Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/rbd.c
48927 views
1
2
/*
3
rbd.c -- Export ceph rados objects as a Linux block device
4
5
6
based on drivers/block/osdblk.c:
7
8
Copyright 2009 Red Hat, Inc.
9
10
This program is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation.
13
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
GNU General Public License for more details.
18
19
You should have received a copy of the GNU General Public License
20
along with this program; see the file COPYING. If not, write to
21
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25
For usage instructions, please refer to:
26
27
Documentation/ABI/testing/sysfs-bus-rbd
28
29
*/
30
31
#include <linux/ceph/libceph.h>
32
#include <linux/ceph/osd_client.h>
33
#include <linux/ceph/mon_client.h>
34
#include <linux/ceph/cls_lock_client.h>
35
#include <linux/ceph/striper.h>
36
#include <linux/ceph/decode.h>
37
#include <linux/fs_parser.h>
38
#include <linux/bsearch.h>
39
40
#include <linux/kernel.h>
41
#include <linux/device.h>
42
#include <linux/module.h>
43
#include <linux/blk-mq.h>
44
#include <linux/fs.h>
45
#include <linux/blkdev.h>
46
#include <linux/slab.h>
47
#include <linux/idr.h>
48
#include <linux/workqueue.h>
49
50
#include "rbd_types.h"
51
52
#define RBD_DEBUG /* Activate rbd_assert() calls */
53
54
/*
55
* Increment the given counter and return its updated value.
56
* If the counter is already 0 it will not be incremented.
57
* If the counter is already at its maximum value returns
58
* -EINVAL without updating it.
59
*/
60
static int atomic_inc_return_safe(atomic_t *v)
61
{
62
unsigned int counter;
63
64
counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65
if (counter <= (unsigned int)INT_MAX)
66
return (int)counter;
67
68
atomic_dec(v);
69
70
return -EINVAL;
71
}
72
73
/* Decrement the counter. Return the resulting value, or -EINVAL */
74
static int atomic_dec_return_safe(atomic_t *v)
75
{
76
int counter;
77
78
counter = atomic_dec_return(v);
79
if (counter >= 0)
80
return counter;
81
82
atomic_inc(v);
83
84
return -EINVAL;
85
}
86
87
#define RBD_DRV_NAME "rbd"
88
89
#define RBD_MINORS_PER_MAJOR 256
90
#define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92
#define RBD_MAX_PARENT_CHAIN_LEN 16
93
94
#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95
#define RBD_MAX_SNAP_NAME_LEN \
96
(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98
#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100
#define RBD_SNAP_HEAD_NAME "-"
101
102
#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104
/* This allows a single page to hold an image name sent by OSD */
105
#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106
#define RBD_IMAGE_ID_LEN_MAX 64
107
108
#define RBD_OBJ_PREFIX_LEN_MAX 64
109
110
#define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111
#define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113
/* Feature bits */
114
115
#define RBD_FEATURE_LAYERING (1ULL<<0)
116
#define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117
#define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118
#define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119
#define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120
#define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121
#define RBD_FEATURE_DATA_POOL (1ULL<<7)
122
#define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124
#define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125
RBD_FEATURE_STRIPINGV2 | \
126
RBD_FEATURE_EXCLUSIVE_LOCK | \
127
RBD_FEATURE_OBJECT_MAP | \
128
RBD_FEATURE_FAST_DIFF | \
129
RBD_FEATURE_DEEP_FLATTEN | \
130
RBD_FEATURE_DATA_POOL | \
131
RBD_FEATURE_OPERATIONS)
132
133
/* Features supported by this (client software) implementation. */
134
135
#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137
/*
138
* An RBD device name will be "rbd#", where the "rbd" comes from
139
* RBD_DRV_NAME above, and # is a unique integer identifier.
140
*/
141
#define DEV_NAME_LEN 32
142
143
/*
144
* block device image metadata (in-memory version)
145
*/
146
struct rbd_image_header {
147
/* These six fields never change for a given rbd image */
148
char *object_prefix;
149
__u8 obj_order;
150
u64 stripe_unit;
151
u64 stripe_count;
152
s64 data_pool_id;
153
u64 features; /* Might be changeable someday? */
154
155
/* The remaining fields need to be updated occasionally */
156
u64 image_size;
157
struct ceph_snap_context *snapc;
158
char *snap_names; /* format 1 only */
159
u64 *snap_sizes; /* format 1 only */
160
};
161
162
/*
163
* An rbd image specification.
164
*
165
* The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166
* identify an image. Each rbd_dev structure includes a pointer to
167
* an rbd_spec structure that encapsulates this identity.
168
*
169
* Each of the id's in an rbd_spec has an associated name. For a
170
* user-mapped image, the names are supplied and the id's associated
171
* with them are looked up. For a layered image, a parent image is
172
* defined by the tuple, and the names are looked up.
173
*
174
* An rbd_dev structure contains a parent_spec pointer which is
175
* non-null if the image it represents is a child in a layered
176
* image. This pointer will refer to the rbd_spec structure used
177
* by the parent rbd_dev for its own identity (i.e., the structure
178
* is shared between the parent and child).
179
*
180
* Since these structures are populated once, during the discovery
181
* phase of image construction, they are effectively immutable so
182
* we make no effort to synchronize access to them.
183
*
184
* Note that code herein does not assume the image name is known (it
185
* could be a null pointer).
186
*/
187
struct rbd_spec {
188
u64 pool_id;
189
const char *pool_name;
190
const char *pool_ns; /* NULL if default, never "" */
191
192
const char *image_id;
193
const char *image_name;
194
195
u64 snap_id;
196
const char *snap_name;
197
198
struct kref kref;
199
};
200
201
/*
202
* an instance of the client. multiple devices may share an rbd client.
203
*/
204
struct rbd_client {
205
struct ceph_client *client;
206
struct kref kref;
207
struct list_head node;
208
};
209
210
struct pending_result {
211
int result; /* first nonzero result */
212
int num_pending;
213
};
214
215
struct rbd_img_request;
216
217
enum obj_request_type {
218
OBJ_REQUEST_NODATA = 1,
219
OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220
OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221
OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222
};
223
224
enum obj_operation_type {
225
OBJ_OP_READ = 1,
226
OBJ_OP_WRITE,
227
OBJ_OP_DISCARD,
228
OBJ_OP_ZEROOUT,
229
};
230
231
#define RBD_OBJ_FLAG_DELETION (1U << 0)
232
#define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233
#define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234
#define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235
#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237
enum rbd_obj_read_state {
238
RBD_OBJ_READ_START = 1,
239
RBD_OBJ_READ_OBJECT,
240
RBD_OBJ_READ_PARENT,
241
};
242
243
/*
244
* Writes go through the following state machine to deal with
245
* layering:
246
*
247
* . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248
* . | .
249
* . v .
250
* . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251
* . | . .
252
* . v v (deep-copyup .
253
* (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254
* flattened) v | . .
255
* . v . .
256
* . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257
* | not needed) v
258
* v .
259
* done . . . . . . . . . . . . . . . . . .
260
* ^
261
* |
262
* RBD_OBJ_WRITE_FLAT
263
*
264
* Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265
* assert_exists guard is needed or not (in some cases it's not needed
266
* even if there is a parent).
267
*/
268
enum rbd_obj_write_state {
269
RBD_OBJ_WRITE_START = 1,
270
RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271
RBD_OBJ_WRITE_OBJECT,
272
__RBD_OBJ_WRITE_COPYUP,
273
RBD_OBJ_WRITE_COPYUP,
274
RBD_OBJ_WRITE_POST_OBJECT_MAP,
275
};
276
277
enum rbd_obj_copyup_state {
278
RBD_OBJ_COPYUP_START = 1,
279
RBD_OBJ_COPYUP_READ_PARENT,
280
__RBD_OBJ_COPYUP_OBJECT_MAPS,
281
RBD_OBJ_COPYUP_OBJECT_MAPS,
282
__RBD_OBJ_COPYUP_WRITE_OBJECT,
283
RBD_OBJ_COPYUP_WRITE_OBJECT,
284
};
285
286
struct rbd_obj_request {
287
struct ceph_object_extent ex;
288
unsigned int flags; /* RBD_OBJ_FLAG_* */
289
union {
290
enum rbd_obj_read_state read_state; /* for reads */
291
enum rbd_obj_write_state write_state; /* for writes */
292
};
293
294
struct rbd_img_request *img_request;
295
struct ceph_file_extent *img_extents;
296
u32 num_img_extents;
297
298
union {
299
struct ceph_bio_iter bio_pos;
300
struct {
301
struct ceph_bvec_iter bvec_pos;
302
u32 bvec_count;
303
u32 bvec_idx;
304
};
305
};
306
307
enum rbd_obj_copyup_state copyup_state;
308
struct bio_vec *copyup_bvecs;
309
u32 copyup_bvec_count;
310
311
struct list_head osd_reqs; /* w/ r_private_item */
312
313
struct mutex state_mutex;
314
struct pending_result pending;
315
struct kref kref;
316
};
317
318
enum img_req_flags {
319
IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320
IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321
};
322
323
enum rbd_img_state {
324
RBD_IMG_START = 1,
325
RBD_IMG_EXCLUSIVE_LOCK,
326
__RBD_IMG_OBJECT_REQUESTS,
327
RBD_IMG_OBJECT_REQUESTS,
328
};
329
330
struct rbd_img_request {
331
struct rbd_device *rbd_dev;
332
enum obj_operation_type op_type;
333
enum obj_request_type data_type;
334
unsigned long flags;
335
enum rbd_img_state state;
336
union {
337
u64 snap_id; /* for reads */
338
struct ceph_snap_context *snapc; /* for writes */
339
};
340
struct rbd_obj_request *obj_request; /* obj req initiator */
341
342
struct list_head lock_item;
343
struct list_head object_extents; /* obj_req.ex structs */
344
345
struct mutex state_mutex;
346
struct pending_result pending;
347
struct work_struct work;
348
int work_result;
349
};
350
351
#define for_each_obj_request(ireq, oreq) \
352
list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353
#define for_each_obj_request_safe(ireq, oreq, n) \
354
list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356
enum rbd_watch_state {
357
RBD_WATCH_STATE_UNREGISTERED,
358
RBD_WATCH_STATE_REGISTERED,
359
RBD_WATCH_STATE_ERROR,
360
};
361
362
enum rbd_lock_state {
363
RBD_LOCK_STATE_UNLOCKED,
364
RBD_LOCK_STATE_LOCKED,
365
RBD_LOCK_STATE_QUIESCING,
366
};
367
368
/* WatchNotify::ClientId */
369
struct rbd_client_id {
370
u64 gid;
371
u64 handle;
372
};
373
374
struct rbd_mapping {
375
u64 size;
376
};
377
378
/*
379
* a single device
380
*/
381
struct rbd_device {
382
int dev_id; /* blkdev unique id */
383
384
int major; /* blkdev assigned major */
385
int minor;
386
struct gendisk *disk; /* blkdev's gendisk and rq */
387
388
u32 image_format; /* Either 1 or 2 */
389
struct rbd_client *rbd_client;
390
391
char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393
spinlock_t lock; /* queue, flags, open_count */
394
395
struct rbd_image_header header;
396
unsigned long flags; /* possibly lock protected */
397
struct rbd_spec *spec;
398
struct rbd_options *opts;
399
char *config_info; /* add{,_single_major} string */
400
401
struct ceph_object_id header_oid;
402
struct ceph_object_locator header_oloc;
403
404
struct ceph_file_layout layout; /* used for all rbd requests */
405
406
struct mutex watch_mutex;
407
enum rbd_watch_state watch_state;
408
struct ceph_osd_linger_request *watch_handle;
409
u64 watch_cookie;
410
struct delayed_work watch_dwork;
411
412
struct rw_semaphore lock_rwsem;
413
enum rbd_lock_state lock_state;
414
char lock_cookie[32];
415
struct rbd_client_id owner_cid;
416
struct work_struct acquired_lock_work;
417
struct work_struct released_lock_work;
418
struct delayed_work lock_dwork;
419
struct work_struct unlock_work;
420
spinlock_t lock_lists_lock;
421
struct list_head acquiring_list;
422
struct list_head running_list;
423
struct completion acquire_wait;
424
int acquire_err;
425
struct completion quiescing_wait;
426
427
spinlock_t object_map_lock;
428
u8 *object_map;
429
u64 object_map_size; /* in objects */
430
u64 object_map_flags;
431
432
struct workqueue_struct *task_wq;
433
434
struct rbd_spec *parent_spec;
435
u64 parent_overlap;
436
atomic_t parent_ref;
437
struct rbd_device *parent;
438
439
/* Block layer tags. */
440
struct blk_mq_tag_set tag_set;
441
442
/* protects updating the header */
443
struct rw_semaphore header_rwsem;
444
445
struct rbd_mapping mapping;
446
447
struct list_head node;
448
449
/* sysfs related */
450
struct device dev;
451
unsigned long open_count; /* protected by lock */
452
};
453
454
/*
455
* Flag bits for rbd_dev->flags:
456
* - REMOVING (which is coupled with rbd_dev->open_count) is protected
457
* by rbd_dev->lock
458
*/
459
enum rbd_dev_flags {
460
RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461
RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462
RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463
};
464
465
static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467
static LIST_HEAD(rbd_dev_list); /* devices */
468
static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470
static LIST_HEAD(rbd_client_list); /* clients */
471
static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473
/* Slab caches for frequently-allocated structures */
474
475
static struct kmem_cache *rbd_img_request_cache;
476
static struct kmem_cache *rbd_obj_request_cache;
477
478
static int rbd_major;
479
static DEFINE_IDA(rbd_dev_id_ida);
480
481
static struct workqueue_struct *rbd_wq;
482
483
static struct ceph_snap_context rbd_empty_snapc = {
484
.nref = REFCOUNT_INIT(1),
485
};
486
487
/*
488
* single-major requires >= 0.75 version of userspace rbd utility.
489
*/
490
static bool single_major = true;
491
module_param(single_major, bool, 0444);
492
MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494
static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495
static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496
size_t count);
497
static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498
size_t count);
499
static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500
size_t count);
501
static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503
static int rbd_dev_id_to_minor(int dev_id)
504
{
505
return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506
}
507
508
static int minor_to_rbd_dev_id(int minor)
509
{
510
return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511
}
512
513
static bool rbd_is_ro(struct rbd_device *rbd_dev)
514
{
515
return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516
}
517
518
static bool rbd_is_snap(struct rbd_device *rbd_dev)
519
{
520
return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521
}
522
523
static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524
{
525
lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527
return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528
rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING;
529
}
530
531
static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532
{
533
bool is_lock_owner;
534
535
down_read(&rbd_dev->lock_rwsem);
536
is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537
up_read(&rbd_dev->lock_rwsem);
538
return is_lock_owner;
539
}
540
541
static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542
{
543
return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544
}
545
546
static BUS_ATTR_WO(add);
547
static BUS_ATTR_WO(remove);
548
static BUS_ATTR_WO(add_single_major);
549
static BUS_ATTR_WO(remove_single_major);
550
static BUS_ATTR_RO(supported_features);
551
552
static struct attribute *rbd_bus_attrs[] = {
553
&bus_attr_add.attr,
554
&bus_attr_remove.attr,
555
&bus_attr_add_single_major.attr,
556
&bus_attr_remove_single_major.attr,
557
&bus_attr_supported_features.attr,
558
NULL,
559
};
560
561
static umode_t rbd_bus_is_visible(struct kobject *kobj,
562
struct attribute *attr, int index)
563
{
564
if (!single_major &&
565
(attr == &bus_attr_add_single_major.attr ||
566
attr == &bus_attr_remove_single_major.attr))
567
return 0;
568
569
return attr->mode;
570
}
571
572
static const struct attribute_group rbd_bus_group = {
573
.attrs = rbd_bus_attrs,
574
.is_visible = rbd_bus_is_visible,
575
};
576
__ATTRIBUTE_GROUPS(rbd_bus);
577
578
static const struct bus_type rbd_bus_type = {
579
.name = "rbd",
580
.bus_groups = rbd_bus_groups,
581
};
582
583
static void rbd_root_dev_release(struct device *dev)
584
{
585
}
586
587
static struct device rbd_root_dev = {
588
.init_name = "rbd",
589
.release = rbd_root_dev_release,
590
};
591
592
static __printf(2, 3)
593
void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594
{
595
struct va_format vaf;
596
va_list args;
597
598
va_start(args, fmt);
599
vaf.fmt = fmt;
600
vaf.va = &args;
601
602
if (!rbd_dev)
603
printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604
else if (rbd_dev->disk)
605
printk(KERN_WARNING "%s: %s: %pV\n",
606
RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607
else if (rbd_dev->spec && rbd_dev->spec->image_name)
608
printk(KERN_WARNING "%s: image %s: %pV\n",
609
RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610
else if (rbd_dev->spec && rbd_dev->spec->image_id)
611
printk(KERN_WARNING "%s: id %s: %pV\n",
612
RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613
else /* punt */
614
printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615
RBD_DRV_NAME, rbd_dev, &vaf);
616
va_end(args);
617
}
618
619
#ifdef RBD_DEBUG
620
#define rbd_assert(expr) \
621
if (unlikely(!(expr))) { \
622
printk(KERN_ERR "\nAssertion failure in %s() " \
623
"at line %d:\n\n" \
624
"\trbd_assert(%s);\n\n", \
625
__func__, __LINE__, #expr); \
626
BUG(); \
627
}
628
#else /* !RBD_DEBUG */
629
# define rbd_assert(expr) ((void) 0)
630
#endif /* !RBD_DEBUG */
631
632
static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634
static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635
static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636
struct rbd_image_header *header);
637
static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638
u64 snap_id);
639
static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640
u8 *order, u64 *snap_size);
641
static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643
static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644
static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646
/*
647
* Return true if nothing else is pending.
648
*/
649
static bool pending_result_dec(struct pending_result *pending, int *result)
650
{
651
rbd_assert(pending->num_pending > 0);
652
653
if (*result && !pending->result)
654
pending->result = *result;
655
if (--pending->num_pending)
656
return false;
657
658
*result = pending->result;
659
return true;
660
}
661
662
static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663
{
664
struct rbd_device *rbd_dev = disk->private_data;
665
bool removing = false;
666
667
spin_lock_irq(&rbd_dev->lock);
668
if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669
removing = true;
670
else
671
rbd_dev->open_count++;
672
spin_unlock_irq(&rbd_dev->lock);
673
if (removing)
674
return -ENOENT;
675
676
(void) get_device(&rbd_dev->dev);
677
678
return 0;
679
}
680
681
static void rbd_release(struct gendisk *disk)
682
{
683
struct rbd_device *rbd_dev = disk->private_data;
684
unsigned long open_count_before;
685
686
spin_lock_irq(&rbd_dev->lock);
687
open_count_before = rbd_dev->open_count--;
688
spin_unlock_irq(&rbd_dev->lock);
689
rbd_assert(open_count_before > 0);
690
691
put_device(&rbd_dev->dev);
692
}
693
694
static const struct block_device_operations rbd_bd_ops = {
695
.owner = THIS_MODULE,
696
.open = rbd_open,
697
.release = rbd_release,
698
};
699
700
/*
701
* Initialize an rbd client instance. Success or not, this function
702
* consumes ceph_opts. Caller holds client_mutex.
703
*/
704
static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705
{
706
struct rbd_client *rbdc;
707
int ret = -ENOMEM;
708
709
dout("%s:\n", __func__);
710
rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711
if (!rbdc)
712
goto out_opt;
713
714
kref_init(&rbdc->kref);
715
INIT_LIST_HEAD(&rbdc->node);
716
717
rbdc->client = ceph_create_client(ceph_opts, rbdc);
718
if (IS_ERR(rbdc->client))
719
goto out_rbdc;
720
ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722
ret = ceph_open_session(rbdc->client);
723
if (ret < 0)
724
goto out_client;
725
726
spin_lock(&rbd_client_list_lock);
727
list_add_tail(&rbdc->node, &rbd_client_list);
728
spin_unlock(&rbd_client_list_lock);
729
730
dout("%s: rbdc %p\n", __func__, rbdc);
731
732
return rbdc;
733
out_client:
734
ceph_destroy_client(rbdc->client);
735
out_rbdc:
736
kfree(rbdc);
737
out_opt:
738
if (ceph_opts)
739
ceph_destroy_options(ceph_opts);
740
dout("%s: error %d\n", __func__, ret);
741
742
return ERR_PTR(ret);
743
}
744
745
static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746
{
747
kref_get(&rbdc->kref);
748
749
return rbdc;
750
}
751
752
/*
753
* Find a ceph client with specific addr and configuration. If
754
* found, bump its reference count.
755
*/
756
static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757
{
758
struct rbd_client *rbdc = NULL, *iter;
759
760
if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761
return NULL;
762
763
spin_lock(&rbd_client_list_lock);
764
list_for_each_entry(iter, &rbd_client_list, node) {
765
if (!ceph_compare_options(ceph_opts, iter->client)) {
766
__rbd_get_client(iter);
767
768
rbdc = iter;
769
break;
770
}
771
}
772
spin_unlock(&rbd_client_list_lock);
773
774
return rbdc;
775
}
776
777
/*
778
* (Per device) rbd map options
779
*/
780
enum {
781
Opt_queue_depth,
782
Opt_alloc_size,
783
Opt_lock_timeout,
784
/* int args above */
785
Opt_pool_ns,
786
Opt_compression_hint,
787
/* string args above */
788
Opt_read_only,
789
Opt_read_write,
790
Opt_lock_on_read,
791
Opt_exclusive,
792
Opt_notrim,
793
};
794
795
enum {
796
Opt_compression_hint_none,
797
Opt_compression_hint_compressible,
798
Opt_compression_hint_incompressible,
799
};
800
801
static const struct constant_table rbd_param_compression_hint[] = {
802
{"none", Opt_compression_hint_none},
803
{"compressible", Opt_compression_hint_compressible},
804
{"incompressible", Opt_compression_hint_incompressible},
805
{}
806
};
807
808
static const struct fs_parameter_spec rbd_parameters[] = {
809
fsparam_u32 ("alloc_size", Opt_alloc_size),
810
fsparam_enum ("compression_hint", Opt_compression_hint,
811
rbd_param_compression_hint),
812
fsparam_flag ("exclusive", Opt_exclusive),
813
fsparam_flag ("lock_on_read", Opt_lock_on_read),
814
fsparam_u32 ("lock_timeout", Opt_lock_timeout),
815
fsparam_flag ("notrim", Opt_notrim),
816
fsparam_string ("_pool_ns", Opt_pool_ns),
817
fsparam_u32 ("queue_depth", Opt_queue_depth),
818
fsparam_flag ("read_only", Opt_read_only),
819
fsparam_flag ("read_write", Opt_read_write),
820
fsparam_flag ("ro", Opt_read_only),
821
fsparam_flag ("rw", Opt_read_write),
822
{}
823
};
824
825
struct rbd_options {
826
int queue_depth;
827
int alloc_size;
828
unsigned long lock_timeout;
829
bool read_only;
830
bool lock_on_read;
831
bool exclusive;
832
bool trim;
833
834
u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835
};
836
837
#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838
#define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
839
#define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
840
#define RBD_READ_ONLY_DEFAULT false
841
#define RBD_LOCK_ON_READ_DEFAULT false
842
#define RBD_EXCLUSIVE_DEFAULT false
843
#define RBD_TRIM_DEFAULT true
844
845
struct rbd_parse_opts_ctx {
846
struct rbd_spec *spec;
847
struct ceph_options *copts;
848
struct rbd_options *opts;
849
};
850
851
static char* obj_op_name(enum obj_operation_type op_type)
852
{
853
switch (op_type) {
854
case OBJ_OP_READ:
855
return "read";
856
case OBJ_OP_WRITE:
857
return "write";
858
case OBJ_OP_DISCARD:
859
return "discard";
860
case OBJ_OP_ZEROOUT:
861
return "zeroout";
862
default:
863
return "???";
864
}
865
}
866
867
/*
868
* Destroy ceph client
869
*
870
* Caller must hold rbd_client_list_lock.
871
*/
872
static void rbd_client_release(struct kref *kref)
873
{
874
struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876
dout("%s: rbdc %p\n", __func__, rbdc);
877
spin_lock(&rbd_client_list_lock);
878
list_del(&rbdc->node);
879
spin_unlock(&rbd_client_list_lock);
880
881
ceph_destroy_client(rbdc->client);
882
kfree(rbdc);
883
}
884
885
/*
886
* Drop reference to ceph client node. If it's not referenced anymore, release
887
* it.
888
*/
889
static void rbd_put_client(struct rbd_client *rbdc)
890
{
891
if (rbdc)
892
kref_put(&rbdc->kref, rbd_client_release);
893
}
894
895
/*
896
* Get a ceph client with specific addr and configuration, if one does
897
* not exist create it. Either way, ceph_opts is consumed by this
898
* function.
899
*/
900
static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901
{
902
struct rbd_client *rbdc;
903
int ret;
904
905
mutex_lock(&client_mutex);
906
rbdc = rbd_client_find(ceph_opts);
907
if (rbdc) {
908
ceph_destroy_options(ceph_opts);
909
910
/*
911
* Using an existing client. Make sure ->pg_pools is up to
912
* date before we look up the pool id in do_rbd_add().
