux/blk-mq.h>
37
#include <linux/spinlock.h>
38
#include <uapi/linux/loop.h>
39
40
/* Possible states of device */
41
enum {
42
Lo_unbound,
43
Lo_bound,
44
Lo_rundown,
45
Lo_deleting,
46
};
47
48
struct loop_device {
49
int lo_number;
50
loff_t lo_offset;
51
loff_t lo_sizelimit;
52
int lo_flags;
53
char lo_file_name[LO_NAME_SIZE];
54
55
struct file *lo_backing_file;
56
unsigned int lo_min_dio_size;
57
struct block_device *lo_device;
58
59
gfp_t old_gfp_mask;
60
61
spinlock_t lo_lock;
62
int lo_state;
63
spinlock_t lo_work_lock;
64
struct workqueue_struct *workqueue;
65
struct work_struct rootcg_work;
66
struct list_head rootcg_cmd_list;
67
struct list_head idle_worker_list;
68
struct rb_root worker_tree;
69
struct timer_list timer;
70
bool sysfs_inited;
71
72
struct request_queue *lo_queue;
73
struct blk_mq_tag_set tag_set;
74
struct gendisk *lo_disk;
75
struct mutex lo_mutex;
76
bool idr_visible;
77
};
78
79
struct loop_cmd {
80
struct list_head list_entry;
81
bool use_aio; /* use AIO interface to handle I/O */
82
atomic_t ref; /* only for aio */
83
long ret;
84
struct kiocb iocb;
85
struct bio_vec *bvec;
86
struct cgroup_subsys_state *blkcg_css;
87
struct cgroup_subsys_state *memcg_css;
88
};
89
90
#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91
#define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93
static DEFINE_IDR(loop_index_idr);
94
static DEFINE_MUTEX(loop_ctl_mutex);
95
static DEFINE_MUTEX(loop_validate_mutex);
96
97
/**
98
* loop_global_lock_killable() - take locks for safe loop_validate_file() test
99
*
100
* @lo: struct loop_device
101
* @global: true if @lo is about to bind another "struct loop_device", false otherwise
102
*
103
* Returns 0 on success, -EINTR otherwise.
104
*
105
* Since loop_validate_file() traverses on other "struct loop_device" if
106
* is_loop_device() is true, we need a global lock for serializing concurrent
107
* loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108
*/
109
static int loop_global_lock_killable(struct loop_device *lo, bool global)
110
{
111
int err;
112
113
if (global) {
114
err = mutex_lock_killable(&loop_validate_mutex);
115
if (err)
116
return err;
117
}
118
err = mutex_lock_killable(&lo->lo_mutex);
119
if (err && global)
120
mutex_unlock(&loop_validate_mutex);
121
return err;
122
}
123
124
/**
125
* loop_global_unlock() - release locks taken by loop_global_lock_killable()
126
*
127
* @lo: struct loop_device
128
* @global: true if @lo was about to bind another "struct loop_device", false otherwise
129
*/
130
static void loop_global_unlock(struct loop_device *lo, bool global)
131
{
132
mutex_unlock(&lo->lo_mutex);
133
if (global)
134
mutex_unlock(&loop_validate_mutex);
135
}
136
137
static int max_part;
138
static int part_shift;
139
140
static loff_t lo_calculate_size(struct loop_device *lo, struct file *file)
141
{
142
loff_t loopsize;
143
int ret;
144
145
if (S_ISBLK(file_inode(file)->i_mode)) {
146
loopsize = i_size_read(file->f_mapping->host);
147
} else {
148
struct kstat stat;
149
150
/*
151
* Get the accurate file size. This provides better results than
152
* cached inode data, particularly for network filesystems where
153
* metadata may be stale.
154
*/
155
ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0);
156
if (ret)
157
return 0;
158
159
loopsize = stat.size;
160
}
161
162
if (lo->lo_offset > 0)
163
loopsize -= lo->lo_offset;
164
/* offset is beyond i_size, weird but possible */
165
if (loopsize < 0)
166
return 0;
167
if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168
loopsize = lo->lo_sizelimit;
169
/*
170
* Unfortunately, if we want to do I/O on the device,
171
* the number of 512-byte sectors has to fit into a sector_t.
172
*/
173
return loopsize >> 9;
174
}
175
176
/*
177
* We support direct I/O only if lo_offset is aligned with the logical I/O size
178
* of backing device, and the logical block size of loop is bigger than that of
179
* the backing device.
180
*/
181
static bool lo_can_use_dio(struct loop_device *lo)
182
{
183
if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
184
return false;
185
if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
186
return false;
187
if (lo->lo_offset & (lo->lo_min_dio_size - 1))
188
return false;
189
return true;
190
}
191
192
/*
193
* Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
194
* passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
195
* disabled when the device block size is too small or the offset is unaligned.
196
*
197
* loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
198
* not the originally passed in one.
199
*/
200
static inline void loop_update_dio(struct loop_device *lo)
201
{
202
lockdep_assert_held(&lo->lo_mutex);
203
WARN_ON_ONCE(lo->lo_state == Lo_bound &&
204
lo->lo_queue->mq_freeze_depth == 0);
205
206
if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
207
lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
208
}
209
210
/**
211
* loop_set_size() - sets device size and notifies userspace
212
* @lo: struct loop_device to set the size for
213
* @size: new size of the loop device
214
*
215
* Callers must validate that the size passed into this function fits into
216
* a sector_t, eg using loop_validate_size()
217
*/
218
static void loop_set_size(struct loop_device *lo, loff_t size)
219
{
220
if (!set_capacity_and_notify(lo->lo_disk, size))
221
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
222
}
223
224
static void loop_clear_limits(struct loop_device *lo, int mode)
225
{
226
struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
227
228
if (mode & FALLOC_FL_ZERO_RANGE)
229
lim.max_write_zeroes_sectors = 0;
230
231
if (mode & FALLOC_FL_PUNCH_HOLE) {
232
lim.max_hw_discard_sectors = 0;
233
lim.discard_granularity = 0;
234
}
235
236
/*
237
* XXX: this updates the queue limits without freezing the queue, which
238
* is against the locking protocol and dangerous. But we can't just
239
* freeze the queue as we're inside the ->queue_rq method here. So this
240
* should move out into a workqueue unless we get the file operations to
241
* advertise if they support specific fallocate operations.
242
*/
243
queue_limits_commit_update(lo->lo_queue, &lim);
244
}
245
246
static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
247
int mode)
248
{
249
/*
250
* We use fallocate to manipulate the space mappings used by the image
251
* a.k.a. discard/zerorange.
252
*/
253
struct file *file = lo->lo_backing_file;
254
int ret;
255
256
mode |= FALLOC_FL_KEEP_SIZE;
257
258
if (!bdev_max_discard_sectors(lo->lo_device))
259
return -EOPNOTSUPP;
260
261
ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
262
if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
263
return -EIO;
264
265
/*
266
* We initially configure the limits in a hope that fallocate is
267
* supported and clear them here if that turns out not to be true.
268
*/
269
if (unlikely(ret == -EOPNOTSUPP))
270
loop_clear_limits(lo, mode);
271
272
return ret;
273
}
274
275
static int lo_req_flush(struct loop_device *lo, struct request *rq)
276
{
277
int ret = vfs_fsync(lo->lo_backing_file, 0);
278
if (unlikely(ret && ret != -EINVAL))
279
ret = -EIO;
280
281
return ret;
282
}
283
284
static void lo_complete_rq(struct request *rq)
285
{
286
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
287
blk_status_t ret = BLK_STS_OK;
288
289
if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
290
req_op(rq) != REQ_OP_READ) {
291
if (cmd->ret < 0)
292
ret = errno_to_blk_status(cmd->ret);
293
goto end_io;
294
}
295
296
/*
297
* Short READ - if we got some data, advance our request and
298
* retry it. If we got no data, end the rest with EIO.
