Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/rbd.c
26278 views
1
2
/*
3
rbd.c -- Export ceph rados objects as a Linux block device
4
5
6
based on drivers/block/osdblk.c:
7
8
Copyright 2009 Red Hat, Inc.
9
10
This program is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation.
13
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
GNU General Public License for more details.
18
19
You should have received a copy of the GNU General Public License
20
along with this program; see the file COPYING. If not, write to
21
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25
For usage instructions, please refer to:
26
27
Documentation/ABI/testing/sysfs-bus-rbd
28
29
*/
30
31
#include <linux/ceph/libceph.h>
32
#include <linux/ceph/osd_client.h>
33
#include <linux/ceph/mon_client.h>
34
#include <linux/ceph/cls_lock_client.h>
35
#include <linux/ceph/striper.h>
36
#include <linux/ceph/decode.h>
37
#include <linux/fs_parser.h>
38
#include <linux/bsearch.h>
39
40
#include <linux/kernel.h>
41
#include <linux/device.h>
42
#include <linux/module.h>
43
#include <linux/blk-mq.h>
44
#include <linux/fs.h>
45
#include <linux/blkdev.h>
46
#include <linux/slab.h>
47
#include <linux/idr.h>
48
#include <linux/workqueue.h>
49
50
#include "rbd_types.h"
51
52
#define RBD_DEBUG /* Activate rbd_assert() calls */
53
54
/*
55
* Increment the given counter and return its updated value.
56
* If the counter is already 0 it will not be incremented.
57
* If the counter is already at its maximum value returns
58
* -EINVAL without updating it.
59
*/
60
static int atomic_inc_return_safe(atomic_t *v)
61
{
62
unsigned int counter;
63
64
counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65
if (counter <= (unsigned int)INT_MAX)
66
return (int)counter;
67
68
atomic_dec(v);
69
70
return -EINVAL;
71
}
72
73
/* Decrement the counter. Return the resulting value, or -EINVAL */
74
static int atomic_dec_return_safe(atomic_t *v)
75
{
76
int counter;
77
78
counter = atomic_dec_return(v);
79
if (counter >= 0)
80
return counter;
81
82
atomic_inc(v);
83
84
return -EINVAL;
85
}
86
87
#define RBD_DRV_NAME "rbd"
88
89
#define RBD_MINORS_PER_MAJOR 256
90
#define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92
#define RBD_MAX_PARENT_CHAIN_LEN 16
93
94
#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95
#define RBD_MAX_SNAP_NAME_LEN \
96
(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98
#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100
#define RBD_SNAP_HEAD_NAME "-"
101
102
#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104
/* This allows a single page to hold an image name sent by OSD */
105
#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106
#define RBD_IMAGE_ID_LEN_MAX 64
107
108
#define RBD_OBJ_PREFIX_LEN_MAX 64
109
110
#define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111
#define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113
/* Feature bits */
114
115
#define RBD_FEATURE_LAYERING (1ULL<<0)
116
#define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117
#define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118
#define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119
#define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120
#define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121
#define RBD_FEATURE_DATA_POOL (1ULL<<7)
122
#define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124
#define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125
RBD_FEATURE_STRIPINGV2 | \
126
RBD_FEATURE_EXCLUSIVE_LOCK | \
127
RBD_FEATURE_OBJECT_MAP | \
128
RBD_FEATURE_FAST_DIFF | \
129
RBD_FEATURE_DEEP_FLATTEN | \
130
RBD_FEATURE_DATA_POOL | \
131
RBD_FEATURE_OPERATIONS)
132
133
/* Features supported by this (client software) implementation. */
134
135
#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137
/*
138
* An RBD device name will be "rbd#", where the "rbd" comes from
139
* RBD_DRV_NAME above, and # is a unique integer identifier.
140
*/
141
#define DEV_NAME_LEN 32
142
143
/*
144
* block device image metadata (in-memory version)
145
*/
146
struct rbd_image_header {
147
/* These six fields never change for a given rbd image */
148
char *object_prefix;
149
__u8 obj_order;
150
u64 stripe_unit;
151
u64 stripe_count;
152
s64 data_pool_id;
153
u64 features; /* Might be changeable someday? */
154
155
/* The remaining fields need to be updated occasionally */
156
u64 image_size;
157
struct ceph_snap_context *snapc;
158
char *snap_names; /* format 1 only */
159
u64 *snap_sizes; /* format 1 only */
160
};
161
162
/*
163
* An rbd image specification.
164
*
165
* The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166
* identify an image. Each rbd_dev structure includes a pointer to
167
* an rbd_spec structure that encapsulates this identity.
168
*
169
* Each of the id's in an rbd_spec has an associated name. For a
170
* user-mapped image, the names are supplied and the id's associated
171
* with them are looked up. For a layered image, a parent image is
172
* defined by the tuple, and the names are looked up.
173
*
174
* An rbd_dev structure contains a parent_spec pointer which is
175
* non-null if the image it represents is a child in a layered
176
* image. This pointer will refer to the rbd_spec structure used
177
* by the parent rbd_dev for its own identity (i.e., the structure
178
* is shared between the parent and child).
179
*
180
* Since these structures are populated once, during the discovery
181
* phase of image construction, they are effectively immutable so
182
* we make no effort to synchronize access to them.
183
*
184
* Note that code herein does not assume the image name is known (it
185
* could be a null pointer).
186
*/
187
struct rbd_spec {
188
u64 pool_id;
189
const char *pool_name;
190
const char *pool_ns; /* NULL if default, never "" */
191
192
const char *image_id;
193
const char *image_name;
194
195
u64 snap_id;
196
const char *snap_name;
197
198
struct kref kref;
199
};
200
201
/*
202
* an instance of the client. multiple devices may share an rbd client.
203
*/
204
struct rbd_client {
205
struct ceph_client *client;
206
struct kref kref;
207
struct list_head node;
208
};
209
210
struct pending_result {
211
int result; /* first nonzero result */
212
int num_pending;
213
};
214
215
struct rbd_img_request;
216
217
enum obj_request_type {
218
OBJ_REQUEST_NODATA = 1,
219
OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220
OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221
OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222
};
223
224
enum obj_operation_type {
225
OBJ_OP_READ = 1,
226
OBJ_OP_WRITE,
227
OBJ_OP_DISCARD,
228
OBJ_OP_ZEROOUT,
229
};
230
231
#define RBD_OBJ_FLAG_DELETION (1U << 0)
232
#define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233
#define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234
#define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235
#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237
enum rbd_obj_read_state {
238
RBD_OBJ_READ_START = 1,
239
RBD_OBJ_READ_OBJECT,
240
RBD_OBJ_READ_PARENT,
241
};
242
243
/*
244
* Writes go through the following state machine to deal with
245
* layering:
246
*
247
* . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248
* . | .
249
* . v .
250
* . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251
* . | . .
252
* . v v (deep-copyup .
253
* (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254
* flattened) v | . .
255
* . v . .
256
* . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257
* | not needed) v
258
* v .
259
* done . . . . . . . . . . . . . . . . . .
260
* ^
261
* |
262
* RBD_OBJ_WRITE_FLAT
263
*
264
* Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265
* assert_exists guard is needed or not (in some cases it's not needed
266
* even if there is a parent).
267
*/
268
enum rbd_obj_write_state {
269
RBD_OBJ_WRITE_START = 1,
270
RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271
RBD_OBJ_WRITE_OBJECT,
272
__RBD_OBJ_WRITE_COPYUP,
273
RBD_OBJ_WRITE_COPYUP,
274
RBD_OBJ_WRITE_POST_OBJECT_MAP,
275
};
276
277
enum rbd_obj_copyup_state {
278
RBD_OBJ_COPYUP_START = 1,
279
RBD_OBJ_COPYUP_READ_PARENT,
280
__RBD_OBJ_COPYUP_OBJECT_MAPS,
281
RBD_OBJ_COPYUP_OBJECT_MAPS,
282
__RBD_OBJ_COPYUP_WRITE_OBJECT,
283
RBD_OBJ_COPYUP_WRITE_OBJECT,
284
};
285
286
struct rbd_obj_request {
287
struct ceph_object_extent ex;
288
unsigned int flags; /* RBD_OBJ_FLAG_* */
289
union {
290
enum rbd_obj_read_state read_state; /* for reads */
291
enum rbd_obj_write_state write_state; /* for writes */
292
};
293
294
struct rbd_img_request *img_request;
295
struct ceph_file_extent *img_extents;
296
u32 num_img_extents;
297
298
union {
299
struct ceph_bio_iter bio_pos;
300
struct {
301
struct ceph_bvec_iter bvec_pos;
302
u32 bvec_count;
303
u32 bvec_idx;
304
};
305
};
306
307
enum rbd_obj_copyup_state copyup_state;
308
struct bio_vec *copyup_bvecs;
309
u32 copyup_bvec_count;
310
311
struct list_head osd_reqs; /* w/ r_private_item */
312
313
struct mutex state_mutex;
314
struct pending_result pending;
315
struct kref kref;
316
};
317
318
enum img_req_flags {
319
IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320
IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321
};
322
323
enum rbd_img_state {
324
RBD_IMG_START = 1,
325
RBD_IMG_EXCLUSIVE_LOCK,
326
__RBD_IMG_OBJECT_REQUESTS,
327
RBD_IMG_OBJECT_REQUESTS,
328
};
329
330
struct rbd_img_request {
331
struct rbd_device *rbd_dev;
332
enum obj_operation_type op_type;
333
enum obj_request_type data_type;
334
unsigned long flags;
335
enum rbd_img_state state;
336
union {
337
u64 snap_id; /* for reads */
338
struct ceph_snap_context *snapc; /* for writes */
339
};
340
struct rbd_obj_request *obj_request; /* obj req initiator */
341
342
struct list_head lock_item;
343
struct list_head object_extents; /* obj_req.ex structs */
344
345
struct mutex state_mutex;
346
struct pending_result pending;
347
struct work_struct work;
348
int work_result;
349
};
350
351
#define for_each_obj_request(ireq, oreq) \
352
list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353
#define for_each_obj_request_safe(ireq, oreq, n) \
354
list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356
enum rbd_watch_state {
357
RBD_WATCH_STATE_UNREGISTERED,
358
RBD_WATCH_STATE_REGISTERED,
359
RBD_WATCH_STATE_ERROR,
360
};
361
362
enum rbd_lock_state {
363
RBD_LOCK_STATE_UNLOCKED,
364
RBD_LOCK_STATE_LOCKED,
365
RBD_LOCK_STATE_QUIESCING,
366
};
367
368
/* WatchNotify::ClientId */
369
struct rbd_client_id {
370
u64 gid;
371
u64 handle;
372
};
373
374
struct rbd_mapping {
375
u64 size;
376
};
377
378
/*
379
* a single device
380
*/
381
struct rbd_device {
382
int dev_id; /* blkdev unique id */
383
384
int major; /* blkdev assigned major */
385
int minor;
386
struct gendisk *disk; /* blkdev's gendisk and rq */
387
388
u32 image_format; /* Either 1 or 2 */
389
struct rbd_client *rbd_client;
390
391
char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393
spinlock_t lock; /* queue, flags, open_count */
394
395
struct rbd_image_header header;
396
unsigned long flags; /* possibly lock protected */
397
struct rbd_spec *spec;
398
struct rbd_options *opts;
399
char *config_info; /* add{,_single_major} string */
400
401
struct ceph_object_id header_oid;
402
struct ceph_object_locator header_oloc;
403
404
struct ceph_file_layout layout; /* used for all rbd requests */
405
406
struct mutex watch_mutex;
407
enum rbd_watch_state watch_state;
408
struct ceph_osd_linger_request *watch_handle;
409
u64 watch_cookie;
410
struct delayed_work watch_dwork;
411
412
struct rw_semaphore lock_rwsem;
413
enum rbd_lock_state lock_state;
414
char lock_cookie[32];
415
struct rbd_client_id owner_cid;
416
struct work_struct acquired_lock_work;
417
struct work_struct released_lock_work;
418
struct delayed_work lock_dwork;
419
struct work_struct unlock_work;
420
spinlock_t lock_lists_lock;
421
struct list_head acquiring_list;
422
struct list_head running_list;
423
struct completion acquire_wait;
424
int acquire_err;
425
struct completion quiescing_wait;
426
427
spinlock_t object_map_lock;
428
u8 *object_map;
429
u64 object_map_size; /* in objects */
430
u64 object_map_flags;
431
432
struct workqueue_struct *task_wq;
433
434
struct rbd_spec *parent_spec;
435
u64 parent_overlap;
436
atomic_t parent_ref;
437
struct rbd_device *parent;
438
439
/* Block layer tags. */
440
struct blk_mq_tag_set tag_set;
441
442
/* protects updating the header */
443
struct rw_semaphore header_rwsem;
444
445
struct rbd_mapping mapping;
446
447
struct list_head node;
448
449
/* sysfs related */
450
struct device dev;
451
unsigned long open_count; /* protected by lock */
452
};
453
454
/*
455
* Flag bits for rbd_dev->flags:
456
* - REMOVING (which is coupled with rbd_dev->open_count) is protected
457
* by rbd_dev->lock
458
*/
459
enum rbd_dev_flags {
460
RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461
RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462
RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463
};
464
465
static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467
static LIST_HEAD(rbd_dev_list); /* devices */
468
static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470
static LIST_HEAD(rbd_client_list); /* clients */
471
static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473
/* Slab caches for frequently-allocated structures */
474
475
static struct kmem_cache *rbd_img_request_cache;
476
static struct kmem_cache *rbd_obj_request_cache;
477
478
static int rbd_major;
479
static DEFINE_IDA(rbd_dev_id_ida);
480
481
static struct workqueue_struct *rbd_wq;
482
483
static struct ceph_snap_context rbd_empty_snapc = {
484
.nref = REFCOUNT_INIT(1),
485
};
486
487
/*
488
* single-major requires >= 0.75 version of userspace rbd utility.
489
*/
490
static bool single_major = true;
491
module_param(single_major, bool, 0444);
492
MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494
static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495
static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496
size_t count);
497
static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498
size_t count);
499
static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500
size_t count);
501
static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503
static int rbd_dev_id_to_minor(int dev_id)
504
{
505
return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506
}
507
508
static int minor_to_rbd_dev_id(int minor)
509
{
510
return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511
}
512
513
static bool rbd_is_ro(struct rbd_device *rbd_dev)
514
{
515
return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516
}
517
518
static bool rbd_is_snap(struct rbd_device *rbd_dev)
519
{
520
return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521
}
522
523
static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524
{
525
lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527
return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528
rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING;
529
}
530
531
static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532
{
533
bool is_lock_owner;
534
535
down_read(&rbd_dev->lock_rwsem);
536
is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537
up_read(&rbd_dev->lock_rwsem);
538
return is_lock_owner;
539
}
540
541
static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542
{
543
return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544
}
545
546
static BUS_ATTR_WO(add);
547
static BUS_ATTR_WO(remove);
548
static BUS_ATTR_WO(add_single_major);
549
static BUS_ATTR_WO(remove_single_major);
550
static BUS_ATTR_RO(supported_features);
551
552
static struct attribute *rbd_bus_attrs[] = {
553
&bus_attr_add.attr,
554
&bus_attr_remove.attr,
555
&bus_attr_add_single_major.attr,
556
&bus_attr_remove_single_major.attr,
557
&bus_attr_supported_features.attr,
558
NULL,
559
};
560
561
static umode_t rbd_bus_is_visible(struct kobject *kobj,
562
struct attribute *attr, int index)
563
{
564
if (!single_major &&
565
(attr == &bus_attr_add_single_major.attr ||
566
attr == &bus_attr_remove_single_major.attr))
567
return 0;
568
569
return attr->mode;
570
}
571
572
static const struct attribute_group rbd_bus_group = {
573
.attrs = rbd_bus_attrs,
574
.is_visible = rbd_bus_is_visible,
575
};
576
__ATTRIBUTE_GROUPS(rbd_bus);
577
578
static const struct bus_type rbd_bus_type = {
579
.name = "rbd",
580
.bus_groups = rbd_bus_groups,
581
};
582
583
static void rbd_root_dev_release(struct device *dev)
584
{
585
}
586
587
static struct device rbd_root_dev = {
588
.init_name = "rbd",
589
.release = rbd_root_dev_release,
590
};
591
592
static __printf(2, 3)
593
void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594
{
595
struct va_format vaf;
596
va_list args;
597
598
va_start(args, fmt);
599
vaf.fmt = fmt;
600
vaf.va = &args;
601
602
if (!rbd_dev)
603
printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604
else if (rbd_dev->disk)
605
printk(KERN_WARNING "%s: %s: %pV\n",
606
RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607
else if (rbd_dev->spec && rbd_dev->spec->image_name)
608
printk(KERN_WARNING "%s: image %s: %pV\n",
609
RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610
else if (rbd_dev->spec && rbd_dev->spec->image_id)
611
printk(KERN_WARNING "%s: id %s: %pV\n",
612
RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613
else /* punt */
614
printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615
RBD_DRV_NAME, rbd_dev, &vaf);
616
va_end(args);
617
}
618
619
#ifdef RBD_DEBUG
620
#define rbd_assert(expr) \
621
if (unlikely(!(expr))) { \
622
printk(KERN_ERR "\nAssertion failure in %s() " \
623
"at line %d:\n\n" \
624
"\trbd_assert(%s);\n\n", \
625
__func__, __LINE__, #expr); \
626
BUG(); \
627
}
628
#else /* !RBD_DEBUG */
629
# define rbd_assert(expr) ((void) 0)
630
#endif /* !RBD_DEBUG */
631
632
static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634
static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635
static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636
struct rbd_image_header *header);
637
static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638
u64 snap_id);
639
static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640
u8 *order, u64 *snap_size);
641
static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643
static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644
static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646
/*
647
* Return true if nothing else is pending.
648
*/
649
static bool pending_result_dec(struct pending_result *pending, int *result)
650
{
651
rbd_assert(pending->num_pending > 0);
652
653
if (*result && !pending->result)
654
pending->result = *result;
655
if (--pending->num_pending)
656
return false;
657
658
*result = pending->result;
659
return true;
660
}
661
662
static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663
{
664
struct rbd_device *rbd_dev = disk->private_data;
665
bool removing = false;
666
667
spin_lock_irq(&rbd_dev->lock);
668
if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669
removing = true;
670
else
671
rbd_dev->open_count++;
672
spin_unlock_irq(&rbd_dev->lock);
673
if (removing)
674
return -ENOENT;
675
676
(void) get_device(&rbd_dev->dev);
677
678
return 0;
679
}
680
681
static void rbd_release(struct gendisk *disk)
682
{
683
struct rbd_device *rbd_dev = disk->private_data;
684
unsigned long open_count_before;
685
686
spin_lock_irq(&rbd_dev->lock);
687
open_count_before = rbd_dev->open_count--;
688
spin_unlock_irq(&rbd_dev->lock);
689
rbd_assert(open_count_before > 0);
690
691
put_device(&rbd_dev->dev);
692
}
693
694
static const struct block_device_operations rbd_bd_ops = {
695
.owner = THIS_MODULE,
696
.open = rbd_open,
697
.release = rbd_release,
698
};
699
700
/*
701
* Initialize an rbd client instance. Success or not, this function
702
* consumes ceph_opts. Caller holds client_mutex.
703
*/
704
static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705
{
706
struct rbd_client *rbdc;
707
int ret = -ENOMEM;
708
709
dout("%s:\n", __func__);
710
rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711
if (!rbdc)
712
goto out_opt;
713
714
kref_init(&rbdc->kref);
715
INIT_LIST_HEAD(&rbdc->node);
716
717
rbdc->client = ceph_create_client(ceph_opts, rbdc);
718
if (IS_ERR(rbdc->client))
719
goto out_rbdc;
720
ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722
ret = ceph_open_session(rbdc->client);
723
if (ret < 0)
724
goto out_client;
725
726
spin_lock(&rbd_client_list_lock);
727
list_add_tail(&rbdc->node, &rbd_client_list);
728
spin_unlock(&rbd_client_list_lock);
729
730
dout("%s: rbdc %p\n", __func__, rbdc);
731
732
return rbdc;
733
out_client:
734
ceph_destroy_client(rbdc->client);
735
out_rbdc:
736
kfree(rbdc);
737
out_opt:
738
if (ceph_opts)
739
ceph_destroy_options(ceph_opts);
740
dout("%s: error %d\n", __func__, ret);
741
742
return ERR_PTR(ret);
743
}
744
745
static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746
{
747
kref_get(&rbdc->kref);
748
749
return rbdc;
750
}
751
752
/*
753
* Find a ceph client with specific addr and configuration. If
754
* found, bump its reference count.
755
*/
756
static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757
{
758
struct rbd_client *rbdc = NULL, *iter;
759
760
if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761
return NULL;
762
763
spin_lock(&rbd_client_list_lock);
764
list_for_each_entry(iter, &rbd_client_list, node) {
765
if (!ceph_compare_options(ceph_opts, iter->client)) {
766
__rbd_get_client(iter);
767
768
rbdc = iter;
769
break;
770
}
771
}
772
spin_unlock(&rbd_client_list_lock);
773
774
return rbdc;
775
}
776
777
/*
778
* (Per device) rbd map options
779
*/
780
enum {
781
Opt_queue_depth,
782
Opt_alloc_size,
783
Opt_lock_timeout,
784
/* int args above */
785
Opt_pool_ns,
786
Opt_compression_hint,
787
/* string args above */
788
Opt_read_only,
789
Opt_read_write,
790
Opt_lock_on_read,
791
Opt_exclusive,
792
Opt_notrim,
793
};
794
795
enum {
796
Opt_compression_hint_none,
797
Opt_compression_hint_compressible,
798
Opt_compression_hint_incompressible,
799
};
800
801
static const struct constant_table rbd_param_compression_hint[] = {
802
{"none", Opt_compression_hint_none},
803
{"compressible", Opt_compression_hint_compressible},
804
{"incompressible", Opt_compression_hint_incompressible},
805
{}
806
};
807
808
static const struct fs_parameter_spec rbd_parameters[] = {
809
fsparam_u32 ("alloc_size", Opt_alloc_size),
810
fsparam_enum ("compression_hint", Opt_compression_hint,
811
rbd_param_compression_hint),
812
fsparam_flag ("exclusive", Opt_exclusive),
813
fsparam_flag ("lock_on_read", Opt_lock_on_read),
814
fsparam_u32 ("lock_timeout", Opt_lock_timeout),
815
fsparam_flag ("notrim", Opt_notrim),
816
fsparam_string ("_pool_ns", Opt_pool_ns),
817
fsparam_u32 ("queue_depth", Opt_queue_depth),
818
fsparam_flag ("read_only", Opt_read_only),
819
fsparam_flag ("read_write", Opt_read_write),
820
fsparam_flag ("ro", Opt_read_only),
821
fsparam_flag ("rw", Opt_read_write),
822
{}
823
};
824
825
struct rbd_options {
826
int queue_depth;
827
int alloc_size;
828
unsigned long lock_timeout;
829
bool read_only;
830
bool lock_on_read;
831
bool exclusive;
832
bool trim;
833
834
u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835
};
836
837
#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838
#define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
839
#define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
840
#define RBD_READ_ONLY_DEFAULT false
841
#define RBD_LOCK_ON_READ_DEFAULT false
842
#define RBD_EXCLUSIVE_DEFAULT false
843
#define RBD_TRIM_DEFAULT true
844
845
struct rbd_parse_opts_ctx {
846
struct rbd_spec *spec;
847
struct ceph_options *copts;
848
struct rbd_options *opts;
849
};
850
851
static char* obj_op_name(enum obj_operation_type op_type)
852
{
853
switch (op_type) {
854
case OBJ_OP_READ:
855
return "read";
856
case OBJ_OP_WRITE:
857
return "write";
858
case OBJ_OP_DISCARD:
859
return "discard";
860
case OBJ_OP_ZEROOUT:
861
return "zeroout";
862
default:
863
return "???";
864
}
865
}
866
867
/*
868
* Destroy ceph client
869
*
870
* Caller must hold rbd_client_list_lock.
871
*/
872
static void rbd_client_release(struct kref *kref)
873
{
874
struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876
dout("%s: rbdc %p\n", __func__, rbdc);
877
spin_lock(&rbd_client_list_lock);
878
list_del(&rbdc->node);
879
spin_unlock(&rbd_client_list_lock);
880
881
ceph_destroy_client(rbdc->client);
882
kfree(rbdc);
883
}
884
885
/*
886
* Drop reference to ceph client node. If it's not referenced anymore, release
887
* it.
888
*/
889
static void rbd_put_client(struct rbd_client *rbdc)
890
{
891
if (rbdc)
892
kref_put(&rbdc->kref, rbd_client_release);
893
}
894
895
/*
896
* Get a ceph client with specific addr and configuration, if one does
897
* not exist create it. Either way, ceph_opts is consumed by this
898
* function.
899
*/
900
static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901
{
902
struct rbd_client *rbdc;
903
int ret;
904
905
mutex_lock(&client_mutex);
906
rbdc = rbd_client_find(ceph_opts);
907
if (rbdc) {
908
ceph_destroy_options(ceph_opts);
909
910
/*
911
* Using an existing client. Make sure ->pg_pools is up to
912
* date before we look up the pool id in do_rbd_add().