913
*/
914
ret = ceph_wait_for_latest_osdmap(rbdc->client,
915
rbdc->client->options->mount_timeout);
916
if (ret) {
917
rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918
rbd_put_client(rbdc);
919
rbdc = ERR_PTR(ret);
920
}
921
} else {
922
rbdc = rbd_client_create(ceph_opts);
923
}
924
mutex_unlock(&client_mutex);
925
926
return rbdc;
927
}
928
929
static bool rbd_image_format_valid(u32 image_format)
930
{
931
return image_format == 1 || image_format == 2;
932
}
933
934
static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935
{
936
size_t size;
937
u32 snap_count;
938
939
/* The header has to start with the magic rbd header text */
940
if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941
return false;
942
943
/* The bio layer requires at least sector-sized I/O */
944
945
if (ondisk->options.order < SECTOR_SHIFT)
946
return false;
947
948
/* If we use u64 in a few spots we may be able to loosen this */
949
950
if (ondisk->options.order > 8 * sizeof (int) - 1)
951
return false;
952
953
/*
954
* The size of a snapshot header has to fit in a size_t, and
955
* that limits the number of snapshots.
956
*/
957
snap_count = le32_to_cpu(ondisk->snap_count);
958
size = SIZE_MAX - sizeof (struct ceph_snap_context);
959
if (snap_count > size / sizeof (__le64))
960
return false;
961
962
/*
963
* Not only that, but the size of the entire the snapshot
964
* header must also be representable in a size_t.
965
*/
966
size -= snap_count * sizeof (__le64);
967
if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968
return false;
969
970
return true;
971
}
972
973
/*
974
* returns the size of an object in the image
975
*/
976
static u32 rbd_obj_bytes(struct rbd_image_header *header)
977
{
978
return 1U << header->obj_order;
979
}
980
981
static void rbd_init_layout(struct rbd_device *rbd_dev)
982
{
983
if (rbd_dev->header.stripe_unit == 0 ||
984
rbd_dev->header.stripe_count == 0) {
985
rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986
rbd_dev->header.stripe_count = 1;
987
}
988
989
rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990
rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991
rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992
rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993
rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994
RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995
}
996
997
static void rbd_image_header_cleanup(struct rbd_image_header *header)
998
{
999
kfree(header->object_prefix);
1000
ceph_put_snap_context(header->snapc);
1001
kfree(header->snap_sizes);
1002
kfree(header->snap_names);
1003
1004
memset(header, 0, sizeof(*header));
1005
}
1006
1007
/*
1008
* Fill an rbd image header with information from the given format 1
1009
* on-disk header.
1010
*/
1011
static int rbd_header_from_disk(struct rbd_image_header *header,
1012
struct rbd_image_header_ondisk *ondisk,
1013
bool first_time)
1014
{
1015
struct ceph_snap_context *snapc;
1016
char *object_prefix = NULL;
1017
char *snap_names = NULL;
1018
u64 *snap_sizes = NULL;
1019
u32 snap_count;
1020
int ret = -ENOMEM;
1021
u32 i;
1022
1023
/* Allocate this now to avoid having to handle failure below */
1024
1025
if (first_time) {
1026
object_prefix = kstrndup(ondisk->object_prefix,
1027
sizeof(ondisk->object_prefix),
1028
GFP_KERNEL);
1029
if (!object_prefix)
1030
return -ENOMEM;
1031
}
1032
1033
/* Allocate the snapshot context and fill it in */
1034
1035
snap_count = le32_to_cpu(ondisk->snap_count);
1036
snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037
if (!snapc)
1038
goto out_err;
1039
snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040
if (snap_count) {
1041
struct rbd_image_snap_ondisk *snaps;
1042
u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044
/* We'll keep a copy of the snapshot names... */
1045
1046
if (snap_names_len > (u64)SIZE_MAX)
1047
goto out_2big;
1048
snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049
if (!snap_names)
1050
goto out_err;
1051
1052
/* ...as well as the array of their sizes. */
1053
snap_sizes = kmalloc_array(snap_count,
1054
sizeof(*header->snap_sizes),
1055
GFP_KERNEL);
1056
if (!snap_sizes)
1057
goto out_err;
1058
1059
/*
1060
* Copy the names, and fill in each snapshot's id
1061
* and size.
1062
*
1063
* Note that rbd_dev_v1_header_info() guarantees the
1064
* ondisk buffer we're working with has
1065
* snap_names_len bytes beyond the end of the
1066
* snapshot id array, this memcpy() is safe.
1067
*/
1068
memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069
snaps = ondisk->snaps;
1070
for (i = 0; i < snap_count; i++) {
1071
snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072
snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073
}
1074
}
1075
1076
/* We won't fail any more, fill in the header */
1077
1078
if (first_time) {
1079
header->object_prefix = object_prefix;
1080
header->obj_order = ondisk->options.order;
1081
}
1082
1083
/* The remaining fields always get updated (when we refresh) */
1084
1085
header->image_size = le64_to_cpu(ondisk->image_size);
1086
header->snapc = snapc;
1087
header->snap_names = snap_names;
1088
header->snap_sizes = snap_sizes;
1089
1090
return 0;
1091
out_2big:
1092
ret = -EIO;
1093
out_err:
1094
kfree(snap_sizes);
1095
kfree(snap_names);
1096
ceph_put_snap_context(snapc);
1097
kfree(object_prefix);
1098
1099
return ret;
1100
}
1101
1102
static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103
{
1104
const char *snap_name;
1105
1106
rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108
/* Skip over names until we find the one we are looking for */
1109
1110
snap_name = rbd_dev->header.snap_names;
1111
while (which--)
1112
snap_name += strlen(snap_name) + 1;
1113
1114
return kstrdup(snap_name, GFP_KERNEL);
1115
}
1116
1117
/*
1118
* Snapshot id comparison function for use with qsort()/bsearch().
1119
* Note that result is for snapshots in *descending* order.
1120
*/
1121
static int snapid_compare_reverse(const void *s1, const void *s2)
1122
{
1123
u64 snap_id1 = *(u64 *)s1;
1124
u64 snap_id2 = *(u64 *)s2;
1125
1126
if (snap_id1 < snap_id2)
1127
return 1;
1128
return snap_id1 == snap_id2 ? 0 : -1;
1129
}
1130
1131
/*
1132
* Search a snapshot context to see if the given snapshot id is
1133
* present.
1134
*
1135
* Returns the position of the snapshot id in the array if it's found,
1136
* or BAD_SNAP_INDEX otherwise.
1137
*
1138
* Note: The snapshot array is in kept sorted (by the osd) in
1139
* reverse order, highest snapshot id first.
1140
*/
1141
static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142
{
1143
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144
u64 *found;
1145
1146
found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147
sizeof (snap_id), snapid_compare_reverse);
1148
1149
return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150
}
1151
1152
static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153
u64 snap_id)
1154
{
1155
u32 which;
1156
const char *snap_name;
1157
1158
which = rbd_dev_snap_index(rbd_dev, snap_id);
1159
if (which == BAD_SNAP_INDEX)
1160
return ERR_PTR(-ENOENT);
1161
1162
snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163
return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164
}
1165
1166
static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167
{
1168
if (snap_id == CEPH_NOSNAP)
1169
return RBD_SNAP_HEAD_NAME;
1170
1171
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172
if (rbd_dev->image_format == 1)
1173
return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175
return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176
}
1177
1178
static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179
u64 *snap_size)
1180
{
1181
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182
if (snap_id == CEPH_NOSNAP) {
1183
*snap_size = rbd_dev->header.image_size;
1184
} else if (rbd_dev->image_format == 1) {
1185
u32 which;
1186
1187
which = rbd_dev_snap_index(rbd_dev, snap_id);
1188
if (which == BAD_SNAP_INDEX)
1189
return -ENOENT;
1190
1191
*snap_size = rbd_dev->header.snap_sizes[which];
1192
} else {
1193
u64 size = 0;
1194
int ret;
1195
1196
ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197
if (ret)
1198
return ret;
1199
1200
*snap_size = size;
1201
}
1202
return 0;
1203
}
1204
1205
static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206
{
1207
u64 snap_id = rbd_dev->spec->snap_id;
1208
u64 size = 0;
1209
int ret;
1210
1211
ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212
if (ret)
1213
return ret;
1214
1215
rbd_dev->mapping.size = size;
1216
return 0;
1217
}
1218
1219
static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220
{
1221
rbd_dev->mapping.size = 0;
1222
}
1223
1224
static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225
{
1226
struct ceph_bio_iter it = *bio_pos;
1227
1228
ceph_bio_iter_advance(&it, off);
1229
ceph_bio_iter_advance_step(&it, bytes, ({
1230
memzero_bvec(&bv);
1231
}));
1232
}
1233
1234
static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235
{
1236
struct ceph_bvec_iter it = *bvec_pos;
1237
1238
ceph_bvec_iter_advance(&it, off);
1239
ceph_bvec_iter_advance_step(&it, bytes, ({
1240
memzero_bvec(&bv);
1241
}));
1242
}
1243
1244
/*
1245
* Zero a range in @obj_req data buffer defined by a bio (list) or
1246
* (private) bio_vec array.
1247
*
1248
* @off is relative to the start of the data buffer.
1249
*/
1250
static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251
u32 bytes)
1252
{
1253
dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255
switch (obj_req->img_request->data_type) {
1256
case OBJ_REQUEST_BIO:
1257
zero_bios(&obj_req->bio_pos, off, bytes);
1258
break;
1259
case OBJ_REQUEST_BVECS:
1260
case OBJ_REQUEST_OWN_BVECS:
1261
zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262
break;
1263
default:
1264
BUG();
1265
}
1266
}
1267
1268
static void rbd_obj_request_destroy(struct kref *kref);
1269
static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270
{
1271
rbd_assert(obj_request != NULL);
1272
dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273
kref_read(&obj_request->kref));
1274
kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275
}
1276
1277
static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278
struct rbd_obj_request *obj_request)
1279
{
1280
rbd_assert(obj_request->img_request == NULL);
1281
1282
/* Image request now owns object's original reference */
1283
obj_request->img_request = img_request;
1284
dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285
}
1286
1287
static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288
struct rbd_obj_request *obj_request)
1289
{
1290
dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291
list_del(&obj_request->ex.oe_item);
1292
rbd_assert(obj_request->img_request == img_request);
1293
rbd_obj_request_put(obj_request);
1294
}
1295
1296
static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297
{
1298
struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300
dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301
__func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302
obj_req->ex.oe_off, obj_req->ex.oe_len);
1303
ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304
}
1305
1306
/*
1307
* The default/initial value for all image request flags is 0. Each
1308
* is conditionally set to 1 at image request initialization time
1309
* and currently never change thereafter.
1310
*/
1311
static void img_request_layered_set(struct rbd_img_request *img_request)
1312
{
1313
set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314
}
1315
1316
static bool img_request_layered_test(struct rbd_img_request *img_request)
1317
{
1318
return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319
}
1320
1321
static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322
{
1323
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325
return !obj_req->ex.oe_off &&
1326
obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327
}
1328
1329
static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330
{
1331
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333
return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334
rbd_dev->layout.object_size;
1335
}
1336
1337
/*
1338
* Must be called after rbd_obj_calc_img_extents().
1339
*/
1340
static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341
{
1342
rbd_assert(obj_req->img_request->snapc);
1343
1344
if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345
dout("%s %p objno %llu discard\n", __func__, obj_req,
1346
obj_req->ex.oe_objno);
1347
return;
1348
}
1349
1350
if (!obj_req->num_img_extents) {
1351
dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352
obj_req->ex.oe_objno);
1353
return;
1354
}
1355
1356
if (rbd_obj_is_entire(obj_req) &&
1357
!obj_req->img_request->snapc->num_snaps) {
1358
dout("%s %p objno %llu entire\n", __func__, obj_req,
1359
obj_req->ex.oe_objno);
1360
return;
1361
}
1362
1363
obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364
}
1365
1366
static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367
{
1368
return ceph_file_extents_bytes(obj_req->img_extents,
1369
obj_req->num_img_extents);
1370
}
1371
1372
static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373
{
1374
switch (img_req->op_type) {
1375
case OBJ_OP_READ:
1376
return false;
1377
case OBJ_OP_WRITE:
1378
case OBJ_OP_DISCARD:
1379
case OBJ_OP_ZEROOUT:
1380
return true;
1381
default:
1382
BUG();
1383
}
1384
}
1385
1386
static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387
{
1388
struct rbd_obj_request *obj_req = osd_req->r_priv;
1389
int result;
1390
1391
dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392
osd_req->r_result, obj_req);
1393
1394
/*
1395
* Writes aren't allowed to return a data payload. In some
1396
* guarded write cases (e.g. stat + zero on an empty object)
1397
* a stat response makes it through, but we don't care.
1398
*/
1399
if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400
result = 0;
1401
else
1402
result = osd_req->r_result;
1403
1404
rbd_obj_handle_request(obj_req, result);
1405
}
1406
1407
static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408
{
1409
struct rbd_obj_request *obj_request = osd_req->r_priv;
1410
struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411
struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413
osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414
osd_req->r_snapid = obj_request->img_request->snap_id;
1415
}
1416
1417
static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418
{
1419
struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421
osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422
ktime_get_real_ts64(&osd_req->r_mtime);
1423
osd_req->r_data_offset = obj_request->ex.oe_off;
1424
}
1425
1426
static struct ceph_osd_request *
1427
__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428
struct ceph_snap_context *snapc, int num_ops)
1429
{
1430
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432
struct ceph_osd_request *req;
1433
const char *name_format = rbd_dev->image_format == 1 ?
1434
RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435
int ret;
1436
1437
req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438
if (!req)
1439
return ERR_PTR(-ENOMEM);
1440
1441
list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442
req->r_callback = rbd_osd_req_callback;
1443
req->r_priv = obj_req;
1444
1445
/*
1446
* Data objects may be stored in a separate pool, but always in
1447
* the same namespace in that pool as the header in its pool.
1448
*/
1449
ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450
req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452
ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453
rbd_dev->header.object_prefix,
1454
obj_req->ex.oe_objno);
1455
if (ret)
1456
return ERR_PTR(ret);
1457
1458
return req;
1459
}
1460
1461
static struct ceph_osd_request *
1462
rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463
{
1464
rbd_assert(obj_req->img_request->snapc);
1465
return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466
num_ops);
1467
}
1468
1469
static struct rbd_obj_request *rbd_obj_request_create(void)
1470
{
1471
struct rbd_obj_request *obj_request;
1472
1473
obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474
if (!obj_request)
1475
return NULL;
1476
1477
ceph_object_extent_init(&obj_request->ex);
1478
INIT_LIST_HEAD(&obj_request->osd_reqs);
1479
mutex_init(&obj_request->state_mutex);
1480
kref_init(&obj_request->kref);
1481
1482
dout("%s %p\n", __func__, obj_request);
1483
return obj_request;
1484
}
1485
1486
static void rbd_obj_request_destroy(struct kref *kref)
1487
{
1488
struct rbd_obj_request *obj_request;
1489
struct ceph_osd_request *osd_req;
1490
u32 i;
1491
1492
obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494
dout("%s: obj %p\n", __func__, obj_request);
1495
1496
while (!list_empty(&obj_request->osd_reqs)) {
1497
osd_req = list_first_entry(&obj_request->osd_reqs,
1498
struct ceph_osd_request, r_private_item);
1499
list_del_init(&osd_req->r_private_item);
1500
ceph_osdc_put_request(osd_req);
1501
}
1502
1503
switch (obj_request->img_request->data_type) {
1504
case OBJ_REQUEST_NODATA:
1505
case OBJ_REQUEST_BIO:
1506
case OBJ_REQUEST_BVECS:
1507
break; /* Nothing to do */
1508
case OBJ_REQUEST_OWN_BVECS:
1509
kfree(obj_request->bvec_pos.bvecs);
1510
break;
1511
default:
1512
BUG();
1513
}
1514
1515
kfree(obj_request->img_extents);
1516
if (obj_request->copyup_bvecs) {
1517
for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518
if (obj_request->copyup_bvecs[i].bv_page)
1519
__free_page(obj_request->copyup_bvecs[i].bv_page);
1520
}
1521
kfree(obj_request->copyup_bvecs);
1522
}
1523
1524
kmem_cache_free(rbd_obj_request_cache, obj_request);
1525
}
1526
1527
/* It's OK to call this for a device with no parent */
1528
1529
static void rbd_spec_put(struct rbd_spec *spec);
1530
static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531
{
1532
rbd_dev_remove_parent(rbd_dev);
1533
rbd_spec_put(rbd_dev->parent_spec);
1534
rbd_dev->parent_spec = NULL;
1535
rbd_dev->parent_overlap = 0;
1536
}
1537
1538
/*
1539
* Parent image reference counting is used to determine when an
1540
* image's parent fields can be safely torn down--after there are no
1541
* more in-flight requests to the parent image. When the last
1542
* reference is dropped, cleaning them up is safe.
1543
*/
1544
static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545
{
1546
int counter;
1547
1548
if (!rbd_dev->parent_spec)
1549
return;
1550
1551
counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552
if (counter > 0)
1553
return;
1554
1555
/* Last reference; clean up parent data structures */
1556
1557
if (!counter)
1558
rbd_dev_unparent(rbd_dev);
1559
else
1560
rbd_warn(rbd_dev, "parent reference underflow");
1561
}
1562
1563
/*
1564
* If an image has a non-zero parent overlap, get a reference to its
1565
* parent.
1566
*
1567
* Returns true if the rbd device has a parent with a non-zero
1568
* overlap and a reference for it was successfully taken, or
1569
* false otherwise.
1570
*/
1571
static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572
{
1573
int counter = 0;
1574
1575
if (!rbd_dev->parent_spec)
1576
return false;
1577
1578
if (rbd_dev->parent_overlap)
1579
counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581
if (counter < 0)
1582
rbd_warn(rbd_dev, "parent reference overflow");
1583
1584
return counter > 0;
1585
}
1586
1587
static void rbd_img_request_init(struct rbd_img_request *img_request,
1588
struct rbd_device *rbd_dev,
1589
enum obj_operation_type op_type)
1590
{
1591
memset(img_request, 0, sizeof(*img_request));
1592
1593
img_request->rbd_dev = rbd_dev;
1594
img_request->op_type = op_type;
1595
1596
INIT_LIST_HEAD(&img_request->lock_item);
1597
INIT_LIST_HEAD(&img_request->object_extents);
1598
mutex_init(&img_request->state_mutex);
1599
}
1600
1601
/*
1602
* Only snap_id is captured here, for reads. For writes, snapshot
1603
* context is captured in rbd_img_object_requests() after exclusive
1604
* lock is ensured to be held.
1605
*/
1606
static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607
{
1608
struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610
lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612
if (!rbd_img_is_write(img_req))
1613
img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615
if (rbd_dev_parent_get(rbd_dev))
1616
img_request_layered_set(img_req);
1617
}
1618
1619
static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620
{
1621
struct rbd_obj_request *obj_request;
1622
struct rbd_obj_request *next_obj_request;
1623
1624
dout("%s: img %p\n", __func__, img_request);
1625
1626
WARN_ON(!list_empty(&img_request->lock_item));
1627
for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628
rbd_img_obj_request_del(img_request, obj_request);
1629
1630
if (img_request_layered_test(img_request))
1631
rbd_dev_parent_put(img_request->rbd_dev);
1632
1633
if (rbd_img_is_write(img_request))
1634
ceph_put_snap_context(img_request->snapc);
1635
1636
if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637
kmem_cache_free(rbd_img_request_cache, img_request);
1638
}
1639
1640
#define BITS_PER_OBJ 2
1641
#define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1642
#define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1643
1644
static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645
u64 *index, u8 *shift)
1646
{
1647
u32 off;
1648
1649
rbd_assert(objno < rbd_dev->object_map_size);
1650
*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651
*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652
}
1653
1654
static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655
{
1656
u64 index;
1657
u8 shift;
1658
1659
lockdep_assert_held(&rbd_dev->object_map_lock);
1660
__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661
return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662
}
1663
1664
static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665
{
1666
u64 index;
1667
u8 shift;
1668
u8 *p;
1669
1670
lockdep_assert_held(&rbd_dev->object_map_lock);
1671
rbd_assert(!(val & ~OBJ_MASK));
1672
1673
__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674
p = &rbd_dev->object_map[index];
1675
*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676
}
1677
1678
static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679
{
1680
u8 state;
1681
1682
spin_lock(&rbd_dev->object_map_lock);
1683
state = __rbd_object_map_get(rbd_dev, objno);
1684
spin_unlock(&rbd_dev->object_map_lock);
1685
return state;
1686
}
1687
1688
static bool use_object_map(struct rbd_device *rbd_dev)
1689
{
1690
/*
1691
* An image mapped read-only can't use the object map -- it isn't
1692
* loaded because the header lock isn't acquired. Someone else can
1693
* write to the image and update the object map behind our back.
1694
*
1695
* A snapshot can't be written to, so using the object map is always
1696
* safe.
1697
*/
1698
if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699
return false;
1700
1701
return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702
!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703
}
1704
1705
static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706
{
1707
u8 state;
1708
1709
/* fall back to default logic if object map is disabled or invalid */
1710
if (!use_object_map(rbd_dev))
1711
return true;
1712
1713
state = rbd_object_map_get(rbd_dev, objno);
1714
return state != OBJECT_NONEXISTENT;
1715
}
1716
1717
static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718
struct ceph_object_id *oid)
1719
{
1720
if (snap_id == CEPH_NOSNAP)
1721
ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722
rbd_dev->spec->image_id);
1723
else
1724
ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725
rbd_dev->spec->image_id, snap_id);
1726
}
1727
1728
static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729
{
1730
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731
CEPH_DEFINE_OID_ONSTACK(oid);
1732
u8 lock_type;
1733
char *lock_tag;
1734
struct ceph_locker *lockers;
1735
u32 num_lockers;
1736
bool broke_lock = false;
1737
int ret;
1738
1739
rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741
again:
1742
ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743
CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744
if (ret != -EBUSY || broke_lock) {
1745
if (ret == -EEXIST)
1746
ret = 0; /* already locked by myself */
1747
if (ret)
1748
rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749
return ret;
1750
}
1751
1752
ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753
RBD_LOCK_NAME, &lock_type, &lock_tag,
1754
&lockers, &num_lockers);
1755
if (ret) {
1756
if (ret == -ENOENT)
1757
goto again;
1758
1759
rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760
return ret;
1761
}
1762
1763
kfree(lock_tag);
1764
if (num_lockers == 0)
1765
goto again;
1766
1767
rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768
ENTITY_NAME(lockers[0].id.name));
1769
1770
ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771
RBD_LOCK_NAME, lockers[0].id.cookie,
1772
&lockers[0].id.name);
1773
ceph_free_lockers(lockers, num_lockers);
1774
if (ret) {
1775
if (ret == -ENOENT)
1776
goto again;
1777
1778
rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779
return ret;
1780
}
1781
1782
broke_lock = true;
1783
goto again;
1784
}
1785
1786
static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787
{
1788
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789
CEPH_DEFINE_OID_ONSTACK(oid);
1790
int ret;
1791
1792
rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794
ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795
"");
1796
if (ret && ret != -ENOENT)
1797
rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798
}
1799
1800
static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801
{
1802
u8 struct_v;
1803
u32 struct_len;
1804
u32 header_len;
1805
void *header_end;
1806
int ret;
1807
1808
ceph_decode_32_safe(p, end, header_len, e_inval);
1809
header_end = *p + header_len;
1810
1811
ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812
&struct_len);
1813
if (ret)
1814
return ret;
1815
1816
ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818
*p = header_end;
1819
return 0;
1820
1821
e_inval:
1822
return -EINVAL;
1823
}
1824
1825
static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826
{
1827
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828
CEPH_DEFINE_OID_ONSTACK(oid);
1829
struct page **pages;
1830
void *p, *end;
1831
size_t reply_len;
1832
u64 num_objects;
1833
u64 object_map_bytes;
1834
u64 object_map_size;
1835
int num_pages;
1836
int ret;
1837
1838
rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840
num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841
rbd_dev->mapping.size);
1842
object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843
BITS_PER_BYTE);
1844
num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845
pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846
if (IS_ERR(pages))
1847
return PTR_ERR(pages);
1848
1849
reply_len = num_pages * PAGE_SIZE;
1850
rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851
ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852
"rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853
NULL, 0, pages, &reply_len);
1854
if (ret)
1855
goto out;
1856
1857
p = page_address(pages[0]);
1858
end = p + min(reply_len, (size_t)PAGE_SIZE);
1859
ret = decode_object_map_header(&p, end, &object_map_size);
1860
if (ret)
1861
goto out;
1862
1863
if (object_map_size != num_objects) {
1864
rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865
object_map_size, num_objects);
1866
ret = -EINVAL;
1867
goto out;
1868
}
1869
1870
if (offset_in_page(p) + object_map_bytes > reply_len) {
1871
ret = -EINVAL;
1872
goto out;
1873
}
1874
1875
rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876
if (!rbd_dev->object_map) {
1877
ret = -ENOMEM;
1878
goto out;
1879
}
1880
1881
rbd_dev->object_map_size = object_map_size;
1882
ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883
offset_in_page(p), object_map_bytes);
1884
1885
out:
1886
ceph_release_page_vector(pages, num_pages);
1887
return ret;
1888
}
1889
1890
static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891
{
1892
kvfree(rbd_dev->object_map);
1893
rbd_dev->object_map = NULL;
1894
rbd_dev->object_map_size = 0;
1895
}
1896
1897
static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898
{
1899
int ret;
1900
1901
ret = __rbd_object_map_load(rbd_dev);
1902
if (ret)
1903
return ret;
1904
1905
ret = rbd_dev_v2_get_flags(rbd_dev);
1906
if (ret) {
1907
rbd_object_map_free(rbd_dev);
1908
return ret;
1909
}
1910
1911
if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912
rbd_warn(rbd_dev, "object map is invalid");
1913
1914
return 0;
1915
}
1916
1917
static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918
{
1919
int ret;
1920
1921
ret = rbd_object_map_lock(rbd_dev);
1922
if (ret)
1923
return ret;
1924
1925
ret = rbd_object_map_load(rbd_dev);
1926
if (ret) {
1927
rbd_object_map_unlock(rbd_dev);
1928
return ret;
1929
}
1930
1931
return 0;
1932
}
1933
1934
static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935
{
1936
rbd_object_map_free(rbd_dev);
1937
rbd_object_map_unlock(rbd_dev);
1938
}
1939
1940
/*
1941
* This function needs snap_id (or more precisely just something to
1942
* distinguish between HEAD and snapshot object maps), new_state and
1943
* current_state that were passed to rbd_object_map_update().
