Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/block/xen-blkfront.c
26278 views
1
/*
2
* blkfront.c
3
*
4
* XenLinux virtual block device driver.
5
*
6
* Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7
* Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8
* Copyright (c) 2004, Christian Limpach
9
* Copyright (c) 2004, Andrew Warfield
10
* Copyright (c) 2005, Christopher Clark
11
* Copyright (c) 2005, XenSource Ltd
12
*
13
* This program is free software; you can redistribute it and/or
14
* modify it under the terms of the GNU General Public License version 2
15
* as published by the Free Software Foundation; or, when distributed
16
* separately from the Linux kernel or incorporated into other
17
* software packages, subject to the following license:
18
*
19
* Permission is hereby granted, free of charge, to any person obtaining a copy
20
* of this source file (the "Software"), to deal in the Software without
21
* restriction, including without limitation the rights to use, copy, modify,
22
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
23
* and to permit persons to whom the Software is furnished to do so, subject to
24
* the following conditions:
25
*
26
* The above copyright notice and this permission notice shall be included in
27
* all copies or substantial portions of the Software.
28
*
29
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35
* IN THE SOFTWARE.
36
*/
37
38
#include <linux/interrupt.h>
39
#include <linux/blkdev.h>
40
#include <linux/blk-mq.h>
41
#include <linux/hdreg.h>
42
#include <linux/cdrom.h>
43
#include <linux/module.h>
44
#include <linux/slab.h>
45
#include <linux/major.h>
46
#include <linux/mutex.h>
47
#include <linux/scatterlist.h>
48
#include <linux/bitmap.h>
49
#include <linux/list.h>
50
#include <linux/workqueue.h>
51
#include <linux/sched/mm.h>
52
53
#include <xen/xen.h>
54
#include <xen/xenbus.h>
55
#include <xen/grant_table.h>
56
#include <xen/events.h>
57
#include <xen/page.h>
58
#include <xen/platform_pci.h>
59
60
#include <xen/interface/grant_table.h>
61
#include <xen/interface/io/blkif.h>
62
#include <xen/interface/io/protocols.h>
63
64
#include <asm/xen/hypervisor.h>
65
66
/*
67
* The minimal size of segment supported by the block framework is PAGE_SIZE.
68
* When Linux is using a different page size than Xen, it may not be possible
69
* to put all the data in a single segment.
70
* This can happen when the backend doesn't support indirect descriptor and
71
* therefore the maximum amount of data that a request can carry is
72
* BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73
*
74
* Note that we only support one extra request. So the Linux page size
75
* should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76
* 88KB.
77
*/
78
#define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79
80
enum blkif_state {
81
BLKIF_STATE_DISCONNECTED,
82
BLKIF_STATE_CONNECTED,
83
BLKIF_STATE_SUSPENDED,
84
BLKIF_STATE_ERROR,
85
};
86
87
struct grant {
88
grant_ref_t gref;
89
struct page *page;
90
struct list_head node;
91
};
92
93
enum blk_req_status {
94
REQ_PROCESSING,
95
REQ_WAITING,
96
REQ_DONE,
97
REQ_ERROR,
98
REQ_EOPNOTSUPP,
99
};
100
101
struct blk_shadow {
102
struct blkif_request req;
103
struct request *request;
104
struct grant **grants_used;
105
struct grant **indirect_grants;
106
struct scatterlist *sg;
107
unsigned int num_sg;
108
enum blk_req_status status;
109
110
#define NO_ASSOCIATED_ID ~0UL
111
/*
112
* Id of the sibling if we ever need 2 requests when handling a
113
* block I/O request
114
*/
115
unsigned long associated_id;
116
};
117
118
struct blkif_req {
119
blk_status_t error;
120
};
121
122
static inline struct blkif_req *blkif_req(struct request *rq)
123
{
124
return blk_mq_rq_to_pdu(rq);
125
}
126
127
static DEFINE_MUTEX(blkfront_mutex);
128
static const struct block_device_operations xlvbd_block_fops;
129
static struct delayed_work blkfront_work;
130
static LIST_HEAD(info_list);
131
132
/*
133
* Maximum number of segments in indirect requests, the actual value used by
134
* the frontend driver is the minimum of this value and the value provided
135
* by the backend driver.
136
*/
137
138
static unsigned int xen_blkif_max_segments = 32;
139
module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140
MODULE_PARM_DESC(max_indirect_segments,
141
"Maximum amount of segments in indirect requests (default is 32)");
142
143
static unsigned int xen_blkif_max_queues = 4;
144
module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145
MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146
147
/*
148
* Maximum order of pages to be used for the shared ring between front and
149
* backend, 4KB page granularity is used.
