Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/null_blk/main.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Add configfs and memory store: Kyungchan Koh <[email protected]> and
4
* Shaohua Li <[email protected]>
5
*/
6
#include <linux/module.h>
7
8
#include <linux/moduleparam.h>
9
#include <linux/sched.h>
10
#include <linux/fs.h>
11
#include <linux/init.h>
12
#include "null_blk.h"
13
14
#undef pr_fmt
15
#define pr_fmt(fmt) "null_blk: " fmt
16
17
#define FREE_BATCH 16
18
19
#define TICKS_PER_SEC 50ULL
20
#define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23
static DECLARE_FAULT_ATTR(null_timeout_attr);
24
static DECLARE_FAULT_ATTR(null_requeue_attr);
25
static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26
#endif
27
28
static inline u64 mb_per_tick(int mbps)
29
{
30
return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31
}
32
33
/*
34
* Status flags for nullb_device.
35
*
36
* CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37
* UP: Device is currently on and visible in userspace.
38
* THROTTLED: Device is being throttled.
39
* CACHE: Device is using a write-back cache.
40
*/
41
enum nullb_device_flags {
42
NULLB_DEV_FL_CONFIGURED = 0,
43
NULLB_DEV_FL_UP = 1,
44
NULLB_DEV_FL_THROTTLED = 2,
45
NULLB_DEV_FL_CACHE = 3,
46
};
47
48
#define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49
/*
50
* nullb_page is a page in memory for nullb devices.
51
*
52
* @page: The page holding the data.
53
* @bitmap: The bitmap represents which sector in the page has data.
54
* Each bit represents one block size. For example, sector 8
55
* will use the 7th bit
56
* The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57
* page is being flushing to storage. FREE means the cache page is freed and
58
* should be skipped from flushing to storage. Please see
59
* null_make_cache_space
60
*/
61
struct nullb_page {
62
struct page *page;
63
DECLARE_BITMAP(bitmap, MAP_SZ);
64
};
65
#define NULLB_PAGE_LOCK (MAP_SZ - 1)
66
#define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68
static LIST_HEAD(nullb_list);
69
static struct mutex lock;
70
static int null_major;
71
static DEFINE_IDA(nullb_indexes);
72
static struct blk_mq_tag_set tag_set;
73
74
enum {
75
NULL_IRQ_NONE = 0,
76
NULL_IRQ_SOFTIRQ = 1,
77
NULL_IRQ_TIMER = 2,
78
};
79
80
static bool g_virt_boundary;
81
module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82
MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84
static int g_no_sched;
85
module_param_named(no_sched, g_no_sched, int, 0444);
86
MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88
static int g_submit_queues = 1;
89
module_param_named(submit_queues, g_submit_queues, int, 0444);
90
MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92
static int g_poll_queues = 1;
93
module_param_named(poll_queues, g_poll_queues, int, 0444);
94
MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96
static int g_home_node = NUMA_NO_NODE;
97
module_param_named(home_node, g_home_node, int, 0444);
98
MODULE_PARM_DESC(home_node, "Home node for the device");
99
100
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101
/*
102
* For more details about fault injection, please refer to
103
* Documentation/fault-injection/fault-injection.rst.
104
*/
105
static char g_timeout_str[80];
106
module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107
MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109
static char g_requeue_str[80];
110
module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111
MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113
static char g_init_hctx_str[80];
114
module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115
MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116
#endif
117
118
/*
119
* Historic queue modes.
120
*
121
* These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122
* enum for error reporting.
123
*/
124
enum {
125
NULL_Q_BIO = 0,
126
NULL_Q_RQ = 1,
127
NULL_Q_MQ = 2,
128
};
129
130
static int g_queue_mode = NULL_Q_MQ;
131
132
static int null_param_store_val(const char *str, int *val, int min, int max)
133
{
134
int ret, new_val;
135
136
ret = kstrtoint(str, 10, &new_val);
137
if (ret)
138
return -EINVAL;
139
140
if (new_val < min || new_val > max)
141
return -EINVAL;
142
143
*val = new_val;
144
return 0;
145
}
146
147
static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148
{
149
return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150
}
151
152
static const struct kernel_param_ops null_queue_mode_param_ops = {
153
.set = null_set_queue_mode,
154
.get = param_get_int,
155
};
156
157
device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158
MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159
160
static int g_gb = 250;
161
module_param_named(gb, g_gb, int, 0444);
162
MODULE_PARM_DESC(gb, "Size in GB");
163
164
static int g_bs = 512;
165
module_param_named(bs, g_bs, int, 0444);
166
MODULE_PARM_DESC(bs, "Block size (in bytes)");
167
168
static int g_max_sectors;
169
module_param_named(max_sectors, g_max_sectors, int, 0444);
170
MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171
172
static unsigned int nr_devices = 1;
173
module_param(nr_devices, uint, 0444);
174
MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175
176
static bool g_blocking;
177
module_param_named(blocking, g_blocking, bool, 0444);
178
MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179
180
static bool g_shared_tags;
181
module_param_named(shared_tags, g_shared_tags, bool, 0444);
182
MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183
184
static bool g_shared_tag_bitmap;
185
module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186
MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187
188
static int g_irqmode = NULL_IRQ_SOFTIRQ;
189
190
static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191
{
192
return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193
NULL_IRQ_TIMER);
194
}
195
196
static const struct kernel_param_ops null_irqmode_param_ops = {
197
.set = null_set_irqmode,
198
.get = param_get_int,
199
};
200
201
device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202
MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203
204
static unsigned long g_completion_nsec = 10000;
205
module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206
MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207
208
static int g_hw_queue_depth = 64;
209
module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210
MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211
212
static bool g_use_per_node_hctx;
213
module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214
MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215
216
static bool g_memory_backed;
217
module_param_named(memory_backed, g_memory_backed, bool, 0444);
218
MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219
220
static bool g_discard;
221
module_param_named(discard, g_discard, bool, 0444);
222
MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223
224
static unsigned long g_cache_size;
225
module_param_named(cache_size, g_cache_size, ulong, 0444);
226
MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227
228
static bool g_fua = true;
229
module_param_named(fua, g_fua, bool, 0444);
230
MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231
232
static unsigned int g_mbps;
233
module_param_named(mbps, g_mbps, uint, 0444);
234
MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235
236
static bool g_zoned;
237
module_param_named(zoned, g_zoned, bool, S_IRUGO);
238
MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239
240
static unsigned long g_zone_size = 256;
241
module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242
MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243
244
static unsigned long g_zone_capacity;
245
module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246
MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247
248
static unsigned int g_zone_nr_conv;
249
module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250
MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251
252
static unsigned int g_zone_max_open;
253
module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254
MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255
256
static unsigned int g_zone_max_active;
257
module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258
MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259
260
static int g_zone_append_max_sectors = INT_MAX;
261
module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262
MODULE_PARM_DESC(zone_append_max_sectors,
263
"Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264
265
static bool g_zone_full;
266
module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267
MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268
269
static bool g_rotational;
270
module_param_named(rotational, g_rotational, bool, S_IRUGO);
271
MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272
273
static struct nullb_device *null_alloc_dev(void);
274
static void null_free_dev(struct nullb_device *dev);
275
static void null_del_dev(struct nullb *nullb);
276
static int null_add_dev(struct nullb_device *dev);
277
static struct nullb *null_find_dev_by_name(const char *name);
278
static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279
280
static inline struct nullb_device *to_nullb_device(struct config_item *item)
281
{
282
return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283
}
284
285
static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286
{
287
return snprintf(page, PAGE_SIZE, "%u\n", val);
288
}
289
290
static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291
char *page)
292
{
293
return snprintf(page, PAGE_SIZE, "%lu\n", val);
294
}
295
296
static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297
{
298
return snprintf(page, PAGE_SIZE, "%u\n", val);
299
}
300
301
static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302
const char *page, size_t count)
303
{
304
unsigned int tmp;
305
int result;
306
307
result = kstrtouint(page, 0, &tmp);
308
if (result < 0)
309
return result;
310
311
*val = tmp;
312
return count;
313
}
314
315
static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316
const char *page, size_t count)
317
{
318
int result;
319
unsigned long tmp;
320
321
result = kstrtoul(page, 0, &tmp);
322
if (result < 0)
323
return result;
324
325
*val = tmp;
326
return count;
327
}
328
329
static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330
size_t count)
331
{
332
bool tmp;
333
int result;
334
335
result = kstrtobool(page, &tmp);
336
if (result < 0)
337
return result;
338
339
*val = tmp;
340
return count;
341
}
342
343
/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344
#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
345
static ssize_t \
346
nullb_device_##NAME##_show(struct config_item *item, char *page) \
347
{ \
348
return nullb_device_##TYPE##_attr_show( \
349
to_nullb_device(item)->NAME, page); \
350
} \
351
static ssize_t \
352
nullb_device_##NAME##_store(struct config_item *item, const char *page, \
353
size_t count) \
354
{ \
355
int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356
struct nullb_device *dev = to_nullb_device(item); \
357
TYPE new_value = 0; \
358
int ret; \
359
\
360
ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361
if (ret < 0) \
362
return ret; \
363
if (apply_fn) \
364
ret = apply_fn(dev, new_value); \
365
else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
366
ret = -EBUSY; \
367
if (ret < 0) \
368
return ret; \
369
dev->NAME = new_value; \
370
return count; \
371
} \
372
CONFIGFS_ATTR(nullb_device_, NAME);
373
374
static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375
unsigned int submit_queues,
376
unsigned int poll_queues)
377
378
{
379
struct blk_mq_tag_set *set;
380
int ret, nr_hw_queues;
381
382
if (!dev->nullb)
383
return 0;
384
385
/*
386
* Make sure at least one submit queue exists.