299
*/
300
if (cmd->ret) {
301
blk_update_request(rq, BLK_STS_OK, cmd->ret);
302
cmd->ret = 0;
303
blk_mq_requeue_request(rq, true);
304
} else {
305
struct bio *bio = rq->bio;
306
307
while (bio) {
308
zero_fill_bio(bio);
309
bio = bio->bi_next;
310
}
311
312
ret = BLK_STS_IOERR;
313
end_io:
314
blk_mq_end_request(rq, ret);
315
}
316
}
317
318
static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
319
{
320
struct request *rq = blk_mq_rq_from_pdu(cmd);
321
322
if (!atomic_dec_and_test(&cmd->ref))
323
return;
324
kfree(cmd->bvec);
325
cmd->bvec = NULL;
326
if (req_op(rq) == REQ_OP_WRITE)
327
kiocb_end_write(&cmd->iocb);
328
if (likely(!blk_should_fake_timeout(rq->q)))
329
blk_mq_complete_request(rq);
330
}
331
332
static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
333
{
334
struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
335
336
cmd->ret = ret;
337
lo_rw_aio_do_completion(cmd);
338
}
339
340
static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
341
loff_t pos, int rw)
342
{
343
struct iov_iter iter;
344
struct req_iterator rq_iter;
345
struct bio_vec *bvec;
346
struct request *rq = blk_mq_rq_from_pdu(cmd);
347
struct bio *bio = rq->bio;
348
struct file *file = lo->lo_backing_file;
349
struct bio_vec tmp;
350
unsigned int offset;
351
int nr_bvec = 0;
352
int ret;
353
354
rq_for_each_bvec(tmp, rq, rq_iter)
355
nr_bvec++;
356
357
if (rq->bio != rq->biotail) {
358
359
bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
360
GFP_NOIO);
361
if (!bvec)
362
return -EIO;
363
cmd->bvec = bvec;
364
365
/*
366
* The bios of the request may be started from the middle of
367
* the 'bvec' because of bio splitting, so we can't directly
368
* copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
369
* API will take care of all details for us.
370
*/
371
rq_for_each_bvec(tmp, rq, rq_iter) {
372
*bvec = tmp;
373
bvec++;
374
}
375
bvec = cmd->bvec;
376
offset = 0;
377
} else {
378
/*
379
* Same here, this bio may be started from the middle of the
380
* 'bvec' because of bio splitting, so offset from the bvec
381
* must be passed to iov iterator
382
*/
383
offset = bio->bi_iter.bi_bvec_done;
384
bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
385
}
386
atomic_set(&cmd->ref, 2);
387
388
iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
389
iter.iov_offset = offset;
390
391
cmd->iocb.ki_pos = pos;
392
cmd->iocb.ki_filp = file;
393
cmd->iocb.ki_ioprio = req_get_ioprio(rq);
394
if (cmd->use_aio) {
395
cmd->iocb.ki_complete = lo_rw_aio_complete;
396
cmd->iocb.ki_flags = IOCB_DIRECT;
397
} else {
398
cmd->iocb.ki_complete = NULL;
399
cmd->iocb.ki_flags = 0;
400
}
401
402
if (rw == ITER_SOURCE) {
403
kiocb_start_write(&cmd->iocb);
404
ret = file->f_op->write_iter(&cmd->iocb, &iter);
405
} else
406
ret = file->f_op->read_iter(&cmd->iocb, &iter);
407
408
lo_rw_aio_do_completion(cmd);
409
410
if (ret != -EIOCBQUEUED)
411
lo_rw_aio_complete(&cmd->iocb, ret);
412
return -EIOCBQUEUED;
413
}
414
415
static int do_req_filebacked(struct loop_device *lo, struct request *rq)
416
{
417
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
418
loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
419
420
switch (req_op(rq)) {
421
case REQ_OP_FLUSH:
422
return lo_req_flush(lo, rq);
423
case REQ_OP_WRITE_ZEROES:
424
/*
425
* If the caller doesn't want deallocation, call zeroout to
426
* write zeroes the range. Otherwise, punch them out.
427
*/
428
return lo_fallocate(lo, rq, pos,
429
(rq->cmd_flags & REQ_NOUNMAP) ?
430
FALLOC_FL_ZERO_RANGE :
431
FALLOC_FL_PUNCH_HOLE);
432
case REQ_OP_DISCARD:
433
return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
434
case REQ_OP_WRITE:
435
return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
436
case REQ_OP_READ:
437
return lo_rw_aio(lo, cmd, pos, ITER_DEST);
438
default:
439
WARN_ON_ONCE(1);
440
return -EIO;
441
}
442
}
443
444
static void loop_reread_partitions(struct loop_device *lo)
445
{
446
int rc;
447
448
mutex_lock(&lo->lo_disk->open_mutex);
449
rc = bdev_disk_changed(lo->lo_disk, false);
450
mutex_unlock(&lo->lo_disk->open_mutex);
451
if (rc)
452
pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
453
__func__, lo->lo_number, lo->lo_file_name, rc);
454
}
455
456
static unsigned int loop_query_min_dio_size(struct loop_device *lo)
457
{
458
struct file *file = lo->lo_backing_file;
459
struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
460
struct kstat st;
461
462
/*
463
* Use the minimal dio alignment of the file system if provided.
464
*/
465
if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
466
(st.result_mask & STATX_DIOALIGN))
467
return st.dio_offset_align;
468
469
/*
470
* In a perfect world this wouldn't be needed, but as of Linux 6.13 only
471
* a handful of file systems support the STATX_DIOALIGN flag.
472
*/
473
if (sb_bdev)
474
return bdev_logical_block_size(sb_bdev);
475
return SECTOR_SIZE;
476
}
477
478
static inline int is_loop_device(struct file *file)
479
{
480
struct inode *i = file->f_mapping->host;
481
482
return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
483
}
484
485
static int loop_validate_file(struct file *file, struct block_device *bdev)
486
{
487
struct inode *inode = file->f_mapping->host;
488
struct file *f = file;
489
490
/* Avoid recursion */
491
while (is_loop_device(f)) {
492
struct loop_device *l;
493
494
lockdep_assert_held(&loop_validate_mutex);
495
if (f->f_mapping->host->i_rdev == bdev->bd_dev)
496
return -EBADF;
497
498
l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
499
if (l->lo_state != Lo_bound)
500
return -EINVAL;
501
/* Order wrt setting lo->lo_backing_file in loop_configure(). */
502
rmb();
503
f = l->lo_backing_file;
504
}
505
if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
506
return -EINVAL;
507
return 0;
508
}
509
510
static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
511
{
512
lo->lo_backing_file = file;
513
lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
514
mapping_set_gfp_mask(file->f_mapping,
515
lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
516
if (lo->lo_backing_file->f_flags & O_DIRECT)
517
lo->lo_flags |= LO_FLAGS_DIRECT_IO;
518
lo->lo_min_dio_size = loop_query_min_dio_size(lo);
519
}
520
521
static int loop_check_backing_file(struct file *file)
522
{
523
if (!file->f_op->read_iter)
524
return -EINVAL;
525
526
if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
527
return -EINVAL;
528
529
return 0;
530
}
531
532
/*
533
* loop_change_fd switched the backing store of a loopback device to
534
* a new file. This is useful for operating system installers to free up
535
* the original file and in High Availability environments to switch to
536
* an alternative location for the content in case of server meltdown.
537
* This can only work if the loop device is used read-only, and if the
538
* new backing store is the same size and type as the old backing store.
539
*/
540
static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
541
unsigned int arg)
542
{
543
struct file *file = fget(arg);
544
struct file *old_file;
545
unsigned int memflags;
546
int error;
547
bool partscan;
548
bool is_loop;
549
550
if (!file)
551
return -EBADF;
552
553
error = loop_check_backing_file(file);
554
if (error)
555
return error;
556
557
/* suppress uevents while reconfiguring the device */
558
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
559
560
is_loop = is_loop_device(file);
561
error = loop_global_lock_killable(lo, is_loop);
562
if (error)
563
goto out_putf;
564
error = -ENXIO;
565
if (lo->lo_state != Lo_bound)
566
goto out_err;
567
568
/* the loop device has to be read-only */
569
error = -EINVAL;
570
if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
571
goto out_err;
572
573
error = loop_validate_file(file, bdev);
574
if (error)
575
goto out_err;
576
577
old_file = lo->lo_backing_file;
578
579
error = -EINVAL;
580
581
/* size of the new backing store needs to be the same */
582
if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file))
583
goto out_err;
584
585
/*
586
* We might switch to direct I/O mode for the loop device, write back
587
* all dirty data the page cache now that so that the individual I/O
588
* operations don't have to do that.
589
*/
590
vfs_fsync(file, 0);
591
592
/* and ... switch */
593
disk_force_media_change(lo->lo_disk);
594
memflags = blk_mq_freeze_queue(lo->lo_queue);
595
mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
596
loop_assign_backing_file(lo, file);
597
loop_update_dio(lo);
598
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
599
partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
600
loop_global_unlock(lo, is_loop);
601
602
/*
603
* Flush loop_validate_file() before fput(), for l->lo_backing_file
604
* might be pointing at old_file which might be the last reference.
605
*/
606
if (!is_loop) {
607
mutex_lock(&loop_validate_mutex);
608
mutex_unlock(&loop_validate_mutex);
609
}
610
/*
611
* We must drop file reference outside of lo_mutex as dropping
612
* the file ref can take open_mutex which creates circular locking
613
* dependency.