150
*/
151
static unsigned int xen_blkif_max_ring_order;
152
module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153
MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154
155
static bool __read_mostly xen_blkif_trusted = true;
156
module_param_named(trusted, xen_blkif_trusted, bool, 0644);
157
MODULE_PARM_DESC(trusted, "Is the backend trusted");
158
159
#define BLK_RING_SIZE(info) \
160
__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
161
162
/*
163
* ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
164
* characters are enough. Define to 20 to keep consistent with backend.
165
*/
166
#define RINGREF_NAME_LEN (20)
167
/*
168
* queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
169
*/
170
#define QUEUE_NAME_LEN (17)
171
172
/*
173
* Per-ring info.
174
* Every blkfront device can associate with one or more blkfront_ring_info,
175
* depending on how many hardware queues/rings to be used.
176
*/
177
struct blkfront_ring_info {
178
/* Lock to protect data in every ring buffer. */
179
spinlock_t ring_lock;
180
struct blkif_front_ring ring;
181
unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
182
unsigned int evtchn, irq;
183
struct work_struct work;
184
struct gnttab_free_callback callback;
185
struct list_head indirect_pages;
186
struct list_head grants;
187
unsigned int persistent_gnts_c;
188
unsigned long shadow_free;
189
struct blkfront_info *dev_info;
190
struct blk_shadow shadow[];
191
};
192
193
/*
194
* We have one of these per vbd, whether ide, scsi or 'other'. They
195
* hang in private_data off the gendisk structure. We may end up
196
* putting all kinds of interesting stuff here :-)
197
*/
198
struct blkfront_info
199
{
200
struct mutex mutex;
201
struct xenbus_device *xbdev;
202
struct gendisk *gd;
203
u16 sector_size;
204
unsigned int physical_sector_size;
205
unsigned long vdisk_info;
206
int vdevice;
207
blkif_vdev_t handle;
208
enum blkif_state connected;
209
/* Number of pages per ring buffer. */
210
unsigned int nr_ring_pages;
211
struct request_queue *rq;
212
unsigned int feature_flush:1;
213
unsigned int feature_fua:1;
214
unsigned int feature_discard:1;
215
unsigned int feature_secdiscard:1;
216
/* Connect-time cached feature_persistent parameter */
217
unsigned int feature_persistent_parm:1;
218
/* Persistent grants feature negotiation result */
219
unsigned int feature_persistent:1;
220
unsigned int bounce:1;
221
unsigned int discard_granularity;
222
unsigned int discard_alignment;
223
/* Number of 4KB segments handled */
224
unsigned int max_indirect_segments;
225
int is_ready;
226
struct blk_mq_tag_set tag_set;
227
struct blkfront_ring_info *rinfo;
228
unsigned int nr_rings;
229
unsigned int rinfo_size;
230
/* Save uncomplete reqs and bios for migration. */
231
struct list_head requests;
232
struct bio_list bio_list;
233
struct list_head info_list;
234
};
235
236
static unsigned int nr_minors;
237
static unsigned long *minors;
238
static DEFINE_SPINLOCK(minor_lock);
239
240
#define PARTS_PER_DISK 16
241
#define PARTS_PER_EXT_DISK 256
242
243
#define BLKIF_MAJOR(dev) ((dev)>>8)
244
#define BLKIF_MINOR(dev) ((dev) & 0xff)
245
246
#define EXT_SHIFT 28
247
#define EXTENDED (1<<EXT_SHIFT)
248
#define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249
#define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250
#define EMULATED_HD_DISK_MINOR_OFFSET (0)
251
#define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252
#define EMULATED_SD_DISK_MINOR_OFFSET (0)
253
#define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254
255
#define DEV_NAME "xvd" /* name in /dev */
256
257
/*
258
* Grants are always the same size as a Xen page (i.e 4KB).
259
* A physical segment is always the same size as a Linux page.