387
*/
388
if (!submit_queues)
389
return -EINVAL;
390
391
/*
392
* Make sure that null_init_hctx() does not access nullb->queues[] past
393
* the end of that array.
394
*/
395
if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396
return -EINVAL;
397
398
/*
399
* Keep previous and new queue numbers in nullb_device for reference in
400
* the call back function null_map_queues().
401
*/
402
dev->prev_submit_queues = dev->submit_queues;
403
dev->prev_poll_queues = dev->poll_queues;
404
dev->submit_queues = submit_queues;
405
dev->poll_queues = poll_queues;
406
407
set = dev->nullb->tag_set;
408
nr_hw_queues = submit_queues + poll_queues;
409
blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410
ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411
412
if (ret) {
413
/* on error, revert the queue numbers */
414
dev->submit_queues = dev->prev_submit_queues;
415
dev->poll_queues = dev->prev_poll_queues;
416
}
417
418
return ret;
419
}
420
421
static int nullb_apply_submit_queues(struct nullb_device *dev,
422
unsigned int submit_queues)
423
{
424
int ret;
425
426
mutex_lock(&lock);
427
ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428
mutex_unlock(&lock);
429
430
return ret;
431
}
432
433
static int nullb_apply_poll_queues(struct nullb_device *dev,
434
unsigned int poll_queues)
435
{
436
int ret;
437
438
mutex_lock(&lock);
439
ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440
mutex_unlock(&lock);
441
442
return ret;
443
}
444
445
NULLB_DEVICE_ATTR(size, ulong, NULL);
446
NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447
NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448
NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449
NULLB_DEVICE_ATTR(home_node, uint, NULL);
450
NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451
NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452
NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453
NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454
NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455
NULLB_DEVICE_ATTR(index, uint, NULL);
456
NULLB_DEVICE_ATTR(blocking, bool, NULL);
457
NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458
NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459
NULLB_DEVICE_ATTR(discard, bool, NULL);
460
NULLB_DEVICE_ATTR(mbps, uint, NULL);
461
NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462
NULLB_DEVICE_ATTR(zoned, bool, NULL);
463
NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464
NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465
NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466
NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467
NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468
NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469
NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470
NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471
NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472
NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473
NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474
NULLB_DEVICE_ATTR(fua, bool, NULL);
475
NULLB_DEVICE_ATTR(rotational, bool, NULL);
476
NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477
NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL);
478
479
static ssize_t nullb_device_power_show(struct config_item *item, char *page)
480
{
481
return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
482
}
483
484
static ssize_t nullb_device_power_store(struct config_item *item,
485
const char *page, size_t count)
486
{
487
struct nullb_device *dev = to_nullb_device(item);
488
bool newp = false;
489
ssize_t ret;
490
491
ret = nullb_device_bool_attr_store(&newp, page, count);
492
if (ret < 0)
493
return ret;
494
495
ret = count;
496
mutex_lock(&lock);
497
if (!dev->power && newp) {
498
if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
499
goto out;
500
501
ret = null_add_dev(dev);
502
if (ret) {
503
clear_bit(NULLB_DEV_FL_UP, &dev->flags);
504
goto out;
505
}
506
507
set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
508
dev->power = newp;
509
ret = count;
510
} else if (dev->power && !newp) {
511
if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
512
dev->power = newp;
513
null_del_dev(dev->nullb);
514
}
515
clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
516
}
517
518
out:
519
mutex_unlock(&lock);
520
return ret;
521
}
522
523
CONFIGFS_ATTR(nullb_device_, power);
524
525
static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
526
{
527
struct nullb_device *t_dev = to_nullb_device(item);
528
529
return badblocks_show(&t_dev->badblocks, page, 0);
530
}
531
532
static ssize_t nullb_device_badblocks_store(struct config_item *item,
533
const char *page, size_t count)
534
{
535
struct nullb_device *t_dev = to_nullb_device(item);
536
char *orig, *buf, *tmp;
537
u64 start, end;
538
int ret;
539
540
orig = kstrndup(page, count, GFP_KERNEL);
541
if (!orig)
542
return -ENOMEM;
543
544
buf = strstrip(orig);
545
546
ret = -EINVAL;
547
if (buf[0] != '+' && buf[0] != '-')
548
goto out;
549
tmp = strchr(&buf[1], '-');
550
if (!tmp)
551
goto out;
552
*tmp = '\0';
553
ret = kstrtoull(buf + 1, 0, &start);
554
if (ret)
555
goto out;
556
ret = kstrtoull(tmp + 1, 0, &end);
557
if (ret)
558
goto out;
559
ret = -EINVAL;
560
if (start > end)
561
goto out;
562
/* enable badblocks */
563
cmpxchg(&t_dev->badblocks.shift, -1, 0);
564
if (buf[0] == '+') {
565
if (badblocks_set(&t_dev->badblocks, start,
566
end - start + 1, 1))
567
ret = count;
568
} else if (badblocks_clear(&t_dev->badblocks, start,
569
end - start + 1)) {
570
ret = count;
571
}
572
out:
573
kfree(orig);
574
return ret;
575
}
576
CONFIGFS_ATTR(nullb_device_, badblocks);
577
578
static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
579
const char *page, size_t count)
580
{
581
struct nullb_device *dev = to_nullb_device(item);
582
583
return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
584
}
585
CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
586
587
static ssize_t nullb_device_zone_offline_store(struct config_item *item,
588
const char *page, size_t count)
589
{
590
struct nullb_device *dev = to_nullb_device(item);
591
592
return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
593
}
594
CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
595
596
static struct configfs_attribute *nullb_device_attrs[] = {
597
&nullb_device_attr_badblocks,
598
&nullb_device_attr_badblocks_once,
599
&nullb_device_attr_badblocks_partial_io,
600
&nullb_device_attr_blocking,
601
&nullb_device_attr_blocksize,
602
&nullb_device_attr_cache_size,
603
&nullb_device_attr_completion_nsec,
604
&nullb_device_attr_discard,
605
&nullb_device_attr_fua,
606
&nullb_device_attr_home_node,
607
&nullb_device_attr_hw_queue_depth,
608
&nullb_device_attr_index,
609
&nullb_device_attr_irqmode,
610
&nullb_device_attr_max_sectors,
611
&nullb_device_attr_mbps,
612
&nullb_device_attr_memory_backed,
613
&nullb_device_attr_no_sched,
614
&nullb_device_attr_poll_queues,
615
&nullb_device_attr_power,
616
&nullb_device_attr_queue_mode,
617
&nullb_device_attr_rotational,
618
&nullb_device_attr_shared_tag_bitmap,
619
&nullb_device_attr_shared_tags,
620
&nullb_device_attr_size,
621