1944
*
1945
* To avoid allocating and stashing a context we piggyback on the OSD
1946
* request. A HEAD update has two ops (assert_locked). For new_state
1947
* and current_state we decode our own object_map_update op, encoded in
1948
* rbd_cls_object_map_update().
1949
*/
1950
static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951
struct ceph_osd_request *osd_req)
1952
{
1953
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954
struct ceph_osd_data *osd_data;
1955
u64 objno;
1956
u8 state, new_state, current_state;
1957
bool has_current_state;
1958
void *p;
1959
1960
if (osd_req->r_result)
1961
return osd_req->r_result;
1962
1963
/*
1964
* Nothing to do for a snapshot object map.
1965
*/
1966
if (osd_req->r_num_ops == 1)
1967
return 0;
1968
1969
/*
1970
* Update in-memory HEAD object map.
1971
*/
1972
rbd_assert(osd_req->r_num_ops == 2);
1973
osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974
rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976
p = page_address(osd_data->pages[0]);
1977
objno = ceph_decode_64(&p);
1978
rbd_assert(objno == obj_req->ex.oe_objno);
1979
rbd_assert(ceph_decode_64(&p) == objno + 1);
1980
new_state = ceph_decode_8(&p);
1981
has_current_state = ceph_decode_8(&p);
1982
if (has_current_state)
1983
current_state = ceph_decode_8(&p);
1984
1985
spin_lock(&rbd_dev->object_map_lock);
1986
state = __rbd_object_map_get(rbd_dev, objno);
1987
if (!has_current_state || current_state == state ||
1988
(current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989
__rbd_object_map_set(rbd_dev, objno, new_state);
1990
spin_unlock(&rbd_dev->object_map_lock);
1991
1992
return 0;
1993
}
1994
1995
static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996
{
1997
struct rbd_obj_request *obj_req = osd_req->r_priv;
1998
int result;
1999
2000
dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001
osd_req->r_result, obj_req);
2002
2003
result = rbd_object_map_update_finish(obj_req, osd_req);
2004
rbd_obj_handle_request(obj_req, result);
2005
}
2006
2007
static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008
{
2009
u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011
if (state == new_state ||
2012
(new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013
(new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014
return false;
2015
2016
return true;
2017
}
2018
2019
static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020
int which, u64 objno, u8 new_state,
2021
const u8 *current_state)
2022
{
2023
struct page **pages;
2024
void *p, *start;
2025
int ret;
2026
2027
ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028
if (ret)
2029
return ret;
2030
2031
pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032
if (IS_ERR(pages))
2033
return PTR_ERR(pages);
2034
2035
p = start = page_address(pages[0]);
2036
ceph_encode_64(&p, objno);
2037
ceph_encode_64(&p, objno + 1);
2038
ceph_encode_8(&p, new_state);
2039
if (current_state) {
2040
ceph_encode_8(&p, 1);
2041
ceph_encode_8(&p, *current_state);
2042
} else {
2043
ceph_encode_8(&p, 0);
2044
}
2045
2046
osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047
false, true);
2048
return 0;
2049
}
2050
2051
/*
2052
* Return:
2053
* 0 - object map update sent
2054
* 1 - object map update isn't needed
2055
* <0 - error
2056
*/
2057
static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058
u8 new_state, const u8 *current_state)
2059
{
2060
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062
struct ceph_osd_request *req;
2063
int num_ops = 1;
2064
int which = 0;
2065
int ret;
2066
2067
if (snap_id == CEPH_NOSNAP) {
2068
if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069
return 1;
2070
2071
num_ops++; /* assert_locked */
2072
}
2073
2074
req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075
if (!req)
2076
return -ENOMEM;
2077
2078
list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079
req->r_callback = rbd_object_map_callback;
2080
req->r_priv = obj_req;
2081
2082
rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083
ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084
req->r_flags = CEPH_OSD_FLAG_WRITE;
2085
ktime_get_real_ts64(&req->r_mtime);
2086
2087
if (snap_id == CEPH_NOSNAP) {
2088
/*
2089
* Protect against possible race conditions during lock
2090
* ownership transitions.
2091
*/
2092
ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093
CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094
if (ret)
2095
return ret;
2096
}
2097
2098
ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099
new_state, current_state);
2100
if (ret)
2101
return ret;
2102
2103
ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104
if (ret)
2105
return ret;
2106
2107
ceph_osdc_start_request(osdc, req);
2108
return 0;
2109
}
2110
2111
static void prune_extents(struct ceph_file_extent *img_extents,
2112
u32 *num_img_extents, u64 overlap)
2113
{
2114
u32 cnt = *num_img_extents;
2115
2116
/* drop extents completely beyond the overlap */
2117
while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118
cnt--;
2119
2120
if (cnt) {
2121
struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123
/* trim final overlapping extent */
2124
if (ex->fe_off + ex->fe_len > overlap)
2125
ex->fe_len = overlap - ex->fe_off;
2126
}
2127
2128
*num_img_extents = cnt;
2129
}
2130
2131
/*
2132
* Determine the byte range(s) covered by either just the object extent
2133
* or the entire object in the parent image.
2134
*/
2135
static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136
bool entire)
2137
{
2138
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139
int ret;
2140
2141
if (!rbd_dev->parent_overlap)
2142
return 0;
2143
2144
ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145
entire ? 0 : obj_req->ex.oe_off,
2146
entire ? rbd_dev->layout.object_size :
2147
obj_req->ex.oe_len,
2148
&obj_req->img_extents,
2149
&obj_req->num_img_extents);
2150
if (ret)
2151
return ret;
2152
2153
prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154
rbd_dev->parent_overlap);
2155
return 0;
2156
}
2157
2158
static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159
{
2160
struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162
switch (obj_req->img_request->data_type) {
2163
case OBJ_REQUEST_BIO:
2164
osd_req_op_extent_osd_data_bio(osd_req, which,
2165
&obj_req->bio_pos,
2166
obj_req->ex.oe_len);
2167
break;
2168
case OBJ_REQUEST_BVECS:
2169
case OBJ_REQUEST_OWN_BVECS:
2170
rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171
obj_req->ex.oe_len);
2172
rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173
osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174
&obj_req->bvec_pos);
2175
break;
2176
default:
2177
BUG();
2178
}
2179
}
2180
2181
static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182
{
2183
struct page **pages;
2184
2185
/*
2186
* The response data for a STAT call consists of:
2187
* le64 length;
2188
* struct {
2189
* le32 tv_sec;
2190
* le32 tv_nsec;
2191
* } mtime;
2192
*/
2193
pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194
if (IS_ERR(pages))
2195
return PTR_ERR(pages);
2196
2197
osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198
osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199
8 + sizeof(struct ceph_timespec),
2200
0, false, true);
2201
return 0;
2202
}
2203
2204
static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205
u32 bytes)
2206
{
2207
struct rbd_obj_request *obj_req = osd_req->r_priv;
2208
int ret;
2209
2210
ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211
if (ret)
2212
return ret;
2213
2214
osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215
obj_req->copyup_bvec_count, bytes);
2216
return 0;
2217
}
2218
2219
static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220
{
2221
obj_req->read_state = RBD_OBJ_READ_START;
2222
return 0;
2223
}
2224
2225
static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226
int which)
2227
{
2228
struct rbd_obj_request *obj_req = osd_req->r_priv;
2229
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230
u16 opcode;
2231
2232
if (!use_object_map(rbd_dev) ||
2233
!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234
osd_req_op_alloc_hint_init(osd_req, which++,
2235
rbd_dev->layout.object_size,
2236
rbd_dev->layout.object_size,
2237
rbd_dev->opts->alloc_hint_flags);
2238
}
2239
2240
if (rbd_obj_is_entire(obj_req))
2241
opcode = CEPH_OSD_OP_WRITEFULL;
2242
else
2243
opcode = CEPH_OSD_OP_WRITE;
2244
2245
osd_req_op_extent_init(osd_req, which, opcode,
2246
obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247
rbd_osd_setup_data(osd_req, which);
2248
}
2249
2250
static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251
{
2252
int ret;
2253
2254
/* reverse map the entire object onto the parent */
2255
ret = rbd_obj_calc_img_extents(obj_req, true);
2256
if (ret)
2257
return ret;
2258
2259
obj_req->write_state = RBD_OBJ_WRITE_START;
2260
return 0;
2261
}
2262
2263
static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264
{
2265
return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266
CEPH_OSD_OP_ZERO;
2267
}
2268
2269
static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270
int which)
2271
{
2272
struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274
if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275
rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276
osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277
} else {
2278
osd_req_op_extent_init(osd_req, which,
2279
truncate_or_zero_opcode(obj_req),
2280
obj_req->ex.oe_off, obj_req->ex.oe_len,
2281
0, 0);
2282
}
2283
}
2284
2285
static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286
{
2287
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288
u64 off, next_off;
2289
int ret;
2290
2291
/*
2292
* Align the range to alloc_size boundary and punt on discards
2293
* that are too small to free up any space.
2294
*
2295
* alloc_size == object_size && is_tail() is a special case for
2296
* filestore with filestore_punch_hole = false, needed to allow
2297
* truncate (in addition to delete).
2298
*/
2299
if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300
!rbd_obj_is_tail(obj_req)) {
2301
off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302
next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303
rbd_dev->opts->alloc_size);
2304
if (off >= next_off)
2305
return 1;
2306
2307
dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308
obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309
off, next_off - off);
2310
obj_req->ex.oe_off = off;
2311
obj_req->ex.oe_len = next_off - off;
2312
}
2313
2314
/* reverse map the entire object onto the parent */
2315
ret = rbd_obj_calc_img_extents(obj_req, true);
2316
if (ret)
2317
return ret;
2318
2319
obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320
if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321
obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323
obj_req->write_state = RBD_OBJ_WRITE_START;
2324
return 0;
2325
}
2326
2327
static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328
int which)
2329
{
2330
struct rbd_obj_request *obj_req = osd_req->r_priv;
2331
u16 opcode;
2332
2333
if (rbd_obj_is_entire(obj_req)) {
2334
if (obj_req->num_img_extents) {
2335
if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336
osd_req_op_init(osd_req, which++,
2337
CEPH_OSD_OP_CREATE, 0);
2338
opcode = CEPH_OSD_OP_TRUNCATE;
2339
} else {
2340
rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341
osd_req_op_init(osd_req, which++,
2342
CEPH_OSD_OP_DELETE, 0);
2343
opcode = 0;
2344
}
2345
} else {
2346
opcode = truncate_or_zero_opcode(obj_req);
2347
}
2348
2349
if (opcode)
2350
osd_req_op_extent_init(osd_req, which, opcode,
2351
obj_req->ex.oe_off, obj_req->ex.oe_len,
2352
0, 0);
2353
}
2354
2355
static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356
{
2357
int ret;
2358
2359
/* reverse map the entire object onto the parent */
2360
ret = rbd_obj_calc_img_extents(obj_req, true);
2361
if (ret)
2362
return ret;
2363
2364
if (!obj_req->num_img_extents) {
2365
obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366
if (rbd_obj_is_entire(obj_req))
2367
obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368
}
2369
2370
obj_req->write_state = RBD_OBJ_WRITE_START;
2371
return 0;
2372
}
2373
2374
static int count_write_ops(struct rbd_obj_request *obj_req)
2375
{
2376
struct rbd_img_request *img_req = obj_req->img_request;
2377
2378
switch (img_req->op_type) {
2379
case OBJ_OP_WRITE:
2380
if (!use_object_map(img_req->rbd_dev) ||
2381
!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382
return 2; /* setallochint + write/writefull */
2383
2384
return 1; /* write/writefull */
2385
case OBJ_OP_DISCARD:
2386
return 1; /* delete/truncate/zero */
2387
case OBJ_OP_ZEROOUT:
2388
if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389
!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390
return 2; /* create + truncate */
2391
2392
return 1; /* delete/truncate/zero */
2393
default:
2394
BUG();
2395
}
2396
}
2397
2398
static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399
int which)
2400
{
2401
struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403
switch (obj_req->img_request->op_type) {
2404
case OBJ_OP_WRITE:
2405
__rbd_osd_setup_write_ops(osd_req, which);
2406
break;
2407
case OBJ_OP_DISCARD:
2408
__rbd_osd_setup_discard_ops(osd_req, which);
2409
break;
2410
case OBJ_OP_ZEROOUT:
2411
__rbd_osd_setup_zeroout_ops(osd_req, which);
2412
break;
2413
default:
2414
BUG();
2415
}
2416
}
2417
2418
/*
2419
* Prune the list of object requests (adjust offset and/or length, drop
2420
* redundant requests). Prepare object request state machines and image
2421
* request state machine for execution.
2422
*/
2423
static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424
{
2425
struct rbd_obj_request *obj_req, *next_obj_req;
2426
int ret;
2427
2428
for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429
switch (img_req->op_type) {
2430
case OBJ_OP_READ:
2431
ret = rbd_obj_init_read(obj_req);
2432
break;
2433
case OBJ_OP_WRITE:
2434
ret = rbd_obj_init_write(obj_req);
2435
break;
2436
case OBJ_OP_DISCARD:
2437
ret = rbd_obj_init_discard(obj_req);
2438
break;
2439
case OBJ_OP_ZEROOUT:
2440
ret = rbd_obj_init_zeroout(obj_req);
2441
break;
2442
default:
2443
BUG();
2444
}
2445
if (ret < 0)
2446
return ret;
2447
if (ret > 0) {
2448
rbd_img_obj_request_del(img_req, obj_req);
2449
continue;
2450
}
2451
}
2452
2453
img_req->state = RBD_IMG_START;
2454
return 0;
2455
}
2456
2457
union rbd_img_fill_iter {
2458
struct ceph_bio_iter bio_iter;
2459
struct ceph_bvec_iter bvec_iter;
2460
};
2461
2462
struct rbd_img_fill_ctx {
2463
enum obj_request_type pos_type;
2464
union rbd_img_fill_iter *pos;
2465
union rbd_img_fill_iter iter;
2466
ceph_object_extent_fn_t set_pos_fn;
2467
ceph_object_extent_fn_t count_fn;
2468
ceph_object_extent_fn_t copy_fn;
2469
};
2470
2471
static struct ceph_object_extent *alloc_object_extent(void *arg)
2472
{
2473
struct rbd_img_request *img_req = arg;
2474
struct rbd_obj_request *obj_req;
2475
2476
obj_req = rbd_obj_request_create();
2477
if (!obj_req)
2478
return NULL;
2479
2480
rbd_img_obj_request_add(img_req, obj_req);
2481
return &obj_req->ex;
2482
}
2483
2484
/*
2485
* While su != os && sc == 1 is technically not fancy (it's the same
2486
* layout as su == os && sc == 1), we can't use the nocopy path for it
2487
* because ->set_pos_fn() should be called only once per object.
2488
* ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489
* treat su != os && sc == 1 as fancy.
2490
*/
2491
static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492
{
2493
return l->stripe_unit != l->object_size;
2494
}
2495
2496
static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497
struct ceph_file_extent *img_extents,
2498
u32 num_img_extents,
2499
struct rbd_img_fill_ctx *fctx)
2500
{
2501
u32 i;
2502
int ret;
2503
2504
img_req->data_type = fctx->pos_type;
2505
2506
/*
2507
* Create object requests and set each object request's starting
2508
* position in the provided bio (list) or bio_vec array.
2509
*/
2510
fctx->iter = *fctx->pos;
2511
for (i = 0; i < num_img_extents; i++) {
2512
ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513
img_extents[i].fe_off,
2514
img_extents[i].fe_len,
2515
&img_req->object_extents,
2516
alloc_object_extent, img_req,
2517
fctx->set_pos_fn, &fctx->iter);
2518
if (ret)
2519
return ret;
2520
}
2521
2522
return __rbd_img_fill_request(img_req);
2523
}
2524
2525
/*
2526
* Map a list of image extents to a list of object extents, create the
2527
* corresponding object requests (normally each to a different object,
2528
* but not always) and add them to @img_req. For each object request,
2529
* set up its data descriptor to point to the corresponding chunk(s) of
2530
* @fctx->pos data buffer.
2531
*
2532
* Because ceph_file_to_extents() will merge adjacent object extents
2533
* together, each object request's data descriptor may point to multiple
2534
* different chunks of @fctx->pos data buffer.
2535
*
2536
* @fctx->pos data buffer is assumed to be large enough.
2537
*/
2538
static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539
struct ceph_file_extent *img_extents,
2540
u32 num_img_extents,
2541
struct rbd_img_fill_ctx *fctx)
2542
{
2543
struct rbd_device *rbd_dev = img_req->rbd_dev;
2544
struct rbd_obj_request *obj_req;
2545
u32 i;
2546
int ret;
2547
2548
if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549
!rbd_layout_is_fancy(&rbd_dev->layout))
2550
return rbd_img_fill_request_nocopy(img_req, img_extents,
2551
num_img_extents, fctx);
2552
2553
img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555
/*
2556
* Create object requests and determine ->bvec_count for each object
2557
* request. Note that ->bvec_count sum over all object requests may
2558
* be greater than the number of bio_vecs in the provided bio (list)
2559
* or bio_vec array because when mapped, those bio_vecs can straddle
2560
* stripe unit boundaries.
2561
*/
2562
fctx->iter = *fctx->pos;
2563
for (i = 0; i < num_img_extents; i++) {
2564
ret = ceph_file_to_extents(&rbd_dev->layout,
2565
img_extents[i].fe_off,
2566
img_extents[i].fe_len,
2567
&img_req->object_extents,
2568
alloc_object_extent, img_req,
2569
fctx->count_fn, &fctx->iter);
2570
if (ret)
2571
return ret;
2572
}
2573
2574
for_each_obj_request(img_req, obj_req) {
2575
obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576
sizeof(*obj_req->bvec_pos.bvecs),
2577
GFP_NOIO);
2578
if (!obj_req->bvec_pos.bvecs)
2579
return -ENOMEM;
2580
}
2581
2582
/*
2583
* Fill in each object request's private bio_vec array, splitting and
2584
* rearranging the provided bio_vecs in stripe unit chunks as needed.
2585
*/
2586
fctx->iter = *fctx->pos;
2587
for (i = 0; i < num_img_extents; i++) {
2588
ret = ceph_iterate_extents(&rbd_dev->layout,
2589
img_extents[i].fe_off,
2590
img_extents[i].fe_len,
2591
&img_req->object_extents,
2592
fctx->copy_fn, &fctx->iter);
2593
if (ret)
2594
return ret;
2595
}
2596
2597
return __rbd_img_fill_request(img_req);
2598
}
2599
2600
static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601
u64 off, u64 len)
2602
{
2603
struct ceph_file_extent ex = { off, len };
2604
union rbd_img_fill_iter dummy = {};
2605
struct rbd_img_fill_ctx fctx = {
2606
.pos_type = OBJ_REQUEST_NODATA,
2607
.pos = &dummy,
2608
};
2609
2610
return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611
}
2612
2613
static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614
{
2615
struct rbd_obj_request *obj_req =
2616
container_of(ex, struct rbd_obj_request, ex);
2617
struct ceph_bio_iter *it = arg;
2618
2619
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620
obj_req->bio_pos = *it;
2621
ceph_bio_iter_advance(it, bytes);
2622
}
2623
2624
static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625
{
2626
struct rbd_obj_request *obj_req =
2627
container_of(ex, struct rbd_obj_request, ex);
2628
struct ceph_bio_iter *it = arg;
2629
2630
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631
ceph_bio_iter_advance_step(it, bytes, ({
2632
obj_req->bvec_count++;
2633
}));
2634
2635
}
2636
2637
static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638
{
2639
struct rbd_obj_request *obj_req =
2640
container_of(ex, struct rbd_obj_request, ex);
2641
struct ceph_bio_iter *it = arg;
2642
2643
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644
ceph_bio_iter_advance_step(it, bytes, ({
2645
obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646
obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647
}));
2648
}
2649
2650
static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651
struct ceph_file_extent *img_extents,
2652
u32 num_img_extents,
2653
struct ceph_bio_iter *bio_pos)
2654
{
2655
struct rbd_img_fill_ctx fctx = {
2656
.pos_type = OBJ_REQUEST_BIO,
2657
.pos = (union rbd_img_fill_iter *)bio_pos,
2658
.set_pos_fn = set_bio_pos,
2659
.count_fn = count_bio_bvecs,
2660
.copy_fn = copy_bio_bvecs,
2661
};
2662
2663
return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664
&fctx);
2665
}
2666
2667
static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668
u64 off, u64 len, struct bio *bio)
2669
{
2670
struct ceph_file_extent ex = { off, len };
2671
struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673
return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674
}
2675
2676
static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677
{
2678
struct rbd_obj_request *obj_req =
2679
container_of(ex, struct rbd_obj_request, ex);
2680
struct ceph_bvec_iter *it = arg;
2681
2682
obj_req->bvec_pos = *it;
2683
ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684
ceph_bvec_iter_advance(it, bytes);
2685
}
2686
2687
static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688
{
2689
struct rbd_obj_request *obj_req =
2690
container_of(ex, struct rbd_obj_request, ex);
2691
struct ceph_bvec_iter *it = arg;
2692
2693
ceph_bvec_iter_advance_step(it, bytes, ({
2694
obj_req->bvec_count++;
2695
}));
2696
}
2697
2698
static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699
{
2700
struct rbd_obj_request *obj_req =
2701
container_of(ex, struct rbd_obj_request, ex);
2702
struct ceph_bvec_iter *it = arg;
2703
2704
ceph_bvec_iter_advance_step(it, bytes, ({
2705
obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706
obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707
}));
2708
}
2709
2710
static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711
struct ceph_file_extent *img_extents,
2712
u32 num_img_extents,
2713
struct ceph_bvec_iter *bvec_pos)
2714
{
2715
struct rbd_img_fill_ctx fctx = {
2716
.pos_type = OBJ_REQUEST_BVECS,
2717
.pos = (union rbd_img_fill_iter *)bvec_pos,
2718
.set_pos_fn = set_bvec_pos,
2719
.count_fn = count_bvecs,
2720
.copy_fn = copy_bvecs,
2721
};
2722
2723
return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724
&fctx);
2725
}
2726
2727
static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728
struct ceph_file_extent *img_extents,
2729
u32 num_img_extents,
2730
struct bio_vec *bvecs)
2731
{
2732
struct ceph_bvec_iter it = {
2733
.bvecs = bvecs,
2734
.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735
num_img_extents) },
2736
};
2737
2738
return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739
&it);
2740
}
2741
2742
static void rbd_img_handle_request_work(struct work_struct *work)
2743
{
2744
struct rbd_img_request *img_req =
2745
container_of(work, struct rbd_img_request, work);
2746
2747
rbd_img_handle_request(img_req, img_req->work_result);
2748
}
2749
2750
static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751
{
2752
INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753
img_req->work_result = result;
2754
queue_work(rbd_wq, &img_req->work);
2755
}
2756
2757
static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758
{
2759
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761
if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762
obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763
return true;
2764
}
2765
2766
dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767
obj_req->ex.oe_objno);
2768
return false;
2769
}
2770
2771
static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772
{
2773
struct ceph_osd_request *osd_req;
2774
int ret;
2775
2776
osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777
if (IS_ERR(osd_req))
2778
return PTR_ERR(osd_req);
2779
2780
osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781
obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782
rbd_osd_setup_data(osd_req, 0);
2783
rbd_osd_format_read(osd_req);
2784
2785
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786
if (ret)
2787
return ret;
2788
2789
rbd_osd_submit(osd_req);
2790
return 0;
2791
}
2792
2793
static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794
{
2795
struct rbd_img_request *img_req = obj_req->img_request;
2796
struct rbd_device *parent = img_req->rbd_dev->parent;
2797
struct rbd_img_request *child_img_req;
2798
int ret;
2799
2800
child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801
if (!child_img_req)
2802
return -ENOMEM;
2803
2804
rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805
__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806
child_img_req->obj_request = obj_req;
2807
2808
down_read(&parent->header_rwsem);
2809
rbd_img_capture_header(child_img_req);
2810
up_read(&parent->header_rwsem);
2811
2812
dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813
obj_req);
2814
2815
if (!rbd_img_is_write(img_req)) {
2816
switch (img_req->data_type) {
2817
case OBJ_REQUEST_BIO:
2818
ret = __rbd_img_fill_from_bio(child_img_req,
2819
obj_req->img_extents,
2820
obj_req->num_img_extents,
2821
&obj_req->bio_pos);
2822
break;
2823
case OBJ_REQUEST_BVECS:
2824
case OBJ_REQUEST_OWN_BVECS:
2825
ret = __rbd_img_fill_from_bvecs(child_img_req,
2826
obj_req->img_extents,
2827
obj_req->num_img_extents,
2828
&obj_req->bvec_pos);
2829
break;
2830
default:
2831
BUG();
2832
}
2833
} else {
2834
ret = rbd_img_fill_from_bvecs(child_img_req,
2835
obj_req->img_extents,
2836
obj_req->num_img_extents,
2837
obj_req->copyup_bvecs);
2838
}
2839
if (ret) {
2840
rbd_img_request_destroy(child_img_req);
2841
return ret;
2842
}
2843
2844
/* avoid parent chain recursion */
2845
rbd_img_schedule(child_img_req, 0);
2846
return 0;
2847
}
2848
2849
static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850
{
2851
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852
int ret;
2853
2854
again:
2855
switch (obj_req->read_state) {
2856
case RBD_OBJ_READ_START:
2857
rbd_assert(!*result);
2858
2859
if (!rbd_obj_may_exist(obj_req)) {
2860
*result = -ENOENT;
2861
obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862
goto again;
2863
}
2864
2865
ret = rbd_obj_read_object(obj_req);
2866
if (ret) {
2867
*result = ret;
2868
return true;
2869
}
2870
obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871
return false;
2872
case RBD_OBJ_READ_OBJECT:
2873
if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874
/* reverse map this object extent onto the parent */
2875
ret = rbd_obj_calc_img_extents(obj_req, false);
2876
if (ret) {
2877
*result = ret;
2878
return true;
2879
}
2880
if (obj_req->num_img_extents) {
2881
ret = rbd_obj_read_from_parent(obj_req);
2882
if (ret) {
2883
*result = ret;
2884
return true;
2885
}
2886
obj_req->read_state = RBD_OBJ_READ_PARENT;
2887
return false;
2888
}
2889
}
2890
2891
/*
2892
* -ENOENT means a hole in the image -- zero-fill the entire
2893
* length of the request. A short read also implies zero-fill
2894
* to the end of the request.
