Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/loop.c
49000 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 1993 by Theodore Ts'o.
4
*/
5
#include <linux/module.h>
6
#include <linux/moduleparam.h>
7
#include <linux/sched.h>
8
#include <linux/fs.h>
9
#include <linux/pagemap.h>
10
#include <linux/file.h>
11
#include <linux/stat.h>
12
#include <linux/errno.h>
13
#include <linux/major.h>
14
#include <linux/wait.h>
15
#include <linux/blkpg.h>
16
#include <linux/init.h>
17
#include <linux/swap.h>
18
#include <linux/slab.h>
19
#include <linux/compat.h>
20
#include <linux/suspend.h>
21
#include <linux/freezer.h>
22
#include <linux/mutex.h>
23
#include <linux/writeback.h>
24
#include <linux/completion.h>
25
#include <linux/highmem.h>
26
#include <linux/splice.h>
27
#include <linux/sysfs.h>
28
#include <linux/miscdevice.h>
29
#include <linux/falloc.h>
30
#include <linux/uio.h>
31
#include <linux/ioprio.h>
32
#include <linux/blk-cgroup.h>
33
#include <linux/sched/mm.h>
34
#include <linux/statfs.h>
35
#include <linux/uaccess.h>
36
#include <linux/blk-mq.h>
37
#include <linux/spinlock.h>
38
#include <uapi/linux/loop.h>
39
40
/* Possible states of device */
41
enum {
42
Lo_unbound,
43
Lo_bound,
44
Lo_rundown,
45
Lo_deleting,
46
};
47
48
struct loop_device {
49
int lo_number;
50
loff_t lo_offset;
51
loff_t lo_sizelimit;
52
int lo_flags;
53
char lo_file_name[LO_NAME_SIZE];
54
55
struct file *lo_backing_file;
56
unsigned int lo_min_dio_size;
57
struct block_device *lo_device;
58
59
gfp_t old_gfp_mask;
60
61
spinlock_t lo_lock;
62
int lo_state;
63
spinlock_t lo_work_lock;
64
struct workqueue_struct *workqueue;
65
struct work_struct rootcg_work;
66
struct list_head rootcg_cmd_list;
67
struct list_head idle_worker_list;
68
struct rb_root worker_tree;
69
struct timer_list timer;
70
bool sysfs_inited;
71
72
struct request_queue *lo_queue;
73
struct blk_mq_tag_set tag_set;
74
struct gendisk *lo_disk;
75
struct mutex lo_mutex;
76
bool idr_visible;
77
};
78
79
struct loop_cmd {
80
struct list_head list_entry;
81
bool use_aio; /* use AIO interface to handle I/O */
82
atomic_t ref; /* only for aio */
83
long ret;
84
struct kiocb iocb;
85
struct bio_vec *bvec;
86
struct cgroup_subsys_state *blkcg_css;
87
struct cgroup_subsys_state *memcg_css;
88
};
89
90
#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91
#define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93
static DEFINE_IDR(loop_index_idr);
94
static DEFINE_MUTEX(loop_ctl_mutex);
95
static DEFINE_MUTEX(loop_validate_mutex);
96
97
/**
98
* loop_global_lock_killable() - take locks for safe loop_validate_file() test
99
*
100
* @lo: struct loop_device
101
* @global: true if @lo is about to bind another "struct loop_device", false otherwise
102
*
103
* Returns 0 on success, -EINTR otherwise.
104
*
105
* Since loop_validate_file() traverses on other "struct loop_device" if
106
* is_loop_device() is true, we need a global lock for serializing concurrent
107
* loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108
*/
109
static int loop_global_lock_killable(struct loop_device *lo, bool global)
110
{
111
int err;
112
113
if (global) {
114
err = mutex_lock_killable(&loop_validate_mutex);
115
if (err)
116
return err;
117
}
118
err = mutex_lock_killable(&lo->lo_mutex);
119
if (err && global)
120
mutex_unlock(&loop_validate_mutex);
121
return err;
122
}
123
124
/**
125
* loop_global_unlock() - release locks taken by loop_global_lock_killable()
126
*
127
* @lo: struct loop_device
128
* @global: true if @lo was about to bind another "struct loop_device", false otherwise
129
*/
130
static void loop_global_unlock(struct loop_device *lo, bool global)
131
{
132
mutex_unlock(&lo->lo_mutex);
133
if (global)
134
mutex_unlock(&loop_validate_mutex);
135
}
136
137
static int max_part;
138
static int part_shift;
139
140
static loff_t lo_calculate_size(struct loop_device *lo, struct file *file)
141
{
142
loff_t loopsize;
143
int ret;
144
145
if (S_ISBLK(file_inode(file)->i_mode)) {
146
loopsize = i_size_read(file->f_mapping->host);
147
} else {
148
struct kstat stat;
149
150
/*
151
* Get the accurate file size. This provides better results than
152
* cached inode data, particularly for network filesystems where
153
* metadata may be stale.
154
*/
155
ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0);
156
if (ret)
157
return 0;
158
159
loopsize = stat.size;
160
}
161
162
if (lo->lo_offset > 0)
163
loopsize -= lo->lo_offset;
164
/* offset is beyond i_size, weird but possible */
165
if (loopsize < 0)
166
return 0;
167
if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168
loopsize = lo->lo_sizelimit;
169
/*
170
* Unfortunately, if we want to do I/O on the device,
171
* the number of 512-byte sectors has to fit into a sector_t.
172
*/
173
return loopsize >> 9;
174
}
175
176
/*
177
* We support direct I/O only if lo_offset is aligned with the logical I/O size
178
* of backing device, and the logical block size of loop is bigger than that of
179
* the backing device.
180
*/
181
static bool lo_can_use_dio(struct loop_device *lo)
182
{
183
if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
184
return false;
185
if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
186
return false;
187
if (lo->lo_offset & (lo->lo_min_dio_size - 1))
188
return false;
189
return true;
190
}
191
192
/*
193
* Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
194
* passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
195
* disabled when the device block size is too small or the offset is unaligned.
196
*
197
* loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
198
* not the originally passed in one.
199
*/
200
static inline void loop_update_dio(struct loop_device *lo)
201
{
202
lockdep_assert_held(&lo->lo_mutex);
203
WARN_ON_ONCE(lo->lo_state == Lo_bound &&
204
lo->lo_queue->mq_freeze_depth == 0);
205
206
if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
207
lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
208
}
209
210
/**
211
* loop_set_size() - sets device size and notifies userspace
212
* @lo: struct loop_device to set the size for
213
* @size: new size of the loop device
214
*
215
* Callers must validate that the size passed into this function fits into
216
* a sector_t, eg using loop_validate_size()
217
*/
218
static void loop_set_size(struct loop_device *lo, loff_t size)
219
{
220
if (!set_capacity_and_notify(lo->lo_disk, size))
221
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
222
}
223
224
static void loop_clear_limits(struct loop_device *lo, int mode)
225
{
226
struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
227
228
if (mode & FALLOC_FL_ZERO_RANGE)
229
lim.max_write_zeroes_sectors = 0;
230
231
if (mode & FALLOC_FL_PUNCH_HOLE) {
232
lim.max_hw_discard_sectors = 0;
233
lim.discard_granularity = 0;
234
}
235
236
/*
237
* XXX: this updates the queue limits without freezing the queue, which
238
* is against the locking protocol and dangerous. But we can't just
239
* freeze the queue as we're inside the ->queue_rq method here. So this
240
* should move out into a workqueue unless we get the file operations to
241
* advertise if they support specific fallocate operations.
242
*/
243
queue_limits_commit_update(lo->lo_queue, &lim);
244
}
245
246
static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
247
int mode)
248
{
249
/*
250
* We use fallocate to manipulate the space mappings used by the image
251
* a.k.a. discard/zerorange.
252
*/
253
struct file *file = lo->lo_backing_file;
254
int ret;
255
256
mode |= FALLOC_FL_KEEP_SIZE;
257
258
if (!bdev_max_discard_sectors(lo->lo_device))
259
return -EOPNOTSUPP;
260
261
ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
262
if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
263
return -EIO;
264
265
/*
266
* We initially configure the limits in a hope that fallocate is
267
* supported and clear them here if that turns out not to be true.
268
*/
269
if (unlikely(ret == -EOPNOTSUPP))
270
loop_clear_limits(lo, mode);
271
272
return ret;
273
}
274
275
static int lo_req_flush(struct loop_device *lo, struct request *rq)
276
{
277
int ret = vfs_fsync(lo->lo_backing_file, 0);
278
if (unlikely(ret && ret != -EINVAL))
279
ret = -EIO;
280
281
return ret;
282
}
283
284
static void lo_complete_rq(struct request *rq)
285
{
286
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
287
blk_status_t ret = BLK_STS_OK;
288
289
if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
290
req_op(rq) != REQ_OP_READ) {
291
if (cmd->ret < 0)
292
ret = errno_to_blk_status(cmd->ret);
293
goto end_io;
294
}
295
296
/*
297
* Short READ - if we got some data, advance our request and
298
* retry it. If we got no data, end the rest with EIO.