&nullb_device_attr_submit_queues,
622
&nullb_device_attr_use_per_node_hctx,
623
&nullb_device_attr_virt_boundary,
624
&nullb_device_attr_zone_append_max_sectors,
625
&nullb_device_attr_zone_capacity,
626
&nullb_device_attr_zone_full,
627
&nullb_device_attr_zone_max_active,
628
&nullb_device_attr_zone_max_open,
629
&nullb_device_attr_zone_nr_conv,
630
&nullb_device_attr_zone_offline,
631
&nullb_device_attr_zone_readonly,
632
&nullb_device_attr_zone_size,
633
&nullb_device_attr_zoned,
634
NULL,
635
};
636
637
static void nullb_device_release(struct config_item *item)
638
{
639
struct nullb_device *dev = to_nullb_device(item);
640
641
null_free_device_storage(dev, false);
642
null_free_dev(dev);
643
}
644
645
static struct configfs_item_operations nullb_device_ops = {
646
.release = nullb_device_release,
647
};
648
649
static const struct config_item_type nullb_device_type = {
650
.ct_item_ops = &nullb_device_ops,
651
.ct_attrs = nullb_device_attrs,
652
.ct_owner = THIS_MODULE,
653
};
654
655
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
656
657
static void nullb_add_fault_config(struct nullb_device *dev)
658
{
659
fault_config_init(&dev->timeout_config, "timeout_inject");
660
fault_config_init(&dev->requeue_config, "requeue_inject");
661
fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
662
663
configfs_add_default_group(&dev->timeout_config.group, &dev->group);
664
configfs_add_default_group(&dev->requeue_config.group, &dev->group);
665
configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
666
}
667
668
#else
669
670
static void nullb_add_fault_config(struct nullb_device *dev)
671
{
672
}
673
674
#endif
675
676
static struct
677
config_group *nullb_group_make_group(struct config_group *group, const char *name)
678
{
679
struct nullb_device *dev;
680
681
if (null_find_dev_by_name(name))
682
return ERR_PTR(-EEXIST);
683
684
dev = null_alloc_dev();
685
if (!dev)
686
return ERR_PTR(-ENOMEM);
687
688
config_group_init_type_name(&dev->group, name, &nullb_device_type);
689
nullb_add_fault_config(dev);
690
691
return &dev->group;
692
}
693
694
static void
695
nullb_group_drop_item(struct config_group *group, struct config_item *item)
696
{
697
struct nullb_device *dev = to_nullb_device(item);
698
699
if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
700
mutex_lock(&lock);
701
dev->power = false;
702
null_del_dev(dev->nullb);
703
mutex_unlock(&lock);
704
}
705
706
config_item_put(item);
707
}
708
709
static ssize_t memb_group_features_show(struct config_item *item, char *page)
710
{
711
712
struct configfs_attribute **entry;
713
char delimiter = ',';
714
size_t left = PAGE_SIZE;
715
size_t written = 0;
716
int ret;
717
718
for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
719
if (!*(entry + 1))
720
delimiter = '\n';
721
ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
722
delimiter);
723
if (ret >= left) {
724
WARN_ONCE(1, "Too many null_blk features to print\n");
725
memzero_explicit(page, PAGE_SIZE);
726
return -ENOBUFS;
727
}
728
left -= ret;
729
written += ret;
730
}
731
732
return written;
733
}
734
735
CONFIGFS_ATTR_RO(memb_group_, features);
736
737
static struct configfs_attribute *nullb_group_attrs[] = {
738
&memb_group_attr_features,
739
NULL,
740
};
741
742
static struct configfs_group_operations nullb_group_ops = {
743
.make_group = nullb_group_make_group,
744
.drop_item = nullb_group_drop_item,
745
};
746
747
static const struct config_item_type nullb_group_type = {
748
.ct_group_ops = &nullb_group_ops,
749
.ct_attrs = nullb_group_attrs,
750
.ct_owner = THIS_MODULE,
751
};
752
753
static struct configfs_subsystem nullb_subsys = {
754
.su_group = {
755
.cg_item = {
756
.ci_namebuf = "nullb",
757
.ci_type = &nullb_group_type,
758
},
759
},
760
};
761
762
static inline int null_cache_active(struct nullb *nullb)
763
{
764
return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
765
}
766
767
static struct nullb_device *null_alloc_dev(void)
768
{
769
struct nullb_device *dev;
770
771
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
772
if (!dev)
773
return NULL;
774
775
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
776
dev->timeout_config.attr = null_timeout_attr;
777
dev->requeue_config.attr = null_requeue_attr;
778
dev->init_hctx_fault_config.attr = null_init_hctx_attr;
779
#endif
780
781
INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
782
INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
783
if (badblocks_init(&dev->badblocks, 0)) {
784
kfree(dev);
785
return NULL;
786
}
787
788
dev->size = g_gb * 1024;
789
dev->completion_nsec = g_completion_nsec;
790
dev->submit_queues = g_submit_queues;
791
dev->prev_submit_queues = g_submit_queues;
792
dev->poll_queues = g_poll_queues;
793
dev->prev_poll_queues = g_poll_queues;
794
dev->home_node = g_home_node;
795
dev->queue_mode = g_queue_mode;
796
dev->blocksize = g_bs;
797
dev->max_sectors = g_max_sectors;
798
dev->irqmode = g_irqmode;
799
dev->hw_queue_depth = g_hw_queue_depth;
800
dev->blocking = g_blocking;
801
dev->memory_backed = g_memory_backed;
802
dev->discard = g_discard;
803
dev->cache_size = g_cache_size;
804
dev->mbps = g_mbps;
805
dev->use_per_node_hctx = g_use_per_node_hctx;
806
dev->zoned = g_zoned;
807
dev->zone_size = g_zone_size;
808
dev->zone_capacity = g_zone_capacity;
809
dev->zone_nr_conv = g_zone_nr_conv;
810
dev->zone_max_open = g_zone_max_open;
811
dev->zone_max_active = g_zone_max_active;
812
dev->zone_append_max_sectors = g_zone_append_max_sectors;
813
dev->zone_full = g_zone_full;
814
dev->virt_boundary = g_virt_boundary;
815
dev->no_sched = g_no_sched;
816
dev->shared_tags = g_shared_tags;
817
dev->shared_tag_bitmap = g_shared_tag_bitmap;
818
dev->fua = g_fua;
819
dev->rotational = g_rotational;
820
821
return dev;
822
}
823
824
static void null_free_dev(struct nullb_device *dev)
825
{
826
if (!dev)
827
return;
828
829
null_free_zoned_dev(dev);
830
badblocks_exit(&dev->badblocks);
831
kfree(dev);
832
}
833
834
static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
835
{
836
struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
837
838
blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
839
return HRTIMER_NORESTART;
840
}
841
842
static void null_cmd_end_timer(struct nullb_cmd *cmd)
843
{
844
ktime_t kt = cmd->nq->dev->completion_nsec;
845
846
hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
847
}
848
849
static void null_complete_rq(struct request *rq)
850
{
851
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
852
853
blk_mq_end_request(rq, cmd->error);
854
}
855
856
static struct nullb_page *null_alloc_page(void)
857
{
858
struct nullb_page *t_page;
859
860
t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
861
if (!t_page)
862
return NULL;
863
864
t_page->page = alloc_pages(GFP_NOIO, 0);
865
if (!t_page->page) {
866
kfree(t_page);
867
return NULL;
868
}
869
870
memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
871
return t_page;
872
}
873
874
static void null_free_page(struct nullb_page *t_page)
875
{
876
__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
877
if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
878
return;
879
__free_page(t_page->page);
880
kfree(t_page);
881
}
882
883