2895
*/
2896
if (*result == -ENOENT) {
2897
rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898
*result = 0;
2899
} else if (*result >= 0) {
2900
if (*result < obj_req->ex.oe_len)
2901
rbd_obj_zero_range(obj_req, *result,
2902
obj_req->ex.oe_len - *result);
2903
else
2904
rbd_assert(*result == obj_req->ex.oe_len);
2905
*result = 0;
2906
}
2907
return true;
2908
case RBD_OBJ_READ_PARENT:
2909
/*
2910
* The parent image is read only up to the overlap -- zero-fill
2911
* from the overlap to the end of the request.
2912
*/
2913
if (!*result) {
2914
u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916
if (obj_overlap < obj_req->ex.oe_len)
2917
rbd_obj_zero_range(obj_req, obj_overlap,
2918
obj_req->ex.oe_len - obj_overlap);
2919
}
2920
return true;
2921
default:
2922
BUG();
2923
}
2924
}
2925
2926
static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927
{
2928
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930
if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931
obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933
if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934
(obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935
dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936
return true;
2937
}
2938
2939
return false;
2940
}
2941
2942
/*
2943
* Return:
2944
* 0 - object map update sent
2945
* 1 - object map update isn't needed
2946
* <0 - error
2947
*/
2948
static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949
{
2950
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951
u8 new_state;
2952
2953
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954
return 1;
2955
2956
if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957
new_state = OBJECT_PENDING;
2958
else
2959
new_state = OBJECT_EXISTS;
2960
2961
return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962
}
2963
2964
static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965
{
2966
struct ceph_osd_request *osd_req;
2967
int num_ops = count_write_ops(obj_req);
2968
int which = 0;
2969
int ret;
2970
2971
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972
num_ops++; /* stat */
2973
2974
osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975
if (IS_ERR(osd_req))
2976
return PTR_ERR(osd_req);
2977
2978
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979
ret = rbd_osd_setup_stat(osd_req, which++);
2980
if (ret)
2981
return ret;
2982
}
2983
2984
rbd_osd_setup_write_ops(osd_req, which);
2985
rbd_osd_format_write(osd_req);
2986
2987
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988
if (ret)
2989
return ret;
2990
2991
rbd_osd_submit(osd_req);
2992
return 0;
2993
}
2994
2995
/*
2996
* copyup_bvecs pages are never highmem pages
2997
*/
2998
static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999
{
3000
struct ceph_bvec_iter it = {
3001
.bvecs = bvecs,
3002
.iter = { .bi_size = bytes },
3003
};
3004
3005
ceph_bvec_iter_advance_step(&it, bytes, ({
3006
if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007
return false;
3008
}));
3009
return true;
3010
}
3011
3012
#define MODS_ONLY U32_MAX
3013
3014
static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015
u32 bytes)
3016
{
3017
struct ceph_osd_request *osd_req;
3018
int ret;
3019
3020
dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021
rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023
osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024
if (IS_ERR(osd_req))
3025
return PTR_ERR(osd_req);
3026
3027
ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028
if (ret)
3029
return ret;
3030
3031
rbd_osd_format_write(osd_req);
3032
3033
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034
if (ret)
3035
return ret;
3036
3037
rbd_osd_submit(osd_req);
3038
return 0;
3039
}
3040
3041
static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042
u32 bytes)
3043
{
3044
struct ceph_osd_request *osd_req;
3045
int num_ops = count_write_ops(obj_req);
3046
int which = 0;
3047
int ret;
3048
3049
dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051
if (bytes != MODS_ONLY)
3052
num_ops++; /* copyup */
3053
3054
osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055
if (IS_ERR(osd_req))
3056
return PTR_ERR(osd_req);
3057
3058
if (bytes != MODS_ONLY) {
3059
ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060
if (ret)
3061
return ret;
3062
}
3063
3064
rbd_osd_setup_write_ops(osd_req, which);
3065
rbd_osd_format_write(osd_req);
3066
3067
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068
if (ret)
3069
return ret;
3070
3071
rbd_osd_submit(osd_req);
3072
return 0;
3073
}
3074
3075
static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076
{
3077
u32 i;
3078
3079
rbd_assert(!obj_req->copyup_bvecs);
3080
obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081
obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082
sizeof(*obj_req->copyup_bvecs),
3083
GFP_NOIO);
3084
if (!obj_req->copyup_bvecs)
3085
return -ENOMEM;
3086
3087
for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088
unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089
struct page *page = alloc_page(GFP_NOIO);
3090
3091
if (!page)
3092
return -ENOMEM;
3093
3094
bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095
obj_overlap -= len;
3096
}
3097
3098
rbd_assert(!obj_overlap);
3099
return 0;
3100
}
3101
3102
/*
3103
* The target object doesn't exist. Read the data for the entire
3104
* target object up to the overlap point (if any) from the parent,
3105
* so we can use it for a copyup.
3106
*/
3107
static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108
{
3109
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110
int ret;
3111
3112
rbd_assert(obj_req->num_img_extents);
3113
prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114
rbd_dev->parent_overlap);
3115
if (!obj_req->num_img_extents) {
3116
/*
3117
* The overlap has become 0 (most likely because the
3118
* image has been flattened). Re-submit the original write
3119
* request -- pass MODS_ONLY since the copyup isn't needed
3120
* anymore.
3121
*/
3122
return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123
}
3124
3125
ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126
if (ret)
3127
return ret;
3128
3129
return rbd_obj_read_from_parent(obj_req);
3130
}
3131
3132
static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133
{
3134
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135
struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136
u8 new_state;
3137
u32 i;
3138
int ret;
3139
3140
rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143
return;
3144
3145
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146
return;
3147
3148
for (i = 0; i < snapc->num_snaps; i++) {
3149
if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150
i + 1 < snapc->num_snaps)
3151
new_state = OBJECT_EXISTS_CLEAN;
3152
else
3153
new_state = OBJECT_EXISTS;
3154
3155
ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156
new_state, NULL);
3157
if (ret < 0) {
3158
obj_req->pending.result = ret;
3159
return;
3160
}
3161
3162
rbd_assert(!ret);
3163
obj_req->pending.num_pending++;
3164
}
3165
}
3166
3167
static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168
{
3169
u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170
int ret;
3171
3172
rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174
/*
3175
* Only send non-zero copyup data to save some I/O and network
3176
* bandwidth -- zero copyup data is equivalent to the object not
3177
* existing.
3178
*/
3179
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180
bytes = 0;
3181
3182
if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183
/*
3184
* Send a copyup request with an empty snapshot context to
3185
* deep-copyup the object through all existing snapshots.
3186
* A second request with the current snapshot context will be
3187
* sent for the actual modification.
3188
*/
3189
ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190
if (ret) {
3191
obj_req->pending.result = ret;
3192
return;
3193
}
3194
3195
obj_req->pending.num_pending++;
3196
bytes = MODS_ONLY;
3197
}
3198
3199
ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200
if (ret) {
3201
obj_req->pending.result = ret;
3202
return;
3203
}
3204
3205
obj_req->pending.num_pending++;
3206
}
3207
3208
static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209
{
3210
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211
int ret;
3212
3213
again:
3214
switch (obj_req->copyup_state) {
3215
case RBD_OBJ_COPYUP_START:
3216
rbd_assert(!*result);
3217
3218
ret = rbd_obj_copyup_read_parent(obj_req);
3219
if (ret) {
3220
*result = ret;
3221
return true;
3222
}
3223
if (obj_req->num_img_extents)
3224
obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225
else
3226
obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227
return false;
3228
case RBD_OBJ_COPYUP_READ_PARENT:
3229
if (*result)
3230
return true;
3231
3232
if (is_zero_bvecs(obj_req->copyup_bvecs,
3233
rbd_obj_img_extents_bytes(obj_req))) {
3234
dout("%s %p detected zeros\n", __func__, obj_req);
3235
obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236
}
3237
3238
rbd_obj_copyup_object_maps(obj_req);
3239
if (!obj_req->pending.num_pending) {
3240
*result = obj_req->pending.result;
3241
obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242
goto again;
3243
}
3244
obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245
return false;
3246
case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247
if (!pending_result_dec(&obj_req->pending, result))
3248
return false;
3249
fallthrough;
3250
case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251
if (*result) {
3252
rbd_warn(rbd_dev, "snap object map update failed: %d",
3253
*result);
3254
return true;
3255
}
3256
3257
rbd_obj_copyup_write_object(obj_req);
3258
if (!obj_req->pending.num_pending) {
3259
*result = obj_req->pending.result;
3260
obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261
goto again;
3262
}
3263
obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264
return false;
3265
case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266
if (!pending_result_dec(&obj_req->pending, result))
3267
return false;
3268
fallthrough;
3269
case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270
return true;
3271
default:
3272
BUG();
3273
}
3274
}
3275
3276
/*
3277
* Return:
3278
* 0 - object map update sent
3279
* 1 - object map update isn't needed
3280
* <0 - error
3281
*/
3282
static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283
{
3284
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285
u8 current_state = OBJECT_PENDING;
3286
3287
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288
return 1;
3289
3290
if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291
return 1;
3292
3293
return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294
&current_state);
3295
}
3296
3297
static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298
{
3299
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300
int ret;
3301
3302
again:
3303
switch (obj_req->write_state) {
3304
case RBD_OBJ_WRITE_START:
3305
rbd_assert(!*result);
3306
3307
rbd_obj_set_copyup_enabled(obj_req);
3308
if (rbd_obj_write_is_noop(obj_req))
3309
return true;
3310
3311
ret = rbd_obj_write_pre_object_map(obj_req);
3312
if (ret < 0) {
3313
*result = ret;
3314
return true;
3315
}
3316
obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317
if (ret > 0)
3318
goto again;
3319
return false;
3320
case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321
if (*result) {
3322
rbd_warn(rbd_dev, "pre object map update failed: %d",
3323
*result);
3324
return true;
3325
}
3326
ret = rbd_obj_write_object(obj_req);
3327
if (ret) {
3328
*result = ret;
3329
return true;
3330
}
3331
obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332
return false;
3333
case RBD_OBJ_WRITE_OBJECT:
3334
if (*result == -ENOENT) {
3335
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336
*result = 0;
3337
obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338
obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339
goto again;
3340
}
3341
/*
3342
* On a non-existent object:
3343
* delete - -ENOENT, truncate/zero - 0
3344
*/
3345
if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346
*result = 0;
3347
}
3348
if (*result)
3349
return true;
3350
3351
obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352
goto again;
3353
case __RBD_OBJ_WRITE_COPYUP:
3354
if (!rbd_obj_advance_copyup(obj_req, result))
3355
return false;
3356
fallthrough;
3357
case RBD_OBJ_WRITE_COPYUP:
3358
if (*result) {
3359
rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360
return true;
3361
}
3362
ret = rbd_obj_write_post_object_map(obj_req);
3363
if (ret < 0) {
3364
*result = ret;
3365
return true;
3366
}
3367
obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368
if (ret > 0)
3369
goto again;
3370
return false;
3371
case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372
if (*result)
3373
rbd_warn(rbd_dev, "post object map update failed: %d",
3374
*result);
3375
return true;
3376
default:
3377
BUG();
3378
}
3379
}
3380
3381
/*
3382
* Return true if @obj_req is completed.
3383
*/
3384
static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385
int *result)
3386
{
3387
struct rbd_img_request *img_req = obj_req->img_request;
3388
struct rbd_device *rbd_dev = img_req->rbd_dev;
3389
bool done;
3390
3391
mutex_lock(&obj_req->state_mutex);
3392
if (!rbd_img_is_write(img_req))
3393
done = rbd_obj_advance_read(obj_req, result);
3394
else
3395
done = rbd_obj_advance_write(obj_req, result);
3396
mutex_unlock(&obj_req->state_mutex);
3397
3398
if (done && *result) {
3399
rbd_assert(*result < 0);
3400
rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401
obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402
obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403
}
3404
return done;
3405
}
3406
3407
/*
3408
* This is open-coded in rbd_img_handle_request() to avoid parent chain
3409
* recursion.
3410
*/
3411
static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412
{
3413
if (__rbd_obj_handle_request(obj_req, &result))
3414
rbd_img_handle_request(obj_req->img_request, result);
3415
}
3416
3417
static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418
{
3419
struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421
if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422
return false;
3423
3424
if (rbd_is_ro(rbd_dev))
3425
return false;
3426
3427
rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428
if (rbd_dev->opts->lock_on_read ||
3429
(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430
return true;
3431
3432
return rbd_img_is_write(img_req);
3433
}
3434
3435
static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436
{
3437
struct rbd_device *rbd_dev = img_req->rbd_dev;
3438
bool locked;
3439
3440
lockdep_assert_held(&rbd_dev->lock_rwsem);
3441
locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442
spin_lock(&rbd_dev->lock_lists_lock);
3443
rbd_assert(list_empty(&img_req->lock_item));
3444
if (!locked)
3445
list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446
else
3447
list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448
spin_unlock(&rbd_dev->lock_lists_lock);
3449
return locked;
3450
}
3451
3452
static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453
{
3454
struct rbd_device *rbd_dev = img_req->rbd_dev;
3455
bool need_wakeup = false;
3456
3457
lockdep_assert_held(&rbd_dev->lock_rwsem);
3458
spin_lock(&rbd_dev->lock_lists_lock);
3459
if (!list_empty(&img_req->lock_item)) {
3460
rbd_assert(!list_empty(&rbd_dev->running_list));
3461
list_del_init(&img_req->lock_item);
3462
need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING &&
3463
list_empty(&rbd_dev->running_list));
3464
}
3465
spin_unlock(&rbd_dev->lock_lists_lock);
3466
if (need_wakeup)
3467
complete(&rbd_dev->quiescing_wait);
3468
}
3469
3470
static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3471
{
3472
struct rbd_device *rbd_dev = img_req->rbd_dev;
3473
3474
if (!need_exclusive_lock(img_req))
3475
return 1;
3476
3477
if (rbd_lock_add_request(img_req))
3478
return 1;
3479
3480
/*
3481
* Note the use of mod_delayed_work() in rbd_acquire_lock()
3482
* and cancel_delayed_work() in wake_lock_waiters().
3483
*/
3484
dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486
return 0;
3487
}
3488
3489
static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490
{
3491
struct rbd_device *rbd_dev = img_req->rbd_dev;
3492
struct rbd_obj_request *obj_req;
3493
3494
rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495
rbd_assert(!need_exclusive_lock(img_req) ||
3496
__rbd_is_lock_owner(rbd_dev));
3497
3498
if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3499
rbd_assert(!rbd_img_is_write(img_req));
3500
} else {
3501
struct request *rq = blk_mq_rq_from_pdu(img_req);
3502
u64 off = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3503
u64 len = blk_rq_bytes(rq);
3504
u64 mapping_size;
3505
3506
down_read(&rbd_dev->header_rwsem);
3507
mapping_size = rbd_dev->mapping.size;
3508
if (rbd_img_is_write(img_req)) {
3509
rbd_assert(!img_req->snapc);
3510
img_req->snapc =
3511
ceph_get_snap_context(rbd_dev->header.snapc);
3512
}
3513
up_read(&rbd_dev->header_rwsem);
3514
3515
if (unlikely(off + len > mapping_size)) {
3516
rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)",
3517
off, len, mapping_size);
3518
img_req->pending.result = -EIO;
3519
return;
3520
}
3521
}
3522
3523
for_each_obj_request(img_req, obj_req) {
3524
int result = 0;
3525
3526
if (__rbd_obj_handle_request(obj_req, &result)) {
3527
if (result) {
3528
img_req->pending.result = result;
3529
return;
3530
}
3531
} else {
3532
img_req->pending.num_pending++;
3533
}
3534
}
3535
}
3536
3537
static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3538
{
3539
int ret;
3540
3541
again:
3542
switch (img_req->state) {
3543
case RBD_IMG_START:
3544
rbd_assert(!*result);
3545
3546
ret = rbd_img_exclusive_lock(img_req);
3547
if (ret < 0) {
3548
*result = ret;
3549
return true;
3550
}
3551
img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3552
if (ret > 0)
3553
goto again;
3554
return false;
3555
case RBD_IMG_EXCLUSIVE_LOCK:
3556
if (*result)
3557
return true;
3558
3559
rbd_img_object_requests(img_req);
3560
if (!img_req->pending.num_pending) {
3561
*result = img_req->pending.result;
3562
img_req->state = RBD_IMG_OBJECT_REQUESTS;
3563
goto again;
3564
}
3565
img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3566
return false;
3567
case __RBD_IMG_OBJECT_REQUESTS:
3568
if (!pending_result_dec(&img_req->pending, result))
3569
return false;
3570
fallthrough;
3571
case RBD_IMG_OBJECT_REQUESTS:
3572
return true;
3573
default:
3574
BUG();
3575
}
3576
}
3577
3578
/*
3579
* Return true if @img_req is completed.
3580
*/
3581
static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3582
int *result)
3583
{
3584
struct rbd_device *rbd_dev = img_req->rbd_dev;
3585
bool done;
3586
3587
if (need_exclusive_lock(img_req)) {
3588
down_read(&rbd_dev->lock_rwsem);
3589
mutex_lock(&img_req->state_mutex);
3590
done = rbd_img_advance(img_req, result);
3591
if (done)
3592
rbd_lock_del_request(img_req);
3593
mutex_unlock(&img_req->state_mutex);
3594
up_read(&rbd_dev->lock_rwsem);
3595
} else {
3596
mutex_lock(&img_req->state_mutex);
3597
done = rbd_img_advance(img_req, result);
3598
mutex_unlock(&img_req->state_mutex);
3599
}
3600
3601
if (done && *result) {
3602
rbd_assert(*result < 0);
3603
rbd_warn(rbd_dev, "%s%s result %d",
3604
test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3605
obj_op_name(img_req->op_type), *result);
3606
}
3607
return done;
3608
}
3609
3610
static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3611
{
3612
again:
3613
if (!__rbd_img_handle_request(img_req, &result))
3614
return;
3615
3616
if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3617
struct rbd_obj_request *obj_req = img_req->obj_request;
3618
3619
rbd_img_request_destroy(img_req);
3620
if (__rbd_obj_handle_request(obj_req, &result)) {
3621
img_req = obj_req->img_request;
3622
goto again;
3623
}
3624
} else {
3625
struct request *rq = blk_mq_rq_from_pdu(img_req);
3626
3627
rbd_img_request_destroy(img_req);
3628
blk_mq_end_request(rq, errno_to_blk_status(result));
3629
}
3630
}
3631
3632
static const struct rbd_client_id rbd_empty_cid;
3633
3634
static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3635
const struct rbd_client_id *rhs)
3636
{
3637
return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3638
}
3639
3640
static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3641
{
3642
struct rbd_client_id cid;
3643
3644
mutex_lock(&rbd_dev->watch_mutex);
3645
cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3646
cid.handle = rbd_dev->watch_cookie;
3647
mutex_unlock(&rbd_dev->watch_mutex);
3648
return cid;
3649
}
3650
3651
/*
3652
* lock_rwsem must be held for write
3653
*/
3654
static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3655
const struct rbd_client_id *cid)
3656
{
3657
dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3658
rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3659
cid->gid, cid->handle);
3660
rbd_dev->owner_cid = *cid; /* struct */
3661
}
3662
3663
static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3664
{
3665
mutex_lock(&rbd_dev->watch_mutex);
3666
sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3667
mutex_unlock(&rbd_dev->watch_mutex);
3668
}
3669
3670
static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3671
{
3672
struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3673
3674
rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3675
strcpy(rbd_dev->lock_cookie, cookie);
3676
rbd_set_owner_cid(rbd_dev, &cid);
3677
queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3678
}
3679
3680
/*
3681
* lock_rwsem must be held for write
3682
*/
3683
static int rbd_lock(struct rbd_device *rbd_dev)
3684
{
3685
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3686
char cookie[32];
3687
int ret;
3688
3689
WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3690
rbd_dev->lock_cookie[0] != '\0');
3691
3692
format_lock_cookie(rbd_dev, cookie);
3693
ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3694
RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3695
RBD_LOCK_TAG, "", 0);
3696
if (ret && ret != -EEXIST)
3697
return ret;
3698
3699
__rbd_lock(rbd_dev, cookie);
3700
return 0;
3701
}
3702
3703
/*
3704
* lock_rwsem must be held for write
3705
*/
3706
static void rbd_unlock(struct rbd_device *rbd_dev)
3707
{
3708
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3709
int ret;
3710
3711
WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3712
rbd_dev->lock_cookie[0] == '\0');
3713
3714
ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3715
RBD_LOCK_NAME, rbd_dev->lock_cookie);
3716
if (ret && ret != -ENOENT)
3717
rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3718
3719
/* treat errors as the image is unlocked */
3720
rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3721
rbd_dev->lock_cookie[0] = '\0';
3722
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3723
queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3724
}
3725
3726
static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3727
enum rbd_notify_op notify_op,
3728
struct page ***preply_pages,
3729
size_t *preply_len)
3730
{
3731
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3732
struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3733
char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3734
int buf_size = sizeof(buf);
3735
void *p = buf;
3736
3737
dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3738
3739
/* encode *LockPayload NotifyMessage (op + ClientId) */
3740
ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3741
ceph_encode_32(&p, notify_op);
3742
ceph_encode_64(&p, cid.gid);
3743
ceph_encode_64(&p, cid.handle);
3744
3745
return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3746
&rbd_dev->header_oloc, buf, buf_size,
3747
RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3748
}
3749
3750
static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3751
enum rbd_notify_op notify_op)
3752
{
3753
__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3754
}
3755
3756
static void rbd_notify_acquired_lock(struct work_struct *work)
3757
{
3758
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3759
acquired_lock_work);
3760
3761
rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3762
}
3763
3764
static void rbd_notify_released_lock(struct work_struct *work)
3765
{
3766
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3767
released_lock_work);
3768
3769
rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3770
}
3771
3772
static int rbd_request_lock(struct rbd_device *rbd_dev)
3773
{
3774
struct page **reply_pages;
3775
size_t reply_len;
3776
bool lock_owner_responded = false;
3777
int ret;
3778
3779
dout("%s rbd_dev %p\n", __func__, rbd_dev);
3780
3781
ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3782
&reply_pages, &reply_len);
3783
if (ret && ret != -ETIMEDOUT) {
3784
rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3785
goto out;
3786
}
3787
3788
if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3789
void *p = page_address(reply_pages[0]);
3790
void *const end = p + reply_len;
3791
u32 n;
3792
3793
ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3794
while (n--) {
3795
u8 struct_v;
3796
u32 len;
3797
3798
ceph_decode_need(&p, end, 8 + 8, e_inval);
3799
p += 8 + 8; /* skip gid and cookie */
3800
3801
ceph_decode_32_safe(&p, end, len, e_inval);
3802
if (!len)
3803
continue;
3804
3805
if (lock_owner_responded) {
3806
rbd_warn(rbd_dev,
3807
"duplicate lock owners detected");
3808
ret = -EIO;
3809
goto out;
3810
}
3811
3812
lock_owner_responded = true;
3813
ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3814
&struct_v, &len);
3815
if (ret) {
3816
rbd_warn(rbd_dev,
3817
"failed to decode ResponseMessage: %d",
3818
ret);
3819
goto e_inval;
3820
}
3821
3822
ret = ceph_decode_32(&p);
3823
}
3824
}
3825
3826
if (!lock_owner_responded) {
3827
rbd_warn(rbd_dev, "no lock owners detected");
3828
ret = -ETIMEDOUT;
3829
}
3830
3831
out:
3832
ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3833
return ret;
3834
3835
e_inval:
3836
ret = -EINVAL;
3837
goto out;
3838
}
3839
3840
/*
3841
* Either image request state machine(s) or rbd_add_acquire_lock()
3842
* (i.e. "rbd map").