260
* Number of grants per physical segment
261
*/
262
#define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
263
264
#define GRANTS_PER_INDIRECT_FRAME \
265
(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266
267
#define INDIRECT_GREFS(_grants) \
268
DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269
270
static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271
static void blkfront_gather_backend_features(struct blkfront_info *info);
272
static int negotiate_mq(struct blkfront_info *info);
273
274
#define for_each_rinfo(info, ptr, idx) \
275
for ((ptr) = (info)->rinfo, (idx) = 0; \
276
(idx) < (info)->nr_rings; \
277
(idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278
279
static inline struct blkfront_ring_info *
280
get_rinfo(const struct blkfront_info *info, unsigned int i)
281
{
282
BUG_ON(i >= info->nr_rings);
283
return (void *)info->rinfo + i * info->rinfo_size;
284
}
285
286
static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287
{
288
unsigned long free = rinfo->shadow_free;
289
290
BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291
rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292
rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293
return free;
294
}
295
296
static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297
unsigned long id)
298
{
299
if (rinfo->shadow[id].req.u.rw.id != id)
300
return -EINVAL;
301
if (rinfo->shadow[id].request == NULL)
302
return -EINVAL;
303
rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
304
rinfo->shadow[id].request = NULL;
305
rinfo->shadow_free = id;
306
return 0;
307
}
308
309
static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310
{
311
struct blkfront_info *info = rinfo->dev_info;
312
struct page *granted_page;
313
struct grant *gnt_list_entry, *n;
314
int i = 0;
315
316
while (i < num) {
317
gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318
if (!gnt_list_entry)
319
goto out_of_memory;
320
321
if (info->bounce) {
322
granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323
if (!granted_page) {
324
kfree(gnt_list_entry);
325
goto out_of_memory;
326
}
327
gnt_list_entry->page = granted_page;
328
}
329
330
gnt_list_entry->gref = INVALID_GRANT_REF;
331
list_add(&gnt_list_entry->node, &rinfo->grants);
332
i++;
333
}
334
335
return 0;
336
337
out_of_memory:
338
list_for_each_entry_safe(gnt_list_entry, n,
339
&rinfo->grants, node) {
340
list_del(&gnt_list_entry->node);
341
if (info->bounce)
342
__free_page(gnt_list_entry->page);
343
kfree(gnt_list_entry);
344
i--;
345
}
346
BUG_ON(i != 0);
347
return -ENOMEM;
348
}
349
350
static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351
{
352
struct grant *gnt_list_entry;
353
354
BUG_ON(list_empty(&rinfo->grants));
355
gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356
node);
357
list_del(&gnt_list_entry->node);
358
359
if (gnt_list_entry->gref != INVALID_GRANT_REF)
360
rinfo->persistent_gnts_c--;
361
362
return gnt_list_entry;
363
}
364
365
static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366
const struct blkfront_info *info)
367
{
368
gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369
info->xbdev->otherend_id,
370
gnt_list_entry->page,
371
0);
372
}
373
374
static struct grant *get_grant(grant_ref_t *gref_head,
375
unsigned long gfn,
376
struct blkfront_ring_info *rinfo)
377
{
378
struct grant *gnt_list_entry = get_free_grant(rinfo);
379
struct blkfront_info *info = rinfo->dev_info;
380
381
if (gnt_list_entry->gref != INVALID_GRANT_REF)
382
return gnt_list_entry;
383
384
/* Assign a gref to this page */
385
gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386
BUG_ON(gnt_list_entry->gref == -ENOSPC);
387
if (info->bounce)
388
grant_foreign_access(gnt_list_entry, info);
389
else {
390
/* Grant access to the GFN passed by the caller */
391
gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392
info->xbdev->otherend_id,
393
gfn, 0);
394
}
395
396
return gnt_list_entry;
397
}
398
399
static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400
struct blkfront_ring_info *rinfo)
401
{
402
struct grant *gnt_list_entry = get_free_grant(rinfo);
403
struct blkfront_info *info = rinfo->dev_info;
404
405
if (gnt_list_entry->gref != INVALID_GRANT_REF)
406
return gnt_list_entry;
407
408
/* Assign a gref to this page */
409
gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410
BUG_ON(gnt_list_entry->gref == -ENOSPC);
411
if (!info->bounce) {
412
struct page *indirect_page;
413
414
/* Fetch a pre-allocated page to use for indirect grefs */
415
BUG_ON(list_empty(&rinfo->indirect_pages));
416
indirect_page = list_first_entry(&rinfo->indirect_pages,
417
struct page, lru);
418
list_del(&indirect_page->lru);
419
gnt_list_entry->page = indirect_page;
420
}
421
grant_foreign_access(gnt_list_entry, info);
422
423
return gnt_list_entry;
424
}
425
426
static const char *op_name(int op)
427
{
428
static const char *const names[] = {
429
[BLKIF_OP_READ] = "read",
430
[BLKIF_OP_WRITE] = "write",
431
[BLKIF_OP_WRITE_BARRIER] = "barrier",