299
*/
300
if (cmd->ret) {
301
blk_update_request(rq, BLK_STS_OK, cmd->ret);
302
cmd->ret = 0;
303
blk_mq_requeue_request(rq, true);
304
} else {
305
struct bio *bio = rq->bio;
306
307
while (bio) {
308
zero_fill_bio(bio);
309
bio = bio->bi_next;
310
}
311
312
ret = BLK_STS_IOERR;
313
end_io:
314
blk_mq_end_request(rq, ret);
315
}
316
}
317
318
static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
319
{
320
struct request *rq = blk_mq_rq_from_pdu(cmd);
321
322
if (!atomic_dec_and_test(&cmd->ref))
323
return;
324
kfree(cmd->bvec);
325
cmd->bvec = NULL;
326
if (req_op(rq) == REQ_OP_WRITE)
327
kiocb_end_write(&cmd->iocb);
328
if (likely(!blk_should_fake_timeout(rq->q)))
329
blk_mq_complete_request(rq);
330
}
331
332
static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
333
{
334
struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
335
336
cmd->ret = ret;
337
lo_rw_aio_do_completion(cmd);
338
}
339
340
static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
341
loff_t pos, int rw)
342
{
343
struct iov_iter iter;
344
struct req_iterator rq_iter;
345
struct bio_vec *bvec;
346
struct request *rq = blk_mq_rq_from_pdu(cmd);
347
struct bio *bio = rq->bio;
348
struct file *file = lo->lo_backing_file;
349
struct bio_vec tmp;
350
unsigned int offset;
351
unsigned int nr_bvec;
352
int ret;
353
354
nr_bvec = blk_rq_nr_bvec(rq);
355
356
if (rq->bio != rq->biotail) {
357
358
bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
359
GFP_NOIO);
360
if (!bvec)
361
return -EIO;
362
cmd->bvec = bvec;
363
364
/*
365
* The bios of the request may be started from the middle of
366
* the 'bvec' because of bio splitting, so we can't directly
367
* copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
368
* API will take care of all details for us.
369
*/
370
rq_for_each_bvec(tmp, rq, rq_iter) {
371
*bvec = tmp;
372
bvec++;
373
}
374
bvec = cmd->bvec;
375
offset = 0;
376
} else {
377
/*
378
* Same here, this bio may be started from the middle of the
379
* 'bvec' because of bio splitting, so offset from the bvec
380
* must be passed to iov iterator
381
*/
382
offset = bio->bi_iter.bi_bvec_done;
383
bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
384
}
385
atomic_set(&cmd->ref, 2);
386
387
iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
388
iter.iov_offset = offset;
389
390
cmd->iocb.ki_pos = pos;
391
cmd->iocb.ki_filp = file;
392
cmd->iocb.ki_ioprio = req_get_ioprio(rq);
393
if (cmd->use_aio) {
394
cmd->iocb.ki_complete = lo_rw_aio_complete;
395
cmd->iocb.ki_flags = IOCB_DIRECT;
396
} else {
397
cmd->iocb.ki_complete = NULL;
398
cmd->iocb.ki_flags = 0;
399
}
400
401
if (rw == ITER_SOURCE) {
402
kiocb_start_write(&cmd->iocb);
403
ret = file->f_op->write_iter(&cmd->iocb, &iter);
404
} else
405
ret = file->f_op->read_iter(&cmd->iocb, &iter);
406
407
lo_rw_aio_do_completion(cmd);
408
409
if (ret != -EIOCBQUEUED)
410
lo_rw_aio_complete(&cmd->iocb, ret);
411
return -EIOCBQUEUED;
412
}
413
414
static int do_req_filebacked(struct loop_device *lo, struct request *rq)
415
{
416
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
417
loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
418
419
switch (req_op(rq)) {
420
case REQ_OP_FLUSH:
421
return lo_req_flush(lo, rq);
422
case REQ_OP_WRITE_ZEROES:
423
/*
424
* If the caller doesn't want deallocation, call zeroout to
425
* write zeroes the range. Otherwise, punch them out.
426
*/
427
return lo_fallocate(lo, rq, pos,
428
(rq->cmd_flags & REQ_NOUNMAP) ?
429
FALLOC_FL_ZERO_RANGE :
430
FALLOC_FL_PUNCH_HOLE);
431
case REQ_OP_DISCARD:
432
return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
433
case REQ_OP_WRITE:
434
return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
435
case REQ_OP_READ:
436
return lo_rw_aio(lo, cmd, pos, ITER_DEST);
437
default:
438
WARN_ON_ONCE(1);
439
return -EIO;
440
}
441
}
442
443
static void loop_reread_partitions(struct loop_device *lo)
444
{
445
int rc;
446
447
mutex_lock(&lo->lo_disk->open_mutex);
448
rc = bdev_disk_changed(lo->lo_disk, false);
449
mutex_unlock(&lo->lo_disk->open_mutex);
450
if (rc)
451
pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
452
__func__, lo->lo_number, lo->lo_file_name, rc);
453
}
454
455
static unsigned int loop_query_min_dio_size(struct loop_device *lo)
456
{
457
struct file *file = lo->lo_backing_file;
458
struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
459
struct kstat st;
460
461
/*
462
* Use the minimal dio alignment of the file system if provided.
463
*/
464
if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
465
(st.result_mask & STATX_DIOALIGN))
466
return st.dio_offset_align;
467
468
/*
469
* In a perfect world this wouldn't be needed, but as of Linux 6.13 only
470
* a handful of file systems support the STATX_DIOALIGN flag.
471
*/
472
if (sb_bdev)
473
return bdev_logical_block_size(sb_bdev);
474
return SECTOR_SIZE;
475
}
476
477
static inline int is_loop_device(struct file *file)
478
{
479
struct inode *i = file->f_mapping->host;
480
481
return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
482
}
483
484
static int loop_validate_file(struct file *file, struct block_device *bdev)
485
{
486
struct inode *inode = file->f_mapping->host;
487
struct file *f = file;
488
489
/* Avoid recursion */
490
while (is_loop_device(f)) {
491
struct loop_device *l;
492
493
lockdep_assert_held(&loop_validate_mutex);
494
if (f->f_mapping->host->i_rdev == bdev->bd_dev)
495
return -EBADF;
496
497
l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
498
if (l->lo_state != Lo_bound)
499
return -EINVAL;
500
/* Order wrt setting lo->lo_backing_file in loop_configure(). */
501
rmb();
502
f = l->lo_backing_file;
503
}
504
if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
505
return -EINVAL;
506
return 0;
507
}
508
509
static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
510
{
511
lo->lo_backing_file = file;
512
lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
513
mapping_set_gfp_mask(file->f_mapping,
514
lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
515
if (lo->lo_backing_file->f_flags & O_DIRECT)
516
lo->lo_flags |= LO_FLAGS_DIRECT_IO;
517
lo->lo_min_dio_size = loop_query_min_dio_size(lo);
518
}
519
520
static int loop_check_backing_file(struct file *file)
521
{
522
if (!file->f_op->read_iter)
523
return -EINVAL;
524
525
if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
526
return -EINVAL;
527
528
return 0;
529
}
530
531
/*
532
* loop_change_fd switched the backing store of a loopback device to
533
* a new file. This is useful for operating system installers to free up
534
* the original file and in High Availability environments to switch to
535
* an alternative location for the content in case of server meltdown.
536
* This can only work if the loop device is used read-only, and if the
537
* new backing store is the same size and type as the old backing store.
538
*/
539
static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
540
unsigned int arg)
541
{
542
struct file *file = fget(arg);
543
struct file *old_file;
544
unsigned int memflags;
545
int error;
546
bool partscan;
547
bool is_loop;
548
549
if (!file)
550
return -EBADF;
551
552
error = loop_check_backing_file(file);
553
if (error) {
554
fput(file);
555
return error;
556
}
557
558
/* suppress uevents while reconfiguring the device */
559
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
560
561
is_loop = is_loop_device(file);
562
error = loop_global_lock_killable(lo, is_loop);
563
if (error)
564
goto out_putf;
565
error = -ENXIO;
566
if (lo->lo_state != Lo_bound)
567
goto out_err;
568
569
/* the loop device has to be read-only */
570
error = -EINVAL;
571
if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
572
goto out_err;
573
574
error = loop_validate_file(file, bdev);
575
if (error)
576
goto out_err;
577
578
old_file = lo->lo_backing_file;
579
580
error = -EINVAL;
581
582
/* size of the new backing store needs to be the same */
583
if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file))
584
goto out_err;
585
586
/*
587
* We might switch to direct I/O mode for the loop device, write back
588
* all dirty data the page cache now that so that the individual I/O
589
* operations don't have to do that.
590
*/
591
vfs_fsync(file, 0);
592
593
/* and ... switch */
594
disk_force_media_change(lo->lo_disk);
595
memflags = blk_mq_freeze_queue(lo->lo_queue);
596
mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
597
loop_assign_backing_file(lo, file);
598
loop_update_dio(lo);
599
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
600
partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
601
loop_global_unlock(lo, is_loop);
602
603
/*
604
* Flush loop_validate_file() before fput(), for l->lo_backing_file
605
* might be pointing at old_file which might be the last reference.