614
*/
615
fput(old_file);
616
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
617
if (partscan)
618
loop_reread_partitions(lo);
619
620
error = 0;
621
done:
622
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
623
return error;
624
625
out_err:
626
loop_global_unlock(lo, is_loop);
627
out_putf:
628
fput(file);
629
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
630
goto done;
631
}
632
633
/* loop sysfs attributes */
634
635
static ssize_t loop_attr_show(struct device *dev, char *page,
636
ssize_t (*callback)(struct loop_device *, char *))
637
{
638
struct gendisk *disk = dev_to_disk(dev);
639
struct loop_device *lo = disk->private_data;
640
641
return callback(lo, page);
642
}
643
644
#define LOOP_ATTR_RO(_name) \
645
static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
646
static ssize_t loop_attr_do_show_##_name(struct device *d, \
647
struct device_attribute *attr, char *b) \
648
{ \
649
return loop_attr_show(d, b, loop_attr_##_name##_show); \
650
} \
651
static struct device_attribute loop_attr_##_name = \
652
__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
653
654
static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
655
{
656
ssize_t ret;
657
char *p = NULL;
658
659
spin_lock_irq(&lo->lo_lock);
660
if (lo->lo_backing_file)
661
p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
662
spin_unlock_irq(&lo->lo_lock);
663
664
if (IS_ERR_OR_NULL(p))
665
ret = PTR_ERR(p);
666
else {
667
ret = strlen(p);
668
memmove(buf, p, ret);
669
buf[ret++] = '\n';
670
buf[ret] = 0;
671
}
672
673
return ret;
674
}
675
676
static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
677
{
678
return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
679
}
680
681
static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
682
{
683
return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
684
}
685
686
static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
687
{
688
int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
689
690
return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
691
}
692
693
static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
694
{
695
int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
696
697
return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
698
}
699
700
static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
701
{
702
int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
703
704
return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
705
}
706
707
LOOP_ATTR_RO(backing_file);
708
LOOP_ATTR_RO(offset);
709
LOOP_ATTR_RO(sizelimit);
710
LOOP_ATTR_RO(autoclear);
711
LOOP_ATTR_RO(partscan);
712
LOOP_ATTR_RO(dio);
713
714
static struct attribute *loop_attrs[] = {
715
&loop_attr_backing_file.attr,
716
&loop_attr_offset.attr,
717
&loop_attr_sizelimit.attr,
718
&loop_attr_autoclear.attr,
719
&loop_attr_partscan.attr,
720
&loop_attr_dio.attr,
721
NULL,
722
};
723
724
static struct attribute_group loop_attribute_group = {
725
.name = "loop",
726
.attrs= loop_attrs,
727
};
728
729
static void loop_sysfs_init(struct loop_device *lo)
730
{
731
lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
732
&loop_attribute_group);
733
}
734
735
static void loop_sysfs_exit(struct loop_device *lo)
736
{
737
if (lo->sysfs_inited)
738
sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
739
&loop_attribute_group);
740
}
741
742
static void loop_get_discard_config(struct loop_device *lo,
743
u32 *granularity, u32 *max_discard_sectors)
744
{
745
struct file *file = lo->lo_backing_file;
746
struct inode *inode = file->f_mapping->host;
747
struct kstatfs sbuf;
748
749
/*
750
* If the backing device is a block device, mirror its zeroing
751
* capability. Set the discard sectors to the block device's zeroing
752
* capabilities because loop discards result in blkdev_issue_zeroout(),
753
* not blkdev_issue_discard(). This maintains consistent behavior with
754
* file-backed loop devices: discarded regions read back as zero.
755
*/
756
if (S_ISBLK(inode->i_mode)) {
757
struct block_device *bdev = I_BDEV(inode);
758
759
*max_discard_sectors = bdev_write_zeroes_sectors(bdev);
760
*granularity = bdev_discard_granularity(bdev);
761
762
/*
763
* We use punch hole to reclaim the free space used by the
764
* image a.k.a. discard.
765
*/
766
} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
767
*max_discard_sectors = UINT_MAX >> 9;
768
*granularity = sbuf.f_bsize;
769
}
770
}
771
772
struct loop_worker {
773
struct rb_node rb_node;
774
struct work_struct work;
775
struct list_head cmd_list;
776
struct list_head idle_list;
777
struct loop_device *lo;
778
struct cgroup_subsys_state *blkcg_css;
779
unsigned long last_ran_at;
780
};
781
782
static void loop_workfn(struct work_struct *work);
783
784
#ifdef CONFIG_BLK_CGROUP
785
static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
786
{
787
return !css || css == blkcg_root_css;
788
}
789
#else
790
static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
791
{
792
return !css;
793
}
794
#endif
795
796
static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
797
{
798
struct rb_node **node, *parent = NULL;
799
struct loop_worker *cur_worker, *worker = NULL;
800
struct work_struct *work;
801
struct list_head *cmd_list;
802
803
spin_lock_irq(&lo->lo_work_lock);
804
805
if (queue_on_root_worker(cmd->blkcg_css))
806
goto queue_work;
807
808
node = &lo->worker_tree.rb_node;
809
810
while (*node) {
811
parent = *node;
812
cur_worker = container_of(*node, struct loop_worker, rb_node);
813
if (cur_worker->blkcg_css == cmd->blkcg_css) {
814
worker = cur_worker;
815
break;
816
} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
817
node = &(*node)->rb_left;
818
} else {
819
node = &(*node)->rb_right;
820
}
821
}
822
if (worker)
823
goto queue_work;
824
825
worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
826
/*
827
* In the event we cannot allocate a worker, just queue on the
828
* rootcg worker and issue the I/O as the rootcg
829
*/
830
if (!worker) {
831
cmd->blkcg_css = NULL;
832
if (cmd->memcg_css)
833
css_put(cmd->memcg_css);
834
cmd->memcg_css = NULL;
835
goto queue_work;
836
}
837
838
worker->blkcg_css = cmd->blkcg_css;
839
css_get(worker->blkcg_css);
840
INIT_WORK(&worker->work, loop_workfn);
841
INIT_LIST_HEAD(&worker->cmd_list);
842
INIT_LIST_HEAD(&worker->idle_list);
843
worker->lo = lo;
844
rb_link_node(&worker->rb_node, parent, node);
845
rb_insert_color(&worker->rb_node, &lo->worker_tree);
846
queue_work:
847
if (worker) {
848
/*
849
* We need to remove from the idle list here while
850
* holding the lock so that the idle timer doesn't
851
* free the worker
852
*/
853
if (!list_empty(&worker->idle_list))
854
list_del_init(&worker->idle_list);
855
work = &worker->work;
856
cmd_list = &worker->cmd_list;
857
} else {
858
work = &lo->rootcg_work;
859
cmd_list = &lo->rootcg_cmd_list;
860
}
861
list_add_tail(&cmd->list_entry, cmd_list);
862
queue_work(lo->workqueue, work);
863
spin_unlock_irq(&lo->lo_work_lock);
864
}
865
866
static void loop_set_timer(struct loop_device *lo)
867
{
868
timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
869
}
870
871
static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
872
{
873
struct loop_worker *pos, *worker;
874
875
spin_lock_irq(&lo->lo_work_lock);
876
list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
877
idle_list) {
878
if (!delete_all &&
879
time_is_after_jiffies(worker->last_ran_at +
880
LOOP_IDLE_WORKER_TIMEOUT))
881
break;
882
list_del(&worker->idle_list);
883
rb_erase(&worker->rb_node, &lo->worker_tree);
884
css_put(worker->blkcg_css);
885
kfree(worker);
886
}
887
if (!list_empty(&lo->idle_worker_list))
888
loop_set_timer(lo);
889
spin_unlock_irq(&lo->lo_work_lock);
890
}
891
892
static void loop_free_idle_workers_timer(struct timer_list *timer)
893
{
894
struct loop_device *lo = container_of(timer, struct loop_device, timer);
895
896
return loop_free_idle_workers(lo, false);
897
}
898
899
/**
900
* loop_set_status_from_info - configure device from loop_info
901
* @lo: struct loop_device to configure
902
* @info: struct loop_info64 to configure the device with
903
*
904
* Configures the loop device parameters according to the passed
905
* in loop_info64 configuration.