432
[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433
[BLKIF_OP_DISCARD] = "discard" };
434
435
if (op < 0 || op >= ARRAY_SIZE(names))
436
return "unknown";
437
438
if (!names[op])
439
return "reserved";
440
441
return names[op];
442
}
443
static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444
{
445
unsigned int end = minor + nr;
446
int rc;
447
448
if (end > nr_minors) {
449
unsigned long *bitmap, *old;
450
451
bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452
GFP_KERNEL);
453
if (bitmap == NULL)
454
return -ENOMEM;
455
456
spin_lock(&minor_lock);
457
if (end > nr_minors) {
458
old = minors;
459
memcpy(bitmap, minors,
460
BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461
minors = bitmap;
462
nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463
} else
464
old = bitmap;
465
spin_unlock(&minor_lock);
466
kfree(old);
467
}
468
469
spin_lock(&minor_lock);
470
if (find_next_bit(minors, end, minor) >= end) {
471
bitmap_set(minors, minor, nr);
472
rc = 0;
473
} else
474
rc = -EBUSY;
475
spin_unlock(&minor_lock);
476
477
return rc;
478
}
479
480
static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481
{
482
unsigned int end = minor + nr;
483
484
BUG_ON(end > nr_minors);
485
spin_lock(&minor_lock);
486
bitmap_clear(minors, minor, nr);
487
spin_unlock(&minor_lock);
488
}
489
490
static void blkif_restart_queue_callback(void *arg)
491
{
492
struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493
schedule_work(&rinfo->work);
494
}
495
496
static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497
{
498
/* We don't have real geometry info, but let's at least return
499
values consistent with the size of the device */
500
sector_t nsect = get_capacity(bd->bd_disk);
501
sector_t cylinders = nsect;
502
503
hg->heads = 0xff;
504
hg->sectors = 0x3f;
505
sector_div(cylinders, hg->heads * hg->sectors);
506
hg->cylinders = cylinders;
507
if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508
hg->cylinders = 0xffff;
509
return 0;
510
}
511
512
static int blkif_ioctl(struct block_device *bdev, blk_mode_t mode,
513
unsigned command, unsigned long argument)
514
{
515
struct blkfront_info *info = bdev->bd_disk->private_data;
516
int i;
517
518
switch (command) {
519
case CDROMMULTISESSION:
520
for (i = 0; i < sizeof(struct cdrom_multisession); i++)
521
if (put_user(0, (char __user *)(argument + i)))
522
return -EFAULT;
523
return 0;
524
case CDROM_GET_CAPABILITY:
525
if (!(info->vdisk_info & VDISK_CDROM))
526
return -EINVAL;
527
return 0;
528
default:
529
return -EINVAL;
530
}
531
}
532
533
static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
534
struct request *req,
535
struct blkif_request **ring_req)
536
{
537
unsigned long id;
538
539
*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
540
rinfo->ring.req_prod_pvt++;
541
542
id = get_id_from_freelist(rinfo);
543
rinfo->shadow[id].request = req;
544
rinfo->shadow[id].status = REQ_PROCESSING;
545
rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
546
547
rinfo->shadow[id].req.u.rw.id = id;
548
549
return id;
550
}
551
552
static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
553
{
554
struct blkfront_info *info = rinfo->dev_info;
555
struct blkif_request *ring_req, *final_ring_req;
556
unsigned long id;
557
558
/* Fill out a communications ring structure. */
559
id = blkif_ring_get_request(rinfo, req, &final_ring_req);
560
ring_req = &rinfo->shadow[id].req;
561
562
ring_req->operation = BLKIF_OP_DISCARD;
563
ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
564
ring_req->u.discard.id = id;
565
ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
566
if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
567
ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
568
else
569
ring_req->u.discard.flag = 0;
570
571
/* Copy the request to the ring page. */
572
*final_ring_req = *ring_req;
573
rinfo->shadow[id].status = REQ_WAITING;
574
575
return 0;
576
}
577
578
struct setup_rw_req {
579
unsigned int grant_idx;
580
struct blkif_request_segment *segments;
581
struct blkfront_ring_info *rinfo;
582
struct blkif_request *ring_req;
583
grant_ref_t gref_head;
584
unsigned int id;
585
/* Only used when persistent grant is used and it's a write request */
586
bool need_copy;
587
unsigned int bvec_off;
588
char *bvec_data;
589
590
bool require_extra_req;
591
struct blkif_request *extra_ring_req;
592
};
593
594
static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595
unsigned int len, void *data)
596
{
597
struct setup_rw_req *setup = data;
598
int n, ref;
599
struct grant *gnt_list_entry;
600
unsigned int fsect, lsect;
601
/* Convenient aliases */
602
unsigned int grant_idx = setup->grant_idx;
603
struct blkif_request *ring_req = setup->ring_req;
604
struct blkfront_ring_info *rinfo = setup->rinfo;
605
/*
606
* We always use the shadow of the first request to store the list
607
* of grant associated to the block I/O request. This made the
608
* completion more easy to handle even if the block I/O request is
609
* split.