606
*/
607
if (!is_loop) {
608
mutex_lock(&loop_validate_mutex);
609
mutex_unlock(&loop_validate_mutex);
610
}
611
/*
612
* We must drop file reference outside of lo_mutex as dropping
613
* the file ref can take open_mutex which creates circular locking
614
* dependency.
615
*/
616
fput(old_file);
617
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
618
if (partscan)
619
loop_reread_partitions(lo);
620
621
error = 0;
622
done:
623
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
624
return error;
625
626
out_err:
627
loop_global_unlock(lo, is_loop);
628
out_putf:
629
fput(file);
630
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
631
goto done;
632
}
633
634
/* loop sysfs attributes */
635
636
static ssize_t loop_attr_show(struct device *dev, char *page,
637
ssize_t (*callback)(struct loop_device *, char *))
638
{
639
struct gendisk *disk = dev_to_disk(dev);
640
struct loop_device *lo = disk->private_data;
641
642
return callback(lo, page);
643
}
644
645
#define LOOP_ATTR_RO(_name) \
646
static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
647
static ssize_t loop_attr_do_show_##_name(struct device *d, \
648
struct device_attribute *attr, char *b) \
649
{ \
650
return loop_attr_show(d, b, loop_attr_##_name##_show); \
651
} \
652
static struct device_attribute loop_attr_##_name = \
653
__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
654
655
static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
656
{
657
ssize_t ret;
658
char *p = NULL;
659
660
spin_lock_irq(&lo->lo_lock);
661
if (lo->lo_backing_file)
662
p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
663
spin_unlock_irq(&lo->lo_lock);
664
665
if (IS_ERR_OR_NULL(p))
666
ret = PTR_ERR(p);
667
else {
668
ret = strlen(p);
669
memmove(buf, p, ret);
670
buf[ret++] = '\n';
671
buf[ret] = 0;
672
}
673
674
return ret;
675
}
676
677
static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
678
{
679
return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
680
}
681
682
static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
683
{
684
return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
685
}
686
687
static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
688
{
689
int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
690
691
return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
692
}
693
694
static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
695
{
696
int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
697
698
return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
699
}
700
701
static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
702
{
703
int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
704
705
return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
706
}
707
708
LOOP_ATTR_RO(backing_file);
709
LOOP_ATTR_RO(offset);
710
LOOP_ATTR_RO(sizelimit);
711
LOOP_ATTR_RO(autoclear);
712
LOOP_ATTR_RO(partscan);
713
LOOP_ATTR_RO(dio);
714
715
static struct attribute *loop_attrs[] = {
716
&loop_attr_backing_file.attr,
717
&loop_attr_offset.attr,
718
&loop_attr_sizelimit.attr,
719
&loop_attr_autoclear.attr,
720
&loop_attr_partscan.attr,
721
&loop_attr_dio.attr,
722
NULL,
723
};
724
725
static struct attribute_group loop_attribute_group = {
726
.name = "loop",
727
.attrs= loop_attrs,
728
};
729
730
static void loop_sysfs_init(struct loop_device *lo)
731
{
732
lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
733
&loop_attribute_group);
734
}
735
736
static void loop_sysfs_exit(struct loop_device *lo)
737
{
738
if (lo->sysfs_inited)
739
sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
740
&loop_attribute_group);
741
}
742
743
static void loop_get_discard_config(struct loop_device *lo,
744
u32 *granularity, u32 *max_discard_sectors)
745
{
746
struct file *file = lo->lo_backing_file;
747
struct inode *inode = file->f_mapping->host;
748
struct kstatfs sbuf;
749
750
/*
751
* If the backing device is a block device, mirror its zeroing
752
* capability. Set the discard sectors to the block device's zeroing
753
* capabilities because loop discards result in blkdev_issue_zeroout(),
754
* not blkdev_issue_discard(). This maintains consistent behavior with
755
* file-backed loop devices: discarded regions read back as zero.
756
*/
757
if (S_ISBLK(inode->i_mode)) {
758
struct block_device *bdev = I_BDEV(inode);
759
760
*max_discard_sectors = bdev_write_zeroes_sectors(bdev);
761
*granularity = bdev_discard_granularity(bdev);
762
763
/*
764
* We use punch hole to reclaim the free space used by the
765
* image a.k.a. discard.
766
*/
767
} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
768
*max_discard_sectors = UINT_MAX >> 9;
769
*granularity = sbuf.f_bsize;
770
}
771
}
772
773
struct loop_worker {
774
struct rb_node rb_node;
775
struct work_struct work;
776
struct list_head cmd_list;
777
struct list_head idle_list;
778
struct loop_device *lo;
779
struct cgroup_subsys_state *blkcg_css;
780
unsigned long last_ran_at;
781
};
782
783
static void loop_workfn(struct work_struct *work);
784
785
#ifdef CONFIG_BLK_CGROUP
786
static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
787
{
788
return !css || css == blkcg_root_css;
789
}
790
#else
791
static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
792
{
793
return !css;
794
}
795
#endif
796
797
static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
798
{
799
struct rb_node **node, *parent = NULL;
800
struct loop_worker *cur_worker, *worker = NULL;
801
struct work_struct *work;
802
struct list_head *cmd_list;
803
804
spin_lock_irq(&lo->lo_work_lock);
805
806
if (queue_on_root_worker(cmd->blkcg_css))
807
goto queue_work;
808
809
node = &lo->worker_tree.rb_node;
810
811
while (*node) {
812
parent = *node;
813
cur_worker = container_of(*node, struct loop_worker, rb_node);
814
if (cur_worker->blkcg_css == cmd->blkcg_css) {
815
worker = cur_worker;
816
break;
817
} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
818
node = &(*node)->rb_left;
819
} else {
820
node = &(*node)->rb_right;
821
}
822
}
823
if (worker)
824
goto queue_work;
825
826
worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT);
827
/*
828
* In the event we cannot allocate a worker, just queue on the
829
* rootcg worker and issue the I/O as the rootcg
830
*/
831
if (!worker) {
832
cmd->blkcg_css = NULL;
833
if (cmd->memcg_css)
834
css_put(cmd->memcg_css);
835
cmd->memcg_css = NULL;
836
goto queue_work;
837
}
838
839
worker->blkcg_css = cmd->blkcg_css;
840
css_get(worker->blkcg_css);
841
INIT_WORK(&worker->work, loop_workfn);
842
INIT_LIST_HEAD(&worker->cmd_list);
843
INIT_LIST_HEAD(&worker->idle_list);
844
worker->lo = lo;
845
rb_link_node(&worker->rb_node, parent, node);
846
rb_insert_color(&worker->rb_node, &lo->worker_tree);
847
queue_work:
848
if (worker) {
849
/*
850
* We need to remove from the idle list here while
851
* holding the lock so that the idle timer doesn't
852
* free the worker
853
*/
854
if (!list_empty(&worker->idle_list))
855
list_del_init(&worker->idle_list);
856
work = &worker->work;
857
cmd_list = &worker->cmd_list;
858
} else {
859
work = &lo->rootcg_work;
860
cmd_list = &lo->rootcg_cmd_list;
861
}
862
list_add_tail(&cmd->list_entry, cmd_list);
863
queue_work(lo->workqueue, work);
864
spin_unlock_irq(&lo->lo_work_lock);
865
}
866
867
static void loop_set_timer(struct loop_device *lo)
868
{
869
timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
870
}
871
872
static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
873
{
874
struct loop_worker *pos, *worker;
875
876
spin_lock_irq(&lo->lo_work_lock);
877
list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
878
idle_list) {
879
if (!delete_all &&
880
time_is_after_jiffies(worker->last_ran_at +
881
LOOP_IDLE_WORKER_TIMEOUT))
882
break;
883
list_del(&worker->idle_list);
884
rb_erase(&worker->rb_node, &lo->worker_tree);
885
css_put(worker->blkcg_css);
886
kfree(worker);
887
}
888
if (!list_empty(&lo->idle_worker_list))
889
loop_set_timer(lo);
890
spin_unlock_irq(&lo->lo_work_lock);
891
}
892
893
static void loop_free_idle_workers_timer(struct timer_list *timer)
894
{
895
struct loop_device *lo = container_of(timer, struct loop_device, timer);
896
897
return loop_free_idle_workers(lo, false);
898
}
899
900
/**
901
* loop_set_status_from_info - configure device from loop_info
902
* @lo: struct loop_device to configure
903
* @info: struct loop_info64 to configure the device with
904
*
905
* Configures the loop device parameters according to the passed
906
* in loop_info64 configuration.