913
*/
914
ret = ceph_wait_for_latest_osdmap(rbdc->client,
915
rbdc->client->options->mount_timeout);
916
if (ret) {
917
rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918
rbd_put_client(rbdc);
919
rbdc = ERR_PTR(ret);
920
}
921
} else {
922
rbdc = rbd_client_create(ceph_opts);
923
}
924
mutex_unlock(&client_mutex);
925
926
return rbdc;
927
}
928
929
static bool rbd_image_format_valid(u32 image_format)
930
{
931
return image_format == 1 || image_format == 2;
932
}
933
934
static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935
{
936
size_t size;
937
u32 snap_count;
938
939
/* The header has to start with the magic rbd header text */
940
if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941
return false;
942
943
/* The bio layer requires at least sector-sized I/O */
944
945
if (ondisk->options.order < SECTOR_SHIFT)
946
return false;
947
948
/* If we use u64 in a few spots we may be able to loosen this */
949
950
if (ondisk->options.order > 8 * sizeof (int) - 1)
951
return false;
952
953
/*
954
* The size of a snapshot header has to fit in a size_t, and
955
* that limits the number of snapshots.
956
*/
957
snap_count = le32_to_cpu(ondisk->snap_count);
958
size = SIZE_MAX - sizeof (struct ceph_snap_context);
959
if (snap_count > size / sizeof (__le64))
960
return false;
961
962
/*
963
* Not only that, but the size of the entire the snapshot
964
* header must also be representable in a size_t.
965
*/
966
size -= snap_count * sizeof (__le64);
967
if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968
return false;
969
970
return true;
971
}
972
973
/*
974
* returns the size of an object in the image
975
*/
976
static u32 rbd_obj_bytes(struct rbd_image_header *header)
977
{
978
return 1U << header->obj_order;
979
}
980
981
static void rbd_init_layout(struct rbd_device *rbd_dev)
982
{
983
if (rbd_dev->header.stripe_unit == 0 ||
984
rbd_dev->header.stripe_count == 0) {
985
rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986
rbd_dev->header.stripe_count = 1;
987
}
988
989
rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990
rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991
rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992
rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993
rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994
RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995
}
996
997
static void rbd_image_header_cleanup(struct rbd_image_header *header)
998
{
999
kfree(header->object_prefix);
1000
ceph_put_snap_context(header->snapc);
1001
kfree(header->snap_sizes);
1002
kfree(header->snap_names);
1003
1004
memset(header, 0, sizeof(*header));
1005
}
1006
1007
/*
1008
* Fill an rbd image header with information from the given format 1
1009
* on-disk header.
1010
*/
1011
static int rbd_header_from_disk(struct rbd_image_header *header,
1012
struct rbd_image_header_ondisk *ondisk,
1013
bool first_time)
1014
{
1015
struct ceph_snap_context *snapc;
1016
char *object_prefix = NULL;
1017
char *snap_names = NULL;
1018
u64 *snap_sizes = NULL;
1019
u32 snap_count;
1020
int ret = -ENOMEM;
1021
u32 i;
1022
1023
/* Allocate this now to avoid having to handle failure below */
1024
1025
if (first_time) {
1026
object_prefix = kstrndup(ondisk->object_prefix,
1027
sizeof(ondisk->object_prefix),
1028
GFP_KERNEL);
1029
if (!object_prefix)
1030
return -ENOMEM;
1031
}
1032
1033
/* Allocate the snapshot context and fill it in */
1034
1035
snap_count = le32_to_cpu(ondisk->snap_count);
1036
snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037
if (!snapc)
1038
goto out_err;
1039
snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040
if (snap_count) {
1041
struct rbd_image_snap_ondisk *snaps;
1042
u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044
/* We'll keep a copy of the snapshot names... */
1045
1046
if (snap_names_len > (u64)SIZE_MAX)
1047
goto out_2big;
1048
snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049
if (!snap_names)
1050
goto out_err;
1051
1052
/* ...as well as the array of their sizes. */
1053
snap_sizes = kmalloc_array(snap_count,
1054
sizeof(*header->snap_sizes),
1055
GFP_KERNEL);
1056
if (!snap_sizes)
1057
goto out_err;
1058
1059
/*
1060
* Copy the names, and fill in each snapshot's id
1061
* and size.
1062
*
1063
* Note that rbd_dev_v1_header_info() guarantees the
1064
* ondisk buffer we're working with has
1065
* snap_names_len bytes beyond the end of the
1066
* snapshot id array, this memcpy() is safe.
1067
*/
1068
memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069
snaps = ondisk->snaps;
1070
for (i = 0; i < snap_count; i++) {
1071
snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072
snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073
}
1074
}
1075
1076
/* We won't fail any more, fill in the header */
1077
1078
if (first_time) {
1079
header->object_prefix = object_prefix;
1080
header->obj_order = ondisk->options.order;
1081
}
1082
1083
/* The remaining fields always get updated (when we refresh) */
1084
1085
header->image_size = le64_to_cpu(ondisk->image_size);
1086
header->snapc = snapc;
1087
header->snap_names = snap_names;
1088
header->snap_sizes = snap_sizes;
1089
1090
return 0;
1091
out_2big:
1092
ret = -EIO;
1093
out_err:
1094
kfree(snap_sizes);
1095
kfree(snap_names);
1096
ceph_put_snap_context(snapc);
1097
kfree(object_prefix);
1098
1099
return ret;
1100
}
1101
1102
static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103
{
1104
const char *snap_name;
1105
1106
rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108
/* Skip over names until we find the one we are looking for */
1109
1110
snap_name = rbd_dev->header.snap_names;
1111
while (which--)
1112
snap_name += strlen(snap_name) + 1;
1113
1114
return kstrdup(snap_name, GFP_KERNEL);
1115
}
1116
1117
/*
1118
* Snapshot id comparison function for use with qsort()/bsearch().
1119
* Note that result is for snapshots in *descending* order.
1120
*/
1121
static int snapid_compare_reverse(const void *s1, const void *s2)
1122
{
1123
u64 snap_id1 = *(u64 *)s1;
1124
u64 snap_id2 = *(u64 *)s2;
1125
1126
if (snap_id1 < snap_id2)
1127
return 1;
1128
return snap_id1 == snap_id2 ? 0 : -1;
1129
}
1130
1131
/*
1132
* Search a snapshot context to see if the given snapshot id is
1133
* present.
1134
*
1135
* Returns the position of the snapshot id in the array if it's found,
1136
* or BAD_SNAP_INDEX otherwise.
1137
*
1138
* Note: The snapshot array is in kept sorted (by the osd) in
1139
* reverse order, highest snapshot id first.
1140
*/
1141
static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142
{
1143
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144
u64 *found;
1145
1146
found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147
sizeof (snap_id), snapid_compare_reverse);
1148
1149
return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150
}
1151
1152
static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153
u64 snap_id)
1154
{
1155
u32 which;
1156
const char *snap_name;
1157
1158
which = rbd_dev_snap_index(rbd_dev, snap_id);
1159
if (which == BAD_SNAP_INDEX)
1160
return ERR_PTR(-ENOENT);
1161
1162
snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163
return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164
}
1165
1166
static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167
{
1168
if (snap_id == CEPH_NOSNAP)
1169
return RBD_SNAP_HEAD_NAME;
1170
1171
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172
if (rbd_dev->image_format == 1)
1173
return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175
return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176
}
1177
1178
static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179
u64 *snap_size)
1180
{
1181
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182
if (snap_id == CEPH_NOSNAP) {
1183
*snap_size = rbd_dev->header.image_size;
1184
} else if (rbd_dev->image_format == 1) {
1185
u32 which;
1186
1187
which = rbd_dev_snap_index(rbd_dev, snap_id);
1188
if (which == BAD_SNAP_INDEX)
1189
return -ENOENT;
1190
1191
*snap_size = rbd_dev->header.snap_sizes[which];
1192
} else {
1193
u64 size = 0;
1194
int ret;
1195
1196
ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197
if (ret)
1198
return ret;
1199
1200
*snap_size = size;
1201
}
1202
return 0;
1203
}
1204
1205
static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206
{
1207
u64 snap_id = rbd_dev->spec->snap_id;
1208
u64 size = 0;
1209
int ret;
1210
1211
ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212
if (ret)
1213
return ret;
1214
1215
rbd_dev->mapping.size = size;
1216
return 0;
1217
}
1218
1219
static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220
{
1221
rbd_dev->mapping.size = 0;
1222
}
1223
1224
static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225
{
1226
struct ceph_bio_iter it = *bio_pos;
1227
1228
ceph_bio_iter_advance(&it, off);
1229
ceph_bio_iter_advance_step(&it, bytes, ({
1230
memzero_bvec(&bv);
1231
}));
1232
}
1233
1234
static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235
{
1236
struct ceph_bvec_iter it = *bvec_pos;
1237
1238
ceph_bvec_iter_advance(&it, off);
1239
ceph_bvec_iter_advance_step(&it, bytes, ({
1240
memzero_bvec(&bv);
1241
}));
1242
}
1243
1244
/*
1245
* Zero a range in @obj_req data buffer defined by a bio (list) or
1246
* (private) bio_vec array.
1247
*
1248
* @off is relative to the start of the data buffer.
1249
*/
1250
static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251
u32 bytes)
1252
{
1253
dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255
switch (obj_req->img_request->data_type) {
1256
case OBJ_REQUEST_BIO:
1257
zero_bios(&obj_req->bio_pos, off, bytes);
1258
break;
1259
case OBJ_REQUEST_BVECS:
1260
case OBJ_REQUEST_OWN_BVECS:
1261
zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262
break;
1263
default:
1264
BUG();
1265
}
1266
}
1267
1268
static void rbd_obj_request_destroy(struct kref *kref);
1269
static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270
{
1271
rbd_assert(obj_request != NULL);
1272
dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273
kref_read(&obj_request->kref));
1274
kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275
}
1276
1277
static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278
struct rbd_obj_request *obj_request)
1279
{
1280
rbd_assert(obj_request->img_request == NULL);
1281
1282
/* Image request now owns object's original reference */
1283
obj_request->img_request = img_request;
1284
dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285
}
1286
1287
static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288
struct rbd_obj_request *obj_request)
1289
{
1290
dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291
list_del(&obj_request->ex.oe_item);
1292
rbd_assert(obj_request->img_request == img_request);
1293
rbd_obj_request_put(obj_request);
1294
}
1295
1296
static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297
{
1298
struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300
dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301
__func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302
obj_req->ex.oe_off, obj_req->ex.oe_len);
1303
ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304
}
1305
1306
/*
1307
* The default/initial value for all image request flags is 0. Each
1308
* is conditionally set to 1 at image request initialization time
1309
* and currently never change thereafter.
1310
*/
1311
static void img_request_layered_set(struct rbd_img_request *img_request)
1312
{
1313
set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314
}
1315
1316
static bool img_request_layered_test(struct rbd_img_request *img_request)
1317
{
1318
return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319
}
1320
1321
static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322
{
1323
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325
return !obj_req->ex.oe_off &&
1326
obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327
}
1328
1329
static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330
{
1331
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333
return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334
rbd_dev->layout.object_size;
1335
}
1336
1337
/*
1338
* Must be called after rbd_obj_calc_img_extents().
1339
*/
1340
static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341
{
1342
rbd_assert(obj_req->img_request->snapc);
1343
1344
if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345
dout("%s %p objno %llu discard\n", __func__, obj_req,
1346
obj_req->ex.oe_objno);
1347
return;
1348
}
1349
1350
if (!obj_req->num_img_extents) {
1351
dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352
obj_req->ex.oe_objno);
1353
return;
1354
}
1355
1356
if (rbd_obj_is_entire(obj_req) &&
1357
!obj_req->img_request->snapc->num_snaps) {
1358
dout("%s %p objno %llu entire\n", __func__, obj_req,
1359
obj_req->ex.oe_objno);
1360
return;
1361
}
1362
1363
obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364
}
1365
1366
static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367
{
1368
return ceph_file_extents_bytes(obj_req->img_extents,
1369
obj_req->num_img_extents);
1370
}
1371
1372
static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373
{
1374
switch (img_req->op_type) {
1375
case OBJ_OP_READ:
1376
return false;
1377
case OBJ_OP_WRITE:
1378
case OBJ_OP_DISCARD:
1379
case OBJ_OP_ZEROOUT:
1380
return true;
1381
default:
1382
BUG();
1383
}
1384
}
1385
1386
static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387
{
1388
struct rbd_obj_request *obj_req = osd_req->r_priv;
1389
int result;
1390
1391
dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392
osd_req->r_result, obj_req);
1393
1394
/*
1395
* Writes aren't allowed to return a data payload. In some
1396
* guarded write cases (e.g. stat + zero on an empty object)
1397
* a stat response makes it through, but we don't care.
1398
*/
1399
if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400
result = 0;
1401
else
1402
result = osd_req->r_result;
1403
1404
rbd_obj_handle_request(obj_req, result);
1405
}
1406
1407
static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408
{
1409
struct rbd_obj_request *obj_request = osd_req->r_priv;
1410
struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411
struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413
osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414
osd_req->r_snapid = obj_request->img_request->snap_id;
1415
}
1416
1417
static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418
{
1419
struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421
osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422
ktime_get_real_ts64(&osd_req->r_mtime);
1423
osd_req->r_data_offset = obj_request->ex.oe_off;
1424
}
1425
1426
static struct ceph_osd_request *
1427
__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428
struct ceph_snap_context *snapc, int num_ops)
1429
{
1430
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432
struct ceph_osd_request *req;
1433
const char *name_format = rbd_dev->image_format == 1 ?
1434
RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435
int ret;
1436
1437
req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438
if (!req)
1439
return ERR_PTR(-ENOMEM);
1440
1441
list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442
req->r_callback = rbd_osd_req_callback;
1443
req->r_priv = obj_req;
1444
1445
/*
1446
* Data objects may be stored in a separate pool, but always in
1447
* the same namespace in that pool as the header in its pool.
1448
*/
1449
ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450
req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452
ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453
rbd_dev->header.object_prefix,
1454
obj_req->ex.oe_objno);
1455
if (ret)
1456
return ERR_PTR(ret);
1457
1458
return req;
1459
}
1460
1461
static struct ceph_osd_request *
1462
rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463
{
1464
rbd_assert(obj_req->img_request->snapc);
1465
return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466
num_ops);
1467
}
1468
1469
static struct rbd_obj_request *rbd_obj_request_create(void)
1470
{
1471
struct rbd_obj_request *obj_request;
1472
1473
obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474
if (!obj_request)
1475
return NULL;
1476
1477
ceph_object_extent_init(&obj_request->ex);
1478
INIT_LIST_HEAD(&obj_request->osd_reqs);
1479
mutex_init(&obj_request->state_mutex);
1480
kref_init(&obj_request->kref);
1481
1482
dout("%s %p\n", __func__, obj_request);
1483
return obj_request;
1484
}
1485
1486
static void rbd_obj_request_destroy(struct kref *kref)
1487
{
1488
struct rbd_obj_request *obj_request;
1489
struct ceph_osd_request *osd_req;
1490
u32 i;
1491
1492
obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494
dout("%s: obj %p\n", __func__, obj_request);
1495
1496
while (!list_empty(&obj_request->osd_reqs)) {
1497
osd_req = list_first_entry(&obj_request->osd_reqs,
1498
struct ceph_osd_request, r_private_item);
1499
list_del_init(&osd_req->r_private_item);
1500
ceph_osdc_put_request(osd_req);
1501
}
1502
1503
switch (obj_request->img_request->data_type) {
1504
case OBJ_REQUEST_NODATA:
1505
case OBJ_REQUEST_BIO:
1506
case OBJ_REQUEST_BVECS:
1507
break; /* Nothing to do */
1508
case OBJ_REQUEST_OWN_BVECS:
1509
kfree(obj_request->bvec_pos.bvecs);
1510
break;
1511
default:
1512
BUG();
1513
}
1514
1515
kfree(obj_request->img_extents);
1516
if (obj_request->copyup_bvecs) {
1517
for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518
if (obj_request->copyup_bvecs[i].bv_page)
1519
__free_page(obj_request->copyup_bvecs[i].bv_page);
1520
}
1521
kfree(obj_request->copyup_bvecs);
1522
}
1523
1524
kmem_cache_free(rbd_obj_request_cache, obj_request);
1525
}
1526
1527
/* It's OK to call this for a device with no parent */
1528
1529
static void rbd_spec_put(struct rbd_spec *spec);
1530
static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531
{
1532
rbd_dev_remove_parent(rbd_dev);
1533
rbd_spec_put(rbd_dev->parent_spec);
1534
rbd_dev->parent_spec = NULL;
1535
rbd_dev->parent_overlap = 0;
1536
}
1537
1538
/*
1539
* Parent image reference counting is used to determine when an
1540
* image's parent fields can be safely torn down--after there are no
1541
* more in-flight requests to the parent image. When the last
1542
* reference is dropped, cleaning them up is safe.
1543
*/
1544
static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545
{
1546
int counter;
1547
1548
if (!rbd_dev->parent_spec)
1549
return;
1550
1551
counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552
if (counter > 0)
1553
return;
1554
1555
/* Last reference; clean up parent data structures */
1556
1557
if (!counter)
1558
rbd_dev_unparent(rbd_dev);
1559
else
1560
rbd_warn(rbd_dev, "parent reference underflow");
1561
}
1562
1563
/*
1564
* If an image has a non-zero parent overlap, get a reference to its
1565
* parent.
1566
*
1567
* Returns true if the rbd device has a parent with a non-zero
1568
* overlap and a reference for it was successfully taken, or
1569
* false otherwise.
1570
*/
1571
static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572
{
1573
int counter = 0;
1574
1575
if (!rbd_dev->parent_spec)
1576
return false;
1577
1578
if (rbd_dev->parent_overlap)
1579
counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581
if (counter < 0)
1582
rbd_warn(rbd_dev, "parent reference overflow");
1583
1584
return counter > 0;
1585
}
1586
1587
static void rbd_img_request_init(struct rbd_img_request *img_request,
1588
struct rbd_device *rbd_dev,
1589
enum obj_operation_type op_type)
1590
{
1591
memset(img_request, 0, sizeof(*img_request));
1592
1593
img_request->rbd_dev = rbd_dev;
1594
img_request->op_type = op_type;
1595
1596
INIT_LIST_HEAD(&img_request->lock_item);
1597
INIT_LIST_HEAD(&img_request->object_extents);
1598
mutex_init(&img_request->state_mutex);
1599
}
1600
1601
/*
1602
* Only snap_id is captured here, for reads. For writes, snapshot
1603
* context is captured in rbd_img_object_requests() after exclusive
1604
* lock is ensured to be held.
1605
*/
1606
static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607
{
1608
struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610
lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612
if (!rbd_img_is_write(img_req))
1613
img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615
if (rbd_dev_parent_get(rbd_dev))
1616
img_request_layered_set(img_req);
1617
}
1618
1619
static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620
{
1621
struct rbd_obj_request *obj_request;
1622
struct rbd_obj_request *next_obj_request;
1623
1624
dout("%s: img %p\n", __func__, img_request);
1625
1626
WARN_ON(!list_empty(&img_request->lock_item));
1627
for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628
rbd_img_obj_request_del(img_request, obj_request);
1629
1630
if (img_request_layered_test(img_request))
1631
rbd_dev_parent_put(img_request->rbd_dev);
1632
1633
if (rbd_img_is_write(img_request))
1634
ceph_put_snap_context(img_request->snapc);
1635
1636
if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637
kmem_cache_free(rbd_img_request_cache, img_request);
1638
}
1639
1640
#define BITS_PER_OBJ 2
1641
#define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1642
#define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1643
1644
static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645
u64 *index, u8 *shift)
1646
{
1647
u32 off;
1648
1649
rbd_assert(objno < rbd_dev->object_map_size);
1650
*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651
*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652
}
1653
1654
static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655
{
1656
u64 index;
1657
u8 shift;
1658
1659
lockdep_assert_held(&rbd_dev->object_map_lock);
1660
__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661
return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662
}
1663
1664
static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665
{
1666
u64 index;
1667
u8 shift;
1668
u8 *p;
1669
1670
lockdep_assert_held(&rbd_dev->object_map_lock);
1671
rbd_assert(!(val & ~OBJ_MASK));
1672
1673
__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674
p = &rbd_dev->object_map[index];
1675
*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676
}
1677
1678
static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679
{
1680
u8 state;
1681
1682
spin_lock(&rbd_dev->object_map_lock);
1683
state = __rbd_object_map_get(rbd_dev, objno);
1684
spin_unlock(&rbd_dev->object_map_lock);
1685
return state;
1686
}
1687
1688
static bool use_object_map(struct rbd_device *rbd_dev)
1689
{
1690
/*
1691
* An image mapped read-only can't use the object map -- it isn't
1692
* loaded because the header lock isn't acquired. Someone else can
1693
* write to the image and update the object map behind our back.
1694
*
1695
* A snapshot can't be written to, so using the object map is always
1696
* safe.
1697
*/
1698
if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699
return false;
1700
1701
return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702
!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703
}
1704
1705
static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706
{
1707
u8 state;
1708
1709
/* fall back to default logic if object map is disabled or invalid */
1710
if (!use_object_map(rbd_dev))
1711
return true;
1712
1713
state = rbd_object_map_get(rbd_dev, objno);
1714
return state != OBJECT_NONEXISTENT;
1715
}
1716
1717
static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718
struct ceph_object_id *oid)
1719
{
1720
if (snap_id == CEPH_NOSNAP)
1721
ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722
rbd_dev->spec->image_id);
1723
else
1724
ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725
rbd_dev->spec->image_id, snap_id);
1726
}
1727
1728
static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729
{
1730
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731
CEPH_DEFINE_OID_ONSTACK(oid);
1732
u8 lock_type;
1733
char *lock_tag;
1734
struct ceph_locker *lockers;
1735
u32 num_lockers;
1736
bool broke_lock = false;
1737
int ret;
1738
1739
rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741
again:
1742
ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743
CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744
if (ret != -EBUSY || broke_lock) {
1745
if (ret == -EEXIST)
1746
ret = 0; /* already locked by myself */
1747
if (ret)
1748
rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749
return ret;
1750
}
1751
1752
ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753
RBD_LOCK_NAME, &lock_type, &lock_tag,
1754
&lockers, &num_lockers);
1755
if (ret) {
1756
if (ret == -ENOENT)
1757
goto again;
1758
1759
rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760
return ret;
1761
}
1762
1763
kfree(lock_tag);
1764
if (num_lockers == 0)
1765
goto again;
1766
1767
rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768
ENTITY_NAME(lockers[0].id.name));
1769
1770
ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771
RBD_LOCK_NAME, lockers[0].id.cookie,
1772
&lockers[0].id.name);
1773
ceph_free_lockers(lockers, num_lockers);
1774
if (ret) {
1775
if (ret == -ENOENT)
1776
goto again;
1777
1778
rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779
return ret;
1780
}
1781
1782
broke_lock = true;
1783
goto again;
1784
}
1785
1786
static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787
{
1788
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789
CEPH_DEFINE_OID_ONSTACK(oid);
1790
int ret;
1791
1792
rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794
ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795
"");
1796
if (ret && ret != -ENOENT)
1797
rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798
}
1799
1800
static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801
{
1802
u8 struct_v;
1803
u32 struct_len;
1804
u32 header_len;
1805
void *header_end;
1806
int ret;
1807
1808
ceph_decode_32_safe(p, end, header_len, e_inval);
1809
header_end = *p + header_len;
1810
1811
ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812
&struct_len);
1813
if (ret)
1814
return ret;
1815
1816
ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818
*p = header_end;
1819
return 0;
1820
1821
e_inval:
1822
return -EINVAL;
1823
}
1824
1825
static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826
{
1827
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828
CEPH_DEFINE_OID_ONSTACK(oid);
1829
struct page **pages;
1830
void *p, *end;
1831
size_t reply_len;
1832
u64 num_objects;
1833
u64 object_map_bytes;
1834
u64 object_map_size;
1835
int num_pages;
1836
int ret;
1837
1838
rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840
num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841
rbd_dev->mapping.size);
1842
object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843
BITS_PER_BYTE);
1844
num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845
pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846
if (IS_ERR(pages))
1847
return PTR_ERR(pages);
1848
1849
reply_len = num_pages * PAGE_SIZE;
1850
rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851
ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852
"rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853
NULL, 0, pages, &reply_len);
1854
if (ret)
1855
goto out;
1856
1857
p = page_address(pages[0]);
1858
end = p + min(reply_len, (size_t)PAGE_SIZE);
1859
ret = decode_object_map_header(&p, end, &object_map_size);
1860
if (ret)
1861
goto out;
1862
1863
if (object_map_size != num_objects) {
1864
rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865
object_map_size, num_objects);
1866
ret = -EINVAL;
1867
goto out;
1868
}
1869
1870
if (offset_in_page(p) + object_map_bytes > reply_len) {
1871
ret = -EINVAL;
1872
goto out;
1873
}
1874
1875
rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876
if (!rbd_dev->object_map) {
1877
ret = -ENOMEM;
1878
goto out;
1879
}
1880
1881
rbd_dev->object_map_size = object_map_size;
1882
ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883
offset_in_page(p), object_map_bytes);
1884
1885
out:
1886
ceph_release_page_vector(pages, num_pages);
1887
return ret;
1888
}
1889
1890
static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891
{
1892
kvfree(rbd_dev->object_map);
1893
rbd_dev->object_map = NULL;
1894
rbd_dev->object_map_size = 0;
1895
}
1896
1897
static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898
{
1899
int ret;
1900
1901
ret = __rbd_object_map_load(rbd_dev);
1902
if (ret)
1903
return ret;
1904
1905
ret = rbd_dev_v2_get_flags(rbd_dev);
1906
if (ret) {
1907
rbd_object_map_free(rbd_dev);
1908
return ret;
1909
}
1910
1911
if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912
rbd_warn(rbd_dev, "object map is invalid");
1913
1914
return 0;
1915
}
1916
1917
static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918
{
1919
int ret;
1920
1921
ret = rbd_object_map_lock(rbd_dev);
1922
if (ret)
1923
return ret;
1924
1925
ret = rbd_object_map_load(rbd_dev);
1926
if (ret) {
1927
rbd_object_map_unlock(rbd_dev);
1928
return ret;
1929
}
1930
1931
return 0;
1932
}
1933
1934
static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935
{
1936
rbd_object_map_free(rbd_dev);
1937
rbd_object_map_unlock(rbd_dev);
1938
}
1939
1940
/*
1941
* This function needs snap_id (or more precisely just something to
1942
* distinguish between HEAD and snapshot object maps), new_state and
1943
* current_state that were passed to rbd_object_map_update().