static bool null_page_empty(struct nullb_page *page)
884
{
885
int size = MAP_SZ - 2;
886
887
return find_first_bit(page->bitmap, size) == size;
888
}
889
890
static void null_free_sector(struct nullb *nullb, sector_t sector,
891
bool is_cache)
892
{
893
unsigned int sector_bit;
894
u64 idx;
895
struct nullb_page *t_page, *ret;
896
struct radix_tree_root *root;
897
898
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
899
idx = sector >> PAGE_SECTORS_SHIFT;
900
sector_bit = (sector & SECTOR_MASK);
901
902
t_page = radix_tree_lookup(root, idx);
903
if (t_page) {
904
__clear_bit(sector_bit, t_page->bitmap);
905
906
if (null_page_empty(t_page)) {
907
ret = radix_tree_delete_item(root, idx, t_page);
908
WARN_ON(ret != t_page);
909
null_free_page(ret);
910
if (is_cache)
911
nullb->dev->curr_cache -= PAGE_SIZE;
912
}
913
}
914
}
915
916
static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
917
struct nullb_page *t_page, bool is_cache)
918
{
919
struct radix_tree_root *root;
920
921
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
922
923
if (radix_tree_insert(root, idx, t_page)) {
924
null_free_page(t_page);
925
t_page = radix_tree_lookup(root, idx);
926
WARN_ON(!t_page || t_page->page->private != idx);
927
} else if (is_cache)
928
nullb->dev->curr_cache += PAGE_SIZE;
929
930
return t_page;
931
}
932
933
static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
934
{
935
unsigned long pos = 0;
936
int nr_pages;
937
struct nullb_page *ret, *t_pages[FREE_BATCH];
938
struct radix_tree_root *root;
939
940
root = is_cache ? &dev->cache : &dev->data;
941
942
do {
943
int i;
944
945
nr_pages = radix_tree_gang_lookup(root,
946
(void **)t_pages, pos, FREE_BATCH);
947
948
for (i = 0; i < nr_pages; i++) {
949
pos = t_pages[i]->page->private;
950
ret = radix_tree_delete_item(root, pos, t_pages[i]);
951
WARN_ON(ret != t_pages[i]);
952
null_free_page(ret);
953
}
954
955
pos++;
956
} while (nr_pages == FREE_BATCH);
957
958
if (is_cache)
959
dev->curr_cache = 0;
960
}
961
962
static struct nullb_page *__null_lookup_page(struct nullb *nullb,
963
sector_t sector, bool for_write, bool is_cache)
964
{
965
unsigned int sector_bit;
966
u64 idx;
967
struct nullb_page *t_page;
968
struct radix_tree_root *root;
969
970
idx = sector >> PAGE_SECTORS_SHIFT;
971
sector_bit = (sector & SECTOR_MASK);
972
973
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
974
t_page = radix_tree_lookup(root, idx);
975
WARN_ON(t_page && t_page->page->private != idx);
976
977
if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
978
return t_page;
979
980
return NULL;
981
}
982
983
static struct nullb_page *null_lookup_page(struct nullb *nullb,
984
sector_t sector, bool for_write, bool ignore_cache)
985
{
986
struct nullb_page *page = NULL;
987
988
if (!ignore_cache)
989
page = __null_lookup_page(nullb, sector, for_write, true);
990
if (page)
991
return page;
992
return __null_lookup_page(nullb, sector, for_write, false);
993
}
994
995
static struct nullb_page *null_insert_page(struct nullb *nullb,
996
sector_t sector, bool ignore_cache)
997
__releases(&nullb->lock)
998
__acquires(&nullb->lock)
999
{
1000
u64 idx;
1001
struct nullb_page *t_page;
1002
1003
t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1004
if (t_page)
1005
return t_page;
1006
1007
spin_unlock_irq(&nullb->lock);
1008
1009
t_page = null_alloc_page();
1010
if (!t_page)
1011
goto out_lock;
1012
1013
if (radix_tree_preload(GFP_NOIO))
1014
goto out_freepage;
1015
1016
spin_lock_irq(&nullb->lock);
1017
idx = sector >> PAGE_SECTORS_SHIFT;
1018
t_page->page->private = idx;
1019
t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1020
radix_tree_preload_end();
1021
1022
return t_page;
1023
out_freepage:
1024
null_free_page(t_page);
1025
out_lock:
1026
spin_lock_irq(&nullb->lock);
1027
return null_lookup_page(nullb, sector, true, ignore_cache);
1028
}
1029
1030
static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1031
{
1032
int i;
1033
unsigned int offset;
1034
u64 idx;
1035
struct nullb_page *t_page, *ret;
1036
void *dst, *src;
1037
1038
idx = c_page->page->private;
1039
1040
t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1041
1042
__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1043
if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1044
null_free_page(c_page);
1045
if (t_page && null_page_empty(t_page)) {
1046
ret = radix_tree_delete_item(&nullb->dev->data,
1047
idx, t_page);
1048
null_free_page(t_page);
1049
}
1050
return 0;
1051
}
1052
1053
if (!t_page)
1054
return -ENOMEM;
1055
1056
src = kmap_local_page(c_page->page);
1057
dst = kmap_local_page(t_page->page);
1058
1059
for (i = 0; i < PAGE_SECTORS;
1060
i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1061
if (test_bit(i, c_page->bitmap)) {
1062
offset = (i << SECTOR_SHIFT);
1063
memcpy(dst + offset, src + offset,
1064
nullb->dev->blocksize);
1065
__set_bit(i, t_page->bitmap);
1066
}
1067
}
1068
1069
kunmap_local(dst);
1070
kunmap_local(src);
1071
1072
ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1073
null_free_page(ret);
1074
nullb->dev->curr_cache -= PAGE_SIZE;
1075
1076
return 0;
1077
}
1078
1079
static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1080
{
1081
int i, err, nr_pages;
1082
struct nullb_page *c_pages[FREE_BATCH];
1083
unsigned long flushed = 0, one_round;
1084
1085
again:
1086
if ((nullb->dev->cache_size * 1024 * 1024) >
1087
nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1088
return 0;
1089
1090
nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1091
(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1092
/*
1093
* nullb_flush_cache_page could unlock before using the c_pages. To
1094
* avoid race, we don't allow page free
1095
*/
1096
for (i = 0; i < nr_pages; i++) {
1097
nullb->cache_flush_pos = c_pages[i]->page->private;
1098
/*
1099
* We found the page which is being flushed to disk by other
1100
* threads
1101
*/
1102
if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1103
c_pages[i] = NULL;
1104
else
1105
__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1106
}
1107
1108
one_round = 0;
1109
for (i = 0; i < nr_pages; i++) {
1110
if (c_pages[i] == NULL)
1111
continue;
1112
err = null_flush_cache_page(nullb, c_pages[i]);
1113
if (err)
1114
return err;
1115
one_round++;
1116
}
1117
flushed += one_round << PAGE_SHIFT;
1118
1119
if (n > flushed) {
1120
if (nr_pages == 0)
1121
nullb->cache_flush_pos = 0;
1122
if (one_round == 0) {
1123
/* give other threads a chance */
1124
spin_unlock_irq(&nullb->lock);
1125
spin_lock_irq(&nullb->lock);
1126
}
1127
goto again;
1128
}
1129
return 0;
1130
}
1131
1132
static int copy_to_nullb(struct nullb *nullb, struct page *source,
1133
unsigned int off, sector_t sector, size_t n, bool is_fua)
1134
{
1135
size_t temp, count = 0;
1136
unsigned int offset;
1137
struct nullb_page *t_page;
1138
1139
while (count < n) {
1140
temp = min_t(size_t, nullb->dev->blocksize, n - count);
1141
1142
if (null_cache_active(nullb) && !is_fua)
1143
null_make_cache_space(nullb, PAGE_SIZE);
1144
1145
offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1146
t_page = null_insert_page(nullb, sector,
1147
!null_cache_active(nullb) || is_fua);
1148
if (!t_page)
1149
return -ENOSPC;
1150
1151