907
*/
908
static int
909
loop_set_status_from_info(struct loop_device *lo,
910
const struct loop_info64 *info)
911
{
912
if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
913
return -EINVAL;
914
915
switch (info->lo_encrypt_type) {
916
case LO_CRYPT_NONE:
917
break;
918
case LO_CRYPT_XOR:
919
pr_warn("support for the xor transformation has been removed.\n");
920
return -EINVAL;
921
case LO_CRYPT_CRYPTOAPI:
922
pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
923
return -EINVAL;
924
default:
925
return -EINVAL;
926
}
927
928
/* Avoid assigning overflow values */
929
if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
930
return -EOVERFLOW;
931
932
lo->lo_offset = info->lo_offset;
933
lo->lo_sizelimit = info->lo_sizelimit;
934
935
memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
936
lo->lo_file_name[LO_NAME_SIZE-1] = 0;
937
return 0;
938
}
939
940
static unsigned int loop_default_blocksize(struct loop_device *lo)
941
{
942
/* In case of direct I/O, match underlying minimum I/O size */
943
if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
944
return lo->lo_min_dio_size;
945
return SECTOR_SIZE;
946
}
947
948
static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
949
unsigned int bsize)
950
{
951
struct file *file = lo->lo_backing_file;
952
struct inode *inode = file->f_mapping->host;
953
struct block_device *backing_bdev = NULL;
954
u32 granularity = 0, max_discard_sectors = 0;
955
956
if (S_ISBLK(inode->i_mode))
957
backing_bdev = I_BDEV(inode);
958
else if (inode->i_sb->s_bdev)
959
backing_bdev = inode->i_sb->s_bdev;
960
961
if (!bsize)
962
bsize = loop_default_blocksize(lo);
963
964
loop_get_discard_config(lo, &granularity, &max_discard_sectors);
965
966
lim->logical_block_size = bsize;
967
lim->physical_block_size = bsize;
968
lim->io_min = bsize;
969
lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
970
if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
971
lim->features |= BLK_FEAT_WRITE_CACHE;
972
if (backing_bdev && !bdev_nonrot(backing_bdev))
973
lim->features |= BLK_FEAT_ROTATIONAL;
974
lim->max_hw_discard_sectors = max_discard_sectors;
975
lim->max_write_zeroes_sectors = max_discard_sectors;
976
if (max_discard_sectors)
977
lim->discard_granularity = granularity;
978
else
979
lim->discard_granularity = 0;
980
}
981
982
static int loop_configure(struct loop_device *lo, blk_mode_t mode,
983
struct block_device *bdev,
984
const struct loop_config *config)
985
{
986
struct file *file = fget(config->fd);
987
struct queue_limits lim;
988
int error;
989
loff_t size;
990
bool partscan;
991
bool is_loop;
992
993
if (!file)
994
return -EBADF;
995
996
error = loop_check_backing_file(file);
997
if (error) {
998
fput(file);
999
return error;
1000
}
1001
1002
is_loop = is_loop_device(file);
1003
1004
/* This is safe, since we have a reference from open(). */
1005
__module_get(THIS_MODULE);
1006
1007
/*
1008
* If we don't hold exclusive handle for the device, upgrade to it
1009
* here to avoid changing device under exclusive owner.
1010
*/
1011
if (!(mode & BLK_OPEN_EXCL)) {
1012
error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1013
if (error)
1014
goto out_putf;
1015
}
1016
1017
error = loop_global_lock_killable(lo, is_loop);
1018
if (error)
1019
goto out_bdev;
1020
1021
error = -EBUSY;
1022
if (lo->lo_state != Lo_unbound)
1023
goto out_unlock;
1024
1025
error = loop_validate_file(file, bdev);
1026
if (error)
1027
goto out_unlock;
1028
1029
if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1030
error = -EINVAL;
1031
goto out_unlock;
1032
}
1033
1034
error = loop_set_status_from_info(lo, &config->info);
1035
if (error)
1036
goto out_unlock;
1037
lo->lo_flags = config->info.lo_flags;
1038
1039
if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1040
!file->f_op->write_iter)
1041
lo->lo_flags |= LO_FLAGS_READ_ONLY;
1042
1043
if (!lo->workqueue) {
1044
lo->workqueue = alloc_workqueue("loop%d",
1045
WQ_UNBOUND | WQ_FREEZABLE,
1046
0, lo->lo_number);
1047
if (!lo->workqueue) {
1048
error = -ENOMEM;
1049
goto out_unlock;
1050
}
1051
}
1052
1053
/* suppress uevents while reconfiguring the device */
1054
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1055
1056
disk_force_media_change(lo->lo_disk);
1057
set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1058
1059
lo->lo_device = bdev;
1060
loop_assign_backing_file(lo, file);
1061
1062
lim = queue_limits_start_update(lo->lo_queue);
1063
loop_update_limits(lo, &lim, config->block_size);
1064
/* No need to freeze the queue as the device isn't bound yet. */
1065
error = queue_limits_commit_update(lo->lo_queue, &lim);
1066
if (error)
1067
goto out_unlock;
1068
1069
/*
1070
* We might switch to direct I/O mode for the loop device, write back
1071
* all dirty data the page cache now that so that the individual I/O
1072
* operations don't have to do that.
1073
*/
1074
vfs_fsync(file, 0);
1075
1076
loop_update_dio(lo);
1077
loop_sysfs_init(lo);
1078
1079
size = lo_calculate_size(lo, file);
1080
loop_set_size(lo, size);
1081
1082
/* Order wrt reading lo_state in loop_validate_file(). */
1083
wmb();
1084
1085
WRITE_ONCE(lo->lo_state, Lo_bound);
1086
if (part_shift)
1087
lo->lo_flags |= LO_FLAGS_PARTSCAN;
1088
partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1089
if (partscan)
1090
clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1091
1092
dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1093
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1094
1095
loop_global_unlock(lo, is_loop);
1096
if (partscan)
1097
loop_reread_partitions(lo);
1098
1099
if (!(mode & BLK_OPEN_EXCL))
1100
bd_abort_claiming(bdev, loop_configure);
1101
1102
return 0;
1103
1104
out_unlock:
1105
loop_global_unlock(lo, is_loop);
1106
out_bdev:
1107
if (!(mode & BLK_OPEN_EXCL))
1108
bd_abort_claiming(bdev, loop_configure);
1109
out_putf:
1110
fput(file);
1111
/* This is safe: open() is still holding a reference. */
1112
module_put(THIS_MODULE);
1113
return error;
1114
}
1115
1116
static void __loop_clr_fd(struct loop_device *lo)
1117
{
1118
struct queue_limits lim;
1119
struct file *filp;
1120
gfp_t gfp = lo->old_gfp_mask;
1121
1122
spin_lock_irq(&lo->lo_lock);
1123
filp = lo->lo_backing_file;
1124
lo->lo_backing_file = NULL;
1125
spin_unlock_irq(&lo->lo_lock);
1126
1127
lo->lo_device = NULL;
1128
lo->lo_offset = 0;
1129
lo->lo_sizelimit = 0;
1130
memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1131
1132
/*
1133
* Reset the block size to the default.
1134
*
1135
* No queue freezing needed because this is called from the final
1136
* ->release call only, so there can't be any outstanding I/O.
1137
*/
1138
lim = queue_limits_start_update(lo->lo_queue);
1139
lim.logical_block_size = SECTOR_SIZE;
1140
lim.physical_block_size = SECTOR_SIZE;
1141
lim.io_min = SECTOR_SIZE;
1142
queue_limits_commit_update(lo->lo_queue, &lim);
1143
1144
invalidate_disk(lo->lo_disk);
1145
loop_sysfs_exit(lo);
1146
/* let user-space know about this change */
1147
kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1148
mapping_set_gfp_mask(filp->f_mapping, gfp);
1149
/* This is safe: open() is still holding a reference. */
1150
module_put(THIS_MODULE);
1151
1152
disk_force_media_change(lo->lo_disk);
1153
1154
if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1155
int err;
1156
1157
/*
1158
* open_mutex has been held already in release path, so don't
1159
* acquire it if this function is called in such case.
1160
*
1161
* If the reread partition isn't from release path, lo_refcnt
1162
* must be at least one and it can only become zero when the
1163
* current holder is released.
1164
*/
1165
err = bdev_disk_changed(lo->lo_disk, false);
1166
if (err)
1167
pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1168
__func__, lo->lo_number, err);
1169
/* Device is gone, no point in returning error */
1170
}
1171
1172
/*
1173
* lo->lo_state is set to Lo_unbound here after above partscan has
1174
* finished. There cannot be anybody else entering __loop_clr_fd() as
1175
* Lo_rundown state protects us from all the other places trying to
1176
* change the 'lo' device.
1177
*/
1178
lo->lo_flags = 0;
1179
if (!part_shift)
1180
set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1181
mutex_lock(&lo->lo_mutex);
1182
WRITE_ONCE(lo->lo_state, Lo_unbound);
1183
mutex_unlock(&lo->lo_mutex);
1184
1185
/*
1186
* Need not hold lo_mutex to fput backing file. Calling fput holding
1187
* lo_mutex triggers a circular lock dependency possibility warning as
1188
* fput can take open_mutex which is usually taken before lo_mutex.