1944
*
1945
* To avoid allocating and stashing a context we piggyback on the OSD
1946
* request. A HEAD update has two ops (assert_locked). For new_state
1947
* and current_state we decode our own object_map_update op, encoded in
1948
* rbd_cls_object_map_update().
1949
*/
1950
static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951
struct ceph_osd_request *osd_req)
1952
{
1953
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954
struct ceph_osd_data *osd_data;
1955
u64 objno;
1956
u8 state, new_state, current_state;
1957
bool has_current_state;
1958
void *p;
1959
1960
if (osd_req->r_result)
1961
return osd_req->r_result;
1962
1963
/*
1964
* Nothing to do for a snapshot object map.
1965
*/
1966
if (osd_req->r_num_ops == 1)
1967
return 0;
1968
1969
/*
1970
* Update in-memory HEAD object map.
1971
*/
1972
rbd_assert(osd_req->r_num_ops == 2);
1973
osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974
rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976
p = page_address(osd_data->pages[0]);
1977
objno = ceph_decode_64(&p);
1978
rbd_assert(objno == obj_req->ex.oe_objno);
1979
rbd_assert(ceph_decode_64(&p) == objno + 1);
1980
new_state = ceph_decode_8(&p);
1981
has_current_state = ceph_decode_8(&p);
1982
if (has_current_state)
1983
current_state = ceph_decode_8(&p);
1984
1985
spin_lock(&rbd_dev->object_map_lock);
1986
state = __rbd_object_map_get(rbd_dev, objno);
1987
if (!has_current_state || current_state == state ||
1988
(current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989
__rbd_object_map_set(rbd_dev, objno, new_state);
1990
spin_unlock(&rbd_dev->object_map_lock);
1991
1992
return 0;
1993
}
1994
1995
static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996
{
1997
struct rbd_obj_request *obj_req = osd_req->r_priv;
1998
int result;
1999
2000
dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001
osd_req->r_result, obj_req);
2002
2003
result = rbd_object_map_update_finish(obj_req, osd_req);
2004
rbd_obj_handle_request(obj_req, result);
2005
}
2006
2007
static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008
{
2009
u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011
if (state == new_state ||
2012
(new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013
(new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014
return false;
2015
2016
return true;
2017
}
2018
2019
static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020
int which, u64 objno, u8 new_state,
2021
const u8 *current_state)
2022
{
2023
struct page **pages;
2024
void *p, *start;
2025
int ret;
2026
2027
ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028
if (ret)
2029
return ret;
2030
2031
pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032
if (IS_ERR(pages))
2033
return PTR_ERR(pages);
2034
2035
p = start = page_address(pages[0]);
2036
ceph_encode_64(&p, objno);
2037
ceph_encode_64(&p, objno + 1);
2038
ceph_encode_8(&p, new_state);
2039
if (current_state) {
2040
ceph_encode_8(&p, 1);
2041
ceph_encode_8(&p, *current_state);
2042
} else {
2043
ceph_encode_8(&p, 0);
2044
}
2045
2046
osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047
false, true);
2048
return 0;
2049
}
2050
2051
/*
2052
* Return:
2053
* 0 - object map update sent
2054
* 1 - object map update isn't needed
2055
* <0 - error
2056
*/
2057
static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058
u8 new_state, const u8 *current_state)
2059
{
2060
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062
struct ceph_osd_request *req;
2063
int num_ops = 1;
2064
int which = 0;
2065
int ret;
2066
2067
if (snap_id == CEPH_NOSNAP) {
2068
if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069
return 1;
2070
2071
num_ops++; /* assert_locked */
2072
}
2073
2074
req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075
if (!req)
2076
return -ENOMEM;
2077
2078
list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079
req->r_callback = rbd_object_map_callback;
2080
req->r_priv = obj_req;
2081
2082
rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083
ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084
req->r_flags = CEPH_OSD_FLAG_WRITE;
2085
ktime_get_real_ts64(&req->r_mtime);
2086
2087
if (snap_id == CEPH_NOSNAP) {
2088
/*
2089
* Protect against possible race conditions during lock
2090
* ownership transitions.
2091
*/
2092
ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093
CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094
if (ret)
2095
return ret;
2096
}
2097
2098
ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099
new_state, current_state);
2100
if (ret)
2101
return ret;
2102
2103
ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104
if (ret)
2105
return ret;
2106
2107
ceph_osdc_start_request(osdc, req);
2108
return 0;
2109
}
2110
2111
static void prune_extents(struct ceph_file_extent *img_extents,
2112
u32 *num_img_extents, u64 overlap)
2113
{
2114
u32 cnt = *num_img_extents;
2115
2116
/* drop extents completely beyond the overlap */
2117
while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118
cnt--;
2119
2120
if (cnt) {
2121
struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123
/* trim final overlapping extent */
2124
if (ex->fe_off + ex->fe_len > overlap)
2125
ex->fe_len = overlap - ex->fe_off;
2126
}
2127
2128
*num_img_extents = cnt;
2129
}
2130
2131
/*
2132
* Determine the byte range(s) covered by either just the object extent
2133
* or the entire object in the parent image.
2134
*/
2135
static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136
bool entire)
2137
{
2138
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139
int ret;
2140
2141
if (!rbd_dev->parent_overlap)
2142
return 0;
2143
2144
ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145
entire ? 0 : obj_req->ex.oe_off,
2146
entire ? rbd_dev->layout.object_size :
2147
obj_req->ex.oe_len,
2148
&obj_req->img_extents,
2149
&obj_req->num_img_extents);
2150
if (ret)
2151
return ret;
2152
2153
prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154
rbd_dev->parent_overlap);
2155
return 0;
2156
}
2157
2158
static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159
{
2160
struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162
switch (obj_req->img_request->data_type) {
2163
case OBJ_REQUEST_BIO:
2164
osd_req_op_extent_osd_data_bio(osd_req, which,
2165
&obj_req->bio_pos,
2166
obj_req->ex.oe_len);
2167
break;
2168
case OBJ_REQUEST_BVECS:
2169
case OBJ_REQUEST_OWN_BVECS:
2170
rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171
obj_req->ex.oe_len);
2172
rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173
osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174
&obj_req->bvec_pos);
2175
break;
2176
default:
2177
BUG();
2178
}
2179
}
2180
2181
static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182
{
2183
struct page **pages;
2184
2185
/*
2186
* The response data for a STAT call consists of:
2187
* le64 length;
2188
* struct {
2189
* le32 tv_sec;
2190
* le32 tv_nsec;
2191
* } mtime;
2192
*/
2193
pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194
if (IS_ERR(pages))
2195
return PTR_ERR(pages);
2196
2197
osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198
osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199
8 + sizeof(struct ceph_timespec),
2200
0, false, true);
2201
return 0;
2202
}
2203
2204
static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205
u32 bytes)
2206
{
2207
struct rbd_obj_request *obj_req = osd_req->r_priv;
2208
int ret;
2209
2210
ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211
if (ret)
2212
return ret;
2213
2214
osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215
obj_req->copyup_bvec_count, bytes);
2216
return 0;
2217
}
2218
2219
static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220
{
2221
obj_req->read_state = RBD_OBJ_READ_START;
2222
return 0;
2223
}
2224
2225
static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226
int which)
2227
{
2228
struct rbd_obj_request *obj_req = osd_req->r_priv;
2229
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230
u16 opcode;
2231
2232
if (!use_object_map(rbd_dev) ||
2233
!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234
osd_req_op_alloc_hint_init(osd_req, which++,
2235
rbd_dev->layout.object_size,
2236
rbd_dev->layout.object_size,
2237
rbd_dev->opts->alloc_hint_flags);
2238
}
2239
2240
if (rbd_obj_is_entire(obj_req))
2241
opcode = CEPH_OSD_OP_WRITEFULL;
2242
else
2243
opcode = CEPH_OSD_OP_WRITE;
2244
2245
osd_req_op_extent_init(osd_req, which, opcode,
2246
obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247
rbd_osd_setup_data(osd_req, which);
2248
}
2249
2250
static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251
{
2252
int ret;
2253
2254
/* reverse map the entire object onto the parent */
2255
ret = rbd_obj_calc_img_extents(obj_req, true);
2256
if (ret)
2257
return ret;
2258
2259
obj_req->write_state = RBD_OBJ_WRITE_START;
2260
return 0;
2261
}
2262
2263
static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264
{
2265
return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266
CEPH_OSD_OP_ZERO;
2267
}
2268
2269
static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270
int which)
2271
{
2272
struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274
if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275
rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276
osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277
} else {
2278
osd_req_op_extent_init(osd_req, which,
2279
truncate_or_zero_opcode(obj_req),
2280
obj_req->ex.oe_off, obj_req->ex.oe_len,
2281
0, 0);
2282
}
2283
}
2284
2285
static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286
{
2287
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288
u64 off, next_off;
2289
int ret;
2290
2291
/*
2292
* Align the range to alloc_size boundary and punt on discards
2293
* that are too small to free up any space.
2294
*
2295
* alloc_size == object_size && is_tail() is a special case for
2296
* filestore with filestore_punch_hole = false, needed to allow
2297
* truncate (in addition to delete).
2298
*/
2299
if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300
!rbd_obj_is_tail(obj_req)) {
2301
off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302
next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303
rbd_dev->opts->alloc_size);
2304
if (off >= next_off)
2305
return 1;
2306
2307
dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308
obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309
off, next_off - off);
2310
obj_req->ex.oe_off = off;
2311
obj_req->ex.oe_len = next_off - off;
2312
}
2313
2314
/* reverse map the entire object onto the parent */
2315
ret = rbd_obj_calc_img_extents(obj_req, true);
2316
if (ret)
2317
return ret;
2318
2319
obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320
if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321
obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323
obj_req->write_state = RBD_OBJ_WRITE_START;
2324
return 0;
2325
}
2326
2327
static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328
int which)
2329
{
2330
struct rbd_obj_request *obj_req = osd_req->r_priv;
2331
u16 opcode;
2332
2333
if (rbd_obj_is_entire(obj_req)) {
2334
if (obj_req->num_img_extents) {
2335
if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336
osd_req_op_init(osd_req, which++,
2337
CEPH_OSD_OP_CREATE, 0);
2338
opcode = CEPH_OSD_OP_TRUNCATE;
2339
} else {
2340
rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341
osd_req_op_init(osd_req, which++,
2342
CEPH_OSD_OP_DELETE, 0);
2343
opcode = 0;
2344
}
2345
} else {
2346
opcode = truncate_or_zero_opcode(obj_req);
2347
}
2348
2349
if (opcode)
2350
osd_req_op_extent_init(osd_req, which, opcode,
2351
obj_req->ex.oe_off, obj_req->ex.oe_len,
2352
0, 0);
2353
}
2354
2355
static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356
{
2357
int ret;
2358
2359
/* reverse map the entire object onto the parent */
2360
ret = rbd_obj_calc_img_extents(obj_req, true);
2361
if (ret)
2362
return ret;
2363
2364
if (!obj_req->num_img_extents) {
2365
obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366
if (rbd_obj_is_entire(obj_req))
2367
obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368
}
2369
2370
obj_req->write_state = RBD_OBJ_WRITE_START;
2371
return 0;
2372
}
2373
2374
static int count_write_ops(struct rbd_obj_request *obj_req)
2375
{
2376
struct rbd_img_request *img_req = obj_req->img_request;
2377
2378
switch (img_req->op_type) {
2379
case OBJ_OP_WRITE:
2380
if (!use_object_map(img_req->rbd_dev) ||
2381
!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382
return 2; /* setallochint + write/writefull */
2383
2384
return 1; /* write/writefull */
2385
case OBJ_OP_DISCARD:
2386
return 1; /* delete/truncate/zero */
2387
case OBJ_OP_ZEROOUT:
2388
if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389
!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390
return 2; /* create + truncate */
2391
2392
return 1; /* delete/truncate/zero */
2393
default:
2394
BUG();
2395
}
2396
}
2397
2398
static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399
int which)
2400
{
2401
struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403
switch (obj_req->img_request->op_type) {
2404
case OBJ_OP_WRITE:
2405
__rbd_osd_setup_write_ops(osd_req, which);
2406
break;
2407
case OBJ_OP_DISCARD:
2408
__rbd_osd_setup_discard_ops(osd_req, which);
2409
break;
2410
case OBJ_OP_ZEROOUT:
2411
__rbd_osd_setup_zeroout_ops(osd_req, which);
2412
break;
2413
default:
2414
BUG();
2415
}
2416
}
2417
2418
/*
2419
* Prune the list of object requests (adjust offset and/or length, drop
2420
* redundant requests). Prepare object request state machines and image
2421
* request state machine for execution.
2422
*/
2423
static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424
{
2425
struct rbd_obj_request *obj_req, *next_obj_req;
2426
int ret;
2427
2428
for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429
switch (img_req->op_type) {
2430
case OBJ_OP_READ:
2431
ret = rbd_obj_init_read(obj_req);
2432
break;
2433
case OBJ_OP_WRITE:
2434
ret = rbd_obj_init_write(obj_req);
2435
break;
2436
case OBJ_OP_DISCARD:
2437
ret = rbd_obj_init_discard(obj_req);
2438
break;
2439
case OBJ_OP_ZEROOUT:
2440
ret = rbd_obj_init_zeroout(obj_req);
2441
break;
2442
default:
2443
BUG();
2444
}
2445
if (ret < 0)
2446
return ret;
2447
if (ret > 0) {
2448
rbd_img_obj_request_del(img_req, obj_req);
2449
continue;
2450
}
2451
}
2452
2453
img_req->state = RBD_IMG_START;
2454
return 0;
2455
}
2456
2457
union rbd_img_fill_iter {
2458
struct ceph_bio_iter bio_iter;
2459
struct ceph_bvec_iter bvec_iter;
2460
};
2461
2462
struct rbd_img_fill_ctx {
2463
enum obj_request_type pos_type;
2464
union rbd_img_fill_iter *pos;
2465
union rbd_img_fill_iter iter;
2466
ceph_object_extent_fn_t set_pos_fn;
2467
ceph_object_extent_fn_t count_fn;
2468
ceph_object_extent_fn_t copy_fn;
2469
};
2470
2471
static struct ceph_object_extent *alloc_object_extent(void *arg)
2472
{
2473
struct rbd_img_request *img_req = arg;
2474
struct rbd_obj_request *obj_req;
2475
2476
obj_req = rbd_obj_request_create();
2477
if (!obj_req)
2478
return NULL;
2479
2480
rbd_img_obj_request_add(img_req, obj_req);
2481
return &obj_req->ex;
2482
}
2483
2484
/*
2485
* While su != os && sc == 1 is technically not fancy (it's the same
2486
* layout as su == os && sc == 1), we can't use the nocopy path for it
2487
* because ->set_pos_fn() should be called only once per object.
2488
* ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489
* treat su != os && sc == 1 as fancy.
2490
*/
2491
static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492
{
2493
return l->stripe_unit != l->object_size;
2494
}
2495
2496
static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497
struct ceph_file_extent *img_extents,
2498
u32 num_img_extents,
2499
struct rbd_img_fill_ctx *fctx)
2500
{
2501
u32 i;
2502
int ret;
2503
2504
img_req->data_type = fctx->pos_type;
2505
2506
/*
2507
* Create object requests and set each object request's starting
2508
* position in the provided bio (list) or bio_vec array.
2509
*/
2510
fctx->iter = *fctx->pos;
2511
for (i = 0; i < num_img_extents; i++) {
2512
ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513
img_extents[i].fe_off,
2514
img_extents[i].fe_len,
2515
&img_req->object_extents,
2516
alloc_object_extent, img_req,
2517
fctx->set_pos_fn, &fctx->iter);
2518
if (ret)
2519
return ret;
2520
}
2521
2522
return __rbd_img_fill_request(img_req);
2523
}
2524
2525
/*
2526
* Map a list of image extents to a list of object extents, create the
2527
* corresponding object requests (normally each to a different object,
2528
* but not always) and add them to @img_req. For each object request,
2529
* set up its data descriptor to point to the corresponding chunk(s) of
2530
* @fctx->pos data buffer.
2531
*
2532
* Because ceph_file_to_extents() will merge adjacent object extents
2533
* together, each object request's data descriptor may point to multiple
2534
* different chunks of @fctx->pos data buffer.
2535
*
2536
* @fctx->pos data buffer is assumed to be large enough.
2537
*/
2538
static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539
struct ceph_file_extent *img_extents,
2540
u32 num_img_extents,
2541
struct rbd_img_fill_ctx *fctx)
2542
{
2543
struct rbd_device *rbd_dev = img_req->rbd_dev;
2544
struct rbd_obj_request *obj_req;
2545
u32 i;
2546
int ret;
2547
2548
if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549
!rbd_layout_is_fancy(&rbd_dev->layout))
2550
return rbd_img_fill_request_nocopy(img_req, img_extents,
2551
num_img_extents, fctx);
2552
2553
img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555
/*
2556
* Create object requests and determine ->bvec_count for each object
2557
* request. Note that ->bvec_count sum over all object requests may
2558
* be greater than the number of bio_vecs in the provided bio (list)
2559
* or bio_vec array because when mapped, those bio_vecs can straddle
2560
* stripe unit boundaries.
2561
*/
2562
fctx->iter = *fctx->pos;
2563
for (i = 0; i < num_img_extents; i++) {
2564
ret = ceph_file_to_extents(&rbd_dev->layout,
2565
img_extents[i].fe_off,
2566
img_extents[i].fe_len,
2567
&img_req->object_extents,
2568
alloc_object_extent, img_req,
2569
fctx->count_fn, &fctx->iter);
2570
if (ret)
2571
return ret;
2572
}
2573
2574
for_each_obj_request(img_req, obj_req) {
2575
obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576
sizeof(*obj_req->bvec_pos.bvecs),
2577
GFP_NOIO);
2578
if (!obj_req->bvec_pos.bvecs)
2579
return -ENOMEM;
2580
}
2581
2582
/*
2583
* Fill in each object request's private bio_vec array, splitting and
2584
* rearranging the provided bio_vecs in stripe unit chunks as needed.
2585
*/
2586
fctx->iter = *fctx->pos;
2587
for (i = 0; i < num_img_extents; i++) {
2588
ret = ceph_iterate_extents(&rbd_dev->layout,
2589
img_extents[i].fe_off,
2590
img_extents[i].fe_len,
2591
&img_req->object_extents,
2592
fctx->copy_fn, &fctx->iter);
2593
if (ret)
2594
return ret;
2595
}
2596
2597
return __rbd_img_fill_request(img_req);
2598
}
2599
2600
static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601
u64 off, u64 len)
2602
{
2603
struct ceph_file_extent ex = { off, len };
2604
union rbd_img_fill_iter dummy = {};
2605
struct rbd_img_fill_ctx fctx = {
2606
.pos_type = OBJ_REQUEST_NODATA,
2607
.pos = &dummy,
2608
};
2609
2610
return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611
}
2612
2613
static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614
{
2615
struct rbd_obj_request *obj_req =
2616
container_of(ex, struct rbd_obj_request, ex);
2617
struct ceph_bio_iter *it = arg;
2618
2619
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620
obj_req->bio_pos = *it;
2621
ceph_bio_iter_advance(it, bytes);
2622
}
2623
2624
static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625
{
2626
struct rbd_obj_request *obj_req =
2627
container_of(ex, struct rbd_obj_request, ex);
2628
struct ceph_bio_iter *it = arg;
2629
2630
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631
ceph_bio_iter_advance_step(it, bytes, ({
2632
obj_req->bvec_count++;
2633
}));
2634
2635
}
2636
2637
static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638
{
2639
struct rbd_obj_request *obj_req =
2640
container_of(ex, struct rbd_obj_request, ex);
2641
struct ceph_bio_iter *it = arg;
2642
2643
dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644
ceph_bio_iter_advance_step(it, bytes, ({
2645
obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646
obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647
}));
2648
}
2649
2650
static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651
struct ceph_file_extent *img_extents,
2652
u32 num_img_extents,
2653
struct ceph_bio_iter *bio_pos)
2654
{
2655
struct rbd_img_fill_ctx fctx = {
2656
.pos_type = OBJ_REQUEST_BIO,
2657
.pos = (union rbd_img_fill_iter *)bio_pos,
2658
.set_pos_fn = set_bio_pos,
2659
.count_fn = count_bio_bvecs,
2660
.copy_fn = copy_bio_bvecs,
2661
};
2662
2663
return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664
&fctx);
2665
}
2666
2667
static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668
u64 off, u64 len, struct bio *bio)
2669
{
2670
struct ceph_file_extent ex = { off, len };
2671
struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673
return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674
}
2675
2676
static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677
{
2678
struct rbd_obj_request *obj_req =
2679
container_of(ex, struct rbd_obj_request, ex);
2680
struct ceph_bvec_iter *it = arg;
2681
2682
obj_req->bvec_pos = *it;
2683
ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684
ceph_bvec_iter_advance(it, bytes);
2685
}
2686
2687
static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688
{
2689
struct rbd_obj_request *obj_req =
2690
container_of(ex, struct rbd_obj_request, ex);
2691
struct ceph_bvec_iter *it = arg;
2692
2693
ceph_bvec_iter_advance_step(it, bytes, ({
2694
obj_req->bvec_count++;
2695
}));
2696
}
2697
2698
static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699
{
2700
struct rbd_obj_request *obj_req =
2701
container_of(ex, struct rbd_obj_request, ex);
2702
struct ceph_bvec_iter *it = arg;
2703
2704
ceph_bvec_iter_advance_step(it, bytes, ({
2705
obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706
obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707
}));
2708
}
2709
2710
static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711
struct ceph_file_extent *img_extents,
2712
u32 num_img_extents,
2713
struct ceph_bvec_iter *bvec_pos)
2714
{
2715
struct rbd_img_fill_ctx fctx = {
2716
.pos_type = OBJ_REQUEST_BVECS,
2717
.pos = (union rbd_img_fill_iter *)bvec_pos,
2718
.set_pos_fn = set_bvec_pos,
2719
.count_fn = count_bvecs,
2720
.copy_fn = copy_bvecs,
2721
};
2722
2723
return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724
&fctx);
2725
}
2726
2727
static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728
struct ceph_file_extent *img_extents,
2729
u32 num_img_extents,
2730
struct bio_vec *bvecs)
2731
{
2732
struct ceph_bvec_iter it = {
2733
.bvecs = bvecs,
2734
.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735
num_img_extents) },
2736
};
2737
2738
return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739
&it);
2740
}
2741
2742
static void rbd_img_handle_request_work(struct work_struct *work)
2743
{
2744
struct rbd_img_request *img_req =
2745
container_of(work, struct rbd_img_request, work);
2746
2747
rbd_img_handle_request(img_req, img_req->work_result);
2748
}
2749
2750
static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751
{
2752
INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753
img_req->work_result = result;
2754
queue_work(rbd_wq, &img_req->work);
2755
}
2756
2757
static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758
{
2759
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761
if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762
obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763
return true;
2764
}
2765
2766
dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767
obj_req->ex.oe_objno);
2768
return false;
2769
}
2770
2771
static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772
{
2773
struct ceph_osd_request *osd_req;
2774
int ret;
2775
2776
osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777
if (IS_ERR(osd_req))
2778
return PTR_ERR(osd_req);
2779
2780
osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781
obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782
rbd_osd_setup_data(osd_req, 0);
2783
rbd_osd_format_read(osd_req);
2784
2785
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786
if (ret)
2787
return ret;
2788
2789
rbd_osd_submit(osd_req);
2790
return 0;
2791
}
2792
2793
static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794
{
2795
struct rbd_img_request *img_req = obj_req->img_request;
2796
struct rbd_device *parent = img_req->rbd_dev->parent;
2797
struct rbd_img_request *child_img_req;
2798
int ret;
2799
2800
child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801
if (!child_img_req)
2802
return -ENOMEM;
2803
2804
rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805
__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806
child_img_req->obj_request = obj_req;
2807
2808
down_read(&parent->header_rwsem);
2809
rbd_img_capture_header(child_img_req);
2810
up_read(&parent->header_rwsem);
2811
2812
dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813
obj_req);
2814
2815
if (!rbd_img_is_write(img_req)) {
2816
switch (img_req->data_type) {
2817
case OBJ_REQUEST_BIO:
2818
ret = __rbd_img_fill_from_bio(child_img_req,
2819
obj_req->img_extents,
2820
obj_req->num_img_extents,
2821
&obj_req->bio_pos);
2822
break;
2823
case OBJ_REQUEST_BVECS:
2824
case OBJ_REQUEST_OWN_BVECS:
2825
ret = __rbd_img_fill_from_bvecs(child_img_req,
2826
obj_req->img_extents,
2827
obj_req->num_img_extents,
2828
&obj_req->bvec_pos);
2829
break;
2830
default:
2831
BUG();
2832
}
2833
} else {
2834
ret = rbd_img_fill_from_bvecs(child_img_req,
2835
obj_req->img_extents,
2836
obj_req->num_img_extents,
2837
obj_req->copyup_bvecs);
2838
}
2839
if (ret) {
2840
rbd_img_request_destroy(child_img_req);
2841
return ret;
2842
}
2843
2844
/* avoid parent chain recursion */
2845
rbd_img_schedule(child_img_req, 0);
2846
return 0;
2847
}
2848
2849
static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850
{
2851
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852
int ret;
2853
2854
again:
2855
switch (obj_req->read_state) {
2856
case RBD_OBJ_READ_START:
2857
rbd_assert(!*result);
2858
2859
if (!rbd_obj_may_exist(obj_req)) {
2860
*result = -ENOENT;
2861
obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862
goto again;
2863
}
2864
2865
ret = rbd_obj_read_object(obj_req);
2866
if (ret) {
2867
*result = ret;
2868
return true;
2869
}
2870
obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871
return false;
2872
case RBD_OBJ_READ_OBJECT:
2873
if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874
/* reverse map this object extent onto the parent */
2875
ret = rbd_obj_calc_img_extents(obj_req, false);
2876
if (ret) {
2877
*result = ret;
2878
return true;
2879
}
2880
if (obj_req->num_img_extents) {
2881
ret = rbd_obj_read_from_parent(obj_req);
2882
if (ret) {
2883
*result = ret;
2884
return true;
2885
}
2886
obj_req->read_state = RBD_OBJ_READ_PARENT;
2887
return false;
2888
}
2889
}
2890
2891
/*
2892
* -ENOENT means a hole in the image -- zero-fill the entire
2893
* length of the request. A short read also implies zero-fill
2894
* to the end of the request.