906
*/
907
static int
908
loop_set_status_from_info(struct loop_device *lo,
909
const struct loop_info64 *info)
910
{
911
if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
912
return -EINVAL;
913
914
switch (info->lo_encrypt_type) {
915
case LO_CRYPT_NONE:
916
break;
917
case LO_CRYPT_XOR:
918
pr_warn("support for the xor transformation has been removed.\n");
919
return -EINVAL;
920
case LO_CRYPT_CRYPTOAPI:
921
pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
922
return -EINVAL;
923
default:
924
return -EINVAL;
925
}
926
927
/* Avoid assigning overflow values */
928
if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
929
return -EOVERFLOW;
930
931
lo->lo_offset = info->lo_offset;
932
lo->lo_sizelimit = info->lo_sizelimit;
933
934
memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
935
lo->lo_file_name[LO_NAME_SIZE-1] = 0;
936
return 0;
937
}
938
939
static unsigned int loop_default_blocksize(struct loop_device *lo)
940
{
941
/* In case of direct I/O, match underlying minimum I/O size */
942
if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
943
return lo->lo_min_dio_size;
944
return SECTOR_SIZE;
945
}
946
947
static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
948
unsigned int bsize)
949
{
950
struct file *file = lo->lo_backing_file;
951
struct inode *inode = file->f_mapping->host;
952
struct block_device *backing_bdev = NULL;
953
u32 granularity = 0, max_discard_sectors = 0;
954
955
if (S_ISBLK(inode->i_mode))
956
backing_bdev = I_BDEV(inode);
957
else if (inode->i_sb->s_bdev)
958
backing_bdev = inode->i_sb->s_bdev;
959
960
if (!bsize)
961
bsize = loop_default_blocksize(lo);
962
963
loop_get_discard_config(lo, &granularity, &max_discard_sectors);
964
965
lim->logical_block_size = bsize;
966
lim->physical_block_size = bsize;
967
lim->io_min = bsize;
968
lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
969
if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
970
lim->features |= BLK_FEAT_WRITE_CACHE;
971
if (backing_bdev && !bdev_nonrot(backing_bdev))
972
lim->features |= BLK_FEAT_ROTATIONAL;
973
lim->max_hw_discard_sectors = max_discard_sectors;
974
lim->max_write_zeroes_sectors = max_discard_sectors;
975
if (max_discard_sectors)
976
lim->discard_granularity = granularity;
977
else
978
lim->discard_granularity = 0;
979
}
980
981
static int loop_configure(struct loop_device *lo, blk_mode_t mode,
982
struct block_device *bdev,
983
const struct loop_config *config)
984
{
985
struct file *file = fget(config->fd);
986
struct queue_limits lim;
987
int error;
988
loff_t size;
989
bool partscan;
990
bool is_loop;
991
992
if (!file)
993
return -EBADF;
994
995
error = loop_check_backing_file(file);
996
if (error)
997
return error;
998
999
is_loop = is_loop_device(file);
1000
1001
/* This is safe, since we have a reference from open(). */
1002
__module_get(THIS_MODULE);
1003
1004
/*
1005
* If we don't hold exclusive handle for the device, upgrade to it
1006
* here to avoid changing device under exclusive owner.
1007
*/
1008
if (!(mode & BLK_OPEN_EXCL)) {
1009
error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1010
if (error)
1011
goto out_putf;
1012
}
1013
1014
error = loop_global_lock_killable(lo, is_loop);
1015
if (error)
1016
goto out_bdev;
1017
1018
error = -EBUSY;
1019
if (lo->lo_state != Lo_unbound)
1020
goto out_unlock;
1021
1022
error = loop_validate_file(file, bdev);
1023
if (error)
1024
goto out_unlock;
1025
1026
if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1027
error = -EINVAL;
1028
goto out_unlock;
1029
}
1030
1031
error = loop_set_status_from_info(lo, &config->info);
1032
if (error)
1033
goto out_unlock;
1034
lo->lo_flags = config->info.lo_flags;
1035
1036
if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1037
!file->f_op->write_iter)
1038
lo->lo_flags |= LO_FLAGS_READ_ONLY;
1039
1040
if (!lo->workqueue) {
1041
lo->workqueue = alloc_workqueue("loop%d",
1042
WQ_UNBOUND | WQ_FREEZABLE,
1043
0, lo->lo_number);
1044
if (!lo->workqueue) {
1045
error = -ENOMEM;
1046
goto out_unlock;
1047
}
1048
}
1049
1050
/* suppress uevents while reconfiguring the device */
1051
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1052
1053
disk_force_media_change(lo->lo_disk);
1054
set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1055
1056
lo->lo_device = bdev;
1057
loop_assign_backing_file(lo, file);
1058
1059
lim = queue_limits_start_update(lo->lo_queue);
1060
loop_update_limits(lo, &lim, config->block_size);
1061
/* No need to freeze the queue as the device isn't bound yet. */
1062
error = queue_limits_commit_update(lo->lo_queue, &lim);
1063
if (error)
1064
goto out_unlock;
1065
1066
/*
1067
* We might switch to direct I/O mode for the loop device, write back
1068
* all dirty data the page cache now that so that the individual I/O
1069
* operations don't have to do that.
1070
*/
1071
vfs_fsync(file, 0);
1072
1073
loop_update_dio(lo);
1074
loop_sysfs_init(lo);
1075
1076
size = lo_calculate_size(lo, file);
1077
loop_set_size(lo, size);
1078
1079
/* Order wrt reading lo_state in loop_validate_file(). */
1080
wmb();
1081
1082
lo->lo_state = Lo_bound;
1083
if (part_shift)
1084
lo->lo_flags |= LO_FLAGS_PARTSCAN;
1085
partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1086
if (partscan)
1087
clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1088
1089
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1090
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1091
1092
loop_global_unlock(lo, is_loop);
1093
if (partscan)
1094
loop_reread_partitions(lo);
1095
1096
if (!(mode & BLK_OPEN_EXCL))
1097
bd_abort_claiming(bdev, loop_configure);
1098
1099
return 0;
1100
1101
out_unlock:
1102
loop_global_unlock(lo, is_loop);
1103
out_bdev:
1104
if (!(mode & BLK_OPEN_EXCL))
1105
bd_abort_claiming(bdev, loop_configure);
1106
out_putf:
1107
fput(file);
1108
/* This is safe: open() is still holding a reference. */
1109
module_put(THIS_MODULE);
1110
return error;
1111
}
1112
1113
static void __loop_clr_fd(struct loop_device *lo)
1114
{
1115
struct queue_limits lim;
1116
struct file *filp;
1117
gfp_t gfp = lo->old_gfp_mask;
1118
1119
spin_lock_irq(&lo->lo_lock);
1120
filp = lo->lo_backing_file;
1121
lo->lo_backing_file = NULL;
1122
spin_unlock_irq(&lo->lo_lock);
1123
1124
lo->lo_device = NULL;
1125
lo->lo_offset = 0;
1126
lo->lo_sizelimit = 0;
1127
memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1128
1129
/*
1130
* Reset the block size to the default.
1131
*
1132
* No queue freezing needed because this is called from the final
1133
* ->release call only, so there can't be any outstanding I/O.
1134
*/
1135
lim = queue_limits_start_update(lo->lo_queue);
1136
lim.logical_block_size = SECTOR_SIZE;
1137
lim.physical_block_size = SECTOR_SIZE;
1138
lim.io_min = SECTOR_SIZE;
1139
queue_limits_commit_update(lo->lo_queue, &lim);
1140
1141
invalidate_disk(lo->lo_disk);
1142
loop_sysfs_exit(lo);
1143
/* let user-space know about this change */
1144
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1145
mapping_set_gfp_mask(filp->f_mapping, gfp);
1146
/* This is safe: open() is still holding a reference. */
1147
module_put(THIS_MODULE);
1148
1149
disk_force_media_change(lo->lo_disk);
1150
1151
if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1152
int err;
1153
1154
/*
1155
* open_mutex has been held already in release path, so don't
1156
* acquire it if this function is called in such case.
1157
*
1158
* If the reread partition isn't from release path, lo_refcnt
1159
* must be at least one and it can only become zero when the
1160
* current holder is released.
1161
*/
1162
err = bdev_disk_changed(lo->lo_disk, false);
1163
if (err)
1164
pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1165
__func__, lo->lo_number, err);
1166
/* Device is gone, no point in returning error */
1167
}
1168
1169
/*
1170
* lo->lo_state is set to Lo_unbound here after above partscan has
1171
* finished. There cannot be anybody else entering __loop_clr_fd() as
1172
* Lo_rundown state protects us from all the other places trying to
1173
* change the 'lo' device.
1174
*/
1175
lo->lo_flags = 0;
1176
if (!part_shift)
1177
set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1178
mutex_lock(&lo->lo_mutex);
1179
lo->lo_state = Lo_unbound;
1180
mutex_unlock(&lo->lo_mutex);
1181
1182
/*
1183
* Need not hold lo_mutex to fput backing file. Calling fput holding
1184
* lo_mutex triggers a circular lock dependency possibility warning as
1185
* fput can take open_mutex which is usually taken before lo_mutex.
1186
*/
1187
fput(filp);
1188
}
1189
1190
static int loop_clr_fd(struct loop_device *lo)
1191
{
1192
int err;
1193
1194
/*
1195
* Since lo_ioctl() is called without locks held, it is possible that
1196
* loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1197
*
1198
* Therefore, use global lock when setting Lo_rundown state in order to
1199
* make sure that loop_validate_file() will fail if the "struct file"
1200
* which loop_configure()/loop_change_fd() found via fget() was this
1201
* loop device.