memcpy_page(t_page->page, offset, source, off + count, temp);
1152
1153
__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1154
1155
if (is_fua)
1156
null_free_sector(nullb, sector, true);
1157
1158
count += temp;
1159
sector += temp >> SECTOR_SHIFT;
1160
}
1161
return 0;
1162
}
1163
1164
static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1165
unsigned int off, sector_t sector, size_t n)
1166
{
1167
size_t temp, count = 0;
1168
unsigned int offset;
1169
struct nullb_page *t_page;
1170
1171
while (count < n) {
1172
temp = min_t(size_t, nullb->dev->blocksize, n - count);
1173
1174
offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1175
t_page = null_lookup_page(nullb, sector, false,
1176
!null_cache_active(nullb));
1177
1178
if (t_page)
1179
memcpy_page(dest, off + count, t_page->page, offset,
1180
temp);
1181
else
1182
memzero_page(dest, off + count, temp);
1183
1184
count += temp;
1185
sector += temp >> SECTOR_SHIFT;
1186
}
1187
return 0;
1188
}
1189
1190
static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1191
unsigned int len, unsigned int off)
1192
{
1193
memset_page(page, off, 0xff, len);
1194
}
1195
1196
blk_status_t null_handle_discard(struct nullb_device *dev,
1197
sector_t sector, sector_t nr_sectors)
1198
{
1199
struct nullb *nullb = dev->nullb;
1200
size_t n = nr_sectors << SECTOR_SHIFT;
1201
size_t temp;
1202
1203
spin_lock_irq(&nullb->lock);
1204
while (n > 0) {
1205
temp = min_t(size_t, n, dev->blocksize);
1206
null_free_sector(nullb, sector, false);
1207
if (null_cache_active(nullb))
1208
null_free_sector(nullb, sector, true);
1209
sector += temp >> SECTOR_SHIFT;
1210
n -= temp;
1211
}
1212
spin_unlock_irq(&nullb->lock);
1213
1214
return BLK_STS_OK;
1215
}
1216
1217
static blk_status_t null_handle_flush(struct nullb *nullb)
1218
{
1219
int err;
1220
1221
if (!null_cache_active(nullb))
1222
return 0;
1223
1224
spin_lock_irq(&nullb->lock);
1225
while (true) {
1226
err = null_make_cache_space(nullb,
1227
nullb->dev->cache_size * 1024 * 1024);
1228
if (err || nullb->dev->curr_cache == 0)
1229
break;
1230
}
1231
1232
WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1233
spin_unlock_irq(&nullb->lock);
1234
return errno_to_blk_status(err);
1235
}
1236
1237
static int null_transfer(struct nullb *nullb, struct page *page,
1238
unsigned int len, unsigned int off, bool is_write, sector_t sector,
1239
bool is_fua)
1240
{
1241
struct nullb_device *dev = nullb->dev;
1242
unsigned int valid_len = len;
1243
int err = 0;
1244
1245
if (!is_write) {
1246
if (dev->zoned)
1247
valid_len = null_zone_valid_read_len(nullb,
1248
sector, len);
1249
1250
if (valid_len) {
1251
err = copy_from_nullb(nullb, page, off,
1252
sector, valid_len);
1253
off += valid_len;
1254
len -= valid_len;
1255
}
1256
1257
if (len)
1258
nullb_fill_pattern(nullb, page, len, off);
1259
flush_dcache_page(page);
1260
} else {
1261
flush_dcache_page(page);
1262
err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1263
}
1264
1265
return err;
1266
}
1267
1268
/*
1269
* Transfer data for the given request. The transfer size is capped with the
1270
* nr_sectors argument.
1271
*/
1272
static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1273
sector_t nr_sectors)
1274
{
1275
struct request *rq = blk_mq_rq_from_pdu(cmd);
1276
struct nullb *nullb = cmd->nq->dev->nullb;
1277
int err = 0;
1278
unsigned int len;
1279
sector_t sector = blk_rq_pos(rq);
1280
unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1281
unsigned int transferred_bytes = 0;
1282
struct req_iterator iter;
1283
struct bio_vec bvec;
1284
1285
spin_lock_irq(&nullb->lock);
1286
rq_for_each_segment(bvec, rq, iter) {
1287
len = bvec.bv_len;
1288
if (transferred_bytes + len > max_bytes)
1289
len = max_bytes - transferred_bytes;
1290
err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1291
op_is_write(req_op(rq)), sector,
1292
rq->cmd_flags & REQ_FUA);
1293
if (err)
1294
break;
1295
sector += len >> SECTOR_SHIFT;
1296
transferred_bytes += len;
1297
if (transferred_bytes >= max_bytes)
1298
break;
1299
}
1300
spin_unlock_irq(&nullb->lock);
1301
1302
return errno_to_blk_status(err);
1303
}
1304
1305
static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1306
{
1307
struct nullb_device *dev = cmd->nq->dev;
1308
struct nullb *nullb = dev->nullb;
1309
blk_status_t sts = BLK_STS_OK;
1310
struct request *rq = blk_mq_rq_from_pdu(cmd);
1311
1312
if (!hrtimer_active(&nullb->bw_timer))
1313
hrtimer_restart(&nullb->bw_timer);
1314
1315
if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1316
blk_mq_stop_hw_queues(nullb->q);
1317
/* race with timer */
1318
if (atomic_long_read(&nullb->cur_bytes) > 0)
1319
blk_mq_start_stopped_hw_queues(nullb->q, true);
1320
/* requeue request */
1321
sts = BLK_STS_DEV_RESOURCE;
1322
}
1323
return sts;
1324
}
1325
1326
/*
1327
* Check if the command should fail for the badblocks. If so, return
1328
* BLK_STS_IOERR and return number of partial I/O sectors to be written or read,
1329
* which may be less than the requested number of sectors.
1330
*
1331
* @cmd: The command to handle.
1332
* @sector: The start sector for I/O.
1333
* @nr_sectors: Specifies number of sectors to write or read, and returns the
1334
* number of sectors to be written or read.
1335
*/
1336
blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1337
unsigned int *nr_sectors)
1338
{
1339
struct badblocks *bb = &cmd->nq->dev->badblocks;
1340
struct nullb_device *dev = cmd->nq->dev;
1341
unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT;
1342
sector_t first_bad, bad_sectors;
1343
unsigned int partial_io_sectors = 0;
1344
1345
if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors))
1346
return BLK_STS_OK;
1347
1348
if (cmd->nq->dev->badblocks_once)
1349
badblocks_clear(bb, first_bad, bad_sectors);
1350
1351
if (cmd->nq->dev->badblocks_partial_io) {
1352
if (!IS_ALIGNED(first_bad, block_sectors))
1353
first_bad = ALIGN_DOWN(first_bad, block_sectors);
1354
if (sector < first_bad)
1355
partial_io_sectors = first_bad - sector;
1356
}
1357
*nr_sectors = partial_io_sectors;
1358
1359
return BLK_STS_IOERR;
1360
}
1361
1362
blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1363
sector_t sector, sector_t nr_sectors)
1364
{
1365
struct nullb_device *dev = cmd->nq->dev;
1366
1367
if (op == REQ_OP_DISCARD)
1368
return null_handle_discard(dev, sector, nr_sectors);
1369
1370
return null_handle_data_transfer(cmd, nr_sectors);
1371
}
1372
1373
static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1374
{
1375
struct request *rq = blk_mq_rq_from_pdu(cmd);
1376
struct nullb_device *dev = cmd->nq->dev;
1377
struct bio *bio;
1378
1379
if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1380
__rq_for_each_bio(bio, rq)
1381
zero_fill_bio(bio);
1382
}
1383
}
1384
1385
static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1386
{
1387
struct request *rq = blk_mq_rq_from_pdu(cmd);
1388
1389
/*
1390
* Since root privileges are required to configure the null_blk
1391
* driver, it is fine that this driver does not initialize the
1392
* data buffers of read commands. Zero-initialize these buffers
1393
* anyway if KMSAN is enabled to prevent that KMSAN complains
1394
* about null_blk not initializing read data buffers.