2895
*/
2896
if (*result == -ENOENT) {
2897
rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898
*result = 0;
2899
} else if (*result >= 0) {
2900
if (*result < obj_req->ex.oe_len)
2901
rbd_obj_zero_range(obj_req, *result,
2902
obj_req->ex.oe_len - *result);
2903
else
2904
rbd_assert(*result == obj_req->ex.oe_len);
2905
*result = 0;
2906
}
2907
return true;
2908
case RBD_OBJ_READ_PARENT:
2909
/*
2910
* The parent image is read only up to the overlap -- zero-fill
2911
* from the overlap to the end of the request.
2912
*/
2913
if (!*result) {
2914
u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916
if (obj_overlap < obj_req->ex.oe_len)
2917
rbd_obj_zero_range(obj_req, obj_overlap,
2918
obj_req->ex.oe_len - obj_overlap);
2919
}
2920
return true;
2921
default:
2922
BUG();
2923
}
2924
}
2925
2926
static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927
{
2928
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930
if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931
obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933
if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934
(obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935
dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936
return true;
2937
}
2938
2939
return false;
2940
}
2941
2942
/*
2943
* Return:
2944
* 0 - object map update sent
2945
* 1 - object map update isn't needed
2946
* <0 - error
2947
*/
2948
static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949
{
2950
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951
u8 new_state;
2952
2953
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954
return 1;
2955
2956
if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957
new_state = OBJECT_PENDING;
2958
else
2959
new_state = OBJECT_EXISTS;
2960
2961
return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962
}
2963
2964
static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965
{
2966
struct ceph_osd_request *osd_req;
2967
int num_ops = count_write_ops(obj_req);
2968
int which = 0;
2969
int ret;
2970
2971
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972
num_ops++; /* stat */
2973
2974
osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975
if (IS_ERR(osd_req))
2976
return PTR_ERR(osd_req);
2977
2978
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979
ret = rbd_osd_setup_stat(osd_req, which++);
2980
if (ret)
2981
return ret;
2982
}
2983
2984
rbd_osd_setup_write_ops(osd_req, which);
2985
rbd_osd_format_write(osd_req);
2986
2987
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988
if (ret)
2989
return ret;
2990
2991
rbd_osd_submit(osd_req);
2992
return 0;
2993
}
2994
2995
/*
2996
* copyup_bvecs pages are never highmem pages
2997
*/
2998
static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999
{
3000
struct ceph_bvec_iter it = {
3001
.bvecs = bvecs,
3002
.iter = { .bi_size = bytes },
3003
};
3004
3005
ceph_bvec_iter_advance_step(&it, bytes, ({
3006
if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007
return false;
3008
}));
3009
return true;
3010
}
3011
3012
#define MODS_ONLY U32_MAX
3013
3014
static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015
u32 bytes)
3016
{
3017
struct ceph_osd_request *osd_req;
3018
int ret;
3019
3020
dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021
rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023
osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024
if (IS_ERR(osd_req))
3025
return PTR_ERR(osd_req);
3026
3027
ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028
if (ret)
3029
return ret;
3030
3031
rbd_osd_format_write(osd_req);
3032
3033
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034
if (ret)
3035
return ret;
3036
3037
rbd_osd_submit(osd_req);
3038
return 0;
3039
}
3040
3041
static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042
u32 bytes)
3043
{
3044
struct ceph_osd_request *osd_req;
3045
int num_ops = count_write_ops(obj_req);
3046
int which = 0;
3047
int ret;
3048
3049
dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051
if (bytes != MODS_ONLY)
3052
num_ops++; /* copyup */
3053
3054
osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055
if (IS_ERR(osd_req))
3056
return PTR_ERR(osd_req);
3057
3058
if (bytes != MODS_ONLY) {
3059
ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060
if (ret)
3061
return ret;
3062
}
3063
3064
rbd_osd_setup_write_ops(osd_req, which);
3065
rbd_osd_format_write(osd_req);
3066
3067
ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068
if (ret)
3069
return ret;
3070
3071
rbd_osd_submit(osd_req);
3072
return 0;
3073
}
3074
3075
static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076
{
3077
u32 i;
3078
3079
rbd_assert(!obj_req->copyup_bvecs);
3080
obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081
obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082
sizeof(*obj_req->copyup_bvecs),
3083
GFP_NOIO);
3084
if (!obj_req->copyup_bvecs)
3085
return -ENOMEM;
3086
3087
for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088
unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089
struct page *page = alloc_page(GFP_NOIO);
3090
3091
if (!page)
3092
return -ENOMEM;
3093
3094
bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095
obj_overlap -= len;
3096
}
3097
3098
rbd_assert(!obj_overlap);
3099
return 0;
3100
}
3101
3102
/*
3103
* The target object doesn't exist. Read the data for the entire
3104
* target object up to the overlap point (if any) from the parent,
3105
* so we can use it for a copyup.
3106
*/
3107
static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108
{
3109
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110
int ret;
3111
3112
rbd_assert(obj_req->num_img_extents);
3113
prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114
rbd_dev->parent_overlap);
3115
if (!obj_req->num_img_extents) {
3116
/*
3117
* The overlap has become 0 (most likely because the
3118
* image has been flattened). Re-submit the original write
3119
* request -- pass MODS_ONLY since the copyup isn't needed
3120
* anymore.
3121
*/
3122
return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123
}
3124
3125
ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126
if (ret)
3127
return ret;
3128
3129
return rbd_obj_read_from_parent(obj_req);
3130
}
3131
3132
static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133
{
3134
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135
struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136
u8 new_state;
3137
u32 i;
3138
int ret;
3139
3140
rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143
return;
3144
3145
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146
return;
3147
3148
for (i = 0; i < snapc->num_snaps; i++) {
3149
if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150
i + 1 < snapc->num_snaps)
3151
new_state = OBJECT_EXISTS_CLEAN;
3152
else
3153
new_state = OBJECT_EXISTS;
3154
3155
ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156
new_state, NULL);
3157
if (ret < 0) {
3158
obj_req->pending.result = ret;
3159
return;
3160
}
3161
3162
rbd_assert(!ret);
3163
obj_req->pending.num_pending++;
3164
}
3165
}
3166
3167
static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168
{
3169
u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170
int ret;
3171
3172
rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174
/*
3175
* Only send non-zero copyup data to save some I/O and network
3176
* bandwidth -- zero copyup data is equivalent to the object not
3177
* existing.
3178
*/
3179
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180
bytes = 0;
3181
3182
if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183
/*
3184
* Send a copyup request with an empty snapshot context to
3185
* deep-copyup the object through all existing snapshots.
3186
* A second request with the current snapshot context will be
3187
* sent for the actual modification.
3188
*/
3189
ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190
if (ret) {
3191
obj_req->pending.result = ret;
3192
return;
3193
}
3194
3195
obj_req->pending.num_pending++;
3196
bytes = MODS_ONLY;
3197
}
3198
3199
ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200
if (ret) {
3201
obj_req->pending.result = ret;
3202
return;
3203
}
3204
3205
obj_req->pending.num_pending++;
3206
}
3207
3208
static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209
{
3210
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211
int ret;
3212
3213
again:
3214
switch (obj_req->copyup_state) {
3215
case RBD_OBJ_COPYUP_START:
3216
rbd_assert(!*result);
3217
3218
ret = rbd_obj_copyup_read_parent(obj_req);
3219
if (ret) {
3220
*result = ret;
3221
return true;
3222
}
3223
if (obj_req->num_img_extents)
3224
obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225
else
3226
obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227
return false;
3228
case RBD_OBJ_COPYUP_READ_PARENT:
3229
if (*result)
3230
return true;
3231
3232
if (is_zero_bvecs(obj_req->copyup_bvecs,
3233
rbd_obj_img_extents_bytes(obj_req))) {
3234
dout("%s %p detected zeros\n", __func__, obj_req);
3235
obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236
}
3237
3238
rbd_obj_copyup_object_maps(obj_req);
3239
if (!obj_req->pending.num_pending) {
3240
*result = obj_req->pending.result;
3241
obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242
goto again;
3243
}
3244
obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245
return false;
3246
case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247
if (!pending_result_dec(&obj_req->pending, result))
3248
return false;
3249
fallthrough;
3250
case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251
if (*result) {
3252
rbd_warn(rbd_dev, "snap object map update failed: %d",
3253
*result);
3254
return true;
3255
}
3256
3257
rbd_obj_copyup_write_object(obj_req);
3258
if (!obj_req->pending.num_pending) {
3259
*result = obj_req->pending.result;
3260
obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261
goto again;
3262
}
3263
obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264
return false;
3265
case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266
if (!pending_result_dec(&obj_req->pending, result))
3267
return false;
3268
fallthrough;
3269
case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270
return true;
3271
default:
3272
BUG();
3273
}
3274
}
3275
3276
/*
3277
* Return:
3278
* 0 - object map update sent
3279
* 1 - object map update isn't needed
3280
* <0 - error
3281
*/
3282
static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283
{
3284
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285
u8 current_state = OBJECT_PENDING;
3286
3287
if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288
return 1;
3289
3290
if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291
return 1;
3292
3293
return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294
&current_state);
3295
}
3296
3297
static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298
{
3299
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300
int ret;
3301
3302
again:
3303
switch (obj_req->write_state) {
3304
case RBD_OBJ_WRITE_START:
3305
rbd_assert(!*result);
3306
3307
rbd_obj_set_copyup_enabled(obj_req);
3308
if (rbd_obj_write_is_noop(obj_req))
3309
return true;
3310
3311
ret = rbd_obj_write_pre_object_map(obj_req);
3312
if (ret < 0) {
3313
*result = ret;
3314
return true;
3315
}
3316
obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317
if (ret > 0)
3318
goto again;
3319
return false;
3320
case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321
if (*result) {
3322
rbd_warn(rbd_dev, "pre object map update failed: %d",
3323
*result);
3324
return true;
3325
}
3326
ret = rbd_obj_write_object(obj_req);
3327
if (ret) {
3328
*result = ret;
3329
return true;
3330
}
3331
obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332
return false;
3333
case RBD_OBJ_WRITE_OBJECT:
3334
if (*result == -ENOENT) {
3335
if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336
*result = 0;
3337
obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338
obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339
goto again;
3340
}
3341
/*
3342
* On a non-existent object:
3343
* delete - -ENOENT, truncate/zero - 0
3344
*/
3345
if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346
*result = 0;
3347
}
3348
if (*result)
3349
return true;
3350
3351
obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352
goto again;
3353
case __RBD_OBJ_WRITE_COPYUP:
3354
if (!rbd_obj_advance_copyup(obj_req, result))
3355
return false;
3356
fallthrough;
3357
case RBD_OBJ_WRITE_COPYUP:
3358
if (*result) {
3359
rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360
return true;
3361
}
3362
ret = rbd_obj_write_post_object_map(obj_req);
3363
if (ret < 0) {
3364
*result = ret;
3365
return true;
3366
}
3367
obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368
if (ret > 0)
3369
goto again;
3370
return false;
3371
case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372
if (*result)
3373
rbd_warn(rbd_dev, "post object map update failed: %d",
3374
*result);
3375
return true;
3376
default:
3377
BUG();
3378
}
3379
}
3380
3381
/*
3382
* Return true if @obj_req is completed.
3383
*/
3384
static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385
int *result)
3386
{
3387
struct rbd_img_request *img_req = obj_req->img_request;
3388
struct rbd_device *rbd_dev = img_req->rbd_dev;
3389
bool done;
3390
3391
mutex_lock(&obj_req->state_mutex);
3392
if (!rbd_img_is_write(img_req))
3393
done = rbd_obj_advance_read(obj_req, result);
3394
else
3395
done = rbd_obj_advance_write(obj_req, result);
3396
mutex_unlock(&obj_req->state_mutex);
3397
3398
if (done && *result) {
3399
rbd_assert(*result < 0);
3400
rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401
obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402
obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403
}
3404
return done;
3405
}
3406
3407
/*
3408
* This is open-coded in rbd_img_handle_request() to avoid parent chain
3409
* recursion.
3410
*/
3411
static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412
{
3413
if (__rbd_obj_handle_request(obj_req, &result))
3414
rbd_img_handle_request(obj_req->img_request, result);
3415
}
3416
3417
static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418
{
3419
struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421
if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422
return false;
3423
3424
if (rbd_is_ro(rbd_dev))
3425
return false;
3426
3427
rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428
if (rbd_dev->opts->lock_on_read ||
3429
(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430
return true;
3431
3432
return rbd_img_is_write(img_req);
3433
}
3434
3435
static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436
{
3437
struct rbd_device *rbd_dev = img_req->rbd_dev;
3438
bool locked;
3439
3440
lockdep_assert_held(&rbd_dev->lock_rwsem);
3441
locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442
spin_lock(&rbd_dev->lock_lists_lock);
3443
rbd_assert(list_empty(&img_req->lock_item));
3444
if (!locked)
3445
list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446
else
3447
list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448
spin_unlock(&rbd_dev->lock_lists_lock);
3449
return locked;
3450
}
3451
3452
static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453
{
3454
struct rbd_device *rbd_dev = img_req->rbd_dev;
3455
bool need_wakeup = false;
3456
3457
lockdep_assert_held(&rbd_dev->lock_rwsem);
3458
spin_lock(&rbd_dev->lock_lists_lock);
3459
if (!list_empty(&img_req->lock_item)) {
3460
rbd_assert(!list_empty(&rbd_dev->running_list));
3461
list_del_init(&img_req->lock_item);
3462
need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING &&
3463
list_empty(&rbd_dev->running_list));
3464
}
3465
spin_unlock(&rbd_dev->lock_lists_lock);
3466
if (need_wakeup)
3467
complete(&rbd_dev->quiescing_wait);
3468
}
3469
3470
static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3471
{
3472
struct rbd_device *rbd_dev = img_req->rbd_dev;
3473
3474
if (!need_exclusive_lock(img_req))
3475
return 1;
3476
3477
if (rbd_lock_add_request(img_req))
3478
return 1;
3479
3480
/*
3481
* Note the use of mod_delayed_work() in rbd_acquire_lock()
3482
* and cancel_delayed_work() in wake_lock_waiters().
3483
*/
3484
dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486
return 0;
3487
}
3488
3489
static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490
{
3491
struct rbd_device *rbd_dev = img_req->rbd_dev;
3492
struct rbd_obj_request *obj_req;
3493
3494
rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495
rbd_assert(!need_exclusive_lock(img_req) ||
3496
__rbd_is_lock_owner(rbd_dev));
3497
3498
if (rbd_img_is_write(img_req)) {
3499
rbd_assert(!img_req->snapc);
3500
down_read(&rbd_dev->header_rwsem);
3501
img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502
up_read(&rbd_dev->header_rwsem);
3503
}
3504
3505
for_each_obj_request(img_req, obj_req) {
3506
int result = 0;
3507
3508
if (__rbd_obj_handle_request(obj_req, &result)) {
3509
if (result) {
3510
img_req->pending.result = result;
3511
return;
3512
}
3513
} else {
3514
img_req->pending.num_pending++;
3515
}
3516
}
3517
}
3518
3519
static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520
{
3521
int ret;
3522
3523
again:
3524
switch (img_req->state) {
3525
case RBD_IMG_START:
3526
rbd_assert(!*result);
3527
3528
ret = rbd_img_exclusive_lock(img_req);
3529
if (ret < 0) {
3530
*result = ret;
3531
return true;
3532
}
3533
img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534
if (ret > 0)
3535
goto again;
3536
return false;
3537
case RBD_IMG_EXCLUSIVE_LOCK:
3538
if (*result)
3539
return true;
3540
3541
rbd_img_object_requests(img_req);
3542
if (!img_req->pending.num_pending) {
3543
*result = img_req->pending.result;
3544
img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545
goto again;
3546
}
3547
img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548
return false;
3549
case __RBD_IMG_OBJECT_REQUESTS:
3550
if (!pending_result_dec(&img_req->pending, result))
3551
return false;
3552
fallthrough;
3553
case RBD_IMG_OBJECT_REQUESTS:
3554
return true;
3555
default:
3556
BUG();
3557
}
3558
}
3559
3560
/*
3561
* Return true if @img_req is completed.
3562
*/
3563
static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564
int *result)
3565
{
3566
struct rbd_device *rbd_dev = img_req->rbd_dev;
3567
bool done;
3568
3569
if (need_exclusive_lock(img_req)) {
3570
down_read(&rbd_dev->lock_rwsem);
3571
mutex_lock(&img_req->state_mutex);
3572
done = rbd_img_advance(img_req, result);
3573
if (done)
3574
rbd_lock_del_request(img_req);
3575
mutex_unlock(&img_req->state_mutex);
3576
up_read(&rbd_dev->lock_rwsem);
3577
} else {
3578
mutex_lock(&img_req->state_mutex);
3579
done = rbd_img_advance(img_req, result);
3580
mutex_unlock(&img_req->state_mutex);
3581
}
3582
3583
if (done && *result) {
3584
rbd_assert(*result < 0);
3585
rbd_warn(rbd_dev, "%s%s result %d",
3586
test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587
obj_op_name(img_req->op_type), *result);
3588
}
3589
return done;
3590
}
3591
3592
static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593
{
3594
again:
3595
if (!__rbd_img_handle_request(img_req, &result))
3596
return;
3597
3598
if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599
struct rbd_obj_request *obj_req = img_req->obj_request;
3600
3601
rbd_img_request_destroy(img_req);
3602
if (__rbd_obj_handle_request(obj_req, &result)) {
3603
img_req = obj_req->img_request;
3604
goto again;
3605
}
3606
} else {
3607
struct request *rq = blk_mq_rq_from_pdu(img_req);
3608
3609
rbd_img_request_destroy(img_req);
3610
blk_mq_end_request(rq, errno_to_blk_status(result));
3611
}
3612
}
3613
3614
static const struct rbd_client_id rbd_empty_cid;
3615
3616
static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617
const struct rbd_client_id *rhs)
3618
{
3619
return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620
}
3621
3622
static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623
{
3624
struct rbd_client_id cid;
3625
3626
mutex_lock(&rbd_dev->watch_mutex);
3627
cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628
cid.handle = rbd_dev->watch_cookie;
3629
mutex_unlock(&rbd_dev->watch_mutex);
3630
return cid;
3631
}
3632
3633
/*
3634
* lock_rwsem must be held for write
3635
*/
3636
static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637
const struct rbd_client_id *cid)
3638
{
3639
dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640
rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641
cid->gid, cid->handle);
3642
rbd_dev->owner_cid = *cid; /* struct */
3643
}
3644
3645
static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646
{
3647
mutex_lock(&rbd_dev->watch_mutex);
3648
sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649
mutex_unlock(&rbd_dev->watch_mutex);
3650
}
3651
3652
static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653
{
3654
struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655
3656
rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657
strcpy(rbd_dev->lock_cookie, cookie);
3658
rbd_set_owner_cid(rbd_dev, &cid);
3659
queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660
}
3661
3662
/*
3663
* lock_rwsem must be held for write
3664
*/
3665
static int rbd_lock(struct rbd_device *rbd_dev)
3666
{
3667
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668
char cookie[32];
3669
int ret;
3670
3671
WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672
rbd_dev->lock_cookie[0] != '\0');
3673
3674
format_lock_cookie(rbd_dev, cookie);
3675
ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676
RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677
RBD_LOCK_TAG, "", 0);
3678
if (ret && ret != -EEXIST)
3679
return ret;
3680
3681
__rbd_lock(rbd_dev, cookie);
3682
return 0;
3683
}
3684
3685
/*
3686
* lock_rwsem must be held for write
3687
*/
3688
static void rbd_unlock(struct rbd_device *rbd_dev)
3689
{
3690
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691
int ret;
3692
3693
WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694
rbd_dev->lock_cookie[0] == '\0');
3695
3696
ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697
RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698
if (ret && ret != -ENOENT)
3699
rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700
3701
/* treat errors as the image is unlocked */
3702
rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703
rbd_dev->lock_cookie[0] = '\0';
3704
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705
queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706
}
3707
3708
static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709
enum rbd_notify_op notify_op,
3710
struct page ***preply_pages,
3711
size_t *preply_len)
3712
{
3713
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714
struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715
char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716
int buf_size = sizeof(buf);
3717
void *p = buf;
3718
3719
dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720
3721
/* encode *LockPayload NotifyMessage (op + ClientId) */
3722
ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723
ceph_encode_32(&p, notify_op);
3724
ceph_encode_64(&p, cid.gid);
3725
ceph_encode_64(&p, cid.handle);
3726
3727
return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728
&rbd_dev->header_oloc, buf, buf_size,
3729
RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730
}
3731
3732
static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733
enum rbd_notify_op notify_op)
3734
{
3735
__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736
}
3737
3738
static void rbd_notify_acquired_lock(struct work_struct *work)
3739
{
3740
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741
acquired_lock_work);
3742
3743
rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744
}
3745
3746
static void rbd_notify_released_lock(struct work_struct *work)
3747
{
3748
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749
released_lock_work);
3750
3751
rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752
}
3753
3754
static int rbd_request_lock(struct rbd_device *rbd_dev)
3755
{
3756
struct page **reply_pages;
3757
size_t reply_len;
3758
bool lock_owner_responded = false;
3759
int ret;
3760
3761
dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762
3763
ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764
&reply_pages, &reply_len);
3765
if (ret && ret != -ETIMEDOUT) {
3766
rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767
goto out;
3768
}
3769
3770
if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771
void *p = page_address(reply_pages[0]);
3772
void *const end = p + reply_len;
3773
u32 n;
3774
3775
ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776
while (n--) {
3777
u8 struct_v;
3778
u32 len;
3779
3780
ceph_decode_need(&p, end, 8 + 8, e_inval);
3781
p += 8 + 8; /* skip gid and cookie */
3782
3783
ceph_decode_32_safe(&p, end, len, e_inval);
3784
if (!len)
3785
continue;
3786
3787
if (lock_owner_responded) {
3788
rbd_warn(rbd_dev,
3789
"duplicate lock owners detected");
3790
ret = -EIO;
3791
goto out;
3792
}
3793
3794
lock_owner_responded = true;
3795
ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796
&struct_v, &len);
3797
if (ret) {
3798
rbd_warn(rbd_dev,
3799
"failed to decode ResponseMessage: %d",
3800
ret);
3801
goto e_inval;
3802
}
3803
3804
ret = ceph_decode_32(&p);
3805
}
3806
}
3807
3808
if (!lock_owner_responded) {
3809
rbd_warn(rbd_dev, "no lock owners detected");
3810
ret = -ETIMEDOUT;
3811
}
3812
3813
out:
3814
ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815
return ret;
3816
3817
e_inval:
3818
ret = -EINVAL;
3819
goto out;
3820
}
3821
3822
/*
3823
* Either image request state machine(s) or rbd_add_acquire_lock()
3824
* (i.e. "rbd map").