1202
*/
1203
err = loop_global_lock_killable(lo, true);
1204
if (err)
1205
return err;
1206
if (lo->lo_state != Lo_bound) {
1207
loop_global_unlock(lo, true);
1208
return -ENXIO;
1209
}
1210
/*
1211
* Mark the device for removing the backing device on last close.
1212
* If we are the only opener, also switch the state to roundown here to
1213
* prevent new openers from coming in.
1214
*/
1215
1216
lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1217
if (disk_openers(lo->lo_disk) == 1)
1218
lo->lo_state = Lo_rundown;
1219
loop_global_unlock(lo, true);
1220
1221
return 0;
1222
}
1223
1224
static int
1225
loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1226
{
1227
int err;
1228
bool partscan = false;
1229
bool size_changed = false;
1230
unsigned int memflags;
1231
1232
err = mutex_lock_killable(&lo->lo_mutex);
1233
if (err)
1234
return err;
1235
if (lo->lo_state != Lo_bound) {
1236
err = -ENXIO;
1237
goto out_unlock;
1238
}
1239
1240
if (lo->lo_offset != info->lo_offset ||
1241
lo->lo_sizelimit != info->lo_sizelimit) {
1242
size_changed = true;
1243
sync_blockdev(lo->lo_device);
1244
invalidate_bdev(lo->lo_device);
1245
}
1246
1247
/* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1248
memflags = blk_mq_freeze_queue(lo->lo_queue);
1249
1250
err = loop_set_status_from_info(lo, info);
1251
if (err)
1252
goto out_unfreeze;
1253
1254
partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1255
(info->lo_flags & LO_FLAGS_PARTSCAN);
1256
1257
lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1258
lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1259
1260
/* update the direct I/O flag if lo_offset changed */
1261
loop_update_dio(lo);
1262
1263
out_unfreeze:
1264
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1265
if (partscan)
1266
clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1267
if (!err && size_changed) {
1268
loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file);
1269
loop_set_size(lo, new_size);
1270
}
1271
out_unlock:
1272
mutex_unlock(&lo->lo_mutex);
1273
if (partscan)
1274
loop_reread_partitions(lo);
1275
1276
return err;
1277
}
1278
1279
static int
1280
loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1281
{
1282
struct path path;
1283
struct kstat stat;
1284
int ret;
1285
1286
ret = mutex_lock_killable(&lo->lo_mutex);
1287
if (ret)
1288
return ret;
1289
if (lo->lo_state != Lo_bound) {
1290
mutex_unlock(&lo->lo_mutex);
1291
return -ENXIO;
1292
}
1293
1294
memset(info, 0, sizeof(*info));
1295
info->lo_number = lo->lo_number;
1296
info->lo_offset = lo->lo_offset;
1297
info->lo_sizelimit = lo->lo_sizelimit;
1298
info->lo_flags = lo->lo_flags;
1299
memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1300
1301
/* Drop lo_mutex while we call into the filesystem. */
1302
path = lo->lo_backing_file->f_path;
1303
path_get(&path);
1304
mutex_unlock(&lo->lo_mutex);
1305
ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1306
if (!ret) {
1307
info->lo_device = huge_encode_dev(stat.dev);
1308
info->lo_inode = stat.ino;
1309
info->lo_rdevice = huge_encode_dev(stat.rdev);
1310
}
1311
path_put(&path);
1312
return ret;
1313
}
1314
1315
static void
1316
loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1317
{
1318
memset(info64, 0, sizeof(*info64));
1319
info64->lo_number = info->lo_number;
1320
info64->lo_device = info->lo_device;
1321
info64->lo_inode = info->lo_inode;
1322
info64->lo_rdevice = info->lo_rdevice;
1323
info64->lo_offset = info->lo_offset;
1324
info64->lo_sizelimit = 0;
1325
info64->lo_flags = info->lo_flags;
1326
memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1327
}
1328
1329
static int
1330
loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1331
{
1332
memset(info, 0, sizeof(*info));
1333
info->lo_number = info64->lo_number;
1334
info->lo_device = info64->lo_device;
1335
info->lo_inode = info64->lo_inode;
1336
info->lo_rdevice = info64->lo_rdevice;
1337
info->lo_offset = info64->lo_offset;
1338
info->lo_flags = info64->lo_flags;
1339
memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1340
1341
/* error in case values were truncated */
1342
if (info->lo_device != info64->lo_device ||
1343
info->lo_rdevice != info64->lo_rdevice ||
1344
info->lo_inode != info64->lo_inode ||
1345
info->lo_offset != info64->lo_offset)
1346
return -EOVERFLOW;
1347
1348
return 0;
1349
}
1350
1351
static int
1352
loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1353
{
1354
struct loop_info info;
1355
struct loop_info64 info64;
1356
1357
if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1358
return -EFAULT;
1359
loop_info64_from_old(&info, &info64);
1360
return loop_set_status(lo, &info64);
1361
}
1362
1363
static int
1364
loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1365
{
1366
struct loop_info64 info64;
1367
1368
if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1369
return -EFAULT;
1370
return loop_set_status(lo, &info64);
1371
}
1372
1373
static int
1374
loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1375
struct loop_info info;
1376
struct loop_info64 info64;
1377
int err;
1378
1379
if (!arg)
1380
return -EINVAL;
1381
err = loop_get_status(lo, &info64);
1382
if (!err)
1383
err = loop_info64_to_old(&info64, &info);
1384
if (!err && copy_to_user(arg, &info, sizeof(info)))
1385
err = -EFAULT;
1386
1387
return err;
1388
}
1389
1390
static int
1391
loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1392
struct loop_info64 info64;
1393
int err;
1394
1395
if (!arg)
1396
return -EINVAL;
1397
err = loop_get_status(lo, &info64);
1398
if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1399
err = -EFAULT;
1400
1401
return err;
1402
}
1403
1404
static int loop_set_capacity(struct loop_device *lo)
1405
{
1406
loff_t size;
1407
1408
if (unlikely(lo->lo_state != Lo_bound))
1409
return -ENXIO;
1410
1411
size = lo_calculate_size(lo, lo->lo_backing_file);
1412
loop_set_size(lo, size);
1413
1414
return 0;
1415
}
1416
1417
static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1418
{
1419
bool use_dio = !!arg;
1420
unsigned int memflags;
1421
1422
if (lo->lo_state != Lo_bound)
1423
return -ENXIO;
1424
if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1425
return 0;
1426
1427
if (use_dio) {
1428
if (!lo_can_use_dio(lo))
1429
return -EINVAL;
1430
/* flush dirty pages before starting to use direct I/O */
1431
vfs_fsync(lo->lo_backing_file, 0);
1432
}
1433
1434
memflags = blk_mq_freeze_queue(lo->lo_queue);
1435
if (use_dio)
1436
lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1437
else
1438
lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1439
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1440
return 0;
1441
}
1442
1443
static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1444
struct block_device *bdev, unsigned long arg)
1445
{
1446
struct queue_limits lim;
1447
unsigned int memflags;
1448
int err = 0;
1449
1450
/*
1451
* If we don't hold exclusive handle for the device, upgrade to it
1452
* here to avoid changing device under exclusive owner.
1453
*/
1454
if (!(mode & BLK_OPEN_EXCL)) {
1455
err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1456
if (err)
1457
return err;
1458
}
1459
1460
err = mutex_lock_killable(&lo->lo_mutex);
1461
if (err)
1462
goto abort_claim;
1463
1464
if (lo->lo_state != Lo_bound) {
1465
err = -ENXIO;
1466
goto unlock;
1467
}
1468
1469
if (lo->lo_queue->limits.logical_block_size == arg)
1470
goto unlock;
1471
1472
sync_blockdev(lo->lo_device);
1473
invalidate_bdev(lo->lo_device);
1474
1475
lim = queue_limits_start_update(lo->lo_queue);
1476
loop_update_limits(lo, &lim, arg);
1477
1478
memflags = blk_mq_freeze_queue(lo->lo_queue);
1479
err = queue_limits_commit_update(lo->lo_queue, &lim);
1480
loop_update_dio(lo);
1481
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1482
1483
unlock:
1484
mutex_unlock(&lo->lo_mutex);
1485
abort_claim:
1486
if (!(mode & BLK_OPEN_EXCL))
1487
bd_abort_claiming(bdev, loop_set_block_size);
1488
return err;
1489
}
1490
1491
static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1492
unsigned long arg)
1493
{
1494
int err;
1495
1496
err = mutex_lock_killable(&lo->lo_mutex);
1497
if (err)
1498
return err;
1499
switch (cmd) {
1500
case LOOP_SET_CAPACITY:
1501
err = loop_set_capacity(lo);
1502
break;
1503
case LOOP_SET_DIRECT_IO:
1504
err = loop_set_dio(lo, arg);
1505
break;
1506
default:
1507
err = -EINVAL;
1508
}
1509
mutex_unlock(&lo->lo_mutex);
1510
return err;
1511
}
1512
1513
static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1514
unsigned int cmd, unsigned long arg)
1515
{
1516
struct loop_device *lo = bdev->bd_disk->private_data;
1517
void __user *argp = (void __user *) arg;
1518
int err;
1519
1520
switch (cmd) {
1521
case LOOP_SET_FD: {
1522
/*
1523
* Legacy case - pass in a zeroed out struct loop_config with
1524
* only the file descriptor set , which corresponds with the
1525
* default parameters we'd have used otherwise.