3843
*/
3844
static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3845
{
3846
struct rbd_img_request *img_req;
3847
3848
dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3849
lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3850
3851
cancel_delayed_work(&rbd_dev->lock_dwork);
3852
if (!completion_done(&rbd_dev->acquire_wait)) {
3853
rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3854
list_empty(&rbd_dev->running_list));
3855
rbd_dev->acquire_err = result;
3856
complete_all(&rbd_dev->acquire_wait);
3857
return;
3858
}
3859
3860
while (!list_empty(&rbd_dev->acquiring_list)) {
3861
img_req = list_first_entry(&rbd_dev->acquiring_list,
3862
struct rbd_img_request, lock_item);
3863
mutex_lock(&img_req->state_mutex);
3864
rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3865
if (!result)
3866
list_move_tail(&img_req->lock_item,
3867
&rbd_dev->running_list);
3868
else
3869
list_del_init(&img_req->lock_item);
3870
rbd_img_schedule(img_req, result);
3871
mutex_unlock(&img_req->state_mutex);
3872
}
3873
}
3874
3875
static bool locker_equal(const struct ceph_locker *lhs,
3876
const struct ceph_locker *rhs)
3877
{
3878
return lhs->id.name.type == rhs->id.name.type &&
3879
lhs->id.name.num == rhs->id.name.num &&
3880
!strcmp(lhs->id.cookie, rhs->id.cookie) &&
3881
ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3882
}
3883
3884
static void free_locker(struct ceph_locker *locker)
3885
{
3886
if (locker)
3887
ceph_free_lockers(locker, 1);
3888
}
3889
3890
static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3891
{
3892
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3893
struct ceph_locker *lockers;
3894
u32 num_lockers;
3895
u8 lock_type;
3896
char *lock_tag;
3897
u64 handle;
3898
int ret;
3899
3900
ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3901
&rbd_dev->header_oloc, RBD_LOCK_NAME,
3902
&lock_type, &lock_tag, &lockers, &num_lockers);
3903
if (ret) {
3904
rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3905
return ERR_PTR(ret);
3906
}
3907
3908
if (num_lockers == 0) {
3909
dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3910
lockers = NULL;
3911
goto out;
3912
}
3913
3914
if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3915
rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3916
lock_tag);
3917
goto err_busy;
3918
}
3919
3920
if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3921
rbd_warn(rbd_dev, "incompatible lock type detected");
3922
goto err_busy;
3923
}
3924
3925
WARN_ON(num_lockers != 1);
3926
ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3927
&handle);
3928
if (ret != 1) {
3929
rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3930
lockers[0].id.cookie);
3931
goto err_busy;
3932
}
3933
if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3934
rbd_warn(rbd_dev, "locker has a blank address");
3935
goto err_busy;
3936
}
3937
3938
dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3939
__func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3940
&lockers[0].info.addr.in_addr,
3941
le32_to_cpu(lockers[0].info.addr.nonce), handle);
3942
3943
out:
3944
kfree(lock_tag);
3945
return lockers;
3946
3947
err_busy:
3948
kfree(lock_tag);
3949
ceph_free_lockers(lockers, num_lockers);
3950
return ERR_PTR(-EBUSY);
3951
}
3952
3953
static int find_watcher(struct rbd_device *rbd_dev,
3954
const struct ceph_locker *locker)
3955
{
3956
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3957
struct ceph_watch_item *watchers;
3958
u32 num_watchers;
3959
u64 cookie;
3960
int i;
3961
int ret;
3962
3963
ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3964
&rbd_dev->header_oloc, &watchers,
3965
&num_watchers);
3966
if (ret) {
3967
rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3968
return ret;
3969
}
3970
3971
sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3972
for (i = 0; i < num_watchers; i++) {
3973
/*
3974
* Ignore addr->type while comparing. This mimics
3975
* entity_addr_t::get_legacy_str() + strcmp().
3976
*/
3977
if (ceph_addr_equal_no_type(&watchers[i].addr,
3978
&locker->info.addr) &&
3979
watchers[i].cookie == cookie) {
3980
struct rbd_client_id cid = {
3981
.gid = le64_to_cpu(watchers[i].name.num),
3982
.handle = cookie,
3983
};
3984
3985
dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3986
rbd_dev, cid.gid, cid.handle);
3987
rbd_set_owner_cid(rbd_dev, &cid);
3988
ret = 1;
3989
goto out;
3990
}
3991
}
3992
3993
dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3994
ret = 0;
3995
out:
3996
kfree(watchers);
3997
return ret;
3998
}
3999
4000
/*
4001
* lock_rwsem must be held for write
4002
*/
4003
static int rbd_try_lock(struct rbd_device *rbd_dev)
4004
{
4005
struct ceph_client *client = rbd_dev->rbd_client->client;
4006
struct ceph_locker *locker, *refreshed_locker;
4007
int ret;
4008
4009
for (;;) {
4010
locker = refreshed_locker = NULL;
4011
4012
ret = rbd_lock(rbd_dev);
4013
if (!ret)
4014
goto out;
4015
if (ret != -EBUSY) {
4016
rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4017
goto out;
4018
}
4019
4020
/* determine if the current lock holder is still alive */
4021
locker = get_lock_owner_info(rbd_dev);
4022
if (IS_ERR(locker)) {
4023
ret = PTR_ERR(locker);
4024
locker = NULL;
4025
goto out;
4026
}
4027
if (!locker)
4028
goto again;
4029
4030
ret = find_watcher(rbd_dev, locker);
4031
if (ret)
4032
goto out; /* request lock or error */
4033
4034
refreshed_locker = get_lock_owner_info(rbd_dev);
4035
if (IS_ERR(refreshed_locker)) {
4036
ret = PTR_ERR(refreshed_locker);
4037
refreshed_locker = NULL;
4038
goto out;
4039
}
4040
if (!refreshed_locker ||
4041
!locker_equal(locker, refreshed_locker))
4042
goto again;
4043
4044
rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4045
ENTITY_NAME(locker->id.name));
4046
4047
ret = ceph_monc_blocklist_add(&client->monc,
4048
&locker->info.addr);
4049
if (ret) {
4050
rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4051
ENTITY_NAME(locker->id.name), ret);
4052
goto out;
4053
}
4054
4055
ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4056
&rbd_dev->header_oloc, RBD_LOCK_NAME,
4057
locker->id.cookie, &locker->id.name);
4058
if (ret && ret != -ENOENT) {
4059
rbd_warn(rbd_dev, "failed to break header lock: %d",
4060
ret);
4061
goto out;
4062
}
4063
4064
again:
4065
free_locker(refreshed_locker);
4066
free_locker(locker);
4067
}
4068
4069
out:
4070
free_locker(refreshed_locker);
4071
free_locker(locker);
4072
return ret;
4073
}
4074
4075
static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4076
{
4077
int ret;
4078
4079
ret = rbd_dev_refresh(rbd_dev);
4080
if (ret)
4081
return ret;
4082
4083
if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4084
ret = rbd_object_map_open(rbd_dev);
4085
if (ret)
4086
return ret;
4087
}
4088
4089
return 0;
4090
}
4091
4092
/*
4093
* Return:
4094
* 0 - lock acquired
4095
* 1 - caller should call rbd_request_lock()
4096
* <0 - error
4097
*/
4098
static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4099
{
4100
int ret;
4101
4102
down_read(&rbd_dev->lock_rwsem);
4103
dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4104
rbd_dev->lock_state);
4105
if (__rbd_is_lock_owner(rbd_dev)) {
4106
up_read(&rbd_dev->lock_rwsem);
4107
return 0;
4108
}
4109
4110
up_read(&rbd_dev->lock_rwsem);
4111
down_write(&rbd_dev->lock_rwsem);
4112
dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4113
rbd_dev->lock_state);
4114
if (__rbd_is_lock_owner(rbd_dev)) {
4115
up_write(&rbd_dev->lock_rwsem);
4116
return 0;
4117
}
4118
4119
ret = rbd_try_lock(rbd_dev);
4120
if (ret < 0) {
4121
rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4122
goto out;
4123
}
4124
if (ret > 0) {
4125
up_write(&rbd_dev->lock_rwsem);
4126
return ret;
4127
}
4128
4129
rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4130
rbd_assert(list_empty(&rbd_dev->running_list));
4131
4132
ret = rbd_post_acquire_action(rbd_dev);
4133
if (ret) {
4134
rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4135
/*
4136
* Can't stay in RBD_LOCK_STATE_LOCKED because
4137
* rbd_lock_add_request() would let the request through,
4138
* assuming that e.g. object map is locked and loaded.
4139
*/
4140
rbd_unlock(rbd_dev);
4141
}
4142
4143
out:
4144
wake_lock_waiters(rbd_dev, ret);
4145
up_write(&rbd_dev->lock_rwsem);
4146
return ret;
4147
}
4148
4149
static void rbd_acquire_lock(struct work_struct *work)
4150
{
4151
struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4152
struct rbd_device, lock_dwork);
4153
int ret;
4154
4155
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4156
again:
4157
ret = rbd_try_acquire_lock(rbd_dev);
4158
if (ret <= 0) {
4159
dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4160
return;
4161
}
4162
4163
ret = rbd_request_lock(rbd_dev);
4164
if (ret == -ETIMEDOUT) {
4165
goto again; /* treat this as a dead client */
4166
} else if (ret == -EROFS) {
4167
rbd_warn(rbd_dev, "peer will not release lock");
4168
down_write(&rbd_dev->lock_rwsem);
4169
wake_lock_waiters(rbd_dev, ret);
4170
up_write(&rbd_dev->lock_rwsem);
4171
} else if (ret < 0) {
4172
rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4173
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4174
RBD_RETRY_DELAY);
4175
} else {
4176
/*
4177
* lock owner acked, but resend if we don't see them
4178
* release the lock
4179
*/
4180
dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4181
rbd_dev);
4182
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4183
msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4184
}
4185
}
4186
4187
static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4188
{
4189
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4190
lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4191
4192
if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4193
return false;
4194
4195
/*
4196
* Ensure that all in-flight IO is flushed.
4197
*/
4198
rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING;
4199
rbd_assert(!completion_done(&rbd_dev->quiescing_wait));
4200
if (list_empty(&rbd_dev->running_list))
4201
return true;
4202
4203
up_write(&rbd_dev->lock_rwsem);
4204
wait_for_completion(&rbd_dev->quiescing_wait);
4205
4206
down_write(&rbd_dev->lock_rwsem);
4207
if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING)
4208
return false;
4209
4210
rbd_assert(list_empty(&rbd_dev->running_list));
4211
return true;
4212
}
4213
4214
static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4215
{
4216
if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4217
rbd_object_map_close(rbd_dev);
4218
}
4219
4220
static void __rbd_release_lock(struct rbd_device *rbd_dev)
4221
{
4222
rbd_assert(list_empty(&rbd_dev->running_list));
4223
4224
rbd_pre_release_action(rbd_dev);
4225
rbd_unlock(rbd_dev);
4226
}
4227
4228
/*
4229
* lock_rwsem must be held for write
4230
*/
4231
static void rbd_release_lock(struct rbd_device *rbd_dev)
4232
{
4233
if (!rbd_quiesce_lock(rbd_dev))
4234
return;
4235
4236
__rbd_release_lock(rbd_dev);
4237
4238
/*
4239
* Give others a chance to grab the lock - we would re-acquire
4240
* almost immediately if we got new IO while draining the running
4241
* list otherwise. We need to ack our own notifications, so this
4242
* lock_dwork will be requeued from rbd_handle_released_lock() by
4243
* way of maybe_kick_acquire().
4244
*/
4245
cancel_delayed_work(&rbd_dev->lock_dwork);
4246
}
4247
4248
static void rbd_release_lock_work(struct work_struct *work)
4249
{
4250
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4251
unlock_work);
4252
4253
down_write(&rbd_dev->lock_rwsem);
4254
rbd_release_lock(rbd_dev);
4255
up_write(&rbd_dev->lock_rwsem);
4256
}
4257
4258
static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4259
{
4260
bool have_requests;
4261
4262
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4263
if (__rbd_is_lock_owner(rbd_dev))
4264
return;
4265
4266
spin_lock(&rbd_dev->lock_lists_lock);
4267
have_requests = !list_empty(&rbd_dev->acquiring_list);
4268
spin_unlock(&rbd_dev->lock_lists_lock);
4269
if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4270
dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4271
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4272
}
4273
}
4274
4275
static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4276
void **p)
4277
{
4278
struct rbd_client_id cid = { 0 };
4279
4280
if (struct_v >= 2) {
4281
cid.gid = ceph_decode_64(p);
4282
cid.handle = ceph_decode_64(p);
4283
}
4284
4285
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4286
cid.handle);
4287
if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4288
down_write(&rbd_dev->lock_rwsem);
4289
if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4290
dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4291
__func__, rbd_dev, cid.gid, cid.handle);
4292
} else {
4293
rbd_set_owner_cid(rbd_dev, &cid);
4294
}
4295
downgrade_write(&rbd_dev->lock_rwsem);
4296
} else {
4297
down_read(&rbd_dev->lock_rwsem);
4298
}
4299
4300
maybe_kick_acquire(rbd_dev);
4301
up_read(&rbd_dev->lock_rwsem);
4302
}
4303
4304
static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4305
void **p)
4306
{
4307
struct rbd_client_id cid = { 0 };
4308
4309
if (struct_v >= 2) {
4310
cid.gid = ceph_decode_64(p);
4311
cid.handle = ceph_decode_64(p);
4312
}
4313
4314
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4315
cid.handle);
4316
if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4317
down_write(&rbd_dev->lock_rwsem);
4318
if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4319
dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4320
__func__, rbd_dev, cid.gid, cid.handle,
4321
rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4322
} else {
4323
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4324
}
4325
downgrade_write(&rbd_dev->lock_rwsem);
4326
} else {
4327
down_read(&rbd_dev->lock_rwsem);
4328
}
4329
4330
maybe_kick_acquire(rbd_dev);
4331
up_read(&rbd_dev->lock_rwsem);
4332
}
4333
4334
/*
4335
* Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4336
* ResponseMessage is needed.
4337
*/
4338
static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4339
void **p)
4340
{
4341
struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4342
struct rbd_client_id cid = { 0 };
4343
int result = 1;
4344
4345
if (struct_v >= 2) {
4346
cid.gid = ceph_decode_64(p);
4347
cid.handle = ceph_decode_64(p);
4348
}
4349
4350
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4351
cid.handle);
4352
if (rbd_cid_equal(&cid, &my_cid))
4353
return result;
4354
4355
down_read(&rbd_dev->lock_rwsem);
4356
if (__rbd_is_lock_owner(rbd_dev)) {
4357
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4358
rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4359
goto out_unlock;
4360
4361
/*
4362
* encode ResponseMessage(0) so the peer can detect
4363
* a missing owner
4364
*/
4365
result = 0;
4366
4367
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4368
if (!rbd_dev->opts->exclusive) {
4369
dout("%s rbd_dev %p queueing unlock_work\n",
4370
__func__, rbd_dev);
4371
queue_work(rbd_dev->task_wq,
4372
&rbd_dev->unlock_work);
4373
} else {
4374
/* refuse to release the lock */
4375
result = -EROFS;
4376
}
4377
}
4378
}
4379
4380
out_unlock:
4381
up_read(&rbd_dev->lock_rwsem);
4382
return result;
4383
}
4384
4385
static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4386
u64 notify_id, u64 cookie, s32 *result)
4387
{
4388
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4389
char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4390
int buf_size = sizeof(buf);
4391
int ret;
4392
4393
if (result) {
4394
void *p = buf;
4395
4396
/* encode ResponseMessage */
4397
ceph_start_encoding(&p, 1, 1,
4398
buf_size - CEPH_ENCODING_START_BLK_LEN);
4399
ceph_encode_32(&p, *result);
4400
} else {
4401
buf_size = 0;
4402
}
4403
4404
ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4405
&rbd_dev->header_oloc, notify_id, cookie,
4406
buf, buf_size);
4407
if (ret)
4408
rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4409
}
4410
4411
static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4412
u64 cookie)
4413
{
4414
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4415
__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4416
}
4417
4418
static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4419
u64 notify_id, u64 cookie, s32 result)
4420
{
4421
dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4422
__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4423
}
4424
4425
static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4426
u64 notifier_id, void *data, size_t data_len)
4427
{
4428
struct rbd_device *rbd_dev = arg;
4429
void *p = data;
4430
void *const end = p + data_len;
4431
u8 struct_v = 0;
4432
u32 len;
4433
u32 notify_op;
4434
int ret;
4435
4436
dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4437
__func__, rbd_dev, cookie, notify_id, data_len);
4438
if (data_len) {
4439
ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4440
&struct_v, &len);
4441
if (ret) {
4442
rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4443
ret);
4444
return;
4445
}
4446
4447
notify_op = ceph_decode_32(&p);
4448
} else {
4449
/* legacy notification for header updates */
4450
notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4451
len = 0;
4452
}
4453
4454
dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4455
switch (notify_op) {
4456
case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4457
rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4458
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4459
break;
4460
case RBD_NOTIFY_OP_RELEASED_LOCK:
4461
rbd_handle_released_lock(rbd_dev, struct_v, &p);
4462
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4463
break;
4464
case RBD_NOTIFY_OP_REQUEST_LOCK:
4465
ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4466
if (ret <= 0)
4467
rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468
cookie, ret);
4469
else
4470
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471
break;
4472
case RBD_NOTIFY_OP_HEADER_UPDATE:
4473
ret = rbd_dev_refresh(rbd_dev);
4474
if (ret)
4475
rbd_warn(rbd_dev, "refresh failed: %d", ret);
4476
4477
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4478
break;
4479
default:
4480
if (rbd_is_lock_owner(rbd_dev))
4481
rbd_acknowledge_notify_result(rbd_dev, notify_id,
4482
cookie, -EOPNOTSUPP);
4483
else
4484
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4485
break;
4486
}
4487
}
4488
4489
static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4490
4491
static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4492
{
4493
struct rbd_device *rbd_dev = arg;
4494
4495
rbd_warn(rbd_dev, "encountered watch error: %d", err);
4496
4497
down_write(&rbd_dev->lock_rwsem);
4498
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4499
up_write(&rbd_dev->lock_rwsem);
4500
4501
mutex_lock(&rbd_dev->watch_mutex);
4502
if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4503
__rbd_unregister_watch(rbd_dev);
4504
rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4505
4506
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4507
}
4508
mutex_unlock(&rbd_dev->watch_mutex);
4509
}
4510
4511
/*
4512
* watch_mutex must be locked
4513
*/
4514
static int __rbd_register_watch(struct rbd_device *rbd_dev)
4515
{
4516
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4517
struct ceph_osd_linger_request *handle;
4518
4519
rbd_assert(!rbd_dev->watch_handle);
4520
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4521
4522
handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4523
&rbd_dev->header_oloc, rbd_watch_cb,
4524
rbd_watch_errcb, rbd_dev);
4525
if (IS_ERR(handle))
4526
return PTR_ERR(handle);
4527
4528
rbd_dev->watch_handle = handle;
4529
return 0;
4530
}
4531
4532
/*
4533
* watch_mutex must be locked
4534
*/
4535
static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4536
{
4537
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4538
int ret;
4539
4540
rbd_assert(rbd_dev->watch_handle);
4541
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4542
4543
ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4544
if (ret)
4545
rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4546
4547
rbd_dev->watch_handle = NULL;
4548
}
4549
4550
static int rbd_register_watch(struct rbd_device *rbd_dev)
4551
{
4552
int ret;
4553
4554
mutex_lock(&rbd_dev->watch_mutex);
4555
rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4556
ret = __rbd_register_watch(rbd_dev);
4557
if (ret)
4558
goto out;
4559
4560
rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4561
rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4562
4563
out:
4564
mutex_unlock(&rbd_dev->watch_mutex);
4565
return ret;
4566
}
4567
4568
static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4569
{
4570
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4571
4572
cancel_work_sync(&rbd_dev->acquired_lock_work);
4573
cancel_work_sync(&rbd_dev->released_lock_work);
4574
cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4575
cancel_work_sync(&rbd_dev->unlock_work);
4576
}
4577
4578
/*
4579
* header_rwsem must not be held to avoid a deadlock with
4580
* rbd_dev_refresh() when flushing notifies.
4581
*/
4582
static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4583
{
4584
cancel_tasks_sync(rbd_dev);
4585
4586
mutex_lock(&rbd_dev->watch_mutex);
4587
if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4588
__rbd_unregister_watch(rbd_dev);
4589
rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4590
mutex_unlock(&rbd_dev->watch_mutex);
4591
4592
cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4593
ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4594
}
4595
4596
/*
4597
* lock_rwsem must be held for write
4598
*/
4599
static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4600
{
4601
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4602
char cookie[32];
4603
int ret;
4604
4605
if (!rbd_quiesce_lock(rbd_dev))
4606
return;
4607
4608
format_lock_cookie(rbd_dev, cookie);
4609
ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4610
&rbd_dev->header_oloc, RBD_LOCK_NAME,
4611
CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4612
RBD_LOCK_TAG, cookie);
4613
if (ret) {
4614
if (ret != -EOPNOTSUPP)
4615
rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4616
ret);
4617
4618
if (rbd_dev->opts->exclusive)
4619
rbd_warn(rbd_dev,
4620
"temporarily releasing lock on exclusive mapping");
4621
4622
/*
4623
* Lock cookie cannot be updated on older OSDs, so do
4624
* a manual release and queue an acquire.
4625
*/
4626
__rbd_release_lock(rbd_dev);
4627
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4628
} else {
4629
__rbd_lock(rbd_dev, cookie);
4630
wake_lock_waiters(rbd_dev, 0);
4631
}
4632
}
4633
4634
static void rbd_reregister_watch(struct work_struct *work)
4635
{
4636
struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4637
struct rbd_device, watch_dwork);
4638
int ret;
4639
4640
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4641
4642
mutex_lock(&rbd_dev->watch_mutex);
4643
if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4644
mutex_unlock(&rbd_dev->watch_mutex);
4645
return;
4646
}
4647
4648
ret = __rbd_register_watch(rbd_dev);
4649
if (ret) {
4650
rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4651
if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4652
queue_delayed_work(rbd_dev->task_wq,
4653
&rbd_dev->watch_dwork,
4654
RBD_RETRY_DELAY);
4655
mutex_unlock(&rbd_dev->watch_mutex);
4656
return;
4657
}
4658
4659
mutex_unlock(&rbd_dev->watch_mutex);
4660
down_write(&rbd_dev->lock_rwsem);
4661
wake_lock_waiters(rbd_dev, ret);
4662
up_write(&rbd_dev->lock_rwsem);
4663
return;
4664
}
4665
4666
rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4667
rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4668
mutex_unlock(&rbd_dev->watch_mutex);
4669
4670
down_write(&rbd_dev->lock_rwsem);
4671
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4672
rbd_reacquire_lock(rbd_dev);
4673
up_write(&rbd_dev->lock_rwsem);
4674
4675
ret = rbd_dev_refresh(rbd_dev);
4676
if (ret)
4677
rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4678
}
4679
4680
/*
4681
* Synchronous osd object method call. Returns the number of bytes
4682
* returned in the outbound buffer, or a negative error code.
4683
*/
4684
static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4685
struct ceph_object_id *oid,
4686
struct ceph_object_locator *oloc,
4687
const char *method_name,
4688
const void *outbound,
4689
size_t outbound_size,
4690
void *inbound,
4691
size_t inbound_size)
4692
{
4693
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4694
struct page *req_page = NULL;
4695
struct page *reply_page;
4696
int ret;
4697
4698
/*
4699
* Method calls are ultimately read operations. The result
4700
* should placed into the inbound buffer provided. They
4701
* also supply outbound data--parameters for the object
4702
* method. Currently if this is present it will be a
4703
* snapshot id.