1189
*/
1190
fput(filp);
1191
}
1192
1193
static int loop_clr_fd(struct loop_device *lo)
1194
{
1195
int err;
1196
1197
/*
1198
* Since lo_ioctl() is called without locks held, it is possible that
1199
* loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1200
*
1201
* Therefore, use global lock when setting Lo_rundown state in order to
1202
* make sure that loop_validate_file() will fail if the "struct file"
1203
* which loop_configure()/loop_change_fd() found via fget() was this
1204
* loop device.
1205
*/
1206
err = loop_global_lock_killable(lo, true);
1207
if (err)
1208
return err;
1209
if (lo->lo_state != Lo_bound) {
1210
loop_global_unlock(lo, true);
1211
return -ENXIO;
1212
}
1213
/*
1214
* Mark the device for removing the backing device on last close.
1215
* If we are the only opener, also switch the state to roundown here to
1216
* prevent new openers from coming in.
1217
*/
1218
1219
lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1220
if (disk_openers(lo->lo_disk) == 1)
1221
WRITE_ONCE(lo->lo_state, Lo_rundown);
1222
loop_global_unlock(lo, true);
1223
1224
return 0;
1225
}
1226
1227
static int
1228
loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1229
{
1230
int err;
1231
bool partscan = false;
1232
bool size_changed = false;
1233
unsigned int memflags;
1234
1235
err = mutex_lock_killable(&lo->lo_mutex);
1236
if (err)
1237
return err;
1238
if (lo->lo_state != Lo_bound) {
1239
err = -ENXIO;
1240
goto out_unlock;
1241
}
1242
1243
if (lo->lo_offset != info->lo_offset ||
1244
lo->lo_sizelimit != info->lo_sizelimit) {
1245
size_changed = true;
1246
sync_blockdev(lo->lo_device);
1247
invalidate_bdev(lo->lo_device);
1248
}
1249
1250
/* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1251
memflags = blk_mq_freeze_queue(lo->lo_queue);
1252
1253
err = loop_set_status_from_info(lo, info);
1254
if (err)
1255
goto out_unfreeze;
1256
1257
partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1258
(info->lo_flags & LO_FLAGS_PARTSCAN);
1259
1260
lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1261
lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1262
1263
/* update the direct I/O flag if lo_offset changed */
1264
loop_update_dio(lo);
1265
1266
out_unfreeze:
1267
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1268
if (partscan)
1269
clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1270
if (!err && size_changed) {
1271
loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file);
1272
loop_set_size(lo, new_size);
1273
}
1274
out_unlock:
1275
mutex_unlock(&lo->lo_mutex);
1276
if (partscan)
1277
loop_reread_partitions(lo);
1278
1279
return err;
1280
}
1281
1282
static int
1283
loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1284
{
1285
struct path path;
1286
struct kstat stat;
1287
int ret;
1288
1289
ret = mutex_lock_killable(&lo->lo_mutex);
1290
if (ret)
1291
return ret;
1292
if (lo->lo_state != Lo_bound) {
1293
mutex_unlock(&lo->lo_mutex);
1294
return -ENXIO;
1295
}
1296
1297
memset(info, 0, sizeof(*info));
1298
info->lo_number = lo->lo_number;
1299
info->lo_offset = lo->lo_offset;
1300
info->lo_sizelimit = lo->lo_sizelimit;
1301
info->lo_flags = lo->lo_flags;
1302
memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1303
1304
/* Drop lo_mutex while we call into the filesystem. */
1305
path = lo->lo_backing_file->f_path;
1306
path_get(&path);
1307
mutex_unlock(&lo->lo_mutex);
1308
ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1309
if (!ret) {
1310
info->lo_device = huge_encode_dev(stat.dev);
1311
info->lo_inode = stat.ino;
1312
info->lo_rdevice = huge_encode_dev(stat.rdev);
1313
}
1314
path_put(&path);
1315
return ret;
1316
}
1317
1318
static void
1319
loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1320
{
1321
memset(info64, 0, sizeof(*info64));
1322
info64->lo_number = info->lo_number;
1323
info64->lo_device = info->lo_device;
1324
info64->lo_inode = info->lo_inode;
1325
info64->lo_rdevice = info->lo_rdevice;
1326
info64->lo_offset = info->lo_offset;
1327
info64->lo_sizelimit = 0;
1328
info64->lo_flags = info->lo_flags;
1329
memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1330
}
1331
1332
static int
1333
loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1334
{
1335
memset(info, 0, sizeof(*info));
1336
info->lo_number = info64->lo_number;
1337
info->lo_device = info64->lo_device;
1338
info->lo_inode = info64->lo_inode;
1339
info->lo_rdevice = info64->lo_rdevice;
1340
info->lo_offset = info64->lo_offset;
1341
info->lo_flags = info64->lo_flags;
1342
memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1343
1344
/* error in case values were truncated */
1345
if (info->lo_device != info64->lo_device ||
1346
info->lo_rdevice != info64->lo_rdevice ||
1347
info->lo_inode != info64->lo_inode ||
1348
info->lo_offset != info64->lo_offset)
1349
return -EOVERFLOW;
1350
1351
return 0;
1352
}
1353
1354
static int
1355
loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1356
{
1357
struct loop_info info;
1358
struct loop_info64 info64;
1359
1360
if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1361
return -EFAULT;
1362
loop_info64_from_old(&info, &info64);
1363
return loop_set_status(lo, &info64);
1364
}
1365
1366
static int
1367
loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1368
{
1369
struct loop_info64 info64;
1370
1371
if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1372
return -EFAULT;
1373
return loop_set_status(lo, &info64);
1374
}
1375
1376
static int
1377
loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1378
struct loop_info info;
1379
struct loop_info64 info64;
1380
int err;
1381
1382
if (!arg)
1383
return -EINVAL;
1384
err = loop_get_status(lo, &info64);
1385
if (!err)
1386
err = loop_info64_to_old(&info64, &info);
1387
if (!err && copy_to_user(arg, &info, sizeof(info)))
1388
err = -EFAULT;
1389
1390
return err;
1391
}
1392
1393
static int
1394
loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1395
struct loop_info64 info64;
1396
int err;
1397
1398
if (!arg)
1399
return -EINVAL;
1400
err = loop_get_status(lo, &info64);
1401
if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1402
err = -EFAULT;
1403
1404
return err;
1405
}
1406
1407
static int loop_set_capacity(struct loop_device *lo)
1408
{
1409
loff_t size;
1410
1411
if (unlikely(lo->lo_state != Lo_bound))
1412
return -ENXIO;
1413
1414
size = lo_calculate_size(lo, lo->lo_backing_file);
1415
loop_set_size(lo, size);
1416
1417
return 0;
1418
}
1419
1420
static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1421
{
1422
bool use_dio = !!arg;
1423
unsigned int memflags;
1424
1425
if (lo->lo_state != Lo_bound)
1426
return -ENXIO;
1427
if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1428
return 0;
1429
1430
if (use_dio) {
1431
if (!lo_can_use_dio(lo))
1432
return -EINVAL;
1433
/* flush dirty pages before starting to use direct I/O */
1434
vfs_fsync(lo->lo_backing_file, 0);
1435
}
1436
1437
memflags = blk_mq_freeze_queue(lo->lo_queue);
1438
if (use_dio)
1439
lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1440
else
1441
lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1442
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1443
return 0;
1444
}
1445
1446
static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1447
struct block_device *bdev, unsigned long arg)
1448
{
1449
struct queue_limits lim;
1450
unsigned int memflags;
1451
int err = 0;
1452
1453
/*
1454
* If we don't hold exclusive handle for the device, upgrade to it
1455
* here to avoid changing device under exclusive owner.
1456
*/
1457
if (!(mode & BLK_OPEN_EXCL)) {
1458
err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1459
if (err)
1460
return err;
1461
}
1462
1463
err = mutex_lock_killable(&lo->lo_mutex);
1464
if (err)
1465
goto abort_claim;
1466
1467
if (lo->lo_state != Lo_bound) {
1468
err = -ENXIO;
1469
goto unlock;
1470
}
1471
1472
if (lo->lo_queue->limits.logical_block_size == arg)
1473
goto unlock;
1474
1475
sync_blockdev(lo->lo_device);
1476
invalidate_bdev(lo->lo_device);
1477
1478
lim = queue_limits_start_update(lo->lo_queue);
1479
loop_update_limits(lo, &lim, arg);
1480
1481
memflags = blk_mq_freeze_queue(lo->lo_queue);
1482
err = queue_limits_commit_update(lo->lo_queue, &lim);
1483
loop_update_dio(lo);
1484
blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1485
1486
unlock:
1487
mutex_unlock(&lo->lo_mutex);
1488
abort_claim:
1489
if (!(mode & BLK_OPEN_EXCL))
1490
bd_abort_claiming(bdev, loop_set_block_size);
1491
return err;
1492
}
1493
1494
static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1495
unsigned long arg)
1496
{
1497
int err;
1498
1499
err = mutex_lock_killable(&lo->lo_mutex);
1500
if (err)
1501
return err;
1502
switch (cmd) {
1503
case LOOP_SET_CAPACITY:
1504
err = loop_set_capacity(lo);
1505
break;
1506
case LOOP_SET_DIRECT_IO:
1507
err = loop_set_dio(lo, arg);
1508
break;
1509
default:
1510
err = -EINVAL;
1511
}
1512
mutex_unlock(&lo->lo_mutex);
1513
return err;
1514
}
1515
1516
static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1517
unsigned int cmd, unsigned long arg)
1518
{
1519
struct loop_device *lo = bdev->bd_disk->private_data;
1520
void __user *argp = (void __user *) arg;
1521
int err;
1522
1523
switch (cmd) {
1524
case LOOP_SET_FD: {
1525
/*
1526
* Legacy case - pass in a zeroed out struct loop_config with
1527
* only the file descriptor set , which corresponds with the
1528
* default parameters we'd have used otherwise.