1526
*/
1527
struct loop_config config;
1528
1529
memset(&config, 0, sizeof(config));
1530
config.fd = arg;
1531
1532
return loop_configure(lo, mode, bdev, &config);
1533
}
1534
case LOOP_CONFIGURE: {
1535
struct loop_config config;
1536
1537
if (copy_from_user(&config, argp, sizeof(config)))
1538
return -EFAULT;
1539
1540
return loop_configure(lo, mode, bdev, &config);
1541
}
1542
case LOOP_CHANGE_FD:
1543
return loop_change_fd(lo, bdev, arg);
1544
case LOOP_CLR_FD:
1545
return loop_clr_fd(lo);
1546
case LOOP_SET_STATUS:
1547
err = -EPERM;
1548
if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1549
err = loop_set_status_old(lo, argp);
1550
break;
1551
case LOOP_GET_STATUS:
1552
return loop_get_status_old(lo, argp);
1553
case LOOP_SET_STATUS64:
1554
err = -EPERM;
1555
if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1556
err = loop_set_status64(lo, argp);
1557
break;
1558
case LOOP_GET_STATUS64:
1559
return loop_get_status64(lo, argp);
1560
case LOOP_SET_BLOCK_SIZE:
1561
if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1562
return -EPERM;
1563
return loop_set_block_size(lo, mode, bdev, arg);
1564
case LOOP_SET_CAPACITY:
1565
case LOOP_SET_DIRECT_IO:
1566
if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1567
return -EPERM;
1568
fallthrough;
1569
default:
1570
err = lo_simple_ioctl(lo, cmd, arg);
1571
break;
1572
}
1573
1574
return err;
1575
}
1576
1577
#ifdef CONFIG_COMPAT
1578
struct compat_loop_info {
1579
compat_int_t lo_number; /* ioctl r/o */
1580
compat_dev_t lo_device; /* ioctl r/o */
1581
compat_ulong_t lo_inode; /* ioctl r/o */
1582
compat_dev_t lo_rdevice; /* ioctl r/o */
1583
compat_int_t lo_offset;
1584
compat_int_t lo_encrypt_type; /* obsolete, ignored */
1585
compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1586
compat_int_t lo_flags; /* ioctl r/o */
1587
char lo_name[LO_NAME_SIZE];
1588
unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1589
compat_ulong_t lo_init[2];
1590
char reserved[4];
1591
};
1592
1593
/*
1594
* Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1595
* - noinlined to reduce stack space usage in main part of driver
1596
*/
1597
static noinline int
1598
loop_info64_from_compat(const struct compat_loop_info __user *arg,
1599
struct loop_info64 *info64)
1600
{
1601
struct compat_loop_info info;
1602
1603
if (copy_from_user(&info, arg, sizeof(info)))
1604
return -EFAULT;
1605
1606
memset(info64, 0, sizeof(*info64));
1607
info64->lo_number = info.lo_number;
1608
info64->lo_device = info.lo_device;
1609
info64->lo_inode = info.lo_inode;
1610
info64->lo_rdevice = info.lo_rdevice;
1611
info64->lo_offset = info.lo_offset;
1612
info64->lo_sizelimit = 0;
1613
info64->lo_flags = info.lo_flags;
1614
memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1615
return 0;
1616
}
1617
1618
/*
1619
* Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1620
* - noinlined to reduce stack space usage in main part of driver
1621
*/
1622
static noinline int
1623
loop_info64_to_compat(const struct loop_info64 *info64,
1624
struct compat_loop_info __user *arg)
1625
{
1626
struct compat_loop_info info;
1627
1628
memset(&info, 0, sizeof(info));
1629
info.lo_number = info64->lo_number;
1630
info.lo_device = info64->lo_device;
1631
info.lo_inode = info64->lo_inode;
1632
info.lo_rdevice = info64->lo_rdevice;
1633
info.lo_offset = info64->lo_offset;
1634
info.lo_flags = info64->lo_flags;
1635
memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1636
1637
/* error in case values were truncated */
1638
if (info.lo_device != info64->lo_device ||
1639
info.lo_rdevice != info64->lo_rdevice ||
1640
info.lo_inode != info64->lo_inode ||
1641
info.lo_offset != info64->lo_offset)
1642
return -EOVERFLOW;
1643
1644
if (copy_to_user(arg, &info, sizeof(info)))
1645
return -EFAULT;
1646
return 0;
1647
}
1648
1649
static int
1650
loop_set_status_compat(struct loop_device *lo,
1651
const struct compat_loop_info __user *arg)
1652
{
1653
struct loop_info64 info64;
1654
int ret;
1655
1656
ret = loop_info64_from_compat(arg, &info64);
1657
if (ret < 0)
1658
return ret;
1659
return loop_set_status(lo, &info64);
1660
}
1661
1662
static int
1663
loop_get_status_compat(struct loop_device *lo,
1664
struct compat_loop_info __user *arg)
1665
{
1666
struct loop_info64 info64;
1667
int err;
1668
1669
if (!arg)
1670
return -EINVAL;
1671
err = loop_get_status(lo, &info64);
1672
if (!err)
1673
err = loop_info64_to_compat(&info64, arg);
1674
return err;
1675
}
1676
1677
static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1678
unsigned int cmd, unsigned long arg)
1679
{
1680
struct loop_device *lo = bdev->bd_disk->private_data;
1681
int err;
1682
1683
switch(cmd) {
1684
case LOOP_SET_STATUS:
1685
err = loop_set_status_compat(lo,
1686
(const struct compat_loop_info __user *)arg);
1687
break;
1688
case LOOP_GET_STATUS:
1689
err = loop_get_status_compat(lo,
1690
(struct compat_loop_info __user *)arg);
1691
break;
1692
case LOOP_SET_CAPACITY:
1693
case LOOP_CLR_FD:
1694
case LOOP_GET_STATUS64:
1695
case LOOP_SET_STATUS64:
1696
case LOOP_CONFIGURE:
1697
arg = (unsigned long) compat_ptr(arg);
1698
fallthrough;
1699
case LOOP_SET_FD:
1700
case LOOP_CHANGE_FD:
1701
case LOOP_SET_BLOCK_SIZE:
1702
case LOOP_SET_DIRECT_IO:
1703
err = lo_ioctl(bdev, mode, cmd, arg);
1704
break;
1705
default:
1706
err = -ENOIOCTLCMD;
1707
break;
1708
}
1709
return err;
1710
}
1711
#endif
1712
1713
static int lo_open(struct gendisk *disk, blk_mode_t mode)
1714
{
1715
struct loop_device *lo = disk->private_data;
1716
int err;
1717
1718
err = mutex_lock_killable(&lo->lo_mutex);
1719
if (err)
1720
return err;
1721
1722
if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1723
err = -ENXIO;
1724
mutex_unlock(&lo->lo_mutex);
1725
return err;
1726
}
1727
1728
static void lo_release(struct gendisk *disk)
1729
{
1730
struct loop_device *lo = disk->private_data;
1731
bool need_clear = false;
1732
1733
if (disk_openers(disk) > 0)
1734
return;
1735
/*
1736
* Clear the backing device information if this is the last close of
1737
* a device that's been marked for auto clear, or on which LOOP_CLR_FD
1738
* has been called.
1739
*/
1740
1741
mutex_lock(&lo->lo_mutex);
1742
if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1743
lo->lo_state = Lo_rundown;
1744
1745
need_clear = (lo->lo_state == Lo_rundown);
1746
mutex_unlock(&lo->lo_mutex);
1747
1748
if (need_clear)
1749
__loop_clr_fd(lo);
1750
}
1751
1752
static void lo_free_disk(struct gendisk *disk)
1753
{
1754
struct loop_device *lo = disk->private_data;
1755
1756
if (lo->workqueue)
1757
destroy_workqueue(lo->workqueue);
1758
loop_free_idle_workers(lo, true);
1759
timer_shutdown_sync(&lo->timer);
1760
mutex_destroy(&lo->lo_mutex);
1761
kfree(lo);
1762
}
1763
1764
static const struct block_device_operations lo_fops = {
1765
.owner = THIS_MODULE,
1766
.open = lo_open,
1767
.release = lo_release,
1768
.ioctl = lo_ioctl,
1769
#ifdef CONFIG_COMPAT
1770
.compat_ioctl = lo_compat_ioctl,
1771
#endif
1772
.free_disk = lo_free_disk,
1773
};
1774
1775
/*
1776
* And now the modules code and kernel interface.