4704
*/
4705
if (outbound) {
4706
if (outbound_size > PAGE_SIZE)
4707
return -E2BIG;
4708
4709
req_page = alloc_page(GFP_KERNEL);
4710
if (!req_page)
4711
return -ENOMEM;
4712
4713
memcpy(page_address(req_page), outbound, outbound_size);
4714
}
4715
4716
reply_page = alloc_page(GFP_KERNEL);
4717
if (!reply_page) {
4718
if (req_page)
4719
__free_page(req_page);
4720
return -ENOMEM;
4721
}
4722
4723
ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4724
CEPH_OSD_FLAG_READ, req_page, outbound_size,
4725
&reply_page, &inbound_size);
4726
if (!ret) {
4727
memcpy(inbound, page_address(reply_page), inbound_size);
4728
ret = inbound_size;
4729
}
4730
4731
if (req_page)
4732
__free_page(req_page);
4733
__free_page(reply_page);
4734
return ret;
4735
}
4736
4737
static void rbd_queue_workfn(struct work_struct *work)
4738
{
4739
struct rbd_img_request *img_request =
4740
container_of(work, struct rbd_img_request, work);
4741
struct rbd_device *rbd_dev = img_request->rbd_dev;
4742
enum obj_operation_type op_type = img_request->op_type;
4743
struct request *rq = blk_mq_rq_from_pdu(img_request);
4744
u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4745
u64 length = blk_rq_bytes(rq);
4746
int result;
4747
4748
/* Ignore/skip any zero-length requests */
4749
if (!length) {
4750
dout("%s: zero-length request\n", __func__);
4751
result = 0;
4752
goto err_img_request;
4753
}
4754
4755
blk_mq_start_request(rq);
4756
4757
down_read(&rbd_dev->header_rwsem);
4758
rbd_img_capture_header(img_request);
4759
up_read(&rbd_dev->header_rwsem);
4760
4761
dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4762
img_request, obj_op_name(op_type), offset, length);
4763
4764
if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4765
result = rbd_img_fill_nodata(img_request, offset, length);
4766
else
4767
result = rbd_img_fill_from_bio(img_request, offset, length,
4768
rq->bio);
4769
if (result)
4770
goto err_img_request;
4771
4772
rbd_img_handle_request(img_request, 0);
4773
return;
4774
4775
err_img_request:
4776
rbd_img_request_destroy(img_request);
4777
if (result)
4778
rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4779
obj_op_name(op_type), length, offset, result);
4780
blk_mq_end_request(rq, errno_to_blk_status(result));
4781
}
4782
4783
static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4784
const struct blk_mq_queue_data *bd)
4785
{
4786
struct rbd_device *rbd_dev = hctx->queue->queuedata;
4787
struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4788
enum obj_operation_type op_type;
4789
4790
switch (req_op(bd->rq)) {
4791
case REQ_OP_DISCARD:
4792
op_type = OBJ_OP_DISCARD;
4793
break;
4794
case REQ_OP_WRITE_ZEROES:
4795
op_type = OBJ_OP_ZEROOUT;
4796
break;
4797
case REQ_OP_WRITE:
4798
op_type = OBJ_OP_WRITE;
4799
break;
4800
case REQ_OP_READ:
4801
op_type = OBJ_OP_READ;
4802
break;
4803
default:
4804
rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4805
return BLK_STS_IOERR;
4806
}
4807
4808
rbd_img_request_init(img_req, rbd_dev, op_type);
4809
4810
if (rbd_img_is_write(img_req)) {
4811
if (rbd_is_ro(rbd_dev)) {
4812
rbd_warn(rbd_dev, "%s on read-only mapping",
4813
obj_op_name(img_req->op_type));
4814
return BLK_STS_IOERR;
4815
}
4816
rbd_assert(!rbd_is_snap(rbd_dev));
4817
}
4818
4819
INIT_WORK(&img_req->work, rbd_queue_workfn);
4820
queue_work(rbd_wq, &img_req->work);
4821
return BLK_STS_OK;
4822
}
4823
4824
static void rbd_free_disk(struct rbd_device *rbd_dev)
4825
{
4826
put_disk(rbd_dev->disk);
4827
blk_mq_free_tag_set(&rbd_dev->tag_set);
4828
rbd_dev->disk = NULL;
4829
}
4830
4831
static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4832
struct ceph_object_id *oid,
4833
struct ceph_object_locator *oloc,
4834
void *buf, int buf_len)
4835
4836
{
4837
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4838
struct ceph_osd_request *req;
4839
struct page **pages;
4840
int num_pages = calc_pages_for(0, buf_len);
4841
int ret;
4842
4843
req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4844
if (!req)
4845
return -ENOMEM;
4846
4847
ceph_oid_copy(&req->r_base_oid, oid);
4848
ceph_oloc_copy(&req->r_base_oloc, oloc);
4849
req->r_flags = CEPH_OSD_FLAG_READ;
4850
4851
pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4852
if (IS_ERR(pages)) {
4853
ret = PTR_ERR(pages);
4854
goto out_req;
4855
}
4856
4857
osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4858
osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4859
true);
4860
4861
ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4862
if (ret)
4863
goto out_req;
4864
4865
ceph_osdc_start_request(osdc, req);
4866
ret = ceph_osdc_wait_request(osdc, req);
4867
if (ret >= 0)
4868
ceph_copy_from_page_vector(pages, buf, 0, ret);
4869
4870
out_req:
4871
ceph_osdc_put_request(req);
4872
return ret;
4873
}
4874
4875
/*
4876
* Read the complete header for the given rbd device. On successful
4877
* return, the rbd_dev->header field will contain up-to-date
4878
* information about the image.
4879
*/
4880
static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4881
struct rbd_image_header *header,
4882
bool first_time)
4883
{
4884
struct rbd_image_header_ondisk *ondisk = NULL;
4885
u32 snap_count = 0;
4886
u64 names_size = 0;
4887
u32 want_count;
4888
int ret;
4889
4890
/*
4891
* The complete header will include an array of its 64-bit
4892
* snapshot ids, followed by the names of those snapshots as
4893
* a contiguous block of NUL-terminated strings. Note that
4894
* the number of snapshots could change by the time we read
4895
* it in, in which case we re-read it.
4896
*/
4897
do {
4898
size_t size;
4899
4900
kfree(ondisk);
4901
4902
size = sizeof (*ondisk);
4903
size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4904
size += names_size;
4905
ondisk = kmalloc(size, GFP_KERNEL);
4906
if (!ondisk)
4907
return -ENOMEM;
4908
4909
ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4910
&rbd_dev->header_oloc, ondisk, size);
4911
if (ret < 0)
4912
goto out;
4913
if ((size_t)ret < size) {
4914
ret = -ENXIO;
4915
rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4916
size, ret);
4917
goto out;
4918
}
4919
if (!rbd_dev_ondisk_valid(ondisk)) {
4920
ret = -ENXIO;
4921
rbd_warn(rbd_dev, "invalid header");
4922
goto out;
4923
}
4924
4925
names_size = le64_to_cpu(ondisk->snap_names_len);
4926
want_count = snap_count;
4927
snap_count = le32_to_cpu(ondisk->snap_count);
4928
} while (snap_count != want_count);
4929
4930
ret = rbd_header_from_disk(header, ondisk, first_time);
4931
out:
4932
kfree(ondisk);
4933
4934
return ret;
4935
}
4936
4937
static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4938
{
4939
sector_t size;
4940
4941
/*
4942
* If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4943
* try to update its size. If REMOVING is set, updating size
4944
* is just useless work since the device can't be opened.
4945
*/
4946
if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4947
!test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4948
size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4949
dout("setting size to %llu sectors", (unsigned long long)size);
4950
set_capacity_and_notify(rbd_dev->disk, size);
4951
}
4952
}
4953
4954
static const struct blk_mq_ops rbd_mq_ops = {
4955
.queue_rq = rbd_queue_rq,
4956
};
4957
4958
static int rbd_init_disk(struct rbd_device *rbd_dev)
4959
{
4960
struct gendisk *disk;
4961
unsigned int objset_bytes =
4962
rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4963
struct queue_limits lim = {
4964
.max_hw_sectors = objset_bytes >> SECTOR_SHIFT,
4965
.io_opt = objset_bytes,
4966
.io_min = rbd_dev->opts->alloc_size,
4967
.max_segments = USHRT_MAX,
4968
.max_segment_size = UINT_MAX,
4969
};
4970
int err;
4971
4972
memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4973
rbd_dev->tag_set.ops = &rbd_mq_ops;
4974
rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4975
rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4976
rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4977
rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4978
4979
err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4980
if (err)
4981
return err;
4982
4983
if (rbd_dev->opts->trim) {
4984
lim.discard_granularity = rbd_dev->opts->alloc_size;
4985
lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4986
lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4987
}
4988
4989
if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4990
lim.features |= BLK_FEAT_STABLE_WRITES;
4991
4992
disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4993
if (IS_ERR(disk)) {
4994
err = PTR_ERR(disk);
4995
goto out_tag_set;
4996
}
4997
4998
snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4999
rbd_dev->dev_id);
5000
disk->major = rbd_dev->major;
5001
disk->first_minor = rbd_dev->minor;
5002
if (single_major)
5003
disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
5004
else
5005
disk->minors = RBD_MINORS_PER_MAJOR;
5006
disk->fops = &rbd_bd_ops;
5007
disk->private_data = rbd_dev;
5008
rbd_dev->disk = disk;
5009
5010
return 0;
5011
out_tag_set:
5012
blk_mq_free_tag_set(&rbd_dev->tag_set);
5013
return err;
5014
}
5015
5016
/*
5017
sysfs
5018
*/
5019
5020
static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5021
{
5022
return container_of(dev, struct rbd_device, dev);
5023
}
5024
5025
static ssize_t rbd_size_show(struct device *dev,
5026
struct device_attribute *attr, char *buf)
5027
{
5028
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029
5030
return sprintf(buf, "%llu\n",
5031
(unsigned long long)rbd_dev->mapping.size);
5032
}
5033
5034
static ssize_t rbd_features_show(struct device *dev,
5035
struct device_attribute *attr, char *buf)
5036
{
5037
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038
5039
return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5040
}
5041
5042
static ssize_t rbd_major_show(struct device *dev,
5043
struct device_attribute *attr, char *buf)
5044
{
5045
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046
5047
if (rbd_dev->major)
5048
return sprintf(buf, "%d\n", rbd_dev->major);
5049
5050
return sprintf(buf, "(none)\n");
5051
}
5052
5053
static ssize_t rbd_minor_show(struct device *dev,
5054
struct device_attribute *attr, char *buf)
5055
{
5056
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057
5058
return sprintf(buf, "%d\n", rbd_dev->minor);
5059
}
5060
5061
static ssize_t rbd_client_addr_show(struct device *dev,
5062
struct device_attribute *attr, char *buf)
5063
{
5064
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065
struct ceph_entity_addr *client_addr =
5066
ceph_client_addr(rbd_dev->rbd_client->client);
5067
5068
return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5069
le32_to_cpu(client_addr->nonce));
5070
}
5071
5072
static ssize_t rbd_client_id_show(struct device *dev,
5073
struct device_attribute *attr, char *buf)
5074
{
5075
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076
5077
return sprintf(buf, "client%lld\n",
5078
ceph_client_gid(rbd_dev->rbd_client->client));
5079
}
5080
5081
static ssize_t rbd_cluster_fsid_show(struct device *dev,
5082
struct device_attribute *attr, char *buf)
5083
{
5084
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085
5086
return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5087
}
5088
5089
static ssize_t rbd_config_info_show(struct device *dev,
5090
struct device_attribute *attr, char *buf)
5091
{
5092
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093
5094
if (!capable(CAP_SYS_ADMIN))
5095
return -EPERM;
5096
5097
return sprintf(buf, "%s\n", rbd_dev->config_info);
5098
}
5099
5100
static ssize_t rbd_pool_show(struct device *dev,
5101
struct device_attribute *attr, char *buf)
5102
{
5103
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104
5105
return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5106
}
5107
5108
static ssize_t rbd_pool_id_show(struct device *dev,
5109
struct device_attribute *attr, char *buf)
5110
{
5111
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112
5113
return sprintf(buf, "%llu\n",
5114
(unsigned long long) rbd_dev->spec->pool_id);
5115
}
5116
5117
static ssize_t rbd_pool_ns_show(struct device *dev,
5118
struct device_attribute *attr, char *buf)
5119
{
5120
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121
5122
return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5123
}
5124
5125
static ssize_t rbd_name_show(struct device *dev,
5126
struct device_attribute *attr, char *buf)
5127
{
5128
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5129
5130
if (rbd_dev->spec->image_name)
5131
return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5132
5133
return sprintf(buf, "(unknown)\n");
5134
}
5135
5136
static ssize_t rbd_image_id_show(struct device *dev,
5137
struct device_attribute *attr, char *buf)
5138
{
5139
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5140
5141
return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5142
}
5143
5144
/*
5145
* Shows the name of the currently-mapped snapshot (or
5146
* RBD_SNAP_HEAD_NAME for the base image).
5147
*/
5148
static ssize_t rbd_snap_show(struct device *dev,
5149
struct device_attribute *attr,
5150
char *buf)
5151
{
5152
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153
5154
return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5155
}
5156
5157
static ssize_t rbd_snap_id_show(struct device *dev,
5158
struct device_attribute *attr, char *buf)
5159
{
5160
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161
5162
return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5163
}
5164
5165
/*
5166
* For a v2 image, shows the chain of parent images, separated by empty
5167
* lines. For v1 images or if there is no parent, shows "(no parent
5168
* image)".
5169
*/
5170
static ssize_t rbd_parent_show(struct device *dev,
5171
struct device_attribute *attr,
5172
char *buf)
5173
{
5174
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175
ssize_t count = 0;
5176
5177
if (!rbd_dev->parent)
5178
return sprintf(buf, "(no parent image)\n");
5179
5180
for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5181
struct rbd_spec *spec = rbd_dev->parent_spec;
5182
5183
count += sprintf(&buf[count], "%s"
5184
"pool_id %llu\npool_name %s\n"
5185
"pool_ns %s\n"
5186
"image_id %s\nimage_name %s\n"
5187
"snap_id %llu\nsnap_name %s\n"
5188
"overlap %llu\n",
5189
!count ? "" : "\n", /* first? */
5190
spec->pool_id, spec->pool_name,
5191
spec->pool_ns ?: "",
5192
spec->image_id, spec->image_name ?: "(unknown)",
5193
spec->snap_id, spec->snap_name,
5194
rbd_dev->parent_overlap);
5195
}
5196
5197
return count;
5198
}
5199
5200
static ssize_t rbd_image_refresh(struct device *dev,
5201
struct device_attribute *attr,
5202
const char *buf,
5203
size_t size)
5204
{
5205
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5206
int ret;
5207
5208
if (!capable(CAP_SYS_ADMIN))
5209
return -EPERM;
5210
5211
ret = rbd_dev_refresh(rbd_dev);
5212
if (ret)
5213
return ret;
5214
5215
return size;
5216
}
5217
5218
static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5219
static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5220
static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5221
static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5222
static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5223
static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5224
static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5225
static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5226
static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5227
static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5228
static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5229
static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5230
static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5231
static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5232
static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5233
static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5234
static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5235
5236
static struct attribute *rbd_attrs[] = {
5237
&dev_attr_size.attr,
5238
&dev_attr_features.attr,
5239
&dev_attr_major.attr,
5240
&dev_attr_minor.attr,
5241
&dev_attr_client_addr.attr,
5242
&dev_attr_client_id.attr,
5243
&dev_attr_cluster_fsid.attr,
5244
&dev_attr_config_info.attr,
5245
&dev_attr_pool.attr,
5246
&dev_attr_pool_id.attr,
5247
&dev_attr_pool_ns.attr,
5248
&dev_attr_name.attr,
5249
&dev_attr_image_id.attr,
5250
&dev_attr_current_snap.attr,
5251
&dev_attr_snap_id.attr,
5252
&dev_attr_parent.attr,
5253
&dev_attr_refresh.attr,
5254
NULL
5255
};
5256
5257
static struct attribute_group rbd_attr_group = {
5258
.attrs = rbd_attrs,
5259
};
5260
5261
static const struct attribute_group *rbd_attr_groups[] = {
5262
&rbd_attr_group,
5263
NULL
5264
};
5265
5266
static void rbd_dev_release(struct device *dev);
5267
5268
static const struct device_type rbd_device_type = {
5269
.name = "rbd",
5270
.groups = rbd_attr_groups,
5271
.release = rbd_dev_release,
5272
};
5273
5274
static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5275
{
5276
kref_get(&spec->kref);
5277
5278
return spec;
5279
}
5280
5281
static void rbd_spec_free(struct kref *kref);
5282
static void rbd_spec_put(struct rbd_spec *spec)
5283
{
5284
if (spec)
5285
kref_put(&spec->kref, rbd_spec_free);
5286
}
5287
5288
static struct rbd_spec *rbd_spec_alloc(void)
5289
{
5290
struct rbd_spec *spec;
5291
5292
spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5293
if (!spec)
5294
return NULL;
5295
5296
spec->pool_id = CEPH_NOPOOL;
5297
spec->snap_id = CEPH_NOSNAP;
5298
kref_init(&spec->kref);
5299
5300
return spec;
5301
}
5302
5303
static void rbd_spec_free(struct kref *kref)
5304
{
5305
struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5306
5307
kfree(spec->pool_name);
5308
kfree(spec->pool_ns);
5309
kfree(spec->image_id);
5310
kfree(spec->image_name);
5311
kfree(spec->snap_name);
5312
kfree(spec);
5313
}
5314
5315
static void rbd_dev_free(struct rbd_device *rbd_dev)
5316
{
5317
WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5318
WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5319
5320
ceph_oid_destroy(&rbd_dev->header_oid);
5321
ceph_oloc_destroy(&rbd_dev->header_oloc);
5322
kfree(rbd_dev->config_info);
5323
5324
rbd_put_client(rbd_dev->rbd_client);
5325
rbd_spec_put(rbd_dev->spec);
5326
kfree(rbd_dev->opts);
5327
kfree(rbd_dev);
5328
}
5329
5330
static void rbd_dev_release(struct device *dev)
5331
{
5332
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5333
bool need_put = !!rbd_dev->opts;
5334
5335
if (need_put) {
5336
destroy_workqueue(rbd_dev->task_wq);
5337
ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5338
}
5339
5340
rbd_dev_free(rbd_dev);
5341
5342
/*
5343
* This is racy, but way better than putting module outside of
5344
* the release callback. The race window is pretty small, so
5345
* doing something similar to dm (dm-builtin.c) is overkill.
5346
*/
5347
if (need_put)
5348
module_put(THIS_MODULE);
5349
}
5350
5351
static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5352
{
5353
struct rbd_device *rbd_dev;
5354
5355
rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5356
if (!rbd_dev)
5357
return NULL;
5358
5359
spin_lock_init(&rbd_dev->lock);
5360
INIT_LIST_HEAD(&rbd_dev->node);
5361
init_rwsem(&rbd_dev->header_rwsem);
5362
5363
rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5364
ceph_oid_init(&rbd_dev->header_oid);
5365
rbd_dev->header_oloc.pool = spec->pool_id;
5366
if (spec->pool_ns) {
5367
WARN_ON(!*spec->pool_ns);
5368
rbd_dev->header_oloc.pool_ns =
5369
ceph_find_or_create_string(spec->pool_ns,
5370
strlen(spec->pool_ns));
5371
}
5372
5373
mutex_init(&rbd_dev->watch_mutex);
5374
rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5375
INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5376
5377
init_rwsem(&rbd_dev->lock_rwsem);
5378
rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5379
INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5380
INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5381
INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5382
INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5383
spin_lock_init(&rbd_dev->lock_lists_lock);
5384
INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5385
INIT_LIST_HEAD(&rbd_dev->running_list);
5386
init_completion(&rbd_dev->acquire_wait);
5387
init_completion(&rbd_dev->quiescing_wait);
5388
5389
spin_lock_init(&rbd_dev->object_map_lock);
5390
5391
rbd_dev->dev.bus = &rbd_bus_type;
5392
rbd_dev->dev.type = &rbd_device_type;
5393
rbd_dev->dev.parent = &rbd_root_dev;
5394
device_initialize(&rbd_dev->dev);
5395
5396
return rbd_dev;
5397
}
5398
5399
/*
5400
* Create a mapping rbd_dev.
5401
*/
5402
static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5403
struct rbd_spec *spec,
5404
struct rbd_options *opts)
5405
{
5406
struct rbd_device *rbd_dev;
5407
5408
rbd_dev = __rbd_dev_create(spec);
5409
if (!rbd_dev)
5410
return NULL;
5411
5412
/* get an id and fill in device name */
5413
rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5414
minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5415
GFP_KERNEL);
5416
if (rbd_dev->dev_id < 0)
5417
goto fail_rbd_dev;
5418
5419
sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5420
rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5421
rbd_dev->name);
5422
if (!rbd_dev->task_wq)
5423
goto fail_dev_id;
5424
5425
/* we have a ref from do_rbd_add() */
5426
__module_get(THIS_MODULE);
5427
5428
rbd_dev->rbd_client = rbdc;
5429
rbd_dev->spec = spec;
5430
rbd_dev->opts = opts;
5431
5432
dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5433
return rbd_dev;
5434
5435
fail_dev_id:
5436
ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5437
fail_rbd_dev:
5438
rbd_dev_free(rbd_dev);
5439
return NULL;
5440
}
5441
5442
static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5443
{
5444
if (rbd_dev)
5445
put_device(&rbd_dev->dev);
5446
}
5447
5448
/*
5449
* Get the size and object order for an image snapshot, or if
5450
* snap_id is CEPH_NOSNAP, gets this information for the base
5451
* image.
5452
*/
5453
static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5454
u8 *order, u64 *snap_size)
5455
{
5456
__le64 snapid = cpu_to_le64(snap_id);
5457
int ret;
5458
struct {
5459
u8 order;
5460
__le64 size;
5461
} __attribute__ ((packed)) size_buf = { 0 };
5462
5463
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5464
&rbd_dev->header_oloc, "get_size",
5465
&snapid, sizeof(snapid),
5466
&size_buf, sizeof(size_buf));
5467
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5468
if (ret < 0)
5469
return ret;
5470
if (ret < sizeof (size_buf))
5471
return -ERANGE;
5472
5473
if (order) {
5474
*order = size_buf.order;
5475
dout(" order %u", (unsigned int)*order);
5476
}
5477
*snap_size = le64_to_cpu(size_buf.size);
5478
5479
dout(" snap_id 0x%016llx snap_size = %llu\n",
5480
(unsigned long long)snap_id,
5481
(unsigned long long)*snap_size);
5482
5483
return 0;
5484
}
5485
5486
static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5487
char **pobject_prefix)
5488
{
5489
size_t size;
5490
void *reply_buf;
5491
char *object_prefix;
5492
int ret;
5493
void *p;
5494
5495
/* Response will be an encoded string, which includes a length */
5496
size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5497
reply_buf = kzalloc(size, GFP_KERNEL);
5498
if (!reply_buf)
5499
return -ENOMEM;
5500
5501
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5502
&rbd_dev->header_oloc, "get_object_prefix",
5503
NULL, 0, reply_buf, size);
5504
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5505
if (ret < 0)
5506
goto out;
5507
5508
p = reply_buf;
5509
object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5510
GFP_NOIO);
5511
if (IS_ERR(object_prefix)) {
5512
ret = PTR_ERR(object_prefix);
5513
goto out;
5514
}
5515
ret = 0;
5516
5517
*pobject_prefix = object_prefix;
5518
dout(" object_prefix = %s\n", object_prefix);
5519
out:
5520
kfree(reply_buf);
5521
5522
return ret;
5523
}
5524
5525
static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5526
bool read_only, u64 *snap_features)
5527
{
5528
struct {
5529
__le64 snap_id;
5530
u8 read_only;
5531
} features_in;
5532
struct {
5533
__le64 features;
5534
__le64 incompat;
5535
} __attribute__ ((packed)) features_buf = { 0 };
5536
u64 unsup;
5537
int ret;
5538
5539
features_in.snap_id = cpu_to_le64(snap_id);
5540
features_in.read_only = read_only;
5541
5542
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5543
&rbd_dev->header_oloc, "get_features",
5544
&features_in, sizeof(features_in),
5545
&features_buf, sizeof(features_buf));
5546
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5547
if (ret < 0)
5548
return ret;
5549
if (ret < sizeof (features_buf))
5550
return -ERANGE;
5551
5552
unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5553
if (unsup) {
5554
rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5555
unsup);
5556
return -ENXIO;
5557
}
5558
5559
*snap_features = le64_to_cpu(features_buf.features);
5560
5561
dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5562
(unsigned long long)snap_id,
5563
(unsigned long long)*snap_features,
5564
(unsigned long long)le64_to_cpu(features_buf.incompat));
5565
5566
return 0;
5567
}
5568
5569
/*
5570
* These are generic image flags, but since they are used only for
5571
* object map, store them in rbd_dev->object_map_flags.
5572
*
5573
* For the same reason, this function is called only on object map
5574
* (re)load and not on header refresh.
5575
*/
5576
static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5577
{
5578
__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5579
__le64 flags;
5580
int ret;
5581
5582
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5583
&rbd_dev->header_oloc, "get_flags",
5584
&snapid, sizeof(snapid),
5585
&flags, sizeof(flags));
5586
if (ret < 0)
5587
return ret;
5588
if (ret < sizeof(flags))
5589
return -EBADMSG;
5590
5591
rbd_dev->object_map_flags = le64_to_cpu(flags);
5592
return 0;
5593
}
5594
5595
struct parent_image_info {
5596
u64 pool_id;
5597
const char *pool_ns;
5598
const char *image_id;
5599
u64 snap_id;
5600
5601
bool has_overlap;
5602
u64 overlap;
5603
};
5604
5605
static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5606
{
5607
kfree(pii->pool_ns);
5608
kfree(pii->image_id);
5609
5610
memset(pii, 0, sizeof(*pii));
5611
}
5612
5613
/*
5614
* The caller is responsible for @pii.
5615
*/
5616
static int decode_parent_image_spec(void **p, void *end,
5617
struct parent_image_info *pii)
5618
{
5619
u8 struct_v;
5620
u32 struct_len;
5621
int ret;
5622
5623
ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5624
&struct_v, &struct_len);
5625
if (ret)
5626
return ret;
5627
5628
ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5629
pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5630
if (IS_ERR(pii->pool_ns)) {
5631
ret = PTR_ERR(pii->pool_ns);
5632
pii->pool_ns = NULL;
5633
return ret;
5634
}
5635
pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5636
if (IS_ERR(pii->image_id)) {
5637
ret = PTR_ERR(pii->image_id);
5638
pii->image_id = NULL;
5639
return ret;
5640
}
5641
ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5642
return 0;
5643
5644
e_inval:
5645
return -EINVAL;
5646
}
5647
5648
static int __get_parent_info(struct rbd_device *rbd_dev,
5649
struct page *req_page,
5650
struct page *reply_page,
5651
struct parent_image_info *pii)
5652
{
5653
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5654
size_t reply_len = PAGE_SIZE;
5655
void *p, *end;
5656
int ret;
5657
5658
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5659
"rbd", "parent_get", CEPH_OSD_FLAG_READ,
5660
req_page, sizeof(u64), &reply_page, &reply_len);
5661
if (ret)
5662
return ret == -EOPNOTSUPP ? 1 : ret;
5663
5664
p = page_address(reply_page);
5665
end = p + reply_len;
5666
ret = decode_parent_image_spec(&p, end, pii);
5667
if (ret)
5668
return ret;
5669
5670
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5671
"rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5672
req_page, sizeof(u64), &reply_page, &reply_len);
5673
if (ret)
5674
return ret;
5675
5676
p = page_address(reply_page);
5677
end = p + reply_len;
5678
ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5679
if (pii->has_overlap)
5680
ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5681
5682
dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5683
__func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5684
pii->has_overlap, pii->overlap);
5685
return 0;
5686
5687
e_inval:
5688
return -EINVAL;
5689
}
5690
5691
/*
5692
* The caller is responsible for @pii.