1529
*/
1530
struct loop_config config;
1531
1532
memset(&config, 0, sizeof(config));
1533
config.fd = arg;
1534
1535
return loop_configure(lo, mode, bdev, &config);
1536
}
1537
case LOOP_CONFIGURE: {
1538
struct loop_config config;
1539
1540
if (copy_from_user(&config, argp, sizeof(config)))
1541
return -EFAULT;
1542
1543
return loop_configure(lo, mode, bdev, &config);
1544
}
1545
case LOOP_CHANGE_FD:
1546
return loop_change_fd(lo, bdev, arg);
1547
case LOOP_CLR_FD:
1548
return loop_clr_fd(lo);
1549
case LOOP_SET_STATUS:
1550
err = -EPERM;
1551
if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1552
err = loop_set_status_old(lo, argp);
1553
break;
1554
case LOOP_GET_STATUS:
1555
return loop_get_status_old(lo, argp);
1556
case LOOP_SET_STATUS64:
1557
err = -EPERM;
1558
if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1559
err = loop_set_status64(lo, argp);
1560
break;
1561
case LOOP_GET_STATUS64:
1562
return loop_get_status64(lo, argp);
1563
case LOOP_SET_BLOCK_SIZE:
1564
if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1565
return -EPERM;
1566
return loop_set_block_size(lo, mode, bdev, arg);
1567
case LOOP_SET_CAPACITY:
1568
case LOOP_SET_DIRECT_IO:
1569
if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1570
return -EPERM;
1571
fallthrough;
1572
default:
1573
err = lo_simple_ioctl(lo, cmd, arg);
1574
break;
1575
}
1576
1577
return err;
1578
}
1579
1580
#ifdef CONFIG_COMPAT
1581
struct compat_loop_info {
1582
compat_int_t lo_number; /* ioctl r/o */
1583
compat_dev_t lo_device; /* ioctl r/o */
1584
compat_ulong_t lo_inode; /* ioctl r/o */
1585
compat_dev_t lo_rdevice; /* ioctl r/o */
1586
compat_int_t lo_offset;
1587
compat_int_t lo_encrypt_type; /* obsolete, ignored */
1588
compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1589
compat_int_t lo_flags; /* ioctl r/o */
1590
char lo_name[LO_NAME_SIZE];
1591
unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1592
compat_ulong_t lo_init[2];
1593
char reserved[4];
1594
};
1595
1596
/*
1597
* Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1598
* - noinlined to reduce stack space usage in main part of driver
1599
*/
1600
static noinline int
1601
loop_info64_from_compat(const struct compat_loop_info __user *arg,
1602
struct loop_info64 *info64)
1603
{
1604
struct compat_loop_info info;
1605
1606
if (copy_from_user(&info, arg, sizeof(info)))
1607
return -EFAULT;
1608
1609
memset(info64, 0, sizeof(*info64));
1610
info64->lo_number = info.lo_number;
1611
info64->lo_device = info.lo_device;
1612
info64->lo_inode = info.lo_inode;
1613
info64->lo_rdevice = info.lo_rdevice;
1614
info64->lo_offset = info.lo_offset;
1615
info64->lo_sizelimit = 0;
1616
info64->lo_flags = info.lo_flags;
1617
memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1618
return 0;
1619
}
1620
1621
/*
1622
* Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1623
* - noinlined to reduce stack space usage in main part of driver
1624
*/
1625
static noinline int
1626
loop_info64_to_compat(const struct loop_info64 *info64,
1627
struct compat_loop_info __user *arg)
1628
{
1629
struct compat_loop_info info;
1630
1631
memset(&info, 0, sizeof(info));
1632
info.lo_number = info64->lo_number;
1633
info.lo_device = info64->lo_device;
1634
info.lo_inode = info64->lo_inode;
1635
info.lo_rdevice = info64->lo_rdevice;
1636
info.lo_offset = info64->lo_offset;
1637
info.lo_flags = info64->lo_flags;
1638
memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1639
1640
/* error in case values were truncated */
1641
if (info.lo_device != info64->lo_device ||
1642
info.lo_rdevice != info64->lo_rdevice ||
1643
info.lo_inode != info64->lo_inode ||
1644
info.lo_offset != info64->lo_offset)
1645
return -EOVERFLOW;
1646
1647
if (copy_to_user(arg, &info, sizeof(info)))
1648
return -EFAULT;
1649
return 0;
1650
}
1651
1652
static int
1653
loop_set_status_compat(struct loop_device *lo,
1654
const struct compat_loop_info __user *arg)
1655
{
1656
struct loop_info64 info64;
1657
int ret;
1658
1659
ret = loop_info64_from_compat(arg, &info64);
1660
if (ret < 0)
1661
return ret;
1662
return loop_set_status(lo, &info64);
1663
}
1664
1665
static int
1666
loop_get_status_compat(struct loop_device *lo,
1667
struct compat_loop_info __user *arg)
1668
{
1669
struct loop_info64 info64;
1670
int err;
1671
1672
if (!arg)
1673
return -EINVAL;
1674
err = loop_get_status(lo, &info64);
1675
if (!err)
1676
err = loop_info64_to_compat(&info64, arg);
1677
return err;
1678
}
1679
1680
static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1681
unsigned int cmd, unsigned long arg)
1682
{
1683
struct loop_device *lo = bdev->bd_disk->private_data;
1684
int err;
1685
1686
switch(cmd) {
1687
case LOOP_SET_STATUS:
1688
err = loop_set_status_compat(lo,
1689
(const struct compat_loop_info __user *)arg);
1690
break;
1691
case LOOP_GET_STATUS:
1692
err = loop_get_status_compat(lo,
1693
(struct compat_loop_info __user *)arg);
1694
break;
1695
case LOOP_SET_CAPACITY:
1696
case LOOP_CLR_FD:
1697
case LOOP_GET_STATUS64:
1698
case LOOP_SET_STATUS64:
1699
case LOOP_CONFIGURE:
1700
arg = (unsigned long) compat_ptr(arg);
1701
fallthrough;
1702
case LOOP_SET_FD:
1703
case LOOP_CHANGE_FD:
1704
case LOOP_SET_BLOCK_SIZE:
1705
case LOOP_SET_DIRECT_IO:
1706
err = lo_ioctl(bdev, mode, cmd, arg);
1707
break;
1708
default:
1709
err = -ENOIOCTLCMD;
1710
break;
1711
}
1712
return err;
1713
}
1714
#endif
1715
1716
static int lo_open(struct gendisk *disk, blk_mode_t mode)
1717
{
1718
struct loop_device *lo = disk->private_data;
1719
int err;
1720
1721
err = mutex_lock_killable(&lo->lo_mutex);
1722
if (err)
1723
return err;
1724
1725
if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1726
err = -ENXIO;
1727
mutex_unlock(&lo->lo_mutex);
1728
return err;
1729
}
1730
1731
static void lo_release(struct gendisk *disk)
1732
{
1733
struct loop_device *lo = disk->private_data;
1734
bool need_clear = false;
1735
1736
if (disk_openers(disk) > 0)
1737
return;
1738
/*
1739
* Clear the backing device information if this is the last close of
1740
* a device that's been marked for auto clear, or on which LOOP_CLR_FD
1741
* has been called.
1742
*/
1743
1744
mutex_lock(&lo->lo_mutex);
1745
if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1746
WRITE_ONCE(lo->lo_state, Lo_rundown);
1747
1748
need_clear = (lo->lo_state == Lo_rundown);
1749
mutex_unlock(&lo->lo_mutex);
1750
1751
if (need_clear)
1752
__loop_clr_fd(lo);
1753
}
1754
1755
static void lo_free_disk(struct gendisk *disk)
1756
{
1757
struct loop_device *lo = disk->private_data;
1758
1759
if (lo->workqueue)
1760
destroy_workqueue(lo->workqueue);
1761
loop_free_idle_workers(lo, true);
1762
timer_shutdown_sync(&lo->timer);
1763
mutex_destroy(&lo->lo_mutex);
1764
kfree(lo);
1765
}
1766
1767
static const struct block_device_operations lo_fops = {
1768
.owner = THIS_MODULE,
1769
.open = lo_open,
1770
.release = lo_release,
1771
.ioctl = lo_ioctl,
1772
#ifdef CONFIG_COMPAT
1773
.compat_ioctl = lo_compat_ioctl,
1774
#endif
1775
.free_disk = lo_free_disk,
1776
};
1777
1778
/*
1779
* And now the modules code and kernel interface.