1777
*/
1778
1779
/*
1780
* If max_loop is specified, create that many devices upfront.
1781
* This also becomes a hard limit. If max_loop is not specified,
1782
* the default isn't a hard limit (as before commit 85c50197716c
1783
* changed the default value from 0 for max_loop=0 reasons), just
1784
* create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1785
* init time. Loop devices can be requested on-demand with the
1786
* /dev/loop-control interface, or be instantiated by accessing
1787
* a 'dead' device node.
1788
*/
1789
static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1790
1791
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1792
static bool max_loop_specified;
1793
1794
static int max_loop_param_set_int(const char *val,
1795
const struct kernel_param *kp)
1796
{
1797
int ret;
1798
1799
ret = param_set_int(val, kp);
1800
if (ret < 0)
1801
return ret;
1802
1803
max_loop_specified = true;
1804
return 0;
1805
}
1806
1807
static const struct kernel_param_ops max_loop_param_ops = {
1808
.set = max_loop_param_set_int,
1809
.get = param_get_int,
1810
};
1811
1812
module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1813
MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1814
#else
1815
module_param(max_loop, int, 0444);
1816
MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1817
#endif
1818
1819
module_param(max_part, int, 0444);
1820
MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1821
1822
static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1823
1824
static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1825
{
1826
int qd, ret;
1827
1828
ret = kstrtoint(s, 0, &qd);
1829
if (ret < 0)
1830
return ret;
1831
if (qd < 1)
1832
return -EINVAL;
1833
hw_queue_depth = qd;
1834
return 0;
1835
}
1836
1837
static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1838
.set = loop_set_hw_queue_depth,
1839
.get = param_get_int,
1840
};
1841
1842
device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1843
MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1844
1845
MODULE_DESCRIPTION("Loopback device support");
1846
MODULE_LICENSE("GPL");
1847
MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1848
1849
static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1850
const struct blk_mq_queue_data *bd)
1851
{
1852
struct request *rq = bd->rq;
1853
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1854
struct loop_device *lo = rq->q->queuedata;
1855
1856
blk_mq_start_request(rq);
1857
1858
if (lo->lo_state != Lo_bound)
1859
return BLK_STS_IOERR;
1860
1861
switch (req_op(rq)) {
1862
case REQ_OP_FLUSH:
1863
case REQ_OP_DISCARD:
1864
case REQ_OP_WRITE_ZEROES:
1865
cmd->use_aio = false;
1866
break;
1867
default:
1868
cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1869
break;
1870
}
1871
1872
/* always use the first bio's css */
1873
cmd->blkcg_css = NULL;
1874
cmd->memcg_css = NULL;
1875
#ifdef CONFIG_BLK_CGROUP
1876
if (rq->bio) {
1877
cmd->blkcg_css = bio_blkcg_css(rq->bio);
1878
#ifdef CONFIG_MEMCG
1879
if (cmd->blkcg_css) {
1880
cmd->memcg_css =
1881
cgroup_get_e_css(cmd->blkcg_css->cgroup,
1882
&memory_cgrp_subsys);
1883
}
1884
#endif
1885
}
1886
#endif
1887
loop_queue_work(lo, cmd);
1888
1889
return BLK_STS_OK;
1890
}
1891
1892
static void loop_handle_cmd(struct loop_cmd *cmd)
1893
{
1894
struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1895
struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1896
struct request *rq = blk_mq_rq_from_pdu(cmd);
1897
const bool write = op_is_write(req_op(rq));
1898
struct loop_device *lo = rq->q->queuedata;
1899
int ret = 0;
1900
struct mem_cgroup *old_memcg = NULL;
1901
1902
if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1903
ret = -EIO;
1904
goto failed;
1905
}
1906
1907
if (cmd_blkcg_css)
1908
kthread_associate_blkcg(cmd_blkcg_css);
1909
if (cmd_memcg_css)
1910
old_memcg = set_active_memcg(
1911
mem_cgroup_from_css(cmd_memcg_css));
1912
1913
/*
1914
* do_req_filebacked() may call blk_mq_complete_request() synchronously
1915
* or asynchronously if using aio. Hence, do not touch 'cmd' after
1916
* do_req_filebacked() has returned unless we are sure that 'cmd' has
1917
* not yet been completed.
1918
*/
1919
ret = do_req_filebacked(lo, rq);
1920
1921
if (cmd_blkcg_css)
1922
kthread_associate_blkcg(NULL);
1923
1924
if (cmd_memcg_css) {
1925
set_active_memcg(old_memcg);
1926
css_put(cmd_memcg_css);
1927
}
1928
failed:
1929
/* complete non-aio request */
1930
if (ret != -EIOCBQUEUED) {
1931
if (ret == -EOPNOTSUPP)
1932
cmd->ret = ret;
1933
else
1934
cmd->ret = ret ? -EIO : 0;
1935
if (likely(!blk_should_fake_timeout(rq->q)))
1936
blk_mq_complete_request(rq);
1937
}
1938
}
1939
1940
static void loop_process_work(struct loop_worker *worker,
1941
struct list_head *cmd_list, struct loop_device *lo)
1942
{
1943
int orig_flags = current->flags;
1944
struct loop_cmd *cmd;
1945
1946
current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1947
spin_lock_irq(&lo->lo_work_lock);
1948
while (!list_empty(cmd_list)) {
1949
cmd = container_of(
1950
cmd_list->next, struct loop_cmd, list_entry);
1951
list_del(cmd_list->next);
1952
spin_unlock_irq(&lo->lo_work_lock);
1953
1954
loop_handle_cmd(cmd);
1955
cond_resched();
1956
1957
spin_lock_irq(&lo->lo_work_lock);
1958
}
1959
1960
/*
1961
* We only add to the idle list if there are no pending cmds
1962
* *and* the worker will not run again which ensures that it
1963
* is safe to free any worker on the idle list
1964
*/
1965
if (worker && !work_pending(&worker->work)) {
1966
worker->last_ran_at = jiffies;
1967
list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1968
loop_set_timer(lo);
1969
}
1970
spin_unlock_irq(&lo->lo_work_lock);
1971
current->flags = orig_flags;
1972
}
1973
1974
static void loop_workfn(struct work_struct *work)
1975
{
1976
struct loop_worker *worker =
1977
container_of(work, struct loop_worker, work);
1978
loop_process_work(worker, &worker->cmd_list, worker->lo);
1979
}
1980
1981
static void loop_rootcg_workfn(struct work_struct *work)
1982
{
1983
struct loop_device *lo =
1984
container_of(work, struct loop_device, rootcg_work);
1985
loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1986
}
1987
1988
static const struct blk_mq_ops loop_mq_ops = {
1989
.queue_rq = loop_queue_rq,
1990
.complete = lo_complete_rq,
1991
};
1992
1993
static int loop_add(int i)
1994
{
1995
struct queue_limits lim = {
1996
/*
1997
* Random number picked from the historic block max_sectors cap.
1998
*/
1999
.max_hw_sectors = 2560u,
2000
};
2001
struct loop_device *lo;
2002
struct gendisk *disk;
2003
int err;
2004
2005
err = -ENOMEM;
2006
lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2007
if (!lo)
2008
goto out;
2009
lo->worker_tree = RB_ROOT;
2010
INIT_LIST_HEAD(&lo->idle_worker_list);
2011
timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2012
lo->lo_state = Lo_unbound;
2013
2014
err = mutex_lock_killable(&loop_ctl_mutex);
2015
if (err)
2016
goto out_free_dev;
2017
2018
/* allocate id, if @id >= 0, we're requesting that specific id */
2019
if (i >= 0) {
2020
err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2021
if (err == -ENOSPC)
2022
err = -EEXIST;
2023
} else {
2024
err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2025
}
2026
mutex_unlock(&loop_ctl_mutex);
2027
if (err < 0)
2028
goto out_free_dev;
2029
i = err;
2030
2031
lo->tag_set.ops = &loop_mq_ops;
2032
lo->tag_set.nr_hw_queues = 1;
2033
lo->tag_set.queue_depth = hw_queue_depth;
2034
lo->tag_set.numa_node = NUMA_NO_NODE;
2035
lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2036
lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2037
lo->tag_set.driver_data = lo;
2038
2039
err = blk_mq_alloc_tag_set(&lo->tag_set);
2040
if (err)
2041
goto out_free_idr;
2042
2043
disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2044
if (IS_ERR(disk)) {
2045
err = PTR_ERR(disk);
2046
goto out_cleanup_tags;
2047
}
2048
lo->lo_queue = lo->lo_disk->queue;
2049
2050
/*
2051
* Disable partition scanning by default. The in-kernel partition
2052
* scanning can be requested individually per-device during its
2053
* setup. Userspace can always add and remove partitions from all
2054
* devices. The needed partition minors are allocated from the
2055
* extended minor space, the main loop device numbers will continue
2056
* to match the loop minors, regardless of the number of partitions
2057
* used.