1395
*/
1396
if (IS_ENABLED(CONFIG_KMSAN))
1397
nullb_zero_read_cmd_buffer(cmd);
1398
1399
/* Complete IO by inline, softirq or timer */
1400
switch (cmd->nq->dev->irqmode) {
1401
case NULL_IRQ_SOFTIRQ:
1402
blk_mq_complete_request(rq);
1403
break;
1404
case NULL_IRQ_NONE:
1405
blk_mq_end_request(rq, cmd->error);
1406
break;
1407
case NULL_IRQ_TIMER:
1408
null_cmd_end_timer(cmd);
1409
break;
1410
}
1411
}
1412
1413
blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1414
sector_t sector, unsigned int nr_sectors)
1415
{
1416
struct nullb_device *dev = cmd->nq->dev;
1417
blk_status_t badblocks_ret = BLK_STS_OK;
1418
blk_status_t ret;
1419
1420
if (dev->badblocks.shift != -1)
1421
badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors);
1422
1423
if (dev->memory_backed && nr_sectors) {
1424
ret = null_handle_memory_backed(cmd, op, sector, nr_sectors);
1425
if (ret != BLK_STS_OK)
1426
return ret;
1427
}
1428
1429
return badblocks_ret;
1430
}
1431
1432
static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1433
sector_t nr_sectors, enum req_op op)
1434
{
1435
struct nullb_device *dev = cmd->nq->dev;
1436
struct nullb *nullb = dev->nullb;
1437
blk_status_t sts;
1438
1439
if (op == REQ_OP_FLUSH) {
1440
cmd->error = null_handle_flush(nullb);
1441
goto out;
1442
}
1443
1444
if (dev->zoned)
1445
sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1446
else
1447
sts = null_process_cmd(cmd, op, sector, nr_sectors);
1448
1449
/* Do not overwrite errors (e.g. timeout errors) */
1450
if (cmd->error == BLK_STS_OK)
1451
cmd->error = sts;
1452
1453
out:
1454
nullb_complete_cmd(cmd);
1455
}
1456
1457
static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1458
{
1459
struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1460
ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1461
unsigned int mbps = nullb->dev->mbps;
1462
1463
if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1464
return HRTIMER_NORESTART;
1465
1466
atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1467
blk_mq_start_stopped_hw_queues(nullb->q, true);
1468
1469
hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1470
1471
return HRTIMER_RESTART;
1472
}
1473
1474
static void nullb_setup_bwtimer(struct nullb *nullb)
1475
{
1476
ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1477
1478
hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1479
atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1480
hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1481
}
1482
1483
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1484
1485
static bool should_timeout_request(struct request *rq)
1486
{
1487
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1488
struct nullb_device *dev = cmd->nq->dev;
1489
1490
return should_fail(&dev->timeout_config.attr, 1);
1491
}
1492
1493
static bool should_requeue_request(struct request *rq)
1494
{
1495
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1496
struct nullb_device *dev = cmd->nq->dev;
1497
1498
return should_fail(&dev->requeue_config.attr, 1);
1499
}
1500
1501
static bool should_init_hctx_fail(struct nullb_device *dev)
1502
{
1503
return should_fail(&dev->init_hctx_fault_config.attr, 1);
1504
}
1505
1506
#else
1507
1508
static bool should_timeout_request(struct request *rq)
1509
{
1510
return false;
1511
}
1512
1513
static bool should_requeue_request(struct request *rq)
1514
{
1515
return false;
1516
}
1517
1518
static bool should_init_hctx_fail(struct nullb_device *dev)
1519
{
1520
return false;
1521
}
1522
1523
#endif
1524
1525
static void null_map_queues(struct blk_mq_tag_set *set)
1526
{
1527
struct nullb *nullb = set->driver_data;
1528
int i, qoff;
1529
unsigned int submit_queues = g_submit_queues;
1530
unsigned int poll_queues = g_poll_queues;
1531
1532
if (nullb) {
1533
struct nullb_device *dev = nullb->dev;
1534
1535
/*
1536
* Refer nr_hw_queues of the tag set to check if the expected
1537
* number of hardware queues are prepared. If block layer failed
1538
* to prepare them, use previous numbers of submit queues and
1539
* poll queues to map queues.
1540
*/
1541
if (set->nr_hw_queues ==
1542
dev->submit_queues + dev->poll_queues) {
1543
submit_queues = dev->submit_queues;
1544
poll_queues = dev->poll_queues;
1545
} else if (set->nr_hw_queues ==
1546
dev->prev_submit_queues + dev->prev_poll_queues) {
1547
submit_queues = dev->prev_submit_queues;
1548
poll_queues = dev->prev_poll_queues;
1549
} else {
1550
pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1551
set->nr_hw_queues);
1552
WARN_ON_ONCE(true);
1553
submit_queues = 1;
1554
poll_queues = 0;
1555
}
1556
}
1557
1558
for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1559
struct blk_mq_queue_map *map = &set->map[i];
1560
1561
switch (i) {
1562
case HCTX_TYPE_DEFAULT:
1563
map->nr_queues = submit_queues;
1564
break;
1565
case HCTX_TYPE_READ:
1566
map->nr_queues = 0;
1567
continue;
1568
case HCTX_TYPE_POLL:
1569
map->nr_queues = poll_queues;
1570
break;
1571
}
1572
map->queue_offset = qoff;
1573
qoff += map->nr_queues;
1574
blk_mq_map_queues(map);
1575
}
1576
}
1577
1578
static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1579
{
1580
struct nullb_queue *nq = hctx->driver_data;
1581
LIST_HEAD(list);
1582
int nr = 0;
1583
struct request *rq;
1584
1585
spin_lock(&nq->poll_lock);
1586
list_splice_init(&nq->poll_list, &list);
1587
list_for_each_entry(rq, &list, queuelist)
1588
blk_mq_set_request_complete(rq);
1589
spin_unlock(&nq->poll_lock);
1590
1591
while (!list_empty(&list)) {
1592
struct nullb_cmd *cmd;
1593
struct request *req;
1594
1595
req = list_first_entry(&list, struct request, queuelist);
1596
list_del_init(&req->queuelist);
1597
cmd = blk_mq_rq_to_pdu(req);
1598
cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1599
blk_rq_sectors(req));
1600
if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK,
1601
blk_mq_end_request_batch))
1602
blk_mq_end_request(req, cmd->error);
1603
nr++;
1604
}
1605
1606
return nr;
1607
}
1608
1609
static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1610
{
1611
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1612
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1613
1614
if (hctx->type == HCTX_TYPE_POLL) {
1615
struct nullb_queue *nq = hctx->driver_data;
1616
1617
spin_lock(&nq->poll_lock);
1618
/* The request may have completed meanwhile. */
1619
if (blk_mq_request_completed(rq)) {
1620
spin_unlock(&nq->poll_lock);
1621
return BLK_EH_DONE;
1622
}
1623
list_del_init(&rq->queuelist);
1624
spin_unlock(&nq->poll_lock);
1625
}
1626
1627
pr_info("rq %p timed out\n", rq);
1628
1629
/*
1630
* If the device is marked as blocking (i.e. memory backed or zoned
1631
* device), the submission path may be blocked waiting for resources
1632
* and cause real timeouts. For these real timeouts, the submission
1633
* path will complete the request using blk_mq_complete_request().
1634
* Only fake timeouts need to execute blk_mq_complete_request() here.