1780
*/
1781
1782
/*
1783
* If max_loop is specified, create that many devices upfront.
1784
* This also becomes a hard limit. If max_loop is not specified,
1785
* the default isn't a hard limit (as before commit 85c50197716c
1786
* changed the default value from 0 for max_loop=0 reasons), just
1787
* create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1788
* init time. Loop devices can be requested on-demand with the
1789
* /dev/loop-control interface, or be instantiated by accessing
1790
* a 'dead' device node.
1791
*/
1792
static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1793
1794
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1795
static bool max_loop_specified;
1796
1797
static int max_loop_param_set_int(const char *val,
1798
const struct kernel_param *kp)
1799
{
1800
int ret;
1801
1802
ret = param_set_int(val, kp);
1803
if (ret < 0)
1804
return ret;
1805
1806
max_loop_specified = true;
1807
return 0;
1808
}
1809
1810
static const struct kernel_param_ops max_loop_param_ops = {
1811
.set = max_loop_param_set_int,
1812
.get = param_get_int,
1813
};
1814
1815
module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1816
MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1817
#else
1818
module_param(max_loop, int, 0444);
1819
MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1820
#endif
1821
1822
module_param(max_part, int, 0444);
1823
MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1824
1825
static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1826
1827
static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1828
{
1829
int qd, ret;
1830
1831
ret = kstrtoint(s, 0, &qd);
1832
if (ret < 0)
1833
return ret;
1834
if (qd < 1)
1835
return -EINVAL;
1836
hw_queue_depth = qd;
1837
return 0;
1838
}
1839
1840
static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1841
.set = loop_set_hw_queue_depth,
1842
.get = param_get_int,
1843
};
1844
1845
device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1846
MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1847
1848
MODULE_DESCRIPTION("Loopback device support");
1849
MODULE_LICENSE("GPL");
1850
MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1851
1852
static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1853
const struct blk_mq_queue_data *bd)
1854
{
1855
struct request *rq = bd->rq;
1856
struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1857
struct loop_device *lo = rq->q->queuedata;
1858
1859
blk_mq_start_request(rq);
1860
1861
if (data_race(READ_ONCE(lo->lo_state)) != Lo_bound)
1862
return BLK_STS_IOERR;
1863
1864
switch (req_op(rq)) {
1865
case REQ_OP_FLUSH:
1866
case REQ_OP_DISCARD:
1867
case REQ_OP_WRITE_ZEROES:
1868
cmd->use_aio = false;
1869
break;
1870
default:
1871
cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1872
break;
1873
}
1874
1875
/* always use the first bio's css */
1876
cmd->blkcg_css = NULL;
1877
cmd->memcg_css = NULL;
1878
#ifdef CONFIG_BLK_CGROUP
1879
if (rq->bio) {
1880
cmd->blkcg_css = bio_blkcg_css(rq->bio);
1881
#ifdef CONFIG_MEMCG
1882
if (cmd->blkcg_css) {
1883
cmd->memcg_css =
1884
cgroup_get_e_css(cmd->blkcg_css->cgroup,
1885
&memory_cgrp_subsys);
1886
}
1887
#endif
1888
}
1889
#endif
1890
loop_queue_work(lo, cmd);
1891
1892
return BLK_STS_OK;
1893
}
1894
1895
static void loop_handle_cmd(struct loop_cmd *cmd)
1896
{
1897
struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1898
struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1899
struct request *rq = blk_mq_rq_from_pdu(cmd);
1900
const bool write = op_is_write(req_op(rq));
1901
struct loop_device *lo = rq->q->queuedata;
1902
int ret = 0;
1903
struct mem_cgroup *old_memcg = NULL;
1904
1905
if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1906
ret = -EIO;
1907
goto failed;
1908
}
1909
1910
/* We can block in this context, so ignore REQ_NOWAIT. */
1911
if (rq->cmd_flags & REQ_NOWAIT)
1912
rq->cmd_flags &= ~REQ_NOWAIT;
1913
1914
if (cmd_blkcg_css)
1915
kthread_associate_blkcg(cmd_blkcg_css);
1916
if (cmd_memcg_css)
1917
old_memcg = set_active_memcg(
1918
mem_cgroup_from_css(cmd_memcg_css));
1919
1920
/*
1921
* do_req_filebacked() may call blk_mq_complete_request() synchronously
1922
* or asynchronously if using aio. Hence, do not touch 'cmd' after
1923
* do_req_filebacked() has returned unless we are sure that 'cmd' has
1924
* not yet been completed.
1925
*/
1926
ret = do_req_filebacked(lo, rq);
1927
1928
if (cmd_blkcg_css)
1929
kthread_associate_blkcg(NULL);
1930
1931
if (cmd_memcg_css) {
1932
set_active_memcg(old_memcg);
1933
css_put(cmd_memcg_css);
1934
}
1935
failed:
1936
/* complete non-aio request */
1937
if (ret != -EIOCBQUEUED) {
1938
if (ret == -EOPNOTSUPP)
1939
cmd->ret = ret;
1940
else
1941
cmd->ret = ret ? -EIO : 0;
1942
if (likely(!blk_should_fake_timeout(rq->q)))
1943
blk_mq_complete_request(rq);
1944
}
1945
}
1946
1947
static void loop_process_work(struct loop_worker *worker,
1948
struct list_head *cmd_list, struct loop_device *lo)
1949
{
1950
int orig_flags = current->flags;
1951
struct loop_cmd *cmd;
1952
1953
current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1954
spin_lock_irq(&lo->lo_work_lock);
1955
while (!list_empty(cmd_list)) {
1956
cmd = container_of(
1957
cmd_list->next, struct loop_cmd, list_entry);
1958
list_del(cmd_list->next);
1959
spin_unlock_irq(&lo->lo_work_lock);
1960
1961
loop_handle_cmd(cmd);
1962
cond_resched();
1963
1964
spin_lock_irq(&lo->lo_work_lock);
1965
}
1966
1967
/*
1968
* We only add to the idle list if there are no pending cmds
1969
* *and* the worker will not run again which ensures that it
1970
* is safe to free any worker on the idle list
1971
*/
1972
if (worker && !work_pending(&worker->work)) {
1973
worker->last_ran_at = jiffies;
1974
list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1975
loop_set_timer(lo);
1976
}
1977
spin_unlock_irq(&lo->lo_work_lock);
1978
current->flags = orig_flags;
1979
}
1980
1981
static void loop_workfn(struct work_struct *work)
1982
{
1983
struct loop_worker *worker =
1984
container_of(work, struct loop_worker, work);
1985
loop_process_work(worker, &worker->cmd_list, worker->lo);
1986
}
1987
1988
static void loop_rootcg_workfn(struct work_struct *work)
1989
{
1990
struct loop_device *lo =
1991
container_of(work, struct loop_device, rootcg_work);
1992
loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1993
}
1994
1995
static const struct blk_mq_ops loop_mq_ops = {
1996
.queue_rq = loop_queue_rq,
1997
.complete = lo_complete_rq,
1998
};
1999
2000
static int loop_add(int i)
2001
{
2002
struct queue_limits lim = {
2003
/*
2004
* Random number picked from the historic block max_sectors cap.
2005
*/
2006
.max_hw_sectors = 2560u,
2007
};
2008
struct loop_device *lo;
2009
struct gendisk *disk;
2010
int err;
2011
2012
err = -ENOMEM;
2013
lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2014
if (!lo)
2015
goto out;
2016
lo->worker_tree = RB_ROOT;
2017
INIT_LIST_HEAD(&lo->idle_worker_list);
2018
timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2019
WRITE_ONCE(lo->lo_state, Lo_unbound);
2020
2021
err = mutex_lock_killable(&loop_ctl_mutex);
2022
if (err)
2023
goto out_free_dev;
2024
2025
/* allocate id, if @id >= 0, we're requesting that specific id */
2026
if (i >= 0) {
2027
err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2028
if (err == -ENOSPC)
2029
err = -EEXIST;
2030
} else {
2031
err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2032
}
2033
mutex_unlock(&loop_ctl_mutex);
2034
if (err < 0)
2035
goto out_free_dev;
2036
i = err;
2037
2038
lo->tag_set.ops = &loop_mq_ops;
2039
lo->tag_set.nr_hw_queues = 1;
2040
lo->tag_set.queue_depth = hw_queue_depth;
2041
lo->tag_set.numa_node = NUMA_NO_NODE;
2042
lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2043
lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2044
lo->tag_set.driver_data = lo;
2045
2046
err = blk_mq_alloc_tag_set(&lo->tag_set);
2047
if (err)
2048
goto out_free_idr;
2049
2050
disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2051
if (IS_ERR(disk)) {
2052
err = PTR_ERR(disk);
2053
goto out_cleanup_tags;
2054
}
2055
lo->lo_queue = lo->lo_disk->queue;
2056
2057
/*
2058
* Disable partition scanning by default. The in-kernel partition
2059
* scanning can be requested individually per-device during its
2060
* setup. Userspace can always add and remove partitions from all
2061
* devices. The needed partition minors are allocated from the
2062
* extended minor space, the main loop device numbers will continue
2063
* to match the loop minors, regardless of the number of partitions
2064
* used.