5693
*/
5694
static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5695
struct page *req_page,
5696
struct page *reply_page,
5697
struct parent_image_info *pii)
5698
{
5699
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5700
size_t reply_len = PAGE_SIZE;
5701
void *p, *end;
5702
int ret;
5703
5704
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5705
"rbd", "get_parent", CEPH_OSD_FLAG_READ,
5706
req_page, sizeof(u64), &reply_page, &reply_len);
5707
if (ret)
5708
return ret;
5709
5710
p = page_address(reply_page);
5711
end = p + reply_len;
5712
ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5713
pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5714
if (IS_ERR(pii->image_id)) {
5715
ret = PTR_ERR(pii->image_id);
5716
pii->image_id = NULL;
5717
return ret;
5718
}
5719
ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5720
pii->has_overlap = true;
5721
ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5722
5723
dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5724
__func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5725
pii->has_overlap, pii->overlap);
5726
return 0;
5727
5728
e_inval:
5729
return -EINVAL;
5730
}
5731
5732
static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5733
struct parent_image_info *pii)
5734
{
5735
struct page *req_page, *reply_page;
5736
void *p;
5737
int ret;
5738
5739
req_page = alloc_page(GFP_KERNEL);
5740
if (!req_page)
5741
return -ENOMEM;
5742
5743
reply_page = alloc_page(GFP_KERNEL);
5744
if (!reply_page) {
5745
__free_page(req_page);
5746
return -ENOMEM;
5747
}
5748
5749
p = page_address(req_page);
5750
ceph_encode_64(&p, rbd_dev->spec->snap_id);
5751
ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5752
if (ret > 0)
5753
ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5754
pii);
5755
5756
__free_page(req_page);
5757
__free_page(reply_page);
5758
return ret;
5759
}
5760
5761
static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5762
{
5763
struct rbd_spec *parent_spec;
5764
struct parent_image_info pii = { 0 };
5765
int ret;
5766
5767
parent_spec = rbd_spec_alloc();
5768
if (!parent_spec)
5769
return -ENOMEM;
5770
5771
ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5772
if (ret)
5773
goto out_err;
5774
5775
if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5776
goto out; /* No parent? No problem. */
5777
5778
/* The ceph file layout needs to fit pool id in 32 bits */
5779
5780
ret = -EIO;
5781
if (pii.pool_id > (u64)U32_MAX) {
5782
rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5783
(unsigned long long)pii.pool_id, U32_MAX);
5784
goto out_err;
5785
}
5786
5787
/*
5788
* The parent won't change except when the clone is flattened,
5789
* so we only need to record the parent image spec once.
5790
*/
5791
parent_spec->pool_id = pii.pool_id;
5792
if (pii.pool_ns && *pii.pool_ns) {
5793
parent_spec->pool_ns = pii.pool_ns;
5794
pii.pool_ns = NULL;
5795
}
5796
parent_spec->image_id = pii.image_id;
5797
pii.image_id = NULL;
5798
parent_spec->snap_id = pii.snap_id;
5799
5800
rbd_assert(!rbd_dev->parent_spec);
5801
rbd_dev->parent_spec = parent_spec;
5802
parent_spec = NULL; /* rbd_dev now owns this */
5803
5804
/*
5805
* Record the parent overlap. If it's zero, issue a warning as
5806
* we will proceed as if there is no parent.
5807
*/
5808
if (!pii.overlap)
5809
rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5810
rbd_dev->parent_overlap = pii.overlap;
5811
5812
out:
5813
ret = 0;
5814
out_err:
5815
rbd_parent_info_cleanup(&pii);
5816
rbd_spec_put(parent_spec);
5817
return ret;
5818
}
5819
5820
static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5821
u64 *stripe_unit, u64 *stripe_count)
5822
{
5823
struct {
5824
__le64 stripe_unit;
5825
__le64 stripe_count;
5826
} __attribute__ ((packed)) striping_info_buf = { 0 };
5827
size_t size = sizeof (striping_info_buf);
5828
int ret;
5829
5830
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5831
&rbd_dev->header_oloc, "get_stripe_unit_count",
5832
NULL, 0, &striping_info_buf, size);
5833
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5834
if (ret < 0)
5835
return ret;
5836
if (ret < size)
5837
return -ERANGE;
5838
5839
*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5840
*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5841
dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5842
*stripe_count);
5843
5844
return 0;
5845
}
5846
5847
static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5848
{
5849
__le64 data_pool_buf;
5850
int ret;
5851
5852
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5853
&rbd_dev->header_oloc, "get_data_pool",
5854
NULL, 0, &data_pool_buf,
5855
sizeof(data_pool_buf));
5856
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5857
if (ret < 0)
5858
return ret;
5859
if (ret < sizeof(data_pool_buf))
5860
return -EBADMSG;
5861
5862
*data_pool_id = le64_to_cpu(data_pool_buf);
5863
dout(" data_pool_id = %lld\n", *data_pool_id);
5864
WARN_ON(*data_pool_id == CEPH_NOPOOL);
5865
5866
return 0;
5867
}
5868
5869
static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5870
{
5871
CEPH_DEFINE_OID_ONSTACK(oid);
5872
size_t image_id_size;
5873
char *image_id;
5874
void *p;
5875
void *end;
5876
size_t size;
5877
void *reply_buf = NULL;
5878
size_t len = 0;
5879
char *image_name = NULL;
5880
int ret;
5881
5882
rbd_assert(!rbd_dev->spec->image_name);
5883
5884
len = strlen(rbd_dev->spec->image_id);
5885
image_id_size = sizeof (__le32) + len;
5886
image_id = kmalloc(image_id_size, GFP_KERNEL);
5887
if (!image_id)
5888
return NULL;
5889
5890
p = image_id;
5891
end = image_id + image_id_size;
5892
ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5893
5894
size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5895
reply_buf = kmalloc(size, GFP_KERNEL);
5896
if (!reply_buf)
5897
goto out;
5898
5899
ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5900
ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5901
"dir_get_name", image_id, image_id_size,
5902
reply_buf, size);
5903
if (ret < 0)
5904
goto out;
5905
p = reply_buf;
5906
end = reply_buf + ret;
5907
5908
image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5909
if (IS_ERR(image_name))
5910
image_name = NULL;
5911
else
5912
dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5913
out:
5914
kfree(reply_buf);
5915
kfree(image_id);
5916
5917
return image_name;
5918
}
5919
5920
static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5921
{
5922
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5923
const char *snap_name;
5924
u32 which = 0;
5925
5926
/* Skip over names until we find the one we are looking for */
5927
5928
snap_name = rbd_dev->header.snap_names;
5929
while (which < snapc->num_snaps) {
5930
if (!strcmp(name, snap_name))
5931
return snapc->snaps[which];
5932
snap_name += strlen(snap_name) + 1;
5933
which++;
5934
}
5935
return CEPH_NOSNAP;
5936
}
5937
5938
static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5939
{
5940
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5941
u32 which;
5942
bool found = false;
5943
u64 snap_id;
5944
5945
for (which = 0; !found && which < snapc->num_snaps; which++) {
5946
const char *snap_name;
5947
5948
snap_id = snapc->snaps[which];
5949
snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5950
if (IS_ERR(snap_name)) {
5951
/* ignore no-longer existing snapshots */
5952
if (PTR_ERR(snap_name) == -ENOENT)
5953
continue;
5954
else
5955
break;
5956
}
5957
found = !strcmp(name, snap_name);
5958
kfree(snap_name);
5959
}
5960
return found ? snap_id : CEPH_NOSNAP;
5961
}
5962
5963
/*
5964
* Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5965
* no snapshot by that name is found, or if an error occurs.
5966
*/
5967
static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5968
{
5969
if (rbd_dev->image_format == 1)
5970
return rbd_v1_snap_id_by_name(rbd_dev, name);
5971
5972
return rbd_v2_snap_id_by_name(rbd_dev, name);
5973
}
5974
5975
/*
5976
* An image being mapped will have everything but the snap id.
5977
*/
5978
static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5979
{
5980
struct rbd_spec *spec = rbd_dev->spec;
5981
5982
rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5983
rbd_assert(spec->image_id && spec->image_name);
5984
rbd_assert(spec->snap_name);
5985
5986
if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5987
u64 snap_id;
5988
5989
snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5990
if (snap_id == CEPH_NOSNAP)
5991
return -ENOENT;
5992
5993
spec->snap_id = snap_id;
5994
} else {
5995
spec->snap_id = CEPH_NOSNAP;
5996
}
5997
5998
return 0;
5999
}
6000
6001
/*
6002
* A parent image will have all ids but none of the names.
6003
*
6004
* All names in an rbd spec are dynamically allocated. It's OK if we
6005
* can't figure out the name for an image id.
6006
*/
6007
static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6008
{
6009
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6010
struct rbd_spec *spec = rbd_dev->spec;
6011
const char *pool_name;
6012
const char *image_name;
6013
const char *snap_name;
6014
int ret;
6015
6016
rbd_assert(spec->pool_id != CEPH_NOPOOL);
6017
rbd_assert(spec->image_id);
6018
rbd_assert(spec->snap_id != CEPH_NOSNAP);
6019
6020
/* Get the pool name; we have to make our own copy of this */
6021
6022
pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6023
if (!pool_name) {
6024
rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6025
return -EIO;
6026
}
6027
pool_name = kstrdup(pool_name, GFP_KERNEL);
6028
if (!pool_name)
6029
return -ENOMEM;
6030
6031
/* Fetch the image name; tolerate failure here */
6032
6033
image_name = rbd_dev_image_name(rbd_dev);
6034
if (!image_name)
6035
rbd_warn(rbd_dev, "unable to get image name");
6036
6037
/* Fetch the snapshot name */
6038
6039
snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6040
if (IS_ERR(snap_name)) {
6041
ret = PTR_ERR(snap_name);
6042
goto out_err;
6043
}
6044
6045
spec->pool_name = pool_name;
6046
spec->image_name = image_name;
6047
spec->snap_name = snap_name;
6048
6049
return 0;
6050
6051
out_err:
6052
kfree(image_name);
6053
kfree(pool_name);
6054
return ret;
6055
}
6056
6057
static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6058
struct ceph_snap_context **psnapc)
6059
{
6060
size_t size;
6061
int ret;
6062
void *reply_buf;
6063
void *p;
6064
void *end;
6065
u64 seq;
6066
u32 snap_count;
6067
struct ceph_snap_context *snapc;
6068
u32 i;
6069
6070
/*
6071
* We'll need room for the seq value (maximum snapshot id),
6072
* snapshot count, and array of that many snapshot ids.
6073
* For now we have a fixed upper limit on the number we're
6074
* prepared to receive.
6075
*/
6076
size = sizeof (__le64) + sizeof (__le32) +
6077
RBD_MAX_SNAP_COUNT * sizeof (__le64);
6078
reply_buf = kzalloc(size, GFP_KERNEL);
6079
if (!reply_buf)
6080
return -ENOMEM;
6081
6082
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6083
&rbd_dev->header_oloc, "get_snapcontext",
6084
NULL, 0, reply_buf, size);
6085
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6086
if (ret < 0)
6087
goto out;
6088
6089
p = reply_buf;
6090
end = reply_buf + ret;
6091
ret = -ERANGE;
6092
ceph_decode_64_safe(&p, end, seq, out);
6093
ceph_decode_32_safe(&p, end, snap_count, out);
6094
6095
/*
6096
* Make sure the reported number of snapshot ids wouldn't go
6097
* beyond the end of our buffer. But before checking that,
6098
* make sure the computed size of the snapshot context we
6099
* allocate is representable in a size_t.
6100
*/
6101
if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6102
/ sizeof (u64)) {
6103
ret = -EINVAL;
6104
goto out;
6105
}
6106
if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6107
goto out;
6108
ret = 0;
6109
6110
snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6111
if (!snapc) {
6112
ret = -ENOMEM;
6113
goto out;
6114
}
6115
snapc->seq = seq;
6116
for (i = 0; i < snap_count; i++)
6117
snapc->snaps[i] = ceph_decode_64(&p);
6118
6119
*psnapc = snapc;
6120
dout(" snap context seq = %llu, snap_count = %u\n",
6121
(unsigned long long)seq, (unsigned int)snap_count);
6122
out:
6123
kfree(reply_buf);
6124
6125
return ret;
6126
}
6127
6128
static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6129
u64 snap_id)
6130
{
6131
size_t size;
6132
void *reply_buf;
6133
__le64 snapid;
6134
int ret;
6135
void *p;
6136
void *end;
6137
char *snap_name;
6138
6139
size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6140
reply_buf = kmalloc(size, GFP_KERNEL);
6141
if (!reply_buf)
6142
return ERR_PTR(-ENOMEM);
6143
6144
snapid = cpu_to_le64(snap_id);
6145
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6146
&rbd_dev->header_oloc, "get_snapshot_name",
6147
&snapid, sizeof(snapid), reply_buf, size);
6148
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6149
if (ret < 0) {
6150
snap_name = ERR_PTR(ret);
6151
goto out;
6152
}
6153
6154
p = reply_buf;
6155
end = reply_buf + ret;
6156
snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6157
if (IS_ERR(snap_name))
6158
goto out;
6159
6160
dout(" snap_id 0x%016llx snap_name = %s\n",
6161
(unsigned long long)snap_id, snap_name);
6162
out:
6163
kfree(reply_buf);
6164
6165
return snap_name;
6166
}
6167
6168
static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6169
struct rbd_image_header *header,
6170
bool first_time)
6171
{
6172
int ret;
6173
6174
ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6175
first_time ? &header->obj_order : NULL,
6176
&header->image_size);
6177
if (ret)
6178
return ret;
6179
6180
if (first_time) {
6181
ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6182
if (ret)
6183
return ret;
6184
}
6185
6186
ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6187
if (ret)
6188
return ret;
6189
6190
return 0;
6191
}
6192
6193
static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6194
struct rbd_image_header *header,
6195
bool first_time)
6196
{
6197
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6198
rbd_assert(!header->object_prefix && !header->snapc);
6199
6200
if (rbd_dev->image_format == 1)
6201
return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6202
6203
return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6204
}
6205
6206
/*
6207
* Skips over white space at *buf, and updates *buf to point to the
6208
* first found non-space character (if any). Returns the length of
6209
* the token (string of non-white space characters) found. Note
6210
* that *buf must be terminated with '\0'.
6211
*/
6212
static inline size_t next_token(const char **buf)
6213
{
6214
/*
6215
* These are the characters that produce nonzero for
6216
* isspace() in the "C" and "POSIX" locales.
6217
*/
6218
static const char spaces[] = " \f\n\r\t\v";
6219
6220
*buf += strspn(*buf, spaces); /* Find start of token */
6221
6222
return strcspn(*buf, spaces); /* Return token length */
6223
}
6224
6225
/*
6226
* Finds the next token in *buf, dynamically allocates a buffer big
6227
* enough to hold a copy of it, and copies the token into the new
6228
* buffer. The copy is guaranteed to be terminated with '\0'. Note
6229
* that a duplicate buffer is created even for a zero-length token.
6230
*
6231
* Returns a pointer to the newly-allocated duplicate, or a null
6232
* pointer if memory for the duplicate was not available. If
6233
* the lenp argument is a non-null pointer, the length of the token
6234
* (not including the '\0') is returned in *lenp.
6235
*
6236
* If successful, the *buf pointer will be updated to point beyond
6237
* the end of the found token.
6238
*
6239
* Note: uses GFP_KERNEL for allocation.
6240
*/
6241
static inline char *dup_token(const char **buf, size_t *lenp)
6242
{
6243
char *dup;
6244
size_t len;
6245
6246
len = next_token(buf);
6247
dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6248
if (!dup)
6249
return NULL;
6250
*(dup + len) = '\0';
6251
*buf += len;
6252
6253
if (lenp)
6254
*lenp = len;
6255
6256
return dup;
6257
}
6258
6259
static int rbd_parse_param(struct fs_parameter *param,
6260
struct rbd_parse_opts_ctx *pctx)
6261
{
6262
struct rbd_options *opt = pctx->opts;
6263
struct fs_parse_result result;
6264
struct p_log log = {.prefix = "rbd"};
6265
int token, ret;
6266
6267
ret = ceph_parse_param(param, pctx->copts, NULL);
6268
if (ret != -ENOPARAM)
6269
return ret;
6270
6271
token = __fs_parse(&log, rbd_parameters, param, &result);
6272
dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6273
if (token < 0) {
6274
if (token == -ENOPARAM)
6275
return inval_plog(&log, "Unknown parameter '%s'",
6276
param->key);
6277
return token;
6278
}
6279
6280
switch (token) {
6281
case Opt_queue_depth:
6282
if (result.uint_32 < 1)
6283
goto out_of_range;
6284
opt->queue_depth = result.uint_32;
6285
break;
6286
case Opt_alloc_size:
6287
if (result.uint_32 < SECTOR_SIZE)
6288
goto out_of_range;
6289
if (!is_power_of_2(result.uint_32))
6290
return inval_plog(&log, "alloc_size must be a power of 2");
6291
opt->alloc_size = result.uint_32;
6292
break;
6293
case Opt_lock_timeout:
6294
/* 0 is "wait forever" (i.e. infinite timeout) */
6295
if (result.uint_32 > INT_MAX / 1000)
6296
goto out_of_range;
6297
opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6298
break;
6299
case Opt_pool_ns:
6300
kfree(pctx->spec->pool_ns);
6301
pctx->spec->pool_ns = param->string;
6302
param->string = NULL;
6303
break;
6304
case Opt_compression_hint:
6305
switch (result.uint_32) {
6306
case Opt_compression_hint_none:
6307
opt->alloc_hint_flags &=
6308
~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6309
CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6310
break;
6311
case Opt_compression_hint_compressible:
6312
opt->alloc_hint_flags |=
6313
CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6314
opt->alloc_hint_flags &=
6315
~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6316
break;
6317
case Opt_compression_hint_incompressible:
6318
opt->alloc_hint_flags |=
6319
CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6320
opt->alloc_hint_flags &=
6321
~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6322
break;
6323
default:
6324
BUG();
6325
}
6326
break;
6327
case Opt_read_only:
6328
opt->read_only = true;
6329
break;
6330
case Opt_read_write:
6331
opt->read_only = false;
6332
break;
6333
case Opt_lock_on_read:
6334
opt->lock_on_read = true;
6335
break;
6336
case Opt_exclusive:
6337
opt->exclusive = true;
6338
break;
6339
case Opt_notrim:
6340
opt->trim = false;
6341
break;
6342
default:
6343
BUG();
6344
}
6345
6346
return 0;
6347
6348
out_of_range:
6349
return inval_plog(&log, "%s out of range", param->key);
6350
}
6351
6352
/*
6353
* This duplicates most of generic_parse_monolithic(), untying it from
6354
* fs_context and skipping standard superblock and security options.
6355
*/
6356
static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6357
{
6358
char *key;
6359
int ret = 0;
6360
6361
dout("%s '%s'\n", __func__, options);
6362
while ((key = strsep(&options, ",")) != NULL) {
6363
if (*key) {
6364
struct fs_parameter param = {
6365
.key = key,
6366
.type = fs_value_is_flag,
6367
};
6368
char *value = strchr(key, '=');
6369
size_t v_len = 0;
6370
6371
if (value) {
6372
if (value == key)
6373
continue;
6374
*value++ = 0;
6375
v_len = strlen(value);
6376
param.string = kmemdup_nul(value, v_len,
6377
GFP_KERNEL);
6378
if (!param.string)
6379
return -ENOMEM;
6380
param.type = fs_value_is_string;
6381
}
6382
param.size = v_len;
6383
6384
ret = rbd_parse_param(&param, pctx);
6385
kfree(param.string);
6386
if (ret)
6387
break;
6388
}
6389
}
6390
6391
return ret;
6392
}
6393
6394
/*
6395
* Parse the options provided for an "rbd add" (i.e., rbd image
6396
* mapping) request. These arrive via a write to /sys/bus/rbd/add,
6397
* and the data written is passed here via a NUL-terminated buffer.
6398
* Returns 0 if successful or an error code otherwise.
6399
*
6400
* The information extracted from these options is recorded in
6401
* the other parameters which return dynamically-allocated
6402
* structures:
6403
* ceph_opts
6404
* The address of a pointer that will refer to a ceph options
6405
* structure. Caller must release the returned pointer using
6406
* ceph_destroy_options() when it is no longer needed.
6407
* rbd_opts
6408
* Address of an rbd options pointer. Fully initialized by
6409
* this function; caller must release with kfree().
6410
* spec
6411
* Address of an rbd image specification pointer. Fully
6412
* initialized by this function based on parsed options.
6413
* Caller must release with rbd_spec_put().
6414
*
6415
* The options passed take this form:
6416
* <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6417
* where:
6418
* <mon_addrs>
6419
* A comma-separated list of one or more monitor addresses.
6420
* A monitor address is an ip address, optionally followed
6421
* by a port number (separated by a colon).
6422
* I.e.: ip1[:port1][,ip2[:port2]...]
6423
* <options>
6424
* A comma-separated list of ceph and/or rbd options.
6425
* <pool_name>
6426
* The name of the rados pool containing the rbd image.
6427
* <image_name>
6428
* The name of the image in that pool to map.
6429
* <snap_id>
6430
* An optional snapshot id. If provided, the mapping will
6431
* present data from the image at the time that snapshot was
6432
* created. The image head is used if no snapshot id is
6433
* provided. Snapshot mappings are always read-only.
6434
*/
6435
static int rbd_add_parse_args(const char *buf,
6436
struct ceph_options **ceph_opts,
6437
struct rbd_options **opts,
6438
struct rbd_spec **rbd_spec)
6439
{
6440
size_t len;
6441
char *options;
6442
const char *mon_addrs;
6443
char *snap_name;
6444
size_t mon_addrs_size;
6445
struct rbd_parse_opts_ctx pctx = { 0 };
6446
int ret;
6447
6448
/* The first four tokens are required */
6449
6450
len = next_token(&buf);
6451
if (!len) {
6452
rbd_warn(NULL, "no monitor address(es) provided");
6453
return -EINVAL;
6454
}
6455
mon_addrs = buf;
6456
mon_addrs_size = len;
6457
buf += len;
6458
6459
ret = -EINVAL;
6460
options = dup_token(&buf, NULL);
6461
if (!options)
6462
return -ENOMEM;
6463
if (!*options) {
6464
rbd_warn(NULL, "no options provided");
6465
goto out_err;
6466
}
6467
6468
pctx.spec = rbd_spec_alloc();
6469
if (!pctx.spec)
6470
goto out_mem;
6471
6472
pctx.spec->pool_name = dup_token(&buf, NULL);
6473
if (!pctx.spec->pool_name)
6474
goto out_mem;
6475
if (!*pctx.spec->pool_name) {
6476
rbd_warn(NULL, "no pool name provided");
6477
goto out_err;
6478
}
6479
6480
pctx.spec->image_name = dup_token(&buf, NULL);
6481
if (!pctx.spec->image_name)
6482
goto out_mem;
6483
if (!*pctx.spec->image_name) {
6484
rbd_warn(NULL, "no image name provided");
6485
goto out_err;
6486
}
6487
6488
/*
6489
* Snapshot name is optional; default is to use "-"
6490
* (indicating the head/no snapshot).
6491
*/
6492
len = next_token(&buf);
6493
if (!len) {
6494
buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6495
len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6496
} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6497
ret = -ENAMETOOLONG;
6498
goto out_err;
6499
}
6500
snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6501
if (!snap_name)
6502
goto out_mem;
6503
*(snap_name + len) = '\0';
6504
pctx.spec->snap_name = snap_name;
6505
6506
pctx.copts = ceph_alloc_options();
6507
if (!pctx.copts)
6508
goto out_mem;
6509
6510
/* Initialize all rbd options to the defaults */
6511
6512
pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6513
if (!pctx.opts)
6514
goto out_mem;
6515
6516
pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6517
pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6518
pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6519
pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6520
pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6521
pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6522
pctx.opts->trim = RBD_TRIM_DEFAULT;
6523
6524
ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6525
',');
6526
if (ret)
6527
goto out_err;
6528
6529
ret = rbd_parse_options(options, &pctx);
6530
if (ret)
6531
goto out_err;
6532
6533
*ceph_opts = pctx.copts;
6534
*opts = pctx.opts;
6535
*rbd_spec = pctx.spec;
6536
kfree(options);
6537
return 0;
6538
6539
out_mem:
6540
ret = -ENOMEM;
6541
out_err:
6542
kfree(pctx.opts);
6543
ceph_destroy_options(pctx.copts);
6544
rbd_spec_put(pctx.spec);
6545
kfree(options);
6546
return ret;
6547
}
6548
6549
static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6550
{
6551
down_write(&rbd_dev->lock_rwsem);
6552
if (__rbd_is_lock_owner(rbd_dev))
6553
__rbd_release_lock(rbd_dev);
6554
up_write(&rbd_dev->lock_rwsem);
6555
}
6556
6557
/*
6558
* If the wait is interrupted, an error is returned even if the lock
6559
* was successfully acquired. rbd_dev_image_unlock() will release it
6560
* if needed.
6561
*/
6562
static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6563
{
6564
long ret;
6565
6566
if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6567
if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6568
return 0;
6569
6570
rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6571
return -EINVAL;
6572
}
6573
6574
if (rbd_is_ro(rbd_dev))
6575
return 0;
6576
6577
rbd_assert(!rbd_is_lock_owner(rbd_dev));
6578
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6579
ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6580
ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6581
if (ret > 0) {
6582
ret = rbd_dev->acquire_err;
6583
} else {
6584
cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6585
if (!ret)
6586
ret = -ETIMEDOUT;
6587
6588
rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6589
}
6590
if (ret)
6591
return ret;
6592
6593
return 0;
6594
}
6595
6596
/*
6597
* An rbd format 2 image has a unique identifier, distinct from the
6598
* name given to it by the user. Internally, that identifier is
6599
* what's used to specify the names of objects related to the image.
6600
*
6601
* A special "rbd id" object is used to map an rbd image name to its
6602
* id. If that object doesn't exist, then there is no v2 rbd image
6603
* with the supplied name.