1635
*/
1636
cmd->error = BLK_STS_TIMEOUT;
1637
if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1638
blk_mq_complete_request(rq);
1639
return BLK_EH_DONE;
1640
}
1641
1642
static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1643
const struct blk_mq_queue_data *bd)
1644
{
1645
struct request *rq = bd->rq;
1646
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1647
struct nullb_queue *nq = hctx->driver_data;
1648
sector_t nr_sectors = blk_rq_sectors(rq);
1649
sector_t sector = blk_rq_pos(rq);
1650
const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1651
1652
might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1653
1654
if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1655
hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC,
1656
HRTIMER_MODE_REL);
1657
}
1658
cmd->error = BLK_STS_OK;
1659
cmd->nq = nq;
1660
cmd->fake_timeout = should_timeout_request(rq) ||
1661
blk_should_fake_timeout(rq->q);
1662
1663
if (should_requeue_request(rq)) {
1664
/*
1665
* Alternate between hitting the core BUSY path, and the
1666
* driver driven requeue path
1667
*/
1668
nq->requeue_selection++;
1669
if (nq->requeue_selection & 1)
1670
return BLK_STS_RESOURCE;
1671
blk_mq_requeue_request(rq, true);
1672
return BLK_STS_OK;
1673
}
1674
1675
if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1676
blk_status_t sts = null_handle_throttled(cmd);
1677
1678
if (sts != BLK_STS_OK)
1679
return sts;
1680
}
1681
1682
blk_mq_start_request(rq);
1683
1684
if (is_poll) {
1685
spin_lock(&nq->poll_lock);
1686
list_add_tail(&rq->queuelist, &nq->poll_list);
1687
spin_unlock(&nq->poll_lock);
1688
return BLK_STS_OK;
1689
}
1690
if (cmd->fake_timeout)
1691
return BLK_STS_OK;
1692
1693
null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1694
return BLK_STS_OK;
1695
}
1696
1697
static void null_queue_rqs(struct rq_list *rqlist)
1698
{
1699
struct rq_list requeue_list = {};
1700
struct blk_mq_queue_data bd = { };
1701
blk_status_t ret;
1702
1703
do {
1704
struct request *rq = rq_list_pop(rqlist);
1705
1706
bd.rq = rq;
1707
ret = null_queue_rq(rq->mq_hctx, &bd);
1708
if (ret != BLK_STS_OK)
1709
rq_list_add_tail(&requeue_list, rq);
1710
} while (!rq_list_empty(rqlist));
1711
1712
*rqlist = requeue_list;
1713
}
1714
1715
static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1716
{
1717
nq->dev = nullb->dev;
1718
INIT_LIST_HEAD(&nq->poll_list);
1719
spin_lock_init(&nq->poll_lock);
1720
}
1721
1722
static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1723
unsigned int hctx_idx)
1724
{
1725
struct nullb *nullb = hctx->queue->queuedata;
1726
struct nullb_queue *nq;
1727
1728
if (should_init_hctx_fail(nullb->dev))
1729
return -EFAULT;
1730
1731
nq = &nullb->queues[hctx_idx];
1732
hctx->driver_data = nq;
1733
null_init_queue(nullb, nq);
1734
1735
return 0;
1736
}
1737
1738
static const struct blk_mq_ops null_mq_ops = {
1739
.queue_rq = null_queue_rq,
1740
.queue_rqs = null_queue_rqs,
1741
.complete = null_complete_rq,
1742
.timeout = null_timeout_rq,
1743
.poll = null_poll,
1744
.map_queues = null_map_queues,
1745
.init_hctx = null_init_hctx,
1746
};
1747
1748
static void null_del_dev(struct nullb *nullb)
1749
{
1750
struct nullb_device *dev;
1751
1752
if (!nullb)
1753
return;
1754
1755
dev = nullb->dev;
1756
1757
ida_free(&nullb_indexes, nullb->index);
1758
1759
list_del_init(&nullb->list);
1760
1761
del_gendisk(nullb->disk);
1762
1763
if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1764
hrtimer_cancel(&nullb->bw_timer);
1765
atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1766
blk_mq_start_stopped_hw_queues(nullb->q, true);
1767
}
1768
1769
put_disk(nullb->disk);
1770
if (nullb->tag_set == &nullb->__tag_set)
1771
blk_mq_free_tag_set(nullb->tag_set);
1772
kfree(nullb->queues);
1773
if (null_cache_active(nullb))
1774
null_free_device_storage(nullb->dev, true);
1775
kfree(nullb);
1776
dev->nullb = NULL;
1777
}
1778
1779
static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1780
{
1781
if (nullb->dev->discard == false)
1782
return;
1783
1784
if (!nullb->dev->memory_backed) {
1785
nullb->dev->discard = false;
1786
pr_info("discard option is ignored without memory backing\n");
1787
return;
1788
}
1789
1790
if (nullb->dev->zoned) {
1791
nullb->dev->discard = false;
1792
pr_info("discard option is ignored in zoned mode\n");
1793
return;
1794
}
1795
1796
lim->max_hw_discard_sectors = UINT_MAX >> 9;
1797
}
1798
1799
static const struct block_device_operations null_ops = {
1800
.owner = THIS_MODULE,
1801
.report_zones = null_report_zones,
1802
};
1803
1804
static int setup_queues(struct nullb *nullb)
1805
{
1806
int nqueues = nr_cpu_ids;
1807
1808
if (g_poll_queues)
1809
nqueues += g_poll_queues;
1810
1811
nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1812
GFP_KERNEL);
1813
if (!nullb->queues)
1814
return -ENOMEM;
1815
1816
return 0;
1817
}
1818
1819
static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1820
{
1821
set->ops = &null_mq_ops;
1822
set->cmd_size = sizeof(struct nullb_cmd);
1823
set->timeout = 5 * HZ;
1824
set->nr_maps = 1;
1825
if (poll_queues) {
1826
set->nr_hw_queues += poll_queues;
1827
set->nr_maps += 2;
1828
}
1829
return blk_mq_alloc_tag_set(set);
1830
}
1831
1832
static int null_init_global_tag_set(void)
1833
{
1834
int error;
1835
1836
if (tag_set.ops)
1837
return 0;
1838
1839
tag_set.nr_hw_queues = g_submit_queues;
1840
tag_set.queue_depth = g_hw_queue_depth;
1841
tag_set.numa_node = g_home_node;
1842
if (g_no_sched)
1843
tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1844
if (g_shared_tag_bitmap)
1845
tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1846
if (g_blocking)
1847
tag_set.flags |= BLK_MQ_F_BLOCKING;
1848
1849
error = null_init_tag_set(&tag_set, g_poll_queues);
1850
if (error)
1851
tag_set.ops = NULL;
1852
return error;
1853
}
1854
1855
static int null_setup_tagset(struct nullb *nullb)
1856
{
1857
if (nullb->dev->shared_tags) {
1858
nullb->tag_set = &tag_set;
1859
return null_init_global_tag_set();
1860
}
1861
1862
nullb->tag_set = &nullb->__tag_set;
1863
nullb->tag_set->driver_data = nullb;
1864
nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1865
nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1866
nullb->tag_set->numa_node = nullb->dev->home_node;
1867
if (nullb->dev->no_sched)
1868
nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1869
if (nullb->dev->shared_tag_bitmap)
1870
nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1871
if (nullb->dev->blocking)
1872
nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1873
return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1874
}
1875
1876
static int null_validate_conf(struct nullb_device *dev)
1877
{
1878
if (dev->queue_mode == NULL_Q_RQ) {
1879
pr_err("legacy IO path is no longer available\n");
1880
return -EINVAL;
1881
}
1882
if (dev->queue_mode == NULL_Q_BIO) {
1883
pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1884
dev->queue_mode = NULL_Q_MQ;
1885
}
1886
1887
if (dev->use_per_node_hctx) {
1888
if (dev->submit_queues != nr_online_nodes)
1889
dev->submit_queues = nr_online_nodes;
1890
} else if (dev->submit_queues > nr_cpu_ids)
1891
dev->submit_queues = nr_cpu_ids;
1892
else if (dev->submit_queues == 0)
1893
dev->submit_queues = 1;
1894
dev->prev_submit_queues = dev->submit_queues;
1895
1896
if (dev->poll_queues > g_poll_queues)
1897
dev->poll_queues = g_poll_queues;
1898
dev->prev_poll_queues = dev->poll_queues;
1899
dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1900
1901
/* Do memory allocation, so set blocking */
1902
if (dev->memory_backed)
1903
dev->blocking = true;
1904