2058
*
2059
* If max_part is given, partition scanning is globally enabled for
2060
* all loop devices. The minors for the main loop devices will be
2061
* multiples of max_part.
2062
*
2063
* Note: Global-for-all-devices, set-only-at-init, read-only module
2064
* parameteters like 'max_loop' and 'max_part' make things needlessly
2065
* complicated, are too static, inflexible and may surprise
2066
* userspace tools. Parameters like this in general should be avoided.
2067
*/
2068
if (!part_shift)
2069
set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2070
mutex_init(&lo->lo_mutex);
2071
lo->lo_number = i;
2072
spin_lock_init(&lo->lo_lock);
2073
spin_lock_init(&lo->lo_work_lock);
2074
INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2075
INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2076
disk->major = LOOP_MAJOR;
2077
disk->first_minor = i << part_shift;
2078
disk->minors = 1 << part_shift;
2079
disk->fops = &lo_fops;
2080
disk->private_data = lo;
2081
disk->queue = lo->lo_queue;
2082
disk->events = DISK_EVENT_MEDIA_CHANGE;
2083
disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2084
sprintf(disk->disk_name, "loop%d", i);
2085
/* Make this loop device reachable from pathname. */
2086
err = add_disk(disk);
2087
if (err)
2088
goto out_cleanup_disk;
2089
2090
/* Show this loop device. */
2091
mutex_lock(&loop_ctl_mutex);
2092
lo->idr_visible = true;
2093
mutex_unlock(&loop_ctl_mutex);
2094
2095
return i;
2096
2097
out_cleanup_disk:
2098
put_disk(disk);
2099
out_cleanup_tags:
2100
blk_mq_free_tag_set(&lo->tag_set);
2101
out_free_idr:
2102
mutex_lock(&loop_ctl_mutex);
2103
idr_remove(&loop_index_idr, i);
2104
mutex_unlock(&loop_ctl_mutex);
2105
out_free_dev:
2106
kfree(lo);
2107
out:
2108
return err;
2109
}
2110
2111
static void loop_remove(struct loop_device *lo)
2112
{
2113
/* Make this loop device unreachable from pathname. */
2114
del_gendisk(lo->lo_disk);
2115
blk_mq_free_tag_set(&lo->tag_set);
2116
2117
mutex_lock(&loop_ctl_mutex);
2118
idr_remove(&loop_index_idr, lo->lo_number);
2119
mutex_unlock(&loop_ctl_mutex);
2120
2121
put_disk(lo->lo_disk);
2122
}
2123
2124
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2125
static void loop_probe(dev_t dev)
2126
{
2127
int idx = MINOR(dev) >> part_shift;
2128
2129
if (max_loop_specified && max_loop && idx >= max_loop)
2130
return;
2131
loop_add(idx);
2132
}
2133
#else
2134
#define loop_probe NULL
2135
#endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2136
2137
static int loop_control_remove(int idx)
2138
{
2139
struct loop_device *lo;
2140
int ret;
2141
2142
if (idx < 0) {
2143
pr_warn_once("deleting an unspecified loop device is not supported.\n");
2144
return -EINVAL;
2145
}
2146
2147
/* Hide this loop device for serialization. */
2148
ret = mutex_lock_killable(&loop_ctl_mutex);
2149
if (ret)
2150
return ret;
2151
lo = idr_find(&loop_index_idr, idx);
2152
if (!lo || !lo->idr_visible)
2153
ret = -ENODEV;
2154
else
2155
lo->idr_visible = false;
2156
mutex_unlock(&loop_ctl_mutex);
2157
if (ret)
2158
return ret;
2159
2160
/* Check whether this loop device can be removed. */
2161
ret = mutex_lock_killable(&lo->lo_mutex);
2162
if (ret)
2163
goto mark_visible;
2164
if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2165
mutex_unlock(&lo->lo_mutex);
2166
ret = -EBUSY;
2167
goto mark_visible;
2168
}
2169
/* Mark this loop device as no more bound, but not quite unbound yet */
2170
lo->lo_state = Lo_deleting;
2171
mutex_unlock(&lo->lo_mutex);
2172
2173
loop_remove(lo);
2174
return 0;
2175
2176
mark_visible:
2177
/* Show this loop device again. */
2178
mutex_lock(&loop_ctl_mutex);
2179
lo->idr_visible = true;
2180
mutex_unlock(&loop_ctl_mutex);
2181
return ret;
2182
}
2183
2184
static int loop_control_get_free(int idx)
2185
{
2186
struct loop_device *lo;
2187
int id, ret;
2188
2189
ret = mutex_lock_killable(&loop_ctl_mutex);
2190
if (ret)
2191
return ret;
2192
idr_for_each_entry(&loop_index_idr, lo, id) {
2193
/* Hitting a race results in creating a new loop device which is harmless. */
2194
if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2195
goto found;
2196
}
2197
mutex_unlock(&loop_ctl_mutex);
2198
return loop_add(-1);
2199
found:
2200
mutex_unlock(&loop_ctl_mutex);
2201
return id;
2202
}
2203
2204
static long loop_control_ioctl(struct file *file, unsigned int cmd,
2205
unsigned long parm)
2206
{
2207
switch (cmd) {
2208
case LOOP_CTL_ADD:
2209
return loop_add(parm);
2210
case LOOP_CTL_REMOVE:
2211
return loop_control_remove(parm);
2212
case LOOP_CTL_GET_FREE:
2213
return loop_control_get_free(parm);
2214
default:
2215
return -ENOSYS;
2216
}
2217
}
2218
2219
static const struct file_operations loop_ctl_fops = {
2220
.open = nonseekable_open,
2221
.unlocked_ioctl = loop_control_ioctl,
2222
.compat_ioctl = loop_control_ioctl,
2223
.owner = THIS_MODULE,
2224
.llseek = noop_llseek,
2225
};
2226
2227
static struct miscdevice loop_misc = {
2228
.minor = LOOP_CTRL_MINOR,
2229
.name = "loop-control",
2230
.fops = &loop_ctl_fops,
2231
};
2232
2233
MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2234
MODULE_ALIAS("devname:loop-control");
2235
2236
static int __init loop_init(void)
2237
{
2238
int i;
2239
int err;
2240
2241
part_shift = 0;
2242
if (max_part > 0) {
2243
part_shift = fls(max_part);
2244
2245
/*
2246
* Adjust max_part according to part_shift as it is exported
2247
* to user space so that user can decide correct minor number
2248
* if [s]he want to create more devices.
2249
*
2250
* Note that -1 is required because partition 0 is reserved
2251
* for the whole disk.
2252
*/
2253
max_part = (1UL << part_shift) - 1;
2254
}
2255
2256
if ((1UL << part_shift) > DISK_MAX_PARTS) {
2257
err = -EINVAL;
2258
goto err_out;
2259
}
2260
2261
if (max_loop > 1UL << (MINORBITS - part_shift)) {
2262
err = -EINVAL;
2263
goto err_out;
2264
}
2265
2266
err = misc_register(&loop_misc);
2267
if (err < 0)
2268
goto err_out;
2269
2270
2271
if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2272
err = -EIO;
2273
goto misc_out;
2274
}
2275
2276
/* pre-create number of devices given by config or max_loop */
2277
for (i = 0; i < max_loop; i++)
2278
loop_add(i);
2279
2280
printk(KERN_INFO "loop: module loaded\n");
2281
return 0;
2282
2283
misc_out:
2284
misc_deregister(&loop_misc);
2285
err_out:
2286
return err;
2287
}
2288
2289
static void __exit loop_exit(void)
2290
{
2291
struct loop_device *lo;
2292
int id;
2293
2294
unregister_blkdev(LOOP_MAJOR, "loop");
2295
misc_deregister(&loop_misc);
2296
2297
/*
2298
* There is no need to use loop_ctl_mutex here, for nobody else can
2299
* access loop_index_idr when this module is unloading (unless forced
2300
* module unloading is requested). If this is not a clean unloading,
2301
* we have no means to avoid kernel crash.
2302
*/
2303
idr_for_each_entry(&loop_index_idr, lo, id)
2304
loop_remove(lo);
2305
2306
idr_destroy(&loop_index_idr);
2307
}
2308
2309
module_init(loop_init);
2310
module_exit(loop_exit);
2311
2312
#ifndef MODULE
2313
static int __init max_loop_setup(char *str)
2314
{
2315
max_loop = simple_strtol(str, NULL, 0);
2316
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2317
max_loop_specified = true;
2318
#endif
2319
return 1;
2320
}
2321
2322
__setup("max_loop=", max_loop_setup);
2323
#endif
2324
2325