2065
*
2066
* If max_part is given, partition scanning is globally enabled for
2067
* all loop devices. The minors for the main loop devices will be
2068
* multiples of max_part.
2069
*
2070
* Note: Global-for-all-devices, set-only-at-init, read-only module
2071
* parameteters like 'max_loop' and 'max_part' make things needlessly
2072
* complicated, are too static, inflexible and may surprise
2073
* userspace tools. Parameters like this in general should be avoided.
2074
*/
2075
if (!part_shift)
2076
set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2077
mutex_init(&lo->lo_mutex);
2078
lo->lo_number = i;
2079
spin_lock_init(&lo->lo_lock);
2080
spin_lock_init(&lo->lo_work_lock);
2081
INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2082
INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2083
disk->major = LOOP_MAJOR;
2084
disk->first_minor = i << part_shift;
2085
disk->minors = 1 << part_shift;
2086
disk->fops = &lo_fops;
2087
disk->private_data = lo;
2088
disk->queue = lo->lo_queue;
2089
disk->events = DISK_EVENT_MEDIA_CHANGE;
2090
disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2091
sprintf(disk->disk_name, "loop%d", i);
2092
/* Make this loop device reachable from pathname. */
2093
err = add_disk(disk);
2094
if (err)
2095
goto out_cleanup_disk;
2096
2097
/* Show this loop device. */
2098
mutex_lock(&loop_ctl_mutex);
2099
lo->idr_visible = true;
2100
mutex_unlock(&loop_ctl_mutex);
2101
2102
return i;
2103
2104
out_cleanup_disk:
2105
put_disk(disk);
2106
out_cleanup_tags:
2107
blk_mq_free_tag_set(&lo->tag_set);
2108
out_free_idr:
2109
mutex_lock(&loop_ctl_mutex);
2110
idr_remove(&loop_index_idr, i);
2111
mutex_unlock(&loop_ctl_mutex);
2112
out_free_dev:
2113
kfree(lo);
2114
out:
2115
return err;
2116
}
2117
2118
static void loop_remove(struct loop_device *lo)
2119
{
2120
/* Make this loop device unreachable from pathname. */
2121
del_gendisk(lo->lo_disk);
2122
blk_mq_free_tag_set(&lo->tag_set);
2123
2124
mutex_lock(&loop_ctl_mutex);
2125
idr_remove(&loop_index_idr, lo->lo_number);
2126
mutex_unlock(&loop_ctl_mutex);
2127
2128
put_disk(lo->lo_disk);
2129
}
2130
2131
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2132
static void loop_probe(dev_t dev)
2133
{
2134
int idx = MINOR(dev) >> part_shift;
2135
2136
if (max_loop_specified && max_loop && idx >= max_loop)
2137
return;
2138
loop_add(idx);
2139
}
2140
#else
2141
#define loop_probe NULL
2142
#endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2143
2144
static int loop_control_remove(int idx)
2145
{
2146
struct loop_device *lo;
2147
int ret;
2148
2149
if (idx < 0) {
2150
pr_warn_once("deleting an unspecified loop device is not supported.\n");
2151
return -EINVAL;
2152
}
2153
2154
/* Hide this loop device for serialization. */
2155
ret = mutex_lock_killable(&loop_ctl_mutex);
2156
if (ret)
2157
return ret;
2158
lo = idr_find(&loop_index_idr, idx);
2159
if (!lo || !lo->idr_visible)
2160
ret = -ENODEV;
2161
else
2162
lo->idr_visible = false;
2163
mutex_unlock(&loop_ctl_mutex);
2164
if (ret)
2165
return ret;
2166
2167
/* Check whether this loop device can be removed. */
2168
ret = mutex_lock_killable(&lo->lo_mutex);
2169
if (ret)
2170
goto mark_visible;
2171
if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2172
mutex_unlock(&lo->lo_mutex);
2173
ret = -EBUSY;
2174
goto mark_visible;
2175
}
2176
/* Mark this loop device as no more bound, but not quite unbound yet */
2177
WRITE_ONCE(lo->lo_state, Lo_deleting);
2178
mutex_unlock(&lo->lo_mutex);
2179
2180
loop_remove(lo);
2181
return 0;
2182
2183
mark_visible:
2184
/* Show this loop device again. */
2185
mutex_lock(&loop_ctl_mutex);
2186
lo->idr_visible = true;
2187
mutex_unlock(&loop_ctl_mutex);
2188
return ret;
2189
}
2190
2191
static int loop_control_get_free(int idx)
2192
{
2193
struct loop_device *lo;
2194
int id, ret;
2195
2196
ret = mutex_lock_killable(&loop_ctl_mutex);
2197
if (ret)
2198
return ret;
2199
idr_for_each_entry(&loop_index_idr, lo, id) {
2200
/*
2201
* Hitting a race results in creating a new loop device
2202
* which is harmless.
2203
*/
2204
if (lo->idr_visible &&
2205
data_race(READ_ONCE(lo->lo_state)) == Lo_unbound)
2206
goto found;
2207
}
2208
mutex_unlock(&loop_ctl_mutex);
2209
return loop_add(-1);
2210
found:
2211
mutex_unlock(&loop_ctl_mutex);
2212
return id;
2213
}
2214
2215
static long loop_control_ioctl(struct file *file, unsigned int cmd,
2216
unsigned long parm)
2217
{
2218
switch (cmd) {
2219
case LOOP_CTL_ADD:
2220
return loop_add(parm);
2221
case LOOP_CTL_REMOVE:
2222
return loop_control_remove(parm);
2223
case LOOP_CTL_GET_FREE:
2224
return loop_control_get_free(parm);
2225
default:
2226
return -ENOSYS;
2227
}
2228
}
2229
2230
static const struct file_operations loop_ctl_fops = {
2231
.open = nonseekable_open,
2232
.unlocked_ioctl = loop_control_ioctl,
2233
.compat_ioctl = loop_control_ioctl,
2234
.owner = THIS_MODULE,
2235
.llseek = noop_llseek,
2236
};
2237
2238
static struct miscdevice loop_misc = {
2239
.minor = LOOP_CTRL_MINOR,
2240
.name = "loop-control",
2241
.fops = &loop_ctl_fops,
2242
};
2243
2244
MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2245
MODULE_ALIAS("devname:loop-control");
2246
2247
static int __init loop_init(void)
2248
{
2249
int i;
2250
int err;
2251
2252
part_shift = 0;
2253
if (max_part > 0) {
2254
part_shift = fls(max_part);
2255
2256
/*
2257
* Adjust max_part according to part_shift as it is exported
2258
* to user space so that user can decide correct minor number
2259
* if [s]he want to create more devices.
2260
*
2261
* Note that -1 is required because partition 0 is reserved
2262
* for the whole disk.
2263
*/
2264
max_part = (1UL << part_shift) - 1;
2265
}
2266
2267
if ((1UL << part_shift) > DISK_MAX_PARTS) {
2268
err = -EINVAL;
2269
goto err_out;
2270
}
2271
2272
if (max_loop > 1UL << (MINORBITS - part_shift)) {
2273
err = -EINVAL;
2274
goto err_out;
2275
}
2276
2277
err = misc_register(&loop_misc);
2278
if (err < 0)
2279
goto err_out;
2280
2281
2282
if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2283
err = -EIO;
2284
goto misc_out;
2285
}
2286
2287
/* pre-create number of devices given by config or max_loop */
2288
for (i = 0; i < max_loop; i++)
2289
loop_add(i);
2290
2291
printk(KERN_INFO "loop: module loaded\n");
2292
return 0;
2293
2294
misc_out:
2295
misc_deregister(&loop_misc);
2296
err_out:
2297
return err;
2298
}
2299
2300
static void __exit loop_exit(void)
2301
{
2302
struct loop_device *lo;
2303
int id;
2304
2305
unregister_blkdev(LOOP_MAJOR, "loop");
2306
misc_deregister(&loop_misc);
2307
2308
/*
2309
* There is no need to use loop_ctl_mutex here, for nobody else can
2310
* access loop_index_idr when this module is unloading (unless forced
2311
* module unloading is requested). If this is not a clean unloading,
2312
* we have no means to avoid kernel crash.
2313
*/
2314
idr_for_each_entry(&loop_index_idr, lo, id)
2315
loop_remove(lo);
2316
2317
idr_destroy(&loop_index_idr);
2318
}
2319
2320
module_init(loop_init);
2321
module_exit(loop_exit);
2322
2323
#ifndef MODULE
2324
static int __init max_loop_setup(char *str)
2325
{
2326
max_loop = simple_strtol(str, NULL, 0);
2327
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2328
max_loop_specified = true;
2329
#endif
2330
return 1;
2331
}
2332
2333
__setup("max_loop=", max_loop_setup);
2334
#endif
2335
2336