else /* cache is meaningless */
1905
dev->cache_size = 0;
1906
dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1907
dev->cache_size);
1908
dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1909
1910
if (dev->zoned &&
1911
(!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1912
pr_err("zone_size must be power-of-two\n");
1913
return -EINVAL;
1914
}
1915
1916
return 0;
1917
}
1918
1919
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1920
static bool __null_setup_fault(struct fault_attr *attr, char *str)
1921
{
1922
if (!str[0])
1923
return true;
1924
1925
if (!setup_fault_attr(attr, str))
1926
return false;
1927
1928
attr->verbose = 0;
1929
return true;
1930
}
1931
#endif
1932
1933
static bool null_setup_fault(void)
1934
{
1935
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1936
if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1937
return false;
1938
if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1939
return false;
1940
if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1941
return false;
1942
#endif
1943
return true;
1944
}
1945
1946
static int null_add_dev(struct nullb_device *dev)
1947
{
1948
struct queue_limits lim = {
1949
.logical_block_size = dev->blocksize,
1950
.physical_block_size = dev->blocksize,
1951
.max_hw_sectors = dev->max_sectors,
1952
};
1953
1954
struct nullb *nullb;
1955
int rv;
1956
1957
rv = null_validate_conf(dev);
1958
if (rv)
1959
return rv;
1960
1961
nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1962
if (!nullb) {
1963
rv = -ENOMEM;
1964
goto out;
1965
}
1966
nullb->dev = dev;
1967
dev->nullb = nullb;
1968
1969
spin_lock_init(&nullb->lock);
1970
1971
rv = setup_queues(nullb);
1972
if (rv)
1973
goto out_free_nullb;
1974
1975
rv = null_setup_tagset(nullb);
1976
if (rv)
1977
goto out_cleanup_queues;
1978
1979
if (dev->virt_boundary)
1980
lim.virt_boundary_mask = PAGE_SIZE - 1;
1981
null_config_discard(nullb, &lim);
1982
if (dev->zoned) {
1983
rv = null_init_zoned_dev(dev, &lim);
1984
if (rv)
1985
goto out_cleanup_tags;
1986
}
1987
1988
if (dev->cache_size > 0) {
1989
set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1990
lim.features |= BLK_FEAT_WRITE_CACHE;
1991
if (dev->fua)
1992
lim.features |= BLK_FEAT_FUA;
1993
}
1994
1995
if (dev->rotational)
1996
lim.features |= BLK_FEAT_ROTATIONAL;
1997
1998
nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1999
if (IS_ERR(nullb->disk)) {
2000
rv = PTR_ERR(nullb->disk);
2001
goto out_cleanup_zone;
2002
}
2003
nullb->q = nullb->disk->queue;
2004
2005
if (dev->mbps) {
2006
set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2007
nullb_setup_bwtimer(nullb);
2008
}
2009
2010
nullb->q->queuedata = nullb;
2011
2012
rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2013
if (rv < 0)
2014
goto out_cleanup_disk;
2015
2016
nullb->index = rv;
2017
dev->index = rv;
2018
2019
if (config_item_name(&dev->group.cg_item)) {
2020
/* Use configfs dir name as the device name */
2021
snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2022
"%s", config_item_name(&dev->group.cg_item));
2023
} else {
2024
sprintf(nullb->disk_name, "nullb%d", nullb->index);
2025
}
2026
2027
set_capacity(nullb->disk,
2028
((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2029
nullb->disk->major = null_major;
2030
nullb->disk->first_minor = nullb->index;
2031
nullb->disk->minors = 1;
2032
nullb->disk->fops = &null_ops;
2033
nullb->disk->private_data = nullb;
2034
strscpy(nullb->disk->disk_name, nullb->disk_name);
2035
2036
if (nullb->dev->zoned) {
2037
rv = null_register_zoned_dev(nullb);
2038
if (rv)
2039
goto out_ida_free;
2040
}
2041
2042
rv = add_disk(nullb->disk);
2043
if (rv)
2044
goto out_ida_free;
2045
2046
list_add_tail(&nullb->list, &nullb_list);
2047
2048
pr_info("disk %s created\n", nullb->disk_name);
2049
2050
return 0;
2051
2052
out_ida_free:
2053
ida_free(&nullb_indexes, nullb->index);
2054
out_cleanup_disk:
2055
put_disk(nullb->disk);
2056
out_cleanup_zone:
2057
null_free_zoned_dev(dev);
2058
out_cleanup_tags:
2059
if (nullb->tag_set == &nullb->__tag_set)
2060
blk_mq_free_tag_set(nullb->tag_set);
2061
out_cleanup_queues:
2062
kfree(nullb->queues);
2063
out_free_nullb:
2064
kfree(nullb);
2065
dev->nullb = NULL;
2066
out:
2067
return rv;
2068
}
2069
2070
static struct nullb *null_find_dev_by_name(const char *name)
2071
{
2072
struct nullb *nullb = NULL, *nb;
2073
2074
mutex_lock(&lock);
2075
list_for_each_entry(nb, &nullb_list, list) {
2076
if (strcmp(nb->disk_name, name) == 0) {
2077
nullb = nb;
2078
break;
2079
}
2080
}
2081
mutex_unlock(&lock);
2082
2083
return nullb;
2084
}
2085
2086
static int null_create_dev(void)
2087
{
2088
struct nullb_device *dev;
2089
int ret;
2090
2091
dev = null_alloc_dev();
2092
if (!dev)
2093
return -ENOMEM;
2094
2095
mutex_lock(&lock);
2096
ret = null_add_dev(dev);
2097
mutex_unlock(&lock);
2098
if (ret) {
2099
null_free_dev(dev);
2100
return ret;
2101
}
2102
2103
return 0;
2104
}
2105
2106
static void null_destroy_dev(struct nullb *nullb)
2107
{
2108
struct nullb_device *dev = nullb->dev;
2109
2110
null_del_dev(nullb);
2111
null_free_device_storage(dev, false);
2112
null_free_dev(dev);
2113
}
2114
2115
static int __init null_init(void)
2116
{
2117
int ret = 0;
2118
unsigned int i;
2119
struct nullb *nullb;
2120
2121
if (g_bs > PAGE_SIZE) {
2122
pr_warn("invalid block size\n");
2123
pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2124
g_bs = PAGE_SIZE;
2125
}
2126
2127
if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2128
pr_err("invalid home_node value\n");
2129
g_home_node = NUMA_NO_NODE;
2130
}
2131
2132
if (!null_setup_fault())
2133
return -EINVAL;
2134
2135
if (g_queue_mode == NULL_Q_RQ) {
2136
pr_err("legacy IO path is no longer available\n");
2137
return -EINVAL;
2138
}
2139
2140
if (g_use_per_node_hctx) {
2141
if (g_submit_queues != nr_online_nodes) {
2142
pr_warn("submit_queues param is set to %u.\n",
2143
nr_online_nodes);
2144
g_submit_queues = nr_online_nodes;
2145
}
2146
} else if (g_submit_queues > nr_cpu_ids) {
2147
g_submit_queues = nr_cpu_ids;
2148
} else if (g_submit_queues <= 0) {
2149
g_submit_queues = 1;
2150
}
2151
2152
config_group_init(&nullb_subsys.su_group);
2153
mutex_init(&nullb_subsys.su_mutex);
2154
2155
ret = configfs_register_subsystem(&nullb_subsys);
2156
if (ret)
2157
return ret;
2158
2159
mutex_init(&lock);
2160
2161
null_major = register_blkdev(0, "nullb");
2162
if (null_major < 0) {
2163
ret = null_major;
2164
goto err_conf;
2165
}
2166
2167
for (i = 0; i < nr_devices; i++) {
2168
ret = null_create_dev();
2169
if (ret)
2170
goto err_dev;
2171
}
2172
2173
pr_info("module loaded\n");
2174
return 0;
2175
2176
err_dev:
2177
while (!list_empty(&nullb_list)) {
2178
nullb = list_entry(nullb_list.next, struct nullb, list);
2179
null_destroy_dev(nullb);
2180
}
2181
unregister_blkdev(null_major, "nullb");
2182
err_conf:
2183
configfs_unregister_subsystem(&nullb_subsys);
2184
return ret;
2185
}
2186
2187
static void __exit null_exit(void)
2188
{
2189
struct nullb *nullb;
2190
2191
configfs_unregister_subsystem(&nullb_subsys);
2192
2193
unregister_blkdev(null_major, "nullb");
2194
2195
mutex_lock(&lock);
2196
while (!list_empty(&nullb_list)) {
2197
nullb = list_entry(nullb_list.next, struct nullb, list);
2198
null_destroy_dev(nullb);
2199
}
2200
mutex_unlock(&lock);
2201
2202
if (tag_set.ops)
2203
blk_mq_free_tag_set(&tag_set);
2204
2205
mutex_destroy(&lock);
2206
}
2207
2208
module_init(null_init);
2209
module_exit(null_exit);
2210
2211
MODULE_AUTHOR("Jens Axboe <[email protected]>");
2212
MODULE_DESCRIPTION("multi queue aware block test driver");
2213
MODULE_LICENSE("GPL");
2214
2215