6604
*
6605
* This function will record the given rbd_dev's image_id field if
6606
* it can be determined, and in that case will return 0. If any
6607
* errors occur a negative errno will be returned and the rbd_dev's
6608
* image_id field will be unchanged (and should be NULL).
6609
*/
6610
static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6611
{
6612
int ret;
6613
size_t size;
6614
CEPH_DEFINE_OID_ONSTACK(oid);
6615
void *response;
6616
char *image_id;
6617
6618
/*
6619
* When probing a parent image, the image id is already
6620
* known (and the image name likely is not). There's no
6621
* need to fetch the image id again in this case. We
6622
* do still need to set the image format though.
6623
*/
6624
if (rbd_dev->spec->image_id) {
6625
rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6626
6627
return 0;
6628
}
6629
6630
/*
6631
* First, see if the format 2 image id file exists, and if
6632
* so, get the image's persistent id from it.
6633
*/
6634
ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6635
rbd_dev->spec->image_name);
6636
if (ret)
6637
return ret;
6638
6639
dout("rbd id object name is %s\n", oid.name);
6640
6641
/* Response will be an encoded string, which includes a length */
6642
size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6643
response = kzalloc(size, GFP_NOIO);
6644
if (!response) {
6645
ret = -ENOMEM;
6646
goto out;
6647
}
6648
6649
/* If it doesn't exist we'll assume it's a format 1 image */
6650
6651
ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6652
"get_id", NULL, 0,
6653
response, size);
6654
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6655
if (ret == -ENOENT) {
6656
image_id = kstrdup("", GFP_KERNEL);
6657
ret = image_id ? 0 : -ENOMEM;
6658
if (!ret)
6659
rbd_dev->image_format = 1;
6660
} else if (ret >= 0) {
6661
void *p = response;
6662
6663
image_id = ceph_extract_encoded_string(&p, p + ret,
6664
NULL, GFP_NOIO);
6665
ret = PTR_ERR_OR_ZERO(image_id);
6666
if (!ret)
6667
rbd_dev->image_format = 2;
6668
}
6669
6670
if (!ret) {
6671
rbd_dev->spec->image_id = image_id;
6672
dout("image_id is %s\n", image_id);
6673
}
6674
out:
6675
kfree(response);
6676
ceph_oid_destroy(&oid);
6677
return ret;
6678
}
6679
6680
/*
6681
* Undo whatever state changes are made by v1 or v2 header info
6682
* call.
6683
*/
6684
static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6685
{
6686
rbd_dev_parent_put(rbd_dev);
6687
rbd_object_map_free(rbd_dev);
6688
rbd_dev_mapping_clear(rbd_dev);
6689
6690
/* Free dynamic fields from the header, then zero it out */
6691
6692
rbd_image_header_cleanup(&rbd_dev->header);
6693
}
6694
6695
static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6696
struct rbd_image_header *header)
6697
{
6698
int ret;
6699
6700
ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6701
if (ret)
6702
return ret;
6703
6704
/*
6705
* Get the and check features for the image. Currently the
6706
* features are assumed to never change.
6707
*/
6708
ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6709
rbd_is_ro(rbd_dev), &header->features);
6710
if (ret)
6711
return ret;
6712
6713
/* If the image supports fancy striping, get its parameters */
6714
6715
if (header->features & RBD_FEATURE_STRIPINGV2) {
6716
ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6717
&header->stripe_count);
6718
if (ret)
6719
return ret;
6720
}
6721
6722
if (header->features & RBD_FEATURE_DATA_POOL) {
6723
ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6724
if (ret)
6725
return ret;
6726
}
6727
6728
return 0;
6729
}
6730
6731
/*
6732
* @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6733
* rbd_dev_image_probe() recursion depth, which means it's also the
6734
* length of the already discovered part of the parent chain.
6735
*/
6736
static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6737
{
6738
struct rbd_device *parent = NULL;
6739
int ret;
6740
6741
if (!rbd_dev->parent_spec)
6742
return 0;
6743
6744
if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6745
pr_info("parent chain is too long (%d)\n", depth);
6746
ret = -EINVAL;
6747
goto out_err;
6748
}
6749
6750
parent = __rbd_dev_create(rbd_dev->parent_spec);
6751
if (!parent) {
6752
ret = -ENOMEM;
6753
goto out_err;
6754
}
6755
6756
/*
6757
* Images related by parent/child relationships always share
6758
* rbd_client and spec/parent_spec, so bump their refcounts.
6759
*/
6760
parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6761
parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6762
6763
__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6764
6765
ret = rbd_dev_image_probe(parent, depth);
6766
if (ret < 0)
6767
goto out_err;
6768
6769
rbd_dev->parent = parent;
6770
atomic_set(&rbd_dev->parent_ref, 1);
6771
return 0;
6772
6773
out_err:
6774
rbd_dev_unparent(rbd_dev);
6775
rbd_dev_destroy(parent);
6776
return ret;
6777
}
6778
6779
static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6780
{
6781
clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6782
rbd_free_disk(rbd_dev);
6783
if (!single_major)
6784
unregister_blkdev(rbd_dev->major, rbd_dev->name);
6785
}
6786
6787
/*
6788
* rbd_dev->header_rwsem must be locked for write and will be unlocked
6789
* upon return.
6790
*/
6791
static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6792
{
6793
int ret;
6794
6795
/* Record our major and minor device numbers. */
6796
6797
if (!single_major) {
6798
ret = register_blkdev(0, rbd_dev->name);
6799
if (ret < 0)
6800
goto err_out_unlock;
6801
6802
rbd_dev->major = ret;
6803
rbd_dev->minor = 0;
6804
} else {
6805
rbd_dev->major = rbd_major;
6806
rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6807
}
6808
6809
/* Set up the blkdev mapping. */
6810
6811
ret = rbd_init_disk(rbd_dev);
6812
if (ret)
6813
goto err_out_blkdev;
6814
6815
set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6816
set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6817
6818
ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6819
if (ret)
6820
goto err_out_disk;
6821
6822
set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6823
up_write(&rbd_dev->header_rwsem);
6824
return 0;
6825
6826
err_out_disk:
6827
rbd_free_disk(rbd_dev);
6828
err_out_blkdev:
6829
if (!single_major)
6830
unregister_blkdev(rbd_dev->major, rbd_dev->name);
6831
err_out_unlock:
6832
up_write(&rbd_dev->header_rwsem);
6833
return ret;
6834
}
6835
6836
static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6837
{
6838
struct rbd_spec *spec = rbd_dev->spec;
6839
int ret;
6840
6841
/* Record the header object name for this rbd image. */
6842
6843
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6844
if (rbd_dev->image_format == 1)
6845
ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6846
spec->image_name, RBD_SUFFIX);
6847
else
6848
ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6849
RBD_HEADER_PREFIX, spec->image_id);
6850
6851
return ret;
6852
}
6853
6854
static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6855
{
6856
if (!is_snap) {
6857
pr_info("image %s/%s%s%s does not exist\n",
6858
rbd_dev->spec->pool_name,
6859
rbd_dev->spec->pool_ns ?: "",
6860
rbd_dev->spec->pool_ns ? "/" : "",
6861
rbd_dev->spec->image_name);
6862
} else {
6863
pr_info("snap %s/%s%s%s@%s does not exist\n",
6864
rbd_dev->spec->pool_name,
6865
rbd_dev->spec->pool_ns ?: "",
6866
rbd_dev->spec->pool_ns ? "/" : "",
6867
rbd_dev->spec->image_name,
6868
rbd_dev->spec->snap_name);
6869
}
6870
}
6871
6872
static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6873
{
6874
if (!rbd_is_ro(rbd_dev))
6875
rbd_unregister_watch(rbd_dev);
6876
6877
rbd_dev_unprobe(rbd_dev);
6878
rbd_dev->image_format = 0;
6879
kfree(rbd_dev->spec->image_id);
6880
rbd_dev->spec->image_id = NULL;
6881
}
6882
6883
/*
6884
* Probe for the existence of the header object for the given rbd
6885
* device. If this image is the one being mapped (i.e., not a
6886
* parent), initiate a watch on its header object before using that
6887
* object to get detailed information about the rbd image.
6888
*
6889
* On success, returns with header_rwsem held for write if called
6890
* with @depth == 0.
6891
*/
6892
static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6893
{
6894
bool need_watch = !rbd_is_ro(rbd_dev);
6895
int ret;
6896
6897
/*
6898
* Get the id from the image id object. Unless there's an
6899
* error, rbd_dev->spec->image_id will be filled in with
6900
* a dynamically-allocated string, and rbd_dev->image_format
6901
* will be set to either 1 or 2.
6902
*/
6903
ret = rbd_dev_image_id(rbd_dev);
6904
if (ret)
6905
return ret;
6906
6907
ret = rbd_dev_header_name(rbd_dev);
6908
if (ret)
6909
goto err_out_format;
6910
6911
if (need_watch) {
6912
ret = rbd_register_watch(rbd_dev);
6913
if (ret) {
6914
if (ret == -ENOENT)
6915
rbd_print_dne(rbd_dev, false);
6916
goto err_out_format;
6917
}
6918
}
6919
6920
if (!depth)
6921
down_write(&rbd_dev->header_rwsem);
6922
6923
ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6924
if (ret) {
6925
if (ret == -ENOENT && !need_watch)
6926
rbd_print_dne(rbd_dev, false);
6927
goto err_out_probe;
6928
}
6929
6930
rbd_init_layout(rbd_dev);
6931
6932
/*
6933
* If this image is the one being mapped, we have pool name and
6934
* id, image name and id, and snap name - need to fill snap id.
6935
* Otherwise this is a parent image, identified by pool, image
6936
* and snap ids - need to fill in names for those ids.
6937
*/
6938
if (!depth)
6939
ret = rbd_spec_fill_snap_id(rbd_dev);
6940
else
6941
ret = rbd_spec_fill_names(rbd_dev);
6942
if (ret) {
6943
if (ret == -ENOENT)
6944
rbd_print_dne(rbd_dev, true);
6945
goto err_out_probe;
6946
}
6947
6948
ret = rbd_dev_mapping_set(rbd_dev);
6949
if (ret)
6950
goto err_out_probe;
6951
6952
if (rbd_is_snap(rbd_dev) &&
6953
(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6954
ret = rbd_object_map_load(rbd_dev);
6955
if (ret)
6956
goto err_out_probe;
6957
}
6958
6959
if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6960
ret = rbd_dev_setup_parent(rbd_dev);
6961
if (ret)
6962
goto err_out_probe;
6963
}
6964
6965
ret = rbd_dev_probe_parent(rbd_dev, depth);
6966
if (ret)
6967
goto err_out_probe;
6968
6969
dout("discovered format %u image, header name is %s\n",
6970
rbd_dev->image_format, rbd_dev->header_oid.name);
6971
return 0;
6972
6973
err_out_probe:
6974
if (!depth)
6975
up_write(&rbd_dev->header_rwsem);
6976
if (need_watch)
6977
rbd_unregister_watch(rbd_dev);
6978
rbd_dev_unprobe(rbd_dev);
6979
err_out_format:
6980
rbd_dev->image_format = 0;
6981
kfree(rbd_dev->spec->image_id);
6982
rbd_dev->spec->image_id = NULL;
6983
return ret;
6984
}
6985
6986
static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6987
struct rbd_image_header *header)
6988
{
6989
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6990
rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6991
6992
if (rbd_dev->header.image_size != header->image_size) {
6993
rbd_dev->header.image_size = header->image_size;
6994
6995
if (!rbd_is_snap(rbd_dev)) {
6996
rbd_dev->mapping.size = header->image_size;
6997
rbd_dev_update_size(rbd_dev);
6998
}
6999
}
7000
7001
ceph_put_snap_context(rbd_dev->header.snapc);
7002
rbd_dev->header.snapc = header->snapc;
7003
header->snapc = NULL;
7004
7005
if (rbd_dev->image_format == 1) {
7006
kfree(rbd_dev->header.snap_names);
7007
rbd_dev->header.snap_names = header->snap_names;
7008
header->snap_names = NULL;
7009
7010
kfree(rbd_dev->header.snap_sizes);
7011
rbd_dev->header.snap_sizes = header->snap_sizes;
7012
header->snap_sizes = NULL;
7013
}
7014
}
7015
7016
static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7017
struct parent_image_info *pii)
7018
{
7019
if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7020
/*
7021
* Either the parent never existed, or we have
7022
* record of it but the image got flattened so it no
7023
* longer has a parent. When the parent of a
7024
* layered image disappears we immediately set the
7025
* overlap to 0. The effect of this is that all new
7026
* requests will be treated as if the image had no
7027
* parent.
7028
*
7029
* If !pii.has_overlap, the parent image spec is not
7030
* applicable. It's there to avoid duplication in each
7031
* snapshot record.
7032
*/
7033
if (rbd_dev->parent_overlap) {
7034
rbd_dev->parent_overlap = 0;
7035
rbd_dev_parent_put(rbd_dev);
7036
pr_info("%s: clone has been flattened\n",
7037
rbd_dev->disk->disk_name);
7038
}
7039
} else {
7040
rbd_assert(rbd_dev->parent_spec);
7041
7042
/*
7043
* Update the parent overlap. If it became zero, issue
7044
* a warning as we will proceed as if there is no parent.
7045
*/
7046
if (!pii->overlap && rbd_dev->parent_overlap)
7047
rbd_warn(rbd_dev,
7048
"clone has become standalone (overlap 0)");
7049
rbd_dev->parent_overlap = pii->overlap;
7050
}
7051
}
7052
7053
static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7054
{
7055
struct rbd_image_header header = { 0 };
7056
struct parent_image_info pii = { 0 };
7057
int ret;
7058
7059
dout("%s rbd_dev %p\n", __func__, rbd_dev);
7060
7061
ret = rbd_dev_header_info(rbd_dev, &header, false);
7062
if (ret)
7063
goto out;
7064
7065
/*
7066
* If there is a parent, see if it has disappeared due to the
7067
* mapped image getting flattened.
7068
*/
7069
if (rbd_dev->parent) {
7070
ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7071
if (ret)
7072
goto out;
7073
}
7074
7075
down_write(&rbd_dev->header_rwsem);
7076
rbd_dev_update_header(rbd_dev, &header);
7077
if (rbd_dev->parent)
7078
rbd_dev_update_parent(rbd_dev, &pii);
7079
up_write(&rbd_dev->header_rwsem);
7080
7081
out:
7082
rbd_parent_info_cleanup(&pii);
7083
rbd_image_header_cleanup(&header);
7084
return ret;
7085
}
7086
7087
static ssize_t do_rbd_add(const char *buf, size_t count)
7088
{
7089
struct rbd_device *rbd_dev = NULL;
7090
struct ceph_options *ceph_opts = NULL;
7091
struct rbd_options *rbd_opts = NULL;
7092
struct rbd_spec *spec = NULL;
7093
struct rbd_client *rbdc;
7094
int rc;
7095
7096
if (!capable(CAP_SYS_ADMIN))
7097
return -EPERM;
7098
7099
if (!try_module_get(THIS_MODULE))
7100
return -ENODEV;
7101
7102
/* parse add command */
7103
rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7104
if (rc < 0)
7105
goto out;
7106
7107
rbdc = rbd_get_client(ceph_opts);
7108
if (IS_ERR(rbdc)) {
7109
rc = PTR_ERR(rbdc);
7110
goto err_out_args;
7111
}
7112
7113
/* pick the pool */
7114
rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7115
if (rc < 0) {
7116
if (rc == -ENOENT)
7117
pr_info("pool %s does not exist\n", spec->pool_name);
7118
goto err_out_client;
7119
}
7120
spec->pool_id = (u64)rc;
7121
7122
rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7123
if (!rbd_dev) {
7124
rc = -ENOMEM;
7125
goto err_out_client;
7126
}
7127
rbdc = NULL; /* rbd_dev now owns this */
7128
spec = NULL; /* rbd_dev now owns this */
7129
rbd_opts = NULL; /* rbd_dev now owns this */
7130
7131
/* if we are mapping a snapshot it will be a read-only mapping */
7132
if (rbd_dev->opts->read_only ||
7133
strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7134
__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7135
7136
rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7137
if (!rbd_dev->config_info) {
7138
rc = -ENOMEM;
7139
goto err_out_rbd_dev;
7140
}
7141
7142
rc = rbd_dev_image_probe(rbd_dev, 0);
7143
if (rc < 0)
7144
goto err_out_rbd_dev;
7145
7146
if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7147
rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7148
rbd_dev->layout.object_size);
7149
rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7150
}
7151
7152
rc = rbd_dev_device_setup(rbd_dev);
7153
if (rc)
7154
goto err_out_image_probe;
7155
7156
rc = rbd_add_acquire_lock(rbd_dev);
7157
if (rc)
7158
goto err_out_image_lock;
7159
7160
/* Everything's ready. Announce the disk to the world. */
7161
7162
rc = device_add(&rbd_dev->dev);
7163
if (rc)
7164
goto err_out_image_lock;
7165
7166
rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7167
if (rc)
7168
goto err_out_cleanup_disk;
7169
7170
spin_lock(&rbd_dev_list_lock);
7171
list_add_tail(&rbd_dev->node, &rbd_dev_list);
7172
spin_unlock(&rbd_dev_list_lock);
7173
7174
pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7175
(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7176
rbd_dev->header.features);
7177
rc = count;
7178
out:
7179
module_put(THIS_MODULE);
7180
return rc;
7181
7182
err_out_cleanup_disk:
7183
rbd_free_disk(rbd_dev);
7184
err_out_image_lock:
7185
rbd_dev_image_unlock(rbd_dev);
7186
rbd_dev_device_release(rbd_dev);
7187
err_out_image_probe:
7188
rbd_dev_image_release(rbd_dev);
7189
err_out_rbd_dev:
7190
rbd_dev_destroy(rbd_dev);
7191
err_out_client:
7192
rbd_put_client(rbdc);
7193
err_out_args:
7194
rbd_spec_put(spec);
7195
kfree(rbd_opts);
7196
goto out;
7197
}
7198
7199
static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7200
{
7201
if (single_major)
7202
return -EINVAL;
7203
7204
return do_rbd_add(buf, count);
7205
}
7206
7207
static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7208
size_t count)
7209
{
7210
return do_rbd_add(buf, count);
7211
}
7212
7213
static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7214
{
7215
while (rbd_dev->parent) {
7216
struct rbd_device *first = rbd_dev;
7217
struct rbd_device *second = first->parent;
7218
struct rbd_device *third;
7219
7220
/*
7221
* Follow to the parent with no grandparent and
7222
* remove it.
7223
*/
7224
while (second && (third = second->parent)) {
7225
first = second;
7226
second = third;
7227
}
7228
rbd_assert(second);
7229
rbd_dev_image_release(second);
7230
rbd_dev_destroy(second);
7231
first->parent = NULL;
7232
first->parent_overlap = 0;
7233
7234
rbd_assert(first->parent_spec);
7235
rbd_spec_put(first->parent_spec);
7236
first->parent_spec = NULL;
7237
}
7238
}
7239
7240
static ssize_t do_rbd_remove(const char *buf, size_t count)
7241
{
7242
struct rbd_device *rbd_dev = NULL;
7243
int dev_id;
7244
char opt_buf[6];
7245
bool force = false;
7246
int ret;
7247
7248
if (!capable(CAP_SYS_ADMIN))
7249
return -EPERM;
7250
7251
dev_id = -1;
7252
opt_buf[0] = '\0';
7253
sscanf(buf, "%d %5s", &dev_id, opt_buf);
7254
if (dev_id < 0) {
7255
pr_err("dev_id out of range\n");
7256
return -EINVAL;
7257
}
7258
if (opt_buf[0] != '\0') {
7259
if (!strcmp(opt_buf, "force")) {
7260
force = true;
7261
} else {
7262
pr_err("bad remove option at '%s'\n", opt_buf);
7263
return -EINVAL;
7264
}
7265
}
7266
7267
ret = -ENOENT;
7268
spin_lock(&rbd_dev_list_lock);
7269
list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7270
if (rbd_dev->dev_id == dev_id) {
7271
ret = 0;
7272
break;
7273
}
7274
}
7275
if (!ret) {
7276
spin_lock_irq(&rbd_dev->lock);
7277
if (rbd_dev->open_count && !force)
7278
ret = -EBUSY;
7279
else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7280
&rbd_dev->flags))
7281
ret = -EINPROGRESS;
7282
spin_unlock_irq(&rbd_dev->lock);
7283
}
7284
spin_unlock(&rbd_dev_list_lock);
7285
if (ret)
7286
return ret;
7287
7288
if (force) {
7289
/*
7290
* Prevent new IO from being queued and wait for existing
7291
* IO to complete/fail.
7292
*/
7293
unsigned int memflags = blk_mq_freeze_queue(rbd_dev->disk->queue);
7294
7295
blk_mark_disk_dead(rbd_dev->disk);
7296
blk_mq_unfreeze_queue(rbd_dev->disk->queue, memflags);
7297
}
7298
7299
del_gendisk(rbd_dev->disk);
7300
spin_lock(&rbd_dev_list_lock);
7301
list_del_init(&rbd_dev->node);
7302
spin_unlock(&rbd_dev_list_lock);
7303
device_del(&rbd_dev->dev);
7304
7305
rbd_dev_image_unlock(rbd_dev);
7306
rbd_dev_device_release(rbd_dev);
7307
rbd_dev_image_release(rbd_dev);
7308
rbd_dev_destroy(rbd_dev);
7309
return count;
7310
}
7311
7312
static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7313
{
7314
if (single_major)
7315
return -EINVAL;
7316
7317
return do_rbd_remove(buf, count);
7318
}
7319
7320
static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7321
size_t count)
7322
{
7323
return do_rbd_remove(buf, count);
7324
}
7325
7326
/*
7327
* create control files in sysfs
7328
* /sys/bus/rbd/...
7329
*/
7330
static int __init rbd_sysfs_init(void)
7331
{
7332
int ret;
7333
7334
ret = device_register(&rbd_root_dev);
7335
if (ret < 0) {
7336
put_device(&rbd_root_dev);
7337
return ret;
7338
}
7339
7340
ret = bus_register(&rbd_bus_type);
7341
if (ret < 0)
7342
device_unregister(&rbd_root_dev);
7343
7344
return ret;
7345
}
7346
7347
static void __exit rbd_sysfs_cleanup(void)
7348
{
7349
bus_unregister(&rbd_bus_type);
7350
device_unregister(&rbd_root_dev);
7351
}
7352
7353
static int __init rbd_slab_init(void)
7354
{
7355
rbd_assert(!rbd_img_request_cache);
7356
rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7357
if (!rbd_img_request_cache)
7358
return -ENOMEM;
7359
7360
rbd_assert(!rbd_obj_request_cache);
7361
rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7362
if (!rbd_obj_request_cache)
7363
goto out_err;
7364
7365
return 0;
7366
7367
out_err:
7368
kmem_cache_destroy(rbd_img_request_cache);
7369
rbd_img_request_cache = NULL;
7370
return -ENOMEM;
7371
}
7372
7373
static void rbd_slab_exit(void)
7374
{
7375
rbd_assert(rbd_obj_request_cache);
7376
kmem_cache_destroy(rbd_obj_request_cache);
7377
rbd_obj_request_cache = NULL;
7378
7379
rbd_assert(rbd_img_request_cache);
7380
kmem_cache_destroy(rbd_img_request_cache);
7381
rbd_img_request_cache = NULL;
7382
}
7383
7384
static int __init rbd_init(void)
7385
{
7386
int rc;
7387
7388
if (!libceph_compatible(NULL)) {
7389
rbd_warn(NULL, "libceph incompatibility (quitting)");
7390
return -EINVAL;
7391
}
7392
7393
rc = rbd_slab_init();
7394
if (rc)
7395
return rc;
7396
7397
/*
7398
* The number of active work items is limited by the number of
7399
* rbd devices * queue depth, so leave @max_active at default.
7400
*/
7401
rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM | WQ_PERCPU, 0);
7402
if (!rbd_wq) {
7403
rc = -ENOMEM;
7404
goto err_out_slab;
7405
}
7406
7407
if (single_major) {
7408
rbd_major = register_blkdev(0, RBD_DRV_NAME);
7409
if (rbd_major < 0) {
7410
rc = rbd_major;
7411
goto err_out_wq;
7412
}
7413
}
7414
7415
rc = rbd_sysfs_init();
7416
if (rc)
7417
goto err_out_blkdev;
7418
7419
if (single_major)
7420
pr_info("loaded (major %d)\n", rbd_major);
7421
else
7422
pr_info("loaded\n");
7423
7424
return 0;
7425
7426
err_out_blkdev:
7427
if (single_major)
7428
unregister_blkdev(rbd_major, RBD_DRV_NAME);
7429
err_out_wq:
7430
destroy_workqueue(rbd_wq);
7431
err_out_slab:
7432
rbd_slab_exit();
7433
return rc;
7434
}
7435
7436
static void __exit rbd_exit(void)
7437
{
7438
ida_destroy(&rbd_dev_id_ida);
7439
rbd_sysfs_cleanup();
7440
if (single_major)
7441
unregister_blkdev(rbd_major, RBD_DRV_NAME);
7442
destroy_workqueue(rbd_wq);
7443
rbd_slab_exit();
7444
}
7445
7446
module_init(rbd_init);
7447
module_exit(rbd_exit);
7448
7449
MODULE_AUTHOR("Alex Elder <[email protected]>");
7450
MODULE_AUTHOR("Sage Weil <[email protected]>");
7451
MODULE_AUTHOR("Yehuda Sadeh <[email protected]>");
7452
/* following authorship retained from original osdblk.c */
7453
MODULE_AUTHOR("Jeff Garzik <[email protected]>");
7454
7455
MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7456
MODULE_LICENSE("GPL");
7457
7458