3825
*/
3826
static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827
{
3828
struct rbd_img_request *img_req;
3829
3830
dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831
lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832
3833
cancel_delayed_work(&rbd_dev->lock_dwork);
3834
if (!completion_done(&rbd_dev->acquire_wait)) {
3835
rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836
list_empty(&rbd_dev->running_list));
3837
rbd_dev->acquire_err = result;
3838
complete_all(&rbd_dev->acquire_wait);
3839
return;
3840
}
3841
3842
while (!list_empty(&rbd_dev->acquiring_list)) {
3843
img_req = list_first_entry(&rbd_dev->acquiring_list,
3844
struct rbd_img_request, lock_item);
3845
mutex_lock(&img_req->state_mutex);
3846
rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3847
if (!result)
3848
list_move_tail(&img_req->lock_item,
3849
&rbd_dev->running_list);
3850
else
3851
list_del_init(&img_req->lock_item);
3852
rbd_img_schedule(img_req, result);
3853
mutex_unlock(&img_req->state_mutex);
3854
}
3855
}
3856
3857
static bool locker_equal(const struct ceph_locker *lhs,
3858
const struct ceph_locker *rhs)
3859
{
3860
return lhs->id.name.type == rhs->id.name.type &&
3861
lhs->id.name.num == rhs->id.name.num &&
3862
!strcmp(lhs->id.cookie, rhs->id.cookie) &&
3863
ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3864
}
3865
3866
static void free_locker(struct ceph_locker *locker)
3867
{
3868
if (locker)
3869
ceph_free_lockers(locker, 1);
3870
}
3871
3872
static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3873
{
3874
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3875
struct ceph_locker *lockers;
3876
u32 num_lockers;
3877
u8 lock_type;
3878
char *lock_tag;
3879
u64 handle;
3880
int ret;
3881
3882
ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3883
&rbd_dev->header_oloc, RBD_LOCK_NAME,
3884
&lock_type, &lock_tag, &lockers, &num_lockers);
3885
if (ret) {
3886
rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3887
return ERR_PTR(ret);
3888
}
3889
3890
if (num_lockers == 0) {
3891
dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3892
lockers = NULL;
3893
goto out;
3894
}
3895
3896
if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3897
rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3898
lock_tag);
3899
goto err_busy;
3900
}
3901
3902
if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3903
rbd_warn(rbd_dev, "incompatible lock type detected");
3904
goto err_busy;
3905
}
3906
3907
WARN_ON(num_lockers != 1);
3908
ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3909
&handle);
3910
if (ret != 1) {
3911
rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3912
lockers[0].id.cookie);
3913
goto err_busy;
3914
}
3915
if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3916
rbd_warn(rbd_dev, "locker has a blank address");
3917
goto err_busy;
3918
}
3919
3920
dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3921
__func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3922
&lockers[0].info.addr.in_addr,
3923
le32_to_cpu(lockers[0].info.addr.nonce), handle);
3924
3925
out:
3926
kfree(lock_tag);
3927
return lockers;
3928
3929
err_busy:
3930
kfree(lock_tag);
3931
ceph_free_lockers(lockers, num_lockers);
3932
return ERR_PTR(-EBUSY);
3933
}
3934
3935
static int find_watcher(struct rbd_device *rbd_dev,
3936
const struct ceph_locker *locker)
3937
{
3938
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3939
struct ceph_watch_item *watchers;
3940
u32 num_watchers;
3941
u64 cookie;
3942
int i;
3943
int ret;
3944
3945
ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3946
&rbd_dev->header_oloc, &watchers,
3947
&num_watchers);
3948
if (ret) {
3949
rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3950
return ret;
3951
}
3952
3953
sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3954
for (i = 0; i < num_watchers; i++) {
3955
/*
3956
* Ignore addr->type while comparing. This mimics
3957
* entity_addr_t::get_legacy_str() + strcmp().
3958
*/
3959
if (ceph_addr_equal_no_type(&watchers[i].addr,
3960
&locker->info.addr) &&
3961
watchers[i].cookie == cookie) {
3962
struct rbd_client_id cid = {
3963
.gid = le64_to_cpu(watchers[i].name.num),
3964
.handle = cookie,
3965
};
3966
3967
dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3968
rbd_dev, cid.gid, cid.handle);
3969
rbd_set_owner_cid(rbd_dev, &cid);
3970
ret = 1;
3971
goto out;
3972
}
3973
}
3974
3975
dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3976
ret = 0;
3977
out:
3978
kfree(watchers);
3979
return ret;
3980
}
3981
3982
/*
3983
* lock_rwsem must be held for write
3984
*/
3985
static int rbd_try_lock(struct rbd_device *rbd_dev)
3986
{
3987
struct ceph_client *client = rbd_dev->rbd_client->client;
3988
struct ceph_locker *locker, *refreshed_locker;
3989
int ret;
3990
3991
for (;;) {
3992
locker = refreshed_locker = NULL;
3993
3994
ret = rbd_lock(rbd_dev);
3995
if (!ret)
3996
goto out;
3997
if (ret != -EBUSY) {
3998
rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3999
goto out;
4000
}
4001
4002
/* determine if the current lock holder is still alive */
4003
locker = get_lock_owner_info(rbd_dev);
4004
if (IS_ERR(locker)) {
4005
ret = PTR_ERR(locker);
4006
locker = NULL;
4007
goto out;
4008
}
4009
if (!locker)
4010
goto again;
4011
4012
ret = find_watcher(rbd_dev, locker);
4013
if (ret)
4014
goto out; /* request lock or error */
4015
4016
refreshed_locker = get_lock_owner_info(rbd_dev);
4017
if (IS_ERR(refreshed_locker)) {
4018
ret = PTR_ERR(refreshed_locker);
4019
refreshed_locker = NULL;
4020
goto out;
4021
}
4022
if (!refreshed_locker ||
4023
!locker_equal(locker, refreshed_locker))
4024
goto again;
4025
4026
rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4027
ENTITY_NAME(locker->id.name));
4028
4029
ret = ceph_monc_blocklist_add(&client->monc,
4030
&locker->info.addr);
4031
if (ret) {
4032
rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4033
ENTITY_NAME(locker->id.name), ret);
4034
goto out;
4035
}
4036
4037
ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4038
&rbd_dev->header_oloc, RBD_LOCK_NAME,
4039
locker->id.cookie, &locker->id.name);
4040
if (ret && ret != -ENOENT) {
4041
rbd_warn(rbd_dev, "failed to break header lock: %d",
4042
ret);
4043
goto out;
4044
}
4045
4046
again:
4047
free_locker(refreshed_locker);
4048
free_locker(locker);
4049
}
4050
4051
out:
4052
free_locker(refreshed_locker);
4053
free_locker(locker);
4054
return ret;
4055
}
4056
4057
static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4058
{
4059
int ret;
4060
4061
ret = rbd_dev_refresh(rbd_dev);
4062
if (ret)
4063
return ret;
4064
4065
if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4066
ret = rbd_object_map_open(rbd_dev);
4067
if (ret)
4068
return ret;
4069
}
4070
4071
return 0;
4072
}
4073
4074
/*
4075
* Return:
4076
* 0 - lock acquired
4077
* 1 - caller should call rbd_request_lock()
4078
* <0 - error
4079
*/
4080
static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4081
{
4082
int ret;
4083
4084
down_read(&rbd_dev->lock_rwsem);
4085
dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4086
rbd_dev->lock_state);
4087
if (__rbd_is_lock_owner(rbd_dev)) {
4088
up_read(&rbd_dev->lock_rwsem);
4089
return 0;
4090
}
4091
4092
up_read(&rbd_dev->lock_rwsem);
4093
down_write(&rbd_dev->lock_rwsem);
4094
dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4095
rbd_dev->lock_state);
4096
if (__rbd_is_lock_owner(rbd_dev)) {
4097
up_write(&rbd_dev->lock_rwsem);
4098
return 0;
4099
}
4100
4101
ret = rbd_try_lock(rbd_dev);
4102
if (ret < 0) {
4103
rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4104
goto out;
4105
}
4106
if (ret > 0) {
4107
up_write(&rbd_dev->lock_rwsem);
4108
return ret;
4109
}
4110
4111
rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4112
rbd_assert(list_empty(&rbd_dev->running_list));
4113
4114
ret = rbd_post_acquire_action(rbd_dev);
4115
if (ret) {
4116
rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4117
/*
4118
* Can't stay in RBD_LOCK_STATE_LOCKED because
4119
* rbd_lock_add_request() would let the request through,
4120
* assuming that e.g. object map is locked and loaded.
4121
*/
4122
rbd_unlock(rbd_dev);
4123
}
4124
4125
out:
4126
wake_lock_waiters(rbd_dev, ret);
4127
up_write(&rbd_dev->lock_rwsem);
4128
return ret;
4129
}
4130
4131
static void rbd_acquire_lock(struct work_struct *work)
4132
{
4133
struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4134
struct rbd_device, lock_dwork);
4135
int ret;
4136
4137
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4138
again:
4139
ret = rbd_try_acquire_lock(rbd_dev);
4140
if (ret <= 0) {
4141
dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4142
return;
4143
}
4144
4145
ret = rbd_request_lock(rbd_dev);
4146
if (ret == -ETIMEDOUT) {
4147
goto again; /* treat this as a dead client */
4148
} else if (ret == -EROFS) {
4149
rbd_warn(rbd_dev, "peer will not release lock");
4150
down_write(&rbd_dev->lock_rwsem);
4151
wake_lock_waiters(rbd_dev, ret);
4152
up_write(&rbd_dev->lock_rwsem);
4153
} else if (ret < 0) {
4154
rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4155
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4156
RBD_RETRY_DELAY);
4157
} else {
4158
/*
4159
* lock owner acked, but resend if we don't see them
4160
* release the lock
4161
*/
4162
dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4163
rbd_dev);
4164
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4165
msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4166
}
4167
}
4168
4169
static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4170
{
4171
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4172
lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4173
4174
if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4175
return false;
4176
4177
/*
4178
* Ensure that all in-flight IO is flushed.
4179
*/
4180
rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING;
4181
rbd_assert(!completion_done(&rbd_dev->quiescing_wait));
4182
if (list_empty(&rbd_dev->running_list))
4183
return true;
4184
4185
up_write(&rbd_dev->lock_rwsem);
4186
wait_for_completion(&rbd_dev->quiescing_wait);
4187
4188
down_write(&rbd_dev->lock_rwsem);
4189
if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING)
4190
return false;
4191
4192
rbd_assert(list_empty(&rbd_dev->running_list));
4193
return true;
4194
}
4195
4196
static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4197
{
4198
if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4199
rbd_object_map_close(rbd_dev);
4200
}
4201
4202
static void __rbd_release_lock(struct rbd_device *rbd_dev)
4203
{
4204
rbd_assert(list_empty(&rbd_dev->running_list));
4205
4206
rbd_pre_release_action(rbd_dev);
4207
rbd_unlock(rbd_dev);
4208
}
4209
4210
/*
4211
* lock_rwsem must be held for write
4212
*/
4213
static void rbd_release_lock(struct rbd_device *rbd_dev)
4214
{
4215
if (!rbd_quiesce_lock(rbd_dev))
4216
return;
4217
4218
__rbd_release_lock(rbd_dev);
4219
4220
/*
4221
* Give others a chance to grab the lock - we would re-acquire
4222
* almost immediately if we got new IO while draining the running
4223
* list otherwise. We need to ack our own notifications, so this
4224
* lock_dwork will be requeued from rbd_handle_released_lock() by
4225
* way of maybe_kick_acquire().
4226
*/
4227
cancel_delayed_work(&rbd_dev->lock_dwork);
4228
}
4229
4230
static void rbd_release_lock_work(struct work_struct *work)
4231
{
4232
struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4233
unlock_work);
4234
4235
down_write(&rbd_dev->lock_rwsem);
4236
rbd_release_lock(rbd_dev);
4237
up_write(&rbd_dev->lock_rwsem);
4238
}
4239
4240
static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4241
{
4242
bool have_requests;
4243
4244
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4245
if (__rbd_is_lock_owner(rbd_dev))
4246
return;
4247
4248
spin_lock(&rbd_dev->lock_lists_lock);
4249
have_requests = !list_empty(&rbd_dev->acquiring_list);
4250
spin_unlock(&rbd_dev->lock_lists_lock);
4251
if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4252
dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4253
mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4254
}
4255
}
4256
4257
static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4258
void **p)
4259
{
4260
struct rbd_client_id cid = { 0 };
4261
4262
if (struct_v >= 2) {
4263
cid.gid = ceph_decode_64(p);
4264
cid.handle = ceph_decode_64(p);
4265
}
4266
4267
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4268
cid.handle);
4269
if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4270
down_write(&rbd_dev->lock_rwsem);
4271
if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4272
dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4273
__func__, rbd_dev, cid.gid, cid.handle);
4274
} else {
4275
rbd_set_owner_cid(rbd_dev, &cid);
4276
}
4277
downgrade_write(&rbd_dev->lock_rwsem);
4278
} else {
4279
down_read(&rbd_dev->lock_rwsem);
4280
}
4281
4282
maybe_kick_acquire(rbd_dev);
4283
up_read(&rbd_dev->lock_rwsem);
4284
}
4285
4286
static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4287
void **p)
4288
{
4289
struct rbd_client_id cid = { 0 };
4290
4291
if (struct_v >= 2) {
4292
cid.gid = ceph_decode_64(p);
4293
cid.handle = ceph_decode_64(p);
4294
}
4295
4296
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4297
cid.handle);
4298
if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4299
down_write(&rbd_dev->lock_rwsem);
4300
if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4301
dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4302
__func__, rbd_dev, cid.gid, cid.handle,
4303
rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4304
} else {
4305
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4306
}
4307
downgrade_write(&rbd_dev->lock_rwsem);
4308
} else {
4309
down_read(&rbd_dev->lock_rwsem);
4310
}
4311
4312
maybe_kick_acquire(rbd_dev);
4313
up_read(&rbd_dev->lock_rwsem);
4314
}
4315
4316
/*
4317
* Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4318
* ResponseMessage is needed.
4319
*/
4320
static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4321
void **p)
4322
{
4323
struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4324
struct rbd_client_id cid = { 0 };
4325
int result = 1;
4326
4327
if (struct_v >= 2) {
4328
cid.gid = ceph_decode_64(p);
4329
cid.handle = ceph_decode_64(p);
4330
}
4331
4332
dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4333
cid.handle);
4334
if (rbd_cid_equal(&cid, &my_cid))
4335
return result;
4336
4337
down_read(&rbd_dev->lock_rwsem);
4338
if (__rbd_is_lock_owner(rbd_dev)) {
4339
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4340
rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4341
goto out_unlock;
4342
4343
/*
4344
* encode ResponseMessage(0) so the peer can detect
4345
* a missing owner
4346
*/
4347
result = 0;
4348
4349
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4350
if (!rbd_dev->opts->exclusive) {
4351
dout("%s rbd_dev %p queueing unlock_work\n",
4352
__func__, rbd_dev);
4353
queue_work(rbd_dev->task_wq,
4354
&rbd_dev->unlock_work);
4355
} else {
4356
/* refuse to release the lock */
4357
result = -EROFS;
4358
}
4359
}
4360
}
4361
4362
out_unlock:
4363
up_read(&rbd_dev->lock_rwsem);
4364
return result;
4365
}
4366
4367
static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4368
u64 notify_id, u64 cookie, s32 *result)
4369
{
4370
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4371
char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4372
int buf_size = sizeof(buf);
4373
int ret;
4374
4375
if (result) {
4376
void *p = buf;
4377
4378
/* encode ResponseMessage */
4379
ceph_start_encoding(&p, 1, 1,
4380
buf_size - CEPH_ENCODING_START_BLK_LEN);
4381
ceph_encode_32(&p, *result);
4382
} else {
4383
buf_size = 0;
4384
}
4385
4386
ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4387
&rbd_dev->header_oloc, notify_id, cookie,
4388
buf, buf_size);
4389
if (ret)
4390
rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4391
}
4392
4393
static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4394
u64 cookie)
4395
{
4396
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4397
__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4398
}
4399
4400
static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4401
u64 notify_id, u64 cookie, s32 result)
4402
{
4403
dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4404
__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4405
}
4406
4407
static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4408
u64 notifier_id, void *data, size_t data_len)
4409
{
4410
struct rbd_device *rbd_dev = arg;
4411
void *p = data;
4412
void *const end = p + data_len;
4413
u8 struct_v = 0;
4414
u32 len;
4415
u32 notify_op;
4416
int ret;
4417
4418
dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4419
__func__, rbd_dev, cookie, notify_id, data_len);
4420
if (data_len) {
4421
ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4422
&struct_v, &len);
4423
if (ret) {
4424
rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4425
ret);
4426
return;
4427
}
4428
4429
notify_op = ceph_decode_32(&p);
4430
} else {
4431
/* legacy notification for header updates */
4432
notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4433
len = 0;
4434
}
4435
4436
dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4437
switch (notify_op) {
4438
case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4439
rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4440
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4441
break;
4442
case RBD_NOTIFY_OP_RELEASED_LOCK:
4443
rbd_handle_released_lock(rbd_dev, struct_v, &p);
4444
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445
break;
4446
case RBD_NOTIFY_OP_REQUEST_LOCK:
4447
ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4448
if (ret <= 0)
4449
rbd_acknowledge_notify_result(rbd_dev, notify_id,
4450
cookie, ret);
4451
else
4452
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4453
break;
4454
case RBD_NOTIFY_OP_HEADER_UPDATE:
4455
ret = rbd_dev_refresh(rbd_dev);
4456
if (ret)
4457
rbd_warn(rbd_dev, "refresh failed: %d", ret);
4458
4459
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4460
break;
4461
default:
4462
if (rbd_is_lock_owner(rbd_dev))
4463
rbd_acknowledge_notify_result(rbd_dev, notify_id,
4464
cookie, -EOPNOTSUPP);
4465
else
4466
rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4467
break;
4468
}
4469
}
4470
4471
static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4472
4473
static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4474
{
4475
struct rbd_device *rbd_dev = arg;
4476
4477
rbd_warn(rbd_dev, "encountered watch error: %d", err);
4478
4479
down_write(&rbd_dev->lock_rwsem);
4480
rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4481
up_write(&rbd_dev->lock_rwsem);
4482
4483
mutex_lock(&rbd_dev->watch_mutex);
4484
if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4485
__rbd_unregister_watch(rbd_dev);
4486
rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4487
4488
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4489
}
4490
mutex_unlock(&rbd_dev->watch_mutex);
4491
}
4492
4493
/*
4494
* watch_mutex must be locked
4495
*/
4496
static int __rbd_register_watch(struct rbd_device *rbd_dev)
4497
{
4498
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4499
struct ceph_osd_linger_request *handle;
4500
4501
rbd_assert(!rbd_dev->watch_handle);
4502
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4503
4504
handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4505
&rbd_dev->header_oloc, rbd_watch_cb,
4506
rbd_watch_errcb, rbd_dev);
4507
if (IS_ERR(handle))
4508
return PTR_ERR(handle);
4509
4510
rbd_dev->watch_handle = handle;
4511
return 0;
4512
}
4513
4514
/*
4515
* watch_mutex must be locked
4516
*/
4517
static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4518
{
4519
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4520
int ret;
4521
4522
rbd_assert(rbd_dev->watch_handle);
4523
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4524
4525
ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4526
if (ret)
4527
rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4528
4529
rbd_dev->watch_handle = NULL;
4530
}
4531
4532
static int rbd_register_watch(struct rbd_device *rbd_dev)
4533
{
4534
int ret;
4535
4536
mutex_lock(&rbd_dev->watch_mutex);
4537
rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4538
ret = __rbd_register_watch(rbd_dev);
4539
if (ret)
4540
goto out;
4541
4542
rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4543
rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4544
4545
out:
4546
mutex_unlock(&rbd_dev->watch_mutex);
4547
return ret;
4548
}
4549
4550
static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4551
{
4552
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4553
4554
cancel_work_sync(&rbd_dev->acquired_lock_work);
4555
cancel_work_sync(&rbd_dev->released_lock_work);
4556
cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4557
cancel_work_sync(&rbd_dev->unlock_work);
4558
}
4559
4560
/*
4561
* header_rwsem must not be held to avoid a deadlock with
4562
* rbd_dev_refresh() when flushing notifies.
4563
*/
4564
static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4565
{
4566
cancel_tasks_sync(rbd_dev);
4567
4568
mutex_lock(&rbd_dev->watch_mutex);
4569
if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4570
__rbd_unregister_watch(rbd_dev);
4571
rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4572
mutex_unlock(&rbd_dev->watch_mutex);
4573
4574
cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4575
ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4576
}
4577
4578
/*
4579
* lock_rwsem must be held for write
4580
*/
4581
static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4582
{
4583
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4584
char cookie[32];
4585
int ret;
4586
4587
if (!rbd_quiesce_lock(rbd_dev))
4588
return;
4589
4590
format_lock_cookie(rbd_dev, cookie);
4591
ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4592
&rbd_dev->header_oloc, RBD_LOCK_NAME,
4593
CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4594
RBD_LOCK_TAG, cookie);
4595
if (ret) {
4596
if (ret != -EOPNOTSUPP)
4597
rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4598
ret);
4599
4600
if (rbd_dev->opts->exclusive)
4601
rbd_warn(rbd_dev,
4602
"temporarily releasing lock on exclusive mapping");
4603
4604
/*
4605
* Lock cookie cannot be updated on older OSDs, so do
4606
* a manual release and queue an acquire.
4607
*/
4608
__rbd_release_lock(rbd_dev);
4609
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610
} else {
4611
__rbd_lock(rbd_dev, cookie);
4612
wake_lock_waiters(rbd_dev, 0);
4613
}
4614
}
4615
4616
static void rbd_reregister_watch(struct work_struct *work)
4617
{
4618
struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619
struct rbd_device, watch_dwork);
4620
int ret;
4621
4622
dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624
mutex_lock(&rbd_dev->watch_mutex);
4625
if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626
mutex_unlock(&rbd_dev->watch_mutex);
4627
return;
4628
}
4629
4630
ret = __rbd_register_watch(rbd_dev);
4631
if (ret) {
4632
rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633
if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634
queue_delayed_work(rbd_dev->task_wq,
4635
&rbd_dev->watch_dwork,
4636
RBD_RETRY_DELAY);
4637
mutex_unlock(&rbd_dev->watch_mutex);
4638
return;
4639
}
4640
4641
mutex_unlock(&rbd_dev->watch_mutex);
4642
down_write(&rbd_dev->lock_rwsem);
4643
wake_lock_waiters(rbd_dev, ret);
4644
up_write(&rbd_dev->lock_rwsem);
4645
return;
4646
}
4647
4648
rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649
rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650
mutex_unlock(&rbd_dev->watch_mutex);
4651
4652
down_write(&rbd_dev->lock_rwsem);
4653
if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654
rbd_reacquire_lock(rbd_dev);
4655
up_write(&rbd_dev->lock_rwsem);
4656
4657
ret = rbd_dev_refresh(rbd_dev);
4658
if (ret)
4659
rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660
}
4661
4662
/*
4663
* Synchronous osd object method call. Returns the number of bytes
4664
* returned in the outbound buffer, or a negative error code.
4665
*/
4666
static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667
struct ceph_object_id *oid,
4668
struct ceph_object_locator *oloc,
4669
const char *method_name,
4670
const void *outbound,
4671
size_t outbound_size,
4672
void *inbound,
4673
size_t inbound_size)
4674
{
4675
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676
struct page *req_page = NULL;
4677
struct page *reply_page;
4678
int ret;
4679
4680
/*
4681
* Method calls are ultimately read operations. The result
4682
* should placed into the inbound buffer provided. They
4683
* also supply outbound data--parameters for the object
4684
* method. Currently if this is present it will be a
4685
* snapshot id.
4686
*/
4687
if (outbound) {
4688
if (outbound_size > PAGE_SIZE)
4689
return -E2BIG;
4690
4691
req_page = alloc_page(GFP_KERNEL);
4692
if (!req_page)
4693
return -ENOMEM;
4694
4695
memcpy(page_address(req_page), outbound, outbound_size);
4696
}
4697
4698
reply_page = alloc_page(GFP_KERNEL);
4699
if (!reply_page) {
4700
if (req_page)
4701
__free_page(req_page);
4702
return -ENOMEM;
4703
}
4704
4705
ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706
CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707
&reply_page, &inbound_size);
4708
if (!ret) {
4709
memcpy(inbound, page_address(reply_page), inbound_size);
4710
ret = inbound_size;
4711
}
4712
4713
if (req_page)
4714
__free_page(req_page);
4715
__free_page(reply_page);
4716
return ret;
4717
}
4718
4719
static void rbd_queue_workfn(struct work_struct *work)
4720
{
4721
struct rbd_img_request *img_request =
4722
container_of(work, struct rbd_img_request, work);
4723
struct rbd_device *rbd_dev = img_request->rbd_dev;
4724
enum obj_operation_type op_type = img_request->op_type;
4725
struct request *rq = blk_mq_rq_from_pdu(img_request);
4726
u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727
u64 length = blk_rq_bytes(rq);
4728
u64 mapping_size;
4729
int result;
4730
4731
/* Ignore/skip any zero-length requests */
4732
if (!length) {
4733
dout("%s: zero-length request\n", __func__);
4734
result = 0;
4735
goto err_img_request;
4736
}
4737
4738
blk_mq_start_request(rq);
4739
4740
down_read(&rbd_dev->header_rwsem);
4741
mapping_size = rbd_dev->mapping.size;
4742
rbd_img_capture_header(img_request);
4743
up_read(&rbd_dev->header_rwsem);
4744
4745
if (offset + length > mapping_size) {
4746
rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747
length, mapping_size);
4748
result = -EIO;
4749
goto err_img_request;
4750
}
4751
4752
dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753
img_request, obj_op_name(op_type), offset, length);
4754
4755
if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756
result = rbd_img_fill_nodata(img_request, offset, length);
4757
else
4758
result = rbd_img_fill_from_bio(img_request, offset, length,
4759
rq->bio);
4760
if (result)
4761
goto err_img_request;
4762
4763
rbd_img_handle_request(img_request, 0);
4764
return;
4765
4766
err_img_request:
4767
rbd_img_request_destroy(img_request);
4768
if (result)
4769
rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770
obj_op_name(op_type), length, offset, result);
4771
blk_mq_end_request(rq, errno_to_blk_status(result));
4772
}
4773
4774
static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775
const struct blk_mq_queue_data *bd)
4776
{
4777
struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778
struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779
enum obj_operation_type op_type;
4780
4781
switch (req_op(bd->rq)) {
4782
case REQ_OP_DISCARD:
4783
op_type = OBJ_OP_DISCARD;
4784
break;
4785
case REQ_OP_WRITE_ZEROES:
4786
op_type = OBJ_OP_ZEROOUT;
4787
break;
4788
case REQ_OP_WRITE:
4789
op_type = OBJ_OP_WRITE;
4790
break;
4791
case REQ_OP_READ:
4792
op_type = OBJ_OP_READ;
4793
break;
4794
default:
4795
rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796
return BLK_STS_IOERR;
4797
}
4798
4799
rbd_img_request_init(img_req, rbd_dev, op_type);
4800
4801
if (rbd_img_is_write(img_req)) {
4802
if (rbd_is_ro(rbd_dev)) {
4803
rbd_warn(rbd_dev, "%s on read-only mapping",
4804
obj_op_name(img_req->op_type));
4805
return BLK_STS_IOERR;
4806
}
4807
rbd_assert(!rbd_is_snap(rbd_dev));
4808
}
4809
4810
INIT_WORK(&img_req->work, rbd_queue_workfn);
4811
queue_work(rbd_wq, &img_req->work);
4812
return BLK_STS_OK;
4813
}
4814
4815
static void rbd_free_disk(struct rbd_device *rbd_dev)
4816
{
4817
put_disk(rbd_dev->disk);
4818
blk_mq_free_tag_set(&rbd_dev->tag_set);
4819
rbd_dev->disk = NULL;
4820
}
4821
4822
static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823
struct ceph_object_id *oid,
4824
struct ceph_object_locator *oloc,
4825
void *buf, int buf_len)
4826
4827
{
4828
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829
struct ceph_osd_request *req;
4830
struct page **pages;
4831
int num_pages = calc_pages_for(0, buf_len);
4832
int ret;
4833
4834
req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835
if (!req)
4836
return -ENOMEM;
4837
4838
ceph_oid_copy(&req->r_base_oid, oid);
4839
ceph_oloc_copy(&req->r_base_oloc, oloc);
4840
req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842
pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843
if (IS_ERR(pages)) {
4844
ret = PTR_ERR(pages);
4845
goto out_req;
4846
}
4847
4848
osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849
osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850
true);
4851
4852
ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853
if (ret)
4854
goto out_req;
4855
4856
ceph_osdc_start_request(osdc, req);
4857
ret = ceph_osdc_wait_request(osdc, req);
4858
if (ret >= 0)
4859
ceph_copy_from_page_vector(pages, buf, 0, ret);
4860
4861
out_req:
4862
ceph_osdc_put_request(req);
4863
return ret;
4864
}
4865
4866
/*
4867
* Read the complete header for the given rbd device. On successful
4868
* return, the rbd_dev->header field will contain up-to-date
4869
* information about the image.
4870
*/
4871
static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872
struct rbd_image_header *header,
4873
bool first_time)
4874
{
4875
struct rbd_image_header_ondisk *ondisk = NULL;
4876
u32 snap_count = 0;
4877
u64 names_size = 0;
4878
u32 want_count;
4879
int ret;
4880
4881
/*
4882
* The complete header will include an array of its 64-bit
4883
* snapshot ids, followed by the names of those snapshots as
4884
* a contiguous block of NUL-terminated strings. Note that
4885
* the number of snapshots could change by the time we read
4886
* it in, in which case we re-read it.
4887
*/
4888
do {
4889
size_t size;
4890
4891
kfree(ondisk);
4892
4893
size = sizeof (*ondisk);
4894
size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895
size += names_size;
4896
ondisk = kmalloc(size, GFP_KERNEL);
4897
if (!ondisk)
4898
return -ENOMEM;
4899
4900
ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901
&rbd_dev->header_oloc, ondisk, size);
4902
if (ret < 0)
4903
goto out;
4904
if ((size_t)ret < size) {
4905
ret = -ENXIO;
4906
rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907
size, ret);
4908
goto out;
4909
}
4910
if (!rbd_dev_ondisk_valid(ondisk)) {
4911
ret = -ENXIO;
4912
rbd_warn(rbd_dev, "invalid header");
4913
goto out;
4914
}
4915
4916
names_size = le64_to_cpu(ondisk->snap_names_len);
4917
want_count = snap_count;
4918
snap_count = le32_to_cpu(ondisk->snap_count);
4919
} while (snap_count != want_count);
4920
4921
ret = rbd_header_from_disk(header, ondisk, first_time);
4922
out:
4923
kfree(ondisk);
4924
4925
return ret;
4926
}
4927
4928
static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929
{
4930
sector_t size;
4931
4932
/*
4933
* If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934
* try to update its size. If REMOVING is set, updating size
4935
* is just useless work since the device can't be opened.
4936
*/
4937
if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938
!test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939
size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940
dout("setting size to %llu sectors", (unsigned long long)size);
4941
set_capacity_and_notify(rbd_dev->disk, size);
4942
}
4943
}
4944
4945
static const struct blk_mq_ops rbd_mq_ops = {
4946
.queue_rq = rbd_queue_rq,
4947
};
4948
4949
static int rbd_init_disk(struct rbd_device *rbd_dev)
4950
{
4951
struct gendisk *disk;
4952
unsigned int objset_bytes =
4953
rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4954
struct queue_limits lim = {
4955
.max_hw_sectors = objset_bytes >> SECTOR_SHIFT,
4956
.io_opt = objset_bytes,
4957
.io_min = rbd_dev->opts->alloc_size,
4958
.max_segments = USHRT_MAX,
4959
.max_segment_size = UINT_MAX,
4960
};
4961
int err;
4962
4963
memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4964
rbd_dev->tag_set.ops = &rbd_mq_ops;
4965
rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4966
rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4967
rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4968
rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4969
4970
err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4971
if (err)
4972
return err;
4973
4974
if (rbd_dev->opts->trim) {
4975
lim.discard_granularity = rbd_dev->opts->alloc_size;
4976
lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4977
lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4978
}
4979
4980
if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4981
lim.features |= BLK_FEAT_STABLE_WRITES;
4982
4983
disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4984
if (IS_ERR(disk)) {
4985
err = PTR_ERR(disk);
4986
goto out_tag_set;
4987
}
4988
4989
snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4990
rbd_dev->dev_id);
4991
disk->major = rbd_dev->major;
4992
disk->first_minor = rbd_dev->minor;
4993
if (single_major)
4994
disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4995
else
4996
disk->minors = RBD_MINORS_PER_MAJOR;
4997
disk->fops = &rbd_bd_ops;
4998
disk->private_data = rbd_dev;
4999
rbd_dev->disk = disk;
5000
5001
return 0;
5002
out_tag_set:
5003
blk_mq_free_tag_set(&rbd_dev->tag_set);
5004
return err;
5005
}
5006
5007
/*
5008
sysfs
5009
*/
5010
5011
static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5012
{
5013
return container_of(dev, struct rbd_device, dev);
5014
}
5015
5016
static ssize_t rbd_size_show(struct device *dev,
5017
struct device_attribute *attr, char *buf)
5018
{
5019
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5020
5021
return sprintf(buf, "%llu\n",
5022
(unsigned long long)rbd_dev->mapping.size);
5023
}
5024
5025
static ssize_t rbd_features_show(struct device *dev,
5026
struct device_attribute *attr, char *buf)
5027
{
5028
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029
5030
return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5031
}
5032
5033
static ssize_t rbd_major_show(struct device *dev,
5034
struct device_attribute *attr, char *buf)
5035
{
5036
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5037
5038
if (rbd_dev->major)
5039
return sprintf(buf, "%d\n", rbd_dev->major);
5040
5041
return sprintf(buf, "(none)\n");
5042
}
5043
5044
static ssize_t rbd_minor_show(struct device *dev,
5045
struct device_attribute *attr, char *buf)
5046
{
5047
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5048
5049
return sprintf(buf, "%d\n", rbd_dev->minor);
5050
}
5051
5052
static ssize_t rbd_client_addr_show(struct device *dev,
5053
struct device_attribute *attr, char *buf)
5054
{
5055
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056
struct ceph_entity_addr *client_addr =
5057
ceph_client_addr(rbd_dev->rbd_client->client);
5058
5059
return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5060
le32_to_cpu(client_addr->nonce));
5061
}
5062
5063
static ssize_t rbd_client_id_show(struct device *dev,
5064
struct device_attribute *attr, char *buf)
5065
{
5066
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067
5068
return sprintf(buf, "client%lld\n",
5069
ceph_client_gid(rbd_dev->rbd_client->client));
5070
}
5071
5072
static ssize_t rbd_cluster_fsid_show(struct device *dev,
5073
struct device_attribute *attr, char *buf)
5074
{
5075
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076
5077
return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5078
}
5079
5080
static ssize_t rbd_config_info_show(struct device *dev,
5081
struct device_attribute *attr, char *buf)
5082
{
5083
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085
if (!capable(CAP_SYS_ADMIN))
5086
return -EPERM;
5087
5088
return sprintf(buf, "%s\n", rbd_dev->config_info);
5089
}
5090
5091
static ssize_t rbd_pool_show(struct device *dev,
5092
struct device_attribute *attr, char *buf)
5093
{
5094
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5095
5096
return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5097
}
5098
5099
static ssize_t rbd_pool_id_show(struct device *dev,
5100
struct device_attribute *attr, char *buf)
5101
{
5102
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103
5104
return sprintf(buf, "%llu\n",
5105
(unsigned long long) rbd_dev->spec->pool_id);
5106
}
5107
5108
static ssize_t rbd_pool_ns_show(struct device *dev,
5109
struct device_attribute *attr, char *buf)
5110
{
5111
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112
5113
return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5114
}
5115
5116
static ssize_t rbd_name_show(struct device *dev,
5117
struct device_attribute *attr, char *buf)
5118
{
5119
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121
if (rbd_dev->spec->image_name)
5122
return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5123
5124
return sprintf(buf, "(unknown)\n");
5125
}
5126
5127
static ssize_t rbd_image_id_show(struct device *dev,
5128
struct device_attribute *attr, char *buf)
5129
{
5130
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5131
5132
return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5133
}
5134
5135
/*
5136
* Shows the name of the currently-mapped snapshot (or
5137
* RBD_SNAP_HEAD_NAME for the base image).
5138
*/
5139
static ssize_t rbd_snap_show(struct device *dev,
5140
struct device_attribute *attr,
5141
char *buf)
5142
{
5143
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5144
5145
return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5146
}
5147
5148
static ssize_t rbd_snap_id_show(struct device *dev,
5149
struct device_attribute *attr, char *buf)
5150
{
5151
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5152
5153
return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5154
}
5155
5156
/*
5157
* For a v2 image, shows the chain of parent images, separated by empty
5158
* lines. For v1 images or if there is no parent, shows "(no parent
5159
* image)".
5160
*/
5161
static ssize_t rbd_parent_show(struct device *dev,
5162
struct device_attribute *attr,
5163
char *buf)
5164
{
5165
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5166
ssize_t count = 0;
5167
5168
if (!rbd_dev->parent)
5169
return sprintf(buf, "(no parent image)\n");
5170
5171
for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5172
struct rbd_spec *spec = rbd_dev->parent_spec;
5173
5174
count += sprintf(&buf[count], "%s"
5175
"pool_id %llu\npool_name %s\n"
5176
"pool_ns %s\n"
5177
"image_id %s\nimage_name %s\n"
5178
"snap_id %llu\nsnap_name %s\n"
5179
"overlap %llu\n",
5180
!count ? "" : "\n", /* first? */
5181
spec->pool_id, spec->pool_name,
5182
spec->pool_ns ?: "",
5183
spec->image_id, spec->image_name ?: "(unknown)",
5184
spec->snap_id, spec->snap_name,
5185
rbd_dev->parent_overlap);
5186
}
5187
5188
return count;
5189
}
5190
5191
static ssize_t rbd_image_refresh(struct device *dev,
5192
struct device_attribute *attr,
5193
const char *buf,
5194
size_t size)
5195
{
5196
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5197
int ret;
5198
5199
if (!capable(CAP_SYS_ADMIN))
5200
return -EPERM;
5201
5202
ret = rbd_dev_refresh(rbd_dev);
5203
if (ret)
5204
return ret;
5205
5206
return size;
5207
}
5208
5209
static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5210
static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5211
static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5212
static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5213
static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5214
static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5215
static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5216
static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5217
static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5218
static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5219
static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5220
static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5221
static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5222
static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5223
static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5224
static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5225
static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5226
5227
static struct attribute *rbd_attrs[] = {
5228
&dev_attr_size.attr,
5229
&dev_attr_features.attr,
5230
&dev_attr_major.attr,
5231
&dev_attr_minor.attr,
5232
&dev_attr_client_addr.attr,
5233
&dev_attr_client_id.attr,
5234
&dev_attr_cluster_fsid.attr,
5235
&dev_attr_config_info.attr,
5236
&dev_attr_pool.attr,
5237
&dev_attr_pool_id.attr,
5238
&dev_attr_pool_ns.attr,
5239
&dev_attr_name.attr,
5240
&dev_attr_image_id.attr,
5241
&dev_attr_current_snap.attr,
5242
&dev_attr_snap_id.attr,
5243
&dev_attr_parent.attr,
5244
&dev_attr_refresh.attr,
5245
NULL
5246
};
5247
5248
static struct attribute_group rbd_attr_group = {
5249
.attrs = rbd_attrs,
5250
};
5251
5252
static const struct attribute_group *rbd_attr_groups[] = {
5253
&rbd_attr_group,
5254
NULL
5255
};
5256
5257
static void rbd_dev_release(struct device *dev);
5258
5259
static const struct device_type rbd_device_type = {
5260
.name = "rbd",
5261
.groups = rbd_attr_groups,
5262
.release = rbd_dev_release,
5263
};
5264
5265
static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5266
{
5267
kref_get(&spec->kref);
5268
5269
return spec;
5270
}
5271
5272
static void rbd_spec_free(struct kref *kref);
5273
static void rbd_spec_put(struct rbd_spec *spec)
5274
{
5275
if (spec)
5276
kref_put(&spec->kref, rbd_spec_free);
5277
}
5278
5279
static struct rbd_spec *rbd_spec_alloc(void)
5280
{
5281
struct rbd_spec *spec;
5282
5283
spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5284
if (!spec)
5285
return NULL;
5286
5287
spec->pool_id = CEPH_NOPOOL;
5288
spec->snap_id = CEPH_NOSNAP;
5289
kref_init(&spec->kref);
5290
5291
return spec;
5292
}
5293
5294
static void rbd_spec_free(struct kref *kref)
5295
{
5296
struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5297
5298
kfree(spec->pool_name);
5299
kfree(spec->pool_ns);
5300
kfree(spec->image_id);
5301
kfree(spec->image_name);
5302
kfree(spec->snap_name);
5303
kfree(spec);
5304
}
5305
5306
static void rbd_dev_free(struct rbd_device *rbd_dev)
5307
{
5308
WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5309
WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5310
5311
ceph_oid_destroy(&rbd_dev->header_oid);
5312
ceph_oloc_destroy(&rbd_dev->header_oloc);
5313
kfree(rbd_dev->config_info);
5314
5315
rbd_put_client(rbd_dev->rbd_client);
5316
rbd_spec_put(rbd_dev->spec);
5317
kfree(rbd_dev->opts);
5318
kfree(rbd_dev);
5319
}
5320
5321
static void rbd_dev_release(struct device *dev)
5322
{
5323
struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5324
bool need_put = !!rbd_dev->opts;
5325
5326
if (need_put) {
5327
destroy_workqueue(rbd_dev->task_wq);
5328
ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5329
}
5330
5331
rbd_dev_free(rbd_dev);
5332
5333
/*
5334
* This is racy, but way better than putting module outside of
5335
* the release callback. The race window is pretty small, so
5336
* doing something similar to dm (dm-builtin.c) is overkill.
5337
*/
5338
if (need_put)
5339
module_put(THIS_MODULE);
5340
}
5341
5342
static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5343
{
5344
struct rbd_device *rbd_dev;
5345
5346
rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5347
if (!rbd_dev)
5348
return NULL;
5349
5350
spin_lock_init(&rbd_dev->lock);
5351
INIT_LIST_HEAD(&rbd_dev->node);
5352
init_rwsem(&rbd_dev->header_rwsem);
5353
5354
rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5355
ceph_oid_init(&rbd_dev->header_oid);
5356
rbd_dev->header_oloc.pool = spec->pool_id;
5357
if (spec->pool_ns) {
5358
WARN_ON(!*spec->pool_ns);
5359
rbd_dev->header_oloc.pool_ns =
5360
ceph_find_or_create_string(spec->pool_ns,
5361
strlen(spec->pool_ns));
5362
}
5363
5364
mutex_init(&rbd_dev->watch_mutex);
5365
rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5366
INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5367
5368
init_rwsem(&rbd_dev->lock_rwsem);
5369
rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5370
INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5371
INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5372
INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5373
INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5374
spin_lock_init(&rbd_dev->lock_lists_lock);
5375
INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5376
INIT_LIST_HEAD(&rbd_dev->running_list);
5377
init_completion(&rbd_dev->acquire_wait);
5378
init_completion(&rbd_dev->quiescing_wait);
5379
5380
spin_lock_init(&rbd_dev->object_map_lock);
5381
5382
rbd_dev->dev.bus = &rbd_bus_type;
5383
rbd_dev->dev.type = &rbd_device_type;
5384
rbd_dev->dev.parent = &rbd_root_dev;
5385
device_initialize(&rbd_dev->dev);
5386
5387
return rbd_dev;
5388
}
5389
5390
/*
5391
* Create a mapping rbd_dev.
5392
*/
5393
static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5394
struct rbd_spec *spec,
5395
struct rbd_options *opts)
5396
{
5397
struct rbd_device *rbd_dev;
5398
5399
rbd_dev = __rbd_dev_create(spec);
5400
if (!rbd_dev)
5401
return NULL;
5402
5403
/* get an id and fill in device name */
5404
rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5405
minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5406
GFP_KERNEL);
5407
if (rbd_dev->dev_id < 0)
5408
goto fail_rbd_dev;
5409
5410
sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5411
rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5412
rbd_dev->name);
5413
if (!rbd_dev->task_wq)
5414
goto fail_dev_id;
5415
5416
/* we have a ref from do_rbd_add() */
5417
__module_get(THIS_MODULE);
5418
5419
rbd_dev->rbd_client = rbdc;
5420
rbd_dev->spec = spec;
5421
rbd_dev->opts = opts;
5422
5423
dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5424
return rbd_dev;
5425
5426
fail_dev_id:
5427
ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5428
fail_rbd_dev:
5429
rbd_dev_free(rbd_dev);
5430
return NULL;
5431
}
5432
5433
static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5434
{
5435
if (rbd_dev)
5436
put_device(&rbd_dev->dev);
5437
}
5438
5439
/*
5440
* Get the size and object order for an image snapshot, or if
5441
* snap_id is CEPH_NOSNAP, gets this information for the base
5442
* image.
5443
*/
5444
static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5445
u8 *order, u64 *snap_size)
5446
{
5447
__le64 snapid = cpu_to_le64(snap_id);
5448
int ret;
5449
struct {
5450
u8 order;
5451
__le64 size;
5452
} __attribute__ ((packed)) size_buf = { 0 };
5453
5454
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5455
&rbd_dev->header_oloc, "get_size",
5456
&snapid, sizeof(snapid),
5457
&size_buf, sizeof(size_buf));
5458
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5459
if (ret < 0)
5460
return ret;
5461
if (ret < sizeof (size_buf))
5462
return -ERANGE;
5463
5464
if (order) {
5465
*order = size_buf.order;
5466
dout(" order %u", (unsigned int)*order);
5467
}
5468
*snap_size = le64_to_cpu(size_buf.size);
5469
5470
dout(" snap_id 0x%016llx snap_size = %llu\n",
5471
(unsigned long long)snap_id,
5472
(unsigned long long)*snap_size);
5473
5474
return 0;
5475
}
5476
5477
static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5478
char **pobject_prefix)
5479
{
5480
size_t size;
5481
void *reply_buf;
5482
char *object_prefix;
5483
int ret;
5484
void *p;
5485
5486
/* Response will be an encoded string, which includes a length */
5487
size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5488
reply_buf = kzalloc(size, GFP_KERNEL);
5489
if (!reply_buf)
5490
return -ENOMEM;
5491
5492
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5493
&rbd_dev->header_oloc, "get_object_prefix",
5494
NULL, 0, reply_buf, size);
5495
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5496
if (ret < 0)
5497
goto out;
5498
5499
p = reply_buf;
5500
object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5501
GFP_NOIO);
5502
if (IS_ERR(object_prefix)) {
5503
ret = PTR_ERR(object_prefix);
5504
goto out;
5505
}
5506
ret = 0;
5507
5508
*pobject_prefix = object_prefix;
5509
dout(" object_prefix = %s\n", object_prefix);
5510
out:
5511
kfree(reply_buf);
5512
5513
return ret;
5514
}
5515
5516
static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5517
bool read_only, u64 *snap_features)
5518
{
5519
struct {
5520
__le64 snap_id;
5521
u8 read_only;
5522
} features_in;
5523
struct {
5524
__le64 features;
5525
__le64 incompat;
5526
} __attribute__ ((packed)) features_buf = { 0 };
5527
u64 unsup;
5528
int ret;
5529
5530
features_in.snap_id = cpu_to_le64(snap_id);
5531
features_in.read_only = read_only;
5532
5533
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5534
&rbd_dev->header_oloc, "get_features",
5535
&features_in, sizeof(features_in),
5536
&features_buf, sizeof(features_buf));
5537
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5538
if (ret < 0)
5539
return ret;
5540
if (ret < sizeof (features_buf))
5541
return -ERANGE;
5542
5543
unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5544
if (unsup) {
5545
rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5546
unsup);
5547
return -ENXIO;
5548
}
5549
5550
*snap_features = le64_to_cpu(features_buf.features);
5551
5552
dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5553
(unsigned long long)snap_id,
5554
(unsigned long long)*snap_features,
5555
(unsigned long long)le64_to_cpu(features_buf.incompat));
5556
5557
return 0;
5558
}
5559
5560
/*
5561
* These are generic image flags, but since they are used only for
5562
* object map, store them in rbd_dev->object_map_flags.
5563
*
5564
* For the same reason, this function is called only on object map
5565
* (re)load and not on header refresh.
5566
*/
5567
static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5568
{
5569
__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5570
__le64 flags;
5571
int ret;
5572
5573
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5574
&rbd_dev->header_oloc, "get_flags",
5575
&snapid, sizeof(snapid),
5576
&flags, sizeof(flags));
5577
if (ret < 0)
5578
return ret;
5579
if (ret < sizeof(flags))
5580
return -EBADMSG;
5581
5582
rbd_dev->object_map_flags = le64_to_cpu(flags);
5583
return 0;
5584
}
5585
5586
struct parent_image_info {
5587
u64 pool_id;
5588
const char *pool_ns;
5589
const char *image_id;
5590
u64 snap_id;
5591
5592
bool has_overlap;
5593
u64 overlap;
5594
};
5595
5596
static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5597
{
5598
kfree(pii->pool_ns);
5599
kfree(pii->image_id);
5600
5601
memset(pii, 0, sizeof(*pii));
5602
}
5603
5604
/*
5605
* The caller is responsible for @pii.
5606
*/
5607
static int decode_parent_image_spec(void **p, void *end,
5608
struct parent_image_info *pii)
5609
{
5610
u8 struct_v;
5611
u32 struct_len;
5612
int ret;
5613
5614
ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5615
&struct_v, &struct_len);
5616
if (ret)
5617
return ret;
5618
5619
ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5620
pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5621
if (IS_ERR(pii->pool_ns)) {
5622
ret = PTR_ERR(pii->pool_ns);
5623
pii->pool_ns = NULL;
5624
return ret;
5625
}
5626
pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5627
if (IS_ERR(pii->image_id)) {
5628
ret = PTR_ERR(pii->image_id);
5629
pii->image_id = NULL;
5630
return ret;
5631
}
5632
ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5633
return 0;
5634
5635
e_inval:
5636
return -EINVAL;
5637
}
5638
5639
static int __get_parent_info(struct rbd_device *rbd_dev,
5640
struct page *req_page,
5641
struct page *reply_page,
5642
struct parent_image_info *pii)
5643
{
5644
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5645
size_t reply_len = PAGE_SIZE;
5646
void *p, *end;
5647
int ret;
5648
5649
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5650
"rbd", "parent_get", CEPH_OSD_FLAG_READ,
5651
req_page, sizeof(u64), &reply_page, &reply_len);
5652
if (ret)
5653
return ret == -EOPNOTSUPP ? 1 : ret;
5654
5655
p = page_address(reply_page);
5656
end = p + reply_len;
5657
ret = decode_parent_image_spec(&p, end, pii);
5658
if (ret)
5659
return ret;
5660
5661
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5662
"rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5663
req_page, sizeof(u64), &reply_page, &reply_len);
5664
if (ret)
5665
return ret;
5666
5667
p = page_address(reply_page);
5668
end = p + reply_len;
5669
ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5670
if (pii->has_overlap)
5671
ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5672
5673
dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5674
__func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5675
pii->has_overlap, pii->overlap);
5676
return 0;
5677
5678
e_inval:
5679
return -EINVAL;
5680
}
5681
5682
/*
5683
* The caller is responsible for @pii.
5684
*/
5685
static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5686
struct page *req_page,
5687
struct page *reply_page,
5688
struct parent_image_info *pii)
5689
{
5690
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5691
size_t reply_len = PAGE_SIZE;
5692
void *p, *end;
5693
int ret;
5694
5695
ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5696
"rbd", "get_parent", CEPH_OSD_FLAG_READ,
5697
req_page, sizeof(u64), &reply_page, &reply_len);
5698
if (ret)
5699
return ret;
5700
5701
p = page_address(reply_page);
5702
end = p + reply_len;
5703
ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5704
pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5705
if (IS_ERR(pii->image_id)) {
5706
ret = PTR_ERR(pii->image_id);
5707
pii->image_id = NULL;
5708
return ret;
5709
}
5710
ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5711
pii->has_overlap = true;
5712
ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5713
5714
dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5715
__func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5716
pii->has_overlap, pii->overlap);
5717
return 0;
5718
5719
e_inval:
5720
return -EINVAL;
5721
}
5722
5723
static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5724
struct parent_image_info *pii)
5725
{
5726
struct page *req_page, *reply_page;
5727
void *p;
5728
int ret;
5729
5730
req_page = alloc_page(GFP_KERNEL);
5731
if (!req_page)
5732
return -ENOMEM;
5733
5734
reply_page = alloc_page(GFP_KERNEL);
5735
if (!reply_page) {
5736
__free_page(req_page);
5737
return -ENOMEM;
5738
}
5739
5740
p = page_address(req_page);
5741
ceph_encode_64(&p, rbd_dev->spec->snap_id);
5742
ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5743
if (ret > 0)
5744
ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5745
pii);
5746
5747
__free_page(req_page);
5748
__free_page(reply_page);
5749
return ret;
5750
}
5751
5752
static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5753
{
5754
struct rbd_spec *parent_spec;
5755
struct parent_image_info pii = { 0 };
5756
int ret;
5757
5758
parent_spec = rbd_spec_alloc();
5759
if (!parent_spec)
5760
return -ENOMEM;
5761
5762
ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5763
if (ret)
5764
goto out_err;
5765
5766
if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5767
goto out; /* No parent? No problem. */
5768
5769
/* The ceph file layout needs to fit pool id in 32 bits */
5770
5771
ret = -EIO;
5772
if (pii.pool_id > (u64)U32_MAX) {
5773
rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5774
(unsigned long long)pii.pool_id, U32_MAX);
5775
goto out_err;
5776
}
5777
5778
/*
5779
* The parent won't change except when the clone is flattened,
5780
* so we only need to record the parent image spec once.
5781
*/
5782
parent_spec->pool_id = pii.pool_id;
5783
if (pii.pool_ns && *pii.pool_ns) {
5784
parent_spec->pool_ns = pii.pool_ns;
5785
pii.pool_ns = NULL;
5786
}
5787
parent_spec->image_id = pii.image_id;
5788
pii.image_id = NULL;
5789
parent_spec->snap_id = pii.snap_id;
5790
5791
rbd_assert(!rbd_dev->parent_spec);
5792
rbd_dev->parent_spec = parent_spec;
5793
parent_spec = NULL; /* rbd_dev now owns this */
5794
5795
/*
5796
* Record the parent overlap. If it's zero, issue a warning as
5797
* we will proceed as if there is no parent.
5798
*/
5799
if (!pii.overlap)
5800
rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5801
rbd_dev->parent_overlap = pii.overlap;
5802
5803
out:
5804
ret = 0;
5805
out_err:
5806
rbd_parent_info_cleanup(&pii);
5807
rbd_spec_put(parent_spec);
5808
return ret;
5809
}
5810
5811
static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5812
u64 *stripe_unit, u64 *stripe_count)
5813
{
5814
struct {
5815
__le64 stripe_unit;
5816
__le64 stripe_count;
5817
} __attribute__ ((packed)) striping_info_buf = { 0 };
5818
size_t size = sizeof (striping_info_buf);
5819
int ret;
5820
5821
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5822
&rbd_dev->header_oloc, "get_stripe_unit_count",
5823
NULL, 0, &striping_info_buf, size);
5824
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5825
if (ret < 0)
5826
return ret;
5827
if (ret < size)
5828
return -ERANGE;
5829
5830
*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5831
*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5832
dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5833
*stripe_count);
5834
5835
return 0;
5836
}
5837
5838
static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5839
{
5840
__le64 data_pool_buf;
5841
int ret;
5842
5843
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5844
&rbd_dev->header_oloc, "get_data_pool",
5845
NULL, 0, &data_pool_buf,
5846
sizeof(data_pool_buf));
5847
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5848
if (ret < 0)
5849
return ret;
5850
if (ret < sizeof(data_pool_buf))
5851
return -EBADMSG;
5852
5853
*data_pool_id = le64_to_cpu(data_pool_buf);
5854
dout(" data_pool_id = %lld\n", *data_pool_id);
5855
WARN_ON(*data_pool_id == CEPH_NOPOOL);
5856
5857
return 0;
5858
}
5859
5860
static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5861
{
5862
CEPH_DEFINE_OID_ONSTACK(oid);
5863
size_t image_id_size;
5864
char *image_id;
5865
void *p;
5866
void *end;
5867
size_t size;
5868
void *reply_buf = NULL;
5869
size_t len = 0;
5870
char *image_name = NULL;
5871
int ret;
5872
5873
rbd_assert(!rbd_dev->spec->image_name);
5874
5875
len = strlen(rbd_dev->spec->image_id);
5876
image_id_size = sizeof (__le32) + len;
5877
image_id = kmalloc(image_id_size, GFP_KERNEL);
5878
if (!image_id)
5879
return NULL;
5880
5881
p = image_id;
5882
end = image_id + image_id_size;
5883
ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5884
5885
size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5886
reply_buf = kmalloc(size, GFP_KERNEL);
5887
if (!reply_buf)
5888
goto out;
5889
5890
ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5891
ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5892
"dir_get_name", image_id, image_id_size,
5893
reply_buf, size);
5894
if (ret < 0)
5895
goto out;
5896
p = reply_buf;
5897
end = reply_buf + ret;
5898
5899
image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5900
if (IS_ERR(image_name))
5901
image_name = NULL;
5902
else
5903
dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5904
out:
5905
kfree(reply_buf);
5906
kfree(image_id);
5907
5908
return image_name;
5909
}
5910
5911
static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5912
{
5913
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5914
const char *snap_name;
5915
u32 which = 0;
5916
5917
/* Skip over names until we find the one we are looking for */
5918
5919
snap_name = rbd_dev->header.snap_names;
5920
while (which < snapc->num_snaps) {
5921
if (!strcmp(name, snap_name))
5922
return snapc->snaps[which];
5923
snap_name += strlen(snap_name) + 1;
5924
which++;
5925
}
5926
return CEPH_NOSNAP;
5927
}
5928
5929
static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5930
{
5931
struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5932
u32 which;
5933
bool found = false;
5934
u64 snap_id;
5935
5936
for (which = 0; !found && which < snapc->num_snaps; which++) {
5937
const char *snap_name;
5938
5939
snap_id = snapc->snaps[which];
5940
snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5941
if (IS_ERR(snap_name)) {
5942
/* ignore no-longer existing snapshots */
5943
if (PTR_ERR(snap_name) == -ENOENT)
5944
continue;
5945
else
5946
break;
5947
}
5948
found = !strcmp(name, snap_name);
5949
kfree(snap_name);
5950
}
5951
return found ? snap_id : CEPH_NOSNAP;
5952
}
5953
5954
/*
5955
* Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5956
* no snapshot by that name is found, or if an error occurs.
5957
*/
5958
static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5959
{
5960
if (rbd_dev->image_format == 1)
5961
return rbd_v1_snap_id_by_name(rbd_dev, name);
5962
5963
return rbd_v2_snap_id_by_name(rbd_dev, name);
5964
}
5965
5966
/*
5967
* An image being mapped will have everything but the snap id.
5968
*/
5969
static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5970
{
5971
struct rbd_spec *spec = rbd_dev->spec;
5972
5973
rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5974
rbd_assert(spec->image_id && spec->image_name);
5975
rbd_assert(spec->snap_name);
5976
5977
if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5978
u64 snap_id;
5979
5980
snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5981
if (snap_id == CEPH_NOSNAP)
5982
return -ENOENT;
5983
5984
spec->snap_id = snap_id;
5985
} else {
5986
spec->snap_id = CEPH_NOSNAP;
5987
}
5988
5989
return 0;
5990
}
5991
5992
/*
5993
* A parent image will have all ids but none of the names.
5994
*
5995
* All names in an rbd spec are dynamically allocated. It's OK if we
5996
* can't figure out the name for an image id.
5997
*/
5998
static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5999
{
6000
struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6001
struct rbd_spec *spec = rbd_dev->spec;
6002
const char *pool_name;
6003
const char *image_name;
6004
const char *snap_name;
6005
int ret;
6006
6007
rbd_assert(spec->pool_id != CEPH_NOPOOL);
6008
rbd_assert(spec->image_id);
6009
rbd_assert(spec->snap_id != CEPH_NOSNAP);
6010
6011
/* Get the pool name; we have to make our own copy of this */
6012
6013
pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6014
if (!pool_name) {
6015
rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6016
return -EIO;
6017
}
6018
pool_name = kstrdup(pool_name, GFP_KERNEL);
6019
if (!pool_name)
6020
return -ENOMEM;
6021
6022
/* Fetch the image name; tolerate failure here */
6023
6024
image_name = rbd_dev_image_name(rbd_dev);
6025
if (!image_name)
6026
rbd_warn(rbd_dev, "unable to get image name");
6027
6028
/* Fetch the snapshot name */
6029
6030
snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6031
if (IS_ERR(snap_name)) {
6032
ret = PTR_ERR(snap_name);
6033
goto out_err;
6034
}
6035
6036
spec->pool_name = pool_name;
6037
spec->image_name = image_name;
6038
spec->snap_name = snap_name;
6039
6040
return 0;
6041
6042
out_err:
6043
kfree(image_name);
6044
kfree(pool_name);
6045
return ret;
6046
}
6047
6048
static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6049
struct ceph_snap_context **psnapc)
6050
{
6051
size_t size;
6052
int ret;
6053
void *reply_buf;
6054
void *p;
6055
void *end;
6056
u64 seq;
6057
u32 snap_count;
6058
struct ceph_snap_context *snapc;
6059
u32 i;
6060
6061
/*
6062
* We'll need room for the seq value (maximum snapshot id),
6063
* snapshot count, and array of that many snapshot ids.
6064
* For now we have a fixed upper limit on the number we're
6065
* prepared to receive.
6066
*/
6067
size = sizeof (__le64) + sizeof (__le32) +
6068
RBD_MAX_SNAP_COUNT * sizeof (__le64);
6069
reply_buf = kzalloc(size, GFP_KERNEL);
6070
if (!reply_buf)
6071
return -ENOMEM;
6072
6073
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6074
&rbd_dev->header_oloc, "get_snapcontext",
6075
NULL, 0, reply_buf, size);
6076
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6077
if (ret < 0)
6078
goto out;
6079
6080
p = reply_buf;
6081
end = reply_buf + ret;
6082
ret = -ERANGE;
6083
ceph_decode_64_safe(&p, end, seq, out);
6084
ceph_decode_32_safe(&p, end, snap_count, out);
6085
6086
/*
6087
* Make sure the reported number of snapshot ids wouldn't go
6088
* beyond the end of our buffer. But before checking that,
6089
* make sure the computed size of the snapshot context we
6090
* allocate is representable in a size_t.
6091
*/
6092
if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6093
/ sizeof (u64)) {
6094
ret = -EINVAL;
6095
goto out;
6096
}
6097
if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6098
goto out;
6099
ret = 0;
6100
6101
snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6102
if (!snapc) {
6103
ret = -ENOMEM;
6104
goto out;
6105
}
6106
snapc->seq = seq;
6107
for (i = 0; i < snap_count; i++)
6108
snapc->snaps[i] = ceph_decode_64(&p);
6109
6110
*psnapc = snapc;
6111
dout(" snap context seq = %llu, snap_count = %u\n",
6112
(unsigned long long)seq, (unsigned int)snap_count);
6113
out:
6114
kfree(reply_buf);
6115
6116
return ret;
6117
}
6118
6119
static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6120
u64 snap_id)
6121
{
6122
size_t size;
6123
void *reply_buf;
6124
__le64 snapid;
6125
int ret;
6126
void *p;
6127
void *end;
6128
char *snap_name;
6129
6130
size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6131
reply_buf = kmalloc(size, GFP_KERNEL);
6132
if (!reply_buf)
6133
return ERR_PTR(-ENOMEM);
6134
6135
snapid = cpu_to_le64(snap_id);
6136
ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6137
&rbd_dev->header_oloc, "get_snapshot_name",
6138
&snapid, sizeof(snapid), reply_buf, size);
6139
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6140
if (ret < 0) {
6141
snap_name = ERR_PTR(ret);
6142
goto out;
6143
}
6144
6145
p = reply_buf;
6146
end = reply_buf + ret;
6147
snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6148
if (IS_ERR(snap_name))
6149
goto out;
6150
6151
dout(" snap_id 0x%016llx snap_name = %s\n",
6152
(unsigned long long)snap_id, snap_name);
6153
out:
6154
kfree(reply_buf);
6155
6156
return snap_name;
6157
}
6158
6159
static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6160
struct rbd_image_header *header,
6161
bool first_time)
6162
{
6163
int ret;
6164
6165
ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6166
first_time ? &header->obj_order : NULL,
6167
&header->image_size);
6168
if (ret)
6169
return ret;
6170
6171
if (first_time) {
6172
ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6173
if (ret)
6174
return ret;
6175
}
6176
6177
ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6178
if (ret)
6179
return ret;
6180
6181
return 0;
6182
}
6183
6184
static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6185
struct rbd_image_header *header,
6186
bool first_time)
6187
{
6188
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6189
rbd_assert(!header->object_prefix && !header->snapc);
6190
6191
if (rbd_dev->image_format == 1)
6192
return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6193
6194
return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6195
}
6196
6197
/*
6198
* Skips over white space at *buf, and updates *buf to point to the
6199
* first found non-space character (if any). Returns the length of
6200
* the token (string of non-white space characters) found. Note
6201
* that *buf must be terminated with '\0'.
6202
*/
6203
static inline size_t next_token(const char **buf)
6204
{
6205
/*
6206
* These are the characters that produce nonzero for
6207
* isspace() in the "C" and "POSIX" locales.
6208
*/
6209
static const char spaces[] = " \f\n\r\t\v";
6210
6211
*buf += strspn(*buf, spaces); /* Find start of token */
6212
6213
return strcspn(*buf, spaces); /* Return token length */
6214
}
6215
6216
/*
6217
* Finds the next token in *buf, dynamically allocates a buffer big
6218
* enough to hold a copy of it, and copies the token into the new
6219
* buffer. The copy is guaranteed to be terminated with '\0'. Note
6220
* that a duplicate buffer is created even for a zero-length token.
6221
*
6222
* Returns a pointer to the newly-allocated duplicate, or a null
6223
* pointer if memory for the duplicate was not available. If
6224
* the lenp argument is a non-null pointer, the length of the token
6225
* (not including the '\0') is returned in *lenp.
6226
*
6227
* If successful, the *buf pointer will be updated to point beyond
6228
* the end of the found token.
6229
*
6230
* Note: uses GFP_KERNEL for allocation.
6231
*/
6232
static inline char *dup_token(const char **buf, size_t *lenp)
6233
{
6234
char *dup;
6235
size_t len;
6236
6237
len = next_token(buf);
6238
dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6239
if (!dup)
6240
return NULL;
6241
*(dup + len) = '\0';
6242
*buf += len;
6243
6244
if (lenp)
6245
*lenp = len;
6246
6247
return dup;
6248
}
6249
6250
static int rbd_parse_param(struct fs_parameter *param,
6251
struct rbd_parse_opts_ctx *pctx)
6252
{
6253
struct rbd_options *opt = pctx->opts;
6254
struct fs_parse_result result;
6255
struct p_log log = {.prefix = "rbd"};
6256
int token, ret;
6257
6258
ret = ceph_parse_param(param, pctx->copts, NULL);
6259
if (ret != -ENOPARAM)
6260
return ret;
6261
6262
token = __fs_parse(&log, rbd_parameters, param, &result);
6263
dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6264
if (token < 0) {
6265
if (token == -ENOPARAM)
6266
return inval_plog(&log, "Unknown parameter '%s'",
6267
param->key);
6268
return token;
6269
}
6270
6271
switch (token) {
6272
case Opt_queue_depth:
6273
if (result.uint_32 < 1)
6274
goto out_of_range;
6275
opt->queue_depth = result.uint_32;
6276
break;
6277
case Opt_alloc_size:
6278
if (result.uint_32 < SECTOR_SIZE)
6279
goto out_of_range;
6280
if (!is_power_of_2(result.uint_32))
6281
return inval_plog(&log, "alloc_size must be a power of 2");
6282
opt->alloc_size = result.uint_32;
6283
break;
6284
case Opt_lock_timeout:
6285
/* 0 is "wait forever" (i.e. infinite timeout) */
6286
if (result.uint_32 > INT_MAX / 1000)
6287
goto out_of_range;
6288
opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6289
break;
6290
case Opt_pool_ns:
6291
kfree(pctx->spec->pool_ns);
6292
pctx->spec->pool_ns = param->string;
6293
param->string = NULL;
6294
break;
6295
case Opt_compression_hint:
6296
switch (result.uint_32) {
6297
case Opt_compression_hint_none:
6298
opt->alloc_hint_flags &=
6299
~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6300
CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6301
break;
6302
case Opt_compression_hint_compressible:
6303
opt->alloc_hint_flags |=
6304
CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6305
opt->alloc_hint_flags &=
6306
~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6307
break;
6308
case Opt_compression_hint_incompressible:
6309
opt->alloc_hint_flags |=
6310
CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6311
opt->alloc_hint_flags &=
6312
~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6313
break;
6314
default:
6315
BUG();
6316
}
6317
break;
6318
case Opt_read_only:
6319
opt->read_only = true;
6320
break;
6321
case Opt_read_write:
6322
opt->read_only = false;
6323
break;
6324
case Opt_lock_on_read:
6325
opt->lock_on_read = true;
6326
break;
6327
case Opt_exclusive:
6328
opt->exclusive = true;
6329
break;
6330
case Opt_notrim:
6331
opt->trim = false;
6332
break;
6333
default:
6334
BUG();
6335
}
6336
6337
return 0;
6338
6339
out_of_range:
6340
return inval_plog(&log, "%s out of range", param->key);
6341
}
6342
6343
/*
6344
* This duplicates most of generic_parse_monolithic(), untying it from
6345
* fs_context and skipping standard superblock and security options.
6346
*/
6347
static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6348
{
6349
char *key;
6350
int ret = 0;
6351
6352
dout("%s '%s'\n", __func__, options);
6353
while ((key = strsep(&options, ",")) != NULL) {
6354
if (*key) {
6355
struct fs_parameter param = {
6356
.key = key,
6357
.type = fs_value_is_flag,
6358
};
6359
char *value = strchr(key, '=');
6360
size_t v_len = 0;
6361
6362
if (value) {
6363
if (value == key)
6364
continue;
6365
*value++ = 0;
6366
v_len = strlen(value);
6367
param.string = kmemdup_nul(value, v_len,
6368
GFP_KERNEL);
6369
if (!param.string)
6370
return -ENOMEM;
6371
param.type = fs_value_is_string;
6372
}
6373
param.size = v_len;
6374
6375
ret = rbd_parse_param(&param, pctx);
6376
kfree(param.string);
6377
if (ret)
6378
break;
6379
}
6380
}
6381
6382
return ret;
6383
}
6384
6385
/*
6386
* Parse the options provided for an "rbd add" (i.e., rbd image
6387
* mapping) request. These arrive via a write to /sys/bus/rbd/add,
6388
* and the data written is passed here via a NUL-terminated buffer.
6389
* Returns 0 if successful or an error code otherwise.
6390
*
6391
* The information extracted from these options is recorded in
6392
* the other parameters which return dynamically-allocated
6393
* structures:
6394
* ceph_opts
6395
* The address of a pointer that will refer to a ceph options
6396
* structure. Caller must release the returned pointer using
6397
* ceph_destroy_options() when it is no longer needed.
6398
* rbd_opts
6399
* Address of an rbd options pointer. Fully initialized by
6400
* this function; caller must release with kfree().
6401
* spec
6402
* Address of an rbd image specification pointer. Fully
6403
* initialized by this function based on parsed options.
6404
* Caller must release with rbd_spec_put().
6405
*
6406
* The options passed take this form:
6407
* <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6408
* where:
6409
* <mon_addrs>
6410
* A comma-separated list of one or more monitor addresses.
6411
* A monitor address is an ip address, optionally followed
6412
* by a port number (separated by a colon).
6413
* I.e.: ip1[:port1][,ip2[:port2]...]
6414
* <options>
6415
* A comma-separated list of ceph and/or rbd options.
6416
* <pool_name>
6417
* The name of the rados pool containing the rbd image.
6418
* <image_name>
6419
* The name of the image in that pool to map.
6420
* <snap_id>
6421
* An optional snapshot id. If provided, the mapping will
6422
* present data from the image at the time that snapshot was
6423
* created. The image head is used if no snapshot id is
6424
* provided. Snapshot mappings are always read-only.
6425
*/
6426
static int rbd_add_parse_args(const char *buf,
6427
struct ceph_options **ceph_opts,
6428
struct rbd_options **opts,
6429
struct rbd_spec **rbd_spec)
6430
{
6431
size_t len;
6432
char *options;
6433
const char *mon_addrs;
6434
char *snap_name;
6435
size_t mon_addrs_size;
6436
struct rbd_parse_opts_ctx pctx = { 0 };
6437
int ret;
6438
6439
/* The first four tokens are required */
6440
6441
len = next_token(&buf);
6442
if (!len) {
6443
rbd_warn(NULL, "no monitor address(es) provided");
6444
return -EINVAL;
6445
}
6446
mon_addrs = buf;
6447
mon_addrs_size = len;
6448
buf += len;
6449
6450
ret = -EINVAL;
6451
options = dup_token(&buf, NULL);
6452
if (!options)
6453
return -ENOMEM;
6454
if (!*options) {
6455
rbd_warn(NULL, "no options provided");
6456
goto out_err;
6457
}
6458
6459
pctx.spec = rbd_spec_alloc();
6460
if (!pctx.spec)
6461
goto out_mem;
6462
6463
pctx.spec->pool_name = dup_token(&buf, NULL);
6464
if (!pctx.spec->pool_name)
6465
goto out_mem;
6466
if (!*pctx.spec->pool_name) {
6467
rbd_warn(NULL, "no pool name provided");
6468
goto out_err;
6469
}
6470
6471
pctx.spec->image_name = dup_token(&buf, NULL);
6472
if (!pctx.spec->image_name)
6473
goto out_mem;
6474
if (!*pctx.spec->image_name) {
6475
rbd_warn(NULL, "no image name provided");
6476
goto out_err;
6477
}
6478
6479
/*
6480
* Snapshot name is optional; default is to use "-"
6481
* (indicating the head/no snapshot).
6482
*/
6483
len = next_token(&buf);
6484
if (!len) {
6485
buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6486
len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6487
} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6488
ret = -ENAMETOOLONG;
6489
goto out_err;
6490
}
6491
snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6492
if (!snap_name)
6493
goto out_mem;
6494
*(snap_name + len) = '\0';
6495
pctx.spec->snap_name = snap_name;
6496
6497
pctx.copts = ceph_alloc_options();
6498
if (!pctx.copts)
6499
goto out_mem;
6500
6501
/* Initialize all rbd options to the defaults */
6502
6503
pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6504
if (!pctx.opts)
6505
goto out_mem;
6506
6507
pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6508
pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6509
pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6510
pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6511
pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6512
pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6513
pctx.opts->trim = RBD_TRIM_DEFAULT;
6514
6515
ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6516
',');
6517
if (ret)
6518
goto out_err;
6519
6520
ret = rbd_parse_options(options, &pctx);
6521
if (ret)
6522
goto out_err;
6523
6524
*ceph_opts = pctx.copts;
6525
*opts = pctx.opts;
6526
*rbd_spec = pctx.spec;
6527
kfree(options);
6528
return 0;
6529
6530
out_mem:
6531
ret = -ENOMEM;
6532
out_err:
6533
kfree(pctx.opts);
6534
ceph_destroy_options(pctx.copts);
6535
rbd_spec_put(pctx.spec);
6536
kfree(options);
6537
return ret;
6538
}
6539
6540
static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6541
{
6542
down_write(&rbd_dev->lock_rwsem);
6543
if (__rbd_is_lock_owner(rbd_dev))
6544
__rbd_release_lock(rbd_dev);
6545
up_write(&rbd_dev->lock_rwsem);
6546
}
6547
6548
/*
6549
* If the wait is interrupted, an error is returned even if the lock
6550
* was successfully acquired. rbd_dev_image_unlock() will release it
6551
* if needed.
6552
*/
6553
static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6554
{
6555
long ret;
6556
6557
if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6558
if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6559
return 0;
6560
6561
rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6562
return -EINVAL;
6563
}
6564
6565
if (rbd_is_ro(rbd_dev))
6566
return 0;
6567
6568
rbd_assert(!rbd_is_lock_owner(rbd_dev));
6569
queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6570
ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6571
ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6572
if (ret > 0) {
6573
ret = rbd_dev->acquire_err;
6574
} else {
6575
cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6576
if (!ret)
6577
ret = -ETIMEDOUT;
6578
6579
rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6580
}
6581
if (ret)
6582
return ret;
6583
6584
return 0;
6585
}
6586
6587
/*
6588
* An rbd format 2 image has a unique identifier, distinct from the
6589
* name given to it by the user. Internally, that identifier is
6590
* what's used to specify the names of objects related to the image.
6591
*
6592
* A special "rbd id" object is used to map an rbd image name to its
6593
* id. If that object doesn't exist, then there is no v2 rbd image
6594
* with the supplied name.
6595
*
6596
* This function will record the given rbd_dev's image_id field if
6597
* it can be determined, and in that case will return 0. If any
6598
* errors occur a negative errno will be returned and the rbd_dev's
6599
* image_id field will be unchanged (and should be NULL).
6600
*/
6601
static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6602
{
6603
int ret;
6604
size_t size;
6605
CEPH_DEFINE_OID_ONSTACK(oid);
6606
void *response;
6607
char *image_id;
6608
6609
/*
6610
* When probing a parent image, the image id is already
6611
* known (and the image name likely is not). There's no
6612
* need to fetch the image id again in this case. We
6613
* do still need to set the image format though.
6614
*/
6615
if (rbd_dev->spec->image_id) {
6616
rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6617
6618
return 0;
6619
}
6620
6621
/*
6622
* First, see if the format 2 image id file exists, and if
6623
* so, get the image's persistent id from it.
6624
*/
6625
ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6626
rbd_dev->spec->image_name);
6627
if (ret)
6628
return ret;
6629
6630
dout("rbd id object name is %s\n", oid.name);
6631
6632
/* Response will be an encoded string, which includes a length */
6633
size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6634
response = kzalloc(size, GFP_NOIO);
6635
if (!response) {
6636
ret = -ENOMEM;
6637
goto out;
6638
}
6639
6640
/* If it doesn't exist we'll assume it's a format 1 image */
6641
6642
ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6643
"get_id", NULL, 0,
6644
response, size);
6645
dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6646
if (ret == -ENOENT) {
6647
image_id = kstrdup("", GFP_KERNEL);
6648
ret = image_id ? 0 : -ENOMEM;
6649
if (!ret)
6650
rbd_dev->image_format = 1;
6651
} else if (ret >= 0) {
6652
void *p = response;
6653
6654
image_id = ceph_extract_encoded_string(&p, p + ret,
6655
NULL, GFP_NOIO);
6656
ret = PTR_ERR_OR_ZERO(image_id);
6657
if (!ret)
6658
rbd_dev->image_format = 2;
6659
}
6660
6661
if (!ret) {
6662
rbd_dev->spec->image_id = image_id;
6663
dout("image_id is %s\n", image_id);
6664
}
6665
out:
6666
kfree(response);
6667
ceph_oid_destroy(&oid);
6668
return ret;
6669
}
6670
6671
/*
6672
* Undo whatever state changes are made by v1 or v2 header info
6673
* call.
6674
*/
6675
static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6676
{
6677
rbd_dev_parent_put(rbd_dev);
6678
rbd_object_map_free(rbd_dev);
6679
rbd_dev_mapping_clear(rbd_dev);
6680
6681
/* Free dynamic fields from the header, then zero it out */
6682
6683
rbd_image_header_cleanup(&rbd_dev->header);
6684
}
6685
6686
static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6687
struct rbd_image_header *header)
6688
{
6689
int ret;
6690
6691
ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6692
if (ret)
6693
return ret;
6694
6695
/*
6696
* Get the and check features for the image. Currently the
6697
* features are assumed to never change.
6698
*/
6699
ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6700
rbd_is_ro(rbd_dev), &header->features);
6701
if (ret)
6702
return ret;
6703
6704
/* If the image supports fancy striping, get its parameters */
6705
6706
if (header->features & RBD_FEATURE_STRIPINGV2) {
6707
ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6708
&header->stripe_count);
6709
if (ret)
6710
return ret;
6711
}
6712
6713
if (header->features & RBD_FEATURE_DATA_POOL) {
6714
ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6715
if (ret)
6716
return ret;
6717
}
6718
6719
return 0;
6720
}
6721
6722
/*
6723
* @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6724
* rbd_dev_image_probe() recursion depth, which means it's also the
6725
* length of the already discovered part of the parent chain.
6726
*/
6727
static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6728
{
6729
struct rbd_device *parent = NULL;
6730
int ret;
6731
6732
if (!rbd_dev->parent_spec)
6733
return 0;
6734
6735
if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6736
pr_info("parent chain is too long (%d)\n", depth);
6737
ret = -EINVAL;
6738
goto out_err;
6739
}
6740
6741
parent = __rbd_dev_create(rbd_dev->parent_spec);
6742
if (!parent) {
6743
ret = -ENOMEM;
6744
goto out_err;
6745
}
6746
6747
/*
6748
* Images related by parent/child relationships always share
6749
* rbd_client and spec/parent_spec, so bump their refcounts.
6750
*/
6751
parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6752
parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6753
6754
__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6755
6756
ret = rbd_dev_image_probe(parent, depth);
6757
if (ret < 0)
6758
goto out_err;
6759
6760
rbd_dev->parent = parent;
6761
atomic_set(&rbd_dev->parent_ref, 1);
6762
return 0;
6763
6764
out_err:
6765
rbd_dev_unparent(rbd_dev);
6766
rbd_dev_destroy(parent);
6767
return ret;
6768
}
6769
6770
static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6771
{
6772
clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6773
rbd_free_disk(rbd_dev);
6774
if (!single_major)
6775
unregister_blkdev(rbd_dev->major, rbd_dev->name);
6776
}
6777
6778
/*
6779
* rbd_dev->header_rwsem must be locked for write and will be unlocked
6780
* upon return.
6781
*/
6782
static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6783
{
6784
int ret;
6785
6786
/* Record our major and minor device numbers. */
6787
6788
if (!single_major) {
6789
ret = register_blkdev(0, rbd_dev->name);
6790
if (ret < 0)
6791
goto err_out_unlock;
6792
6793
rbd_dev->major = ret;
6794
rbd_dev->minor = 0;
6795
} else {
6796
rbd_dev->major = rbd_major;
6797
rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6798
}
6799
6800
/* Set up the blkdev mapping. */
6801
6802
ret = rbd_init_disk(rbd_dev);
6803
if (ret)
6804
goto err_out_blkdev;
6805
6806
set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6807
set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6808
6809
ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6810
if (ret)
6811
goto err_out_disk;
6812
6813
set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6814
up_write(&rbd_dev->header_rwsem);
6815
return 0;
6816
6817
err_out_disk:
6818
rbd_free_disk(rbd_dev);
6819
err_out_blkdev:
6820
if (!single_major)
6821
unregister_blkdev(rbd_dev->major, rbd_dev->name);
6822
err_out_unlock:
6823
up_write(&rbd_dev->header_rwsem);
6824
return ret;
6825
}
6826
6827
static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6828
{
6829
struct rbd_spec *spec = rbd_dev->spec;
6830
int ret;
6831
6832
/* Record the header object name for this rbd image. */
6833
6834
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6835
if (rbd_dev->image_format == 1)
6836
ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6837
spec->image_name, RBD_SUFFIX);
6838
else
6839
ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6840
RBD_HEADER_PREFIX, spec->image_id);
6841
6842
return ret;
6843
}
6844
6845
static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6846
{
6847
if (!is_snap) {
6848
pr_info("image %s/%s%s%s does not exist\n",
6849
rbd_dev->spec->pool_name,
6850
rbd_dev->spec->pool_ns ?: "",
6851
rbd_dev->spec->pool_ns ? "/" : "",
6852
rbd_dev->spec->image_name);
6853
} else {
6854
pr_info("snap %s/%s%s%s@%s does not exist\n",
6855
rbd_dev->spec->pool_name,
6856
rbd_dev->spec->pool_ns ?: "",
6857
rbd_dev->spec->pool_ns ? "/" : "",
6858
rbd_dev->spec->image_name,
6859
rbd_dev->spec->snap_name);
6860
}
6861
}
6862
6863
static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6864
{
6865
if (!rbd_is_ro(rbd_dev))
6866
rbd_unregister_watch(rbd_dev);
6867
6868
rbd_dev_unprobe(rbd_dev);
6869
rbd_dev->image_format = 0;
6870
kfree(rbd_dev->spec->image_id);
6871
rbd_dev->spec->image_id = NULL;
6872
}
6873
6874
/*
6875
* Probe for the existence of the header object for the given rbd
6876
* device. If this image is the one being mapped (i.e., not a
6877
* parent), initiate a watch on its header object before using that
6878
* object to get detailed information about the rbd image.
6879
*
6880
* On success, returns with header_rwsem held for write if called
6881
* with @depth == 0.
6882
*/
6883
static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6884
{
6885
bool need_watch = !rbd_is_ro(rbd_dev);
6886
int ret;
6887
6888
/*
6889
* Get the id from the image id object. Unless there's an
6890
* error, rbd_dev->spec->image_id will be filled in with
6891
* a dynamically-allocated string, and rbd_dev->image_format
6892
* will be set to either 1 or 2.
6893
*/
6894
ret = rbd_dev_image_id(rbd_dev);
6895
if (ret)
6896
return ret;
6897
6898
ret = rbd_dev_header_name(rbd_dev);
6899
if (ret)
6900
goto err_out_format;
6901
6902
if (need_watch) {
6903
ret = rbd_register_watch(rbd_dev);
6904
if (ret) {
6905
if (ret == -ENOENT)
6906
rbd_print_dne(rbd_dev, false);
6907
goto err_out_format;
6908
}
6909
}
6910
6911
if (!depth)
6912
down_write(&rbd_dev->header_rwsem);
6913
6914
ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6915
if (ret) {
6916
if (ret == -ENOENT && !need_watch)
6917
rbd_print_dne(rbd_dev, false);
6918
goto err_out_probe;
6919
}
6920
6921
rbd_init_layout(rbd_dev);
6922
6923
/*
6924
* If this image is the one being mapped, we have pool name and
6925
* id, image name and id, and snap name - need to fill snap id.
6926
* Otherwise this is a parent image, identified by pool, image
6927
* and snap ids - need to fill in names for those ids.
6928
*/
6929
if (!depth)
6930
ret = rbd_spec_fill_snap_id(rbd_dev);
6931
else
6932
ret = rbd_spec_fill_names(rbd_dev);
6933
if (ret) {
6934
if (ret == -ENOENT)
6935
rbd_print_dne(rbd_dev, true);
6936
goto err_out_probe;
6937
}
6938
6939
ret = rbd_dev_mapping_set(rbd_dev);
6940
if (ret)
6941
goto err_out_probe;
6942
6943
if (rbd_is_snap(rbd_dev) &&
6944
(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6945
ret = rbd_object_map_load(rbd_dev);
6946
if (ret)
6947
goto err_out_probe;
6948
}
6949
6950
if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6951
ret = rbd_dev_setup_parent(rbd_dev);
6952
if (ret)
6953
goto err_out_probe;
6954
}
6955
6956
ret = rbd_dev_probe_parent(rbd_dev, depth);
6957
if (ret)
6958
goto err_out_probe;
6959
6960
dout("discovered format %u image, header name is %s\n",
6961
rbd_dev->image_format, rbd_dev->header_oid.name);
6962
return 0;
6963
6964
err_out_probe:
6965
if (!depth)
6966
up_write(&rbd_dev->header_rwsem);
6967
if (need_watch)
6968
rbd_unregister_watch(rbd_dev);
6969
rbd_dev_unprobe(rbd_dev);
6970
err_out_format:
6971
rbd_dev->image_format = 0;
6972
kfree(rbd_dev->spec->image_id);
6973
rbd_dev->spec->image_id = NULL;
6974
return ret;
6975
}
6976
6977
static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6978
struct rbd_image_header *header)
6979
{
6980
rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6981
rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6982
6983
if (rbd_dev->header.image_size != header->image_size) {
6984
rbd_dev->header.image_size = header->image_size;
6985
6986
if (!rbd_is_snap(rbd_dev)) {
6987
rbd_dev->mapping.size = header->image_size;
6988
rbd_dev_update_size(rbd_dev);
6989
}
6990
}
6991
6992
ceph_put_snap_context(rbd_dev->header.snapc);
6993
rbd_dev->header.snapc = header->snapc;
6994
header->snapc = NULL;
6995
6996
if (rbd_dev->image_format == 1) {
6997
kfree(rbd_dev->header.snap_names);
6998
rbd_dev->header.snap_names = header->snap_names;
6999
header->snap_names = NULL;
7000
7001
kfree(rbd_dev->header.snap_sizes);
7002
rbd_dev->header.snap_sizes = header->snap_sizes;
7003
header->snap_sizes = NULL;
7004
}
7005
}
7006
7007
static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7008
struct parent_image_info *pii)
7009
{
7010
if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7011
/*
7012
* Either the parent never existed, or we have
7013
* record of it but the image got flattened so it no
7014
* longer has a parent. When the parent of a
7015
* layered image disappears we immediately set the
7016
* overlap to 0. The effect of this is that all new
7017
* requests will be treated as if the image had no
7018
* parent.
7019
*
7020
* If !pii.has_overlap, the parent image spec is not
7021
* applicable. It's there to avoid duplication in each
7022
* snapshot record.
7023
*/
7024
if (rbd_dev->parent_overlap) {
7025
rbd_dev->parent_overlap = 0;
7026
rbd_dev_parent_put(rbd_dev);
7027
pr_info("%s: clone has been flattened\n",
7028
rbd_dev->disk->disk_name);
7029
}
7030
} else {
7031
rbd_assert(rbd_dev->parent_spec);
7032
7033
/*
7034
* Update the parent overlap. If it became zero, issue
7035
* a warning as we will proceed as if there is no parent.
7036
*/
7037
if (!pii->overlap && rbd_dev->parent_overlap)
7038
rbd_warn(rbd_dev,
7039
"clone has become standalone (overlap 0)");
7040
rbd_dev->parent_overlap = pii->overlap;
7041
}
7042
}
7043
7044
static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7045
{
7046
struct rbd_image_header header = { 0 };
7047
struct parent_image_info pii = { 0 };
7048
int ret;
7049
7050
dout("%s rbd_dev %p\n", __func__, rbd_dev);
7051
7052
ret = rbd_dev_header_info(rbd_dev, &header, false);
7053
if (ret)
7054
goto out;
7055
7056
/*
7057
* If there is a parent, see if it has disappeared due to the
7058
* mapped image getting flattened.
7059
*/
7060
if (rbd_dev->parent) {
7061
ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7062
if (ret)
7063
goto out;
7064
}
7065
7066
down_write(&rbd_dev->header_rwsem);
7067
rbd_dev_update_header(rbd_dev, &header);
7068
if (rbd_dev->parent)
7069
rbd_dev_update_parent(rbd_dev, &pii);
7070
up_write(&rbd_dev->header_rwsem);
7071
7072
out:
7073
rbd_parent_info_cleanup(&pii);
7074
rbd_image_header_cleanup(&header);
7075
return ret;
7076
}
7077
7078
static ssize_t do_rbd_add(const char *buf, size_t count)
7079
{
7080
struct rbd_device *rbd_dev = NULL;
7081
struct ceph_options *ceph_opts = NULL;
7082
struct rbd_options *rbd_opts = NULL;
7083
struct rbd_spec *spec = NULL;
7084
struct rbd_client *rbdc;
7085
int rc;
7086
7087
if (!capable(CAP_SYS_ADMIN))
7088
return -EPERM;
7089
7090
if (!try_module_get(THIS_MODULE))
7091
return -ENODEV;
7092
7093
/* parse add command */
7094
rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7095
if (rc < 0)
7096
goto out;
7097
7098
rbdc = rbd_get_client(ceph_opts);
7099
if (IS_ERR(rbdc)) {
7100
rc = PTR_ERR(rbdc);
7101
goto err_out_args;
7102
}
7103
7104
/* pick the pool */
7105
rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7106
if (rc < 0) {
7107
if (rc == -ENOENT)
7108
pr_info("pool %s does not exist\n", spec->pool_name);
7109
goto err_out_client;
7110
}
7111
spec->pool_id = (u64)rc;
7112
7113
rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7114
if (!rbd_dev) {
7115
rc = -ENOMEM;
7116
goto err_out_client;
7117
}
7118
rbdc = NULL; /* rbd_dev now owns this */
7119
spec = NULL; /* rbd_dev now owns this */
7120
rbd_opts = NULL; /* rbd_dev now owns this */
7121
7122
/* if we are mapping a snapshot it will be a read-only mapping */
7123
if (rbd_dev->opts->read_only ||
7124
strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7125
__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7126
7127
rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7128
if (!rbd_dev->config_info) {
7129
rc = -ENOMEM;
7130
goto err_out_rbd_dev;
7131
}
7132
7133
rc = rbd_dev_image_probe(rbd_dev, 0);
7134
if (rc < 0)
7135
goto err_out_rbd_dev;
7136
7137
if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7138
rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7139
rbd_dev->layout.object_size);
7140
rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7141
}
7142
7143
rc = rbd_dev_device_setup(rbd_dev);
7144
if (rc)
7145
goto err_out_image_probe;
7146
7147
rc = rbd_add_acquire_lock(rbd_dev);
7148
if (rc)
7149
goto err_out_image_lock;
7150
7151
/* Everything's ready. Announce the disk to the world. */
7152
7153
rc = device_add(&rbd_dev->dev);
7154
if (rc)
7155
goto err_out_image_lock;
7156
7157
rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7158
if (rc)
7159
goto err_out_cleanup_disk;
7160
7161
spin_lock(&rbd_dev_list_lock);
7162
list_add_tail(&rbd_dev->node, &rbd_dev_list);
7163
spin_unlock(&rbd_dev_list_lock);
7164
7165
pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7166
(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7167
rbd_dev->header.features);
7168
rc = count;
7169
out:
7170
module_put(THIS_MODULE);
7171
return rc;
7172
7173
err_out_cleanup_disk:
7174
rbd_free_disk(rbd_dev);
7175
err_out_image_lock:
7176
rbd_dev_image_unlock(rbd_dev);
7177
rbd_dev_device_release(rbd_dev);
7178
err_out_image_probe:
7179
rbd_dev_image_release(rbd_dev);
7180
err_out_rbd_dev:
7181
rbd_dev_destroy(rbd_dev);
7182
err_out_client:
7183
rbd_put_client(rbdc);
7184
err_out_args:
7185
rbd_spec_put(spec);
7186
kfree(rbd_opts);
7187
goto out;
7188
}
7189
7190
static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7191
{
7192
if (single_major)
7193
return -EINVAL;
7194
7195
return do_rbd_add(buf, count);
7196
}
7197
7198
static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7199
size_t count)
7200
{
7201
return do_rbd_add(buf, count);
7202
}
7203
7204
static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7205
{
7206
while (rbd_dev->parent) {
7207
struct rbd_device *first = rbd_dev;
7208
struct rbd_device *second = first->parent;
7209
struct rbd_device *third;
7210
7211
/*
7212
* Follow to the parent with no grandparent and
7213
* remove it.
7214
*/
7215
while (second && (third = second->parent)) {
7216
first = second;
7217
second = third;
7218
}
7219
rbd_assert(second);
7220
rbd_dev_image_release(second);
7221
rbd_dev_destroy(second);
7222
first->parent = NULL;
7223
first->parent_overlap = 0;
7224
7225
rbd_assert(first->parent_spec);
7226
rbd_spec_put(first->parent_spec);
7227
first->parent_spec = NULL;
7228
}
7229
}
7230
7231
static ssize_t do_rbd_remove(const char *buf, size_t count)
7232
{
7233
struct rbd_device *rbd_dev = NULL;
7234
int dev_id;
7235
char opt_buf[6];
7236
bool force = false;
7237
int ret;
7238
7239
if (!capable(CAP_SYS_ADMIN))
7240
return -EPERM;
7241
7242
dev_id = -1;
7243
opt_buf[0] = '\0';
7244
sscanf(buf, "%d %5s", &dev_id, opt_buf);
7245
if (dev_id < 0) {
7246
pr_err("dev_id out of range\n");
7247
return -EINVAL;
7248
}
7249
if (opt_buf[0] != '\0') {
7250
if (!strcmp(opt_buf, "force")) {
7251
force = true;
7252
} else {
7253
pr_err("bad remove option at '%s'\n", opt_buf);
7254
return -EINVAL;
7255
}
7256
}
7257
7258
ret = -ENOENT;
7259
spin_lock(&rbd_dev_list_lock);
7260
list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7261
if (rbd_dev->dev_id == dev_id) {
7262
ret = 0;
7263
break;
7264
}
7265
}
7266
if (!ret) {
7267
spin_lock_irq(&rbd_dev->lock);
7268
if (rbd_dev->open_count && !force)
7269
ret = -EBUSY;
7270
else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7271
&rbd_dev->flags))
7272
ret = -EINPROGRESS;
7273
spin_unlock_irq(&rbd_dev->lock);
7274
}
7275
spin_unlock(&rbd_dev_list_lock);
7276
if (ret)
7277
return ret;
7278
7279
if (force) {
7280
/*
7281
* Prevent new IO from being queued and wait for existing
7282
* IO to complete/fail.
7283
*/
7284
unsigned int memflags = blk_mq_freeze_queue(rbd_dev->disk->queue);
7285
7286
blk_mark_disk_dead(rbd_dev->disk);
7287
blk_mq_unfreeze_queue(rbd_dev->disk->queue, memflags);
7288
}
7289
7290
del_gendisk(rbd_dev->disk);
7291
spin_lock(&rbd_dev_list_lock);
7292
list_del_init(&rbd_dev->node);
7293
spin_unlock(&rbd_dev_list_lock);
7294
device_del(&rbd_dev->dev);
7295
7296
rbd_dev_image_unlock(rbd_dev);
7297
rbd_dev_device_release(rbd_dev);
7298
rbd_dev_image_release(rbd_dev);
7299
rbd_dev_destroy(rbd_dev);
7300
return count;
7301
}
7302
7303
static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7304
{
7305
if (single_major)
7306
return -EINVAL;
7307
7308
return do_rbd_remove(buf, count);
7309
}
7310
7311
static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7312
size_t count)
7313
{
7314
return do_rbd_remove(buf, count);
7315
}
7316
7317
/*
7318
* create control files in sysfs
7319
* /sys/bus/rbd/...
7320
*/
7321
static int __init rbd_sysfs_init(void)
7322
{
7323
int ret;
7324
7325
ret = device_register(&rbd_root_dev);
7326
if (ret < 0) {
7327
put_device(&rbd_root_dev);
7328
return ret;
7329
}
7330
7331
ret = bus_register(&rbd_bus_type);
7332
if (ret < 0)
7333
device_unregister(&rbd_root_dev);
7334
7335
return ret;
7336
}
7337
7338
static void __exit rbd_sysfs_cleanup(void)
7339
{
7340
bus_unregister(&rbd_bus_type);
7341
device_unregister(&rbd_root_dev);
7342
}
7343
7344
static int __init rbd_slab_init(void)
7345
{
7346
rbd_assert(!rbd_img_request_cache);
7347
rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7348
if (!rbd_img_request_cache)
7349
return -ENOMEM;
7350
7351
rbd_assert(!rbd_obj_request_cache);
7352
rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7353
if (!rbd_obj_request_cache)
7354
goto out_err;
7355
7356
return 0;
7357
7358
out_err:
7359
kmem_cache_destroy(rbd_img_request_cache);
7360
rbd_img_request_cache = NULL;
7361
return -ENOMEM;
7362
}
7363
7364
static void rbd_slab_exit(void)
7365
{
7366
rbd_assert(rbd_obj_request_cache);
7367
kmem_cache_destroy(rbd_obj_request_cache);
7368
rbd_obj_request_cache = NULL;
7369
7370
rbd_assert(rbd_img_request_cache);
7371
kmem_cache_destroy(rbd_img_request_cache);
7372
rbd_img_request_cache = NULL;
7373
}
7374
7375
static int __init rbd_init(void)
7376
{
7377
int rc;
7378
7379
if (!libceph_compatible(NULL)) {
7380
rbd_warn(NULL, "libceph incompatibility (quitting)");
7381
return -EINVAL;
7382
}
7383
7384
rc = rbd_slab_init();
7385
if (rc)
7386
return rc;
7387
7388
/*
7389
* The number of active work items is limited by the number of
7390
* rbd devices * queue depth, so leave @max_active at default.
7391
*/
7392
rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7393
if (!rbd_wq) {
7394
rc = -ENOMEM;
7395
goto err_out_slab;
7396
}
7397
7398
if (single_major) {
7399
rbd_major = register_blkdev(0, RBD_DRV_NAME);
7400
if (rbd_major < 0) {
7401
rc = rbd_major;
7402
goto err_out_wq;
7403
}
7404
}
7405
7406
rc = rbd_sysfs_init();
7407
if (rc)
7408
goto err_out_blkdev;
7409
7410
if (single_major)
7411
pr_info("loaded (major %d)\n", rbd_major);
7412
else
7413
pr_info("loaded\n");
7414
7415
return 0;
7416
7417
err_out_blkdev:
7418
if (single_major)
7419
unregister_blkdev(rbd_major, RBD_DRV_NAME);
7420
err_out_wq:
7421
destroy_workqueue(rbd_wq);
7422
err_out_slab:
7423
rbd_slab_exit();
7424
return rc;
7425
}
7426
7427
static void __exit rbd_exit(void)
7428
{
7429
ida_destroy(&rbd_dev_id_ida);
7430
rbd_sysfs_cleanup();
7431
if (single_major)
7432
unregister_blkdev(rbd_major, RBD_DRV_NAME);
7433
destroy_workqueue(rbd_wq);
7434
rbd_slab_exit();
7435
}
7436
7437
module_init(rbd_init);
7438
module_exit(rbd_exit);
7439
7440
MODULE_AUTHOR("Alex Elder <[email protected]>");
7441
MODULE_AUTHOR("Sage Weil <[email protected]>");
7442
MODULE_AUTHOR("Yehuda Sadeh <[email protected]>");
7443
/* following authorship retained from original osdblk.c */
7444
MODULE_AUTHOR("Jeff Garzik <[email protected]>");
7445
7446
MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7447
MODULE_LICENSE("GPL");
7448
7449