610
*/
611
struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612
613
if (unlikely(setup->require_extra_req &&
614
grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615
/*
616
* We are using the second request, setup grant_idx
617
* to be the index of the segment array.
618
*/
619
grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620
ring_req = setup->extra_ring_req;
621
}
622
623
if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624
(grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625
if (setup->segments)
626
kunmap_atomic(setup->segments);
627
628
n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629
gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630
shadow->indirect_grants[n] = gnt_list_entry;
631
setup->segments = kmap_atomic(gnt_list_entry->page);
632
ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633
}
634
635
gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636
ref = gnt_list_entry->gref;
637
/*
638
* All the grants are stored in the shadow of the first
639
* request. Therefore we have to use the global index.
640
*/
641
shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642
643
if (setup->need_copy) {
644
void *shared_data;
645
646
shared_data = kmap_atomic(gnt_list_entry->page);
647
/*
648
* this does not wipe data stored outside the
649
* range sg->offset..sg->offset+sg->length.
650
* Therefore, blkback *could* see data from
651
* previous requests. This is OK as long as
652
* persistent grants are shared with just one
653
* domain. It may need refactoring if this
654
* changes
655
*/
656
memcpy(shared_data + offset,
657
setup->bvec_data + setup->bvec_off,
658
len);
659
660
kunmap_atomic(shared_data);
661
setup->bvec_off += len;
662
}
663
664
fsect = offset >> 9;
665
lsect = fsect + (len >> 9) - 1;
666
if (ring_req->operation != BLKIF_OP_INDIRECT) {
667
ring_req->u.rw.seg[grant_idx] =
668
(struct blkif_request_segment) {
669
.gref = ref,
670
.first_sect = fsect,
671
.last_sect = lsect };
672
} else {
673
setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674
(struct blkif_request_segment) {
675
.gref = ref,
676
.first_sect = fsect,
677
.last_sect = lsect };
678
}
679
680
(setup->grant_idx)++;
681
}
682
683
static void blkif_setup_extra_req(struct blkif_request *first,
684
struct blkif_request *second)
685
{
686
uint16_t nr_segments = first->u.rw.nr_segments;
687
688
/*
689
* The second request is only present when the first request uses
690
* all its segments. It's always the continuity of the first one.
691
*/
692
first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693
694
second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695
second->u.rw.sector_number = first->u.rw.sector_number +
696
(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697
698
second->u.rw.handle = first->u.rw.handle;
699
second->operation = first->operation;
700
}
701
702
static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703
{
704
struct blkfront_info *info = rinfo->dev_info;
705
struct blkif_request *ring_req, *extra_ring_req = NULL;
706
struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
707
unsigned long id, extra_id = NO_ASSOCIATED_ID;
708
bool require_extra_req = false;
709
int i;
710
struct setup_rw_req setup = {
711
.grant_idx = 0,
712
.segments = NULL,
713
.rinfo = rinfo,
714
.need_copy = rq_data_dir(req) && info->bounce,
715
};
716
717
/*
718
* Used to store if we are able to queue the request by just using
719
* existing persistent grants, or if we have to get new grants,
720
* as there are not sufficiently many free.
721
*/
722
bool new_persistent_gnts = false;
723
struct scatterlist *sg;
724
int num_sg, max_grefs, num_grant;
725
726
max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
727
if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
728
/*
729
* If we are using indirect segments we need to account
730
* for the indirect grefs used in the request.
731
*/
732
max_grefs += INDIRECT_GREFS(max_grefs);
733
734
/* Check if we have enough persistent grants to allocate a requests */
735
if (rinfo->persistent_gnts_c < max_grefs) {
736
new_persistent_gnts = true;
737
738
if (gnttab_alloc_grant_references(
739
max_grefs - rinfo->persistent_gnts_c,
740
&setup.gref_head) < 0) {
741
gnttab_request_free_callback(
742
&rinfo->callback,
743
blkif_restart_queue_callback,
744
rinfo,
745
max_grefs - rinfo->persistent_gnts_c);
746
return 1;
747
}
748
}
749
750
/* Fill out a communications ring structure. */
751
id = blkif_ring_get_request(rinfo, req, &final_ring_req);
752
ring_req = &rinfo->shadow[id].req;
753
754
num_sg = blk_rq_map_sg(req, rinfo->shadow[id].sg);
755
num_grant = 0;
756
/* Calculate the number of grant used */
757
for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
758
num_grant += gnttab_count_grant(sg->offset, sg->length);
759
760
require_extra_req = info->max_indirect_segments == 0 &&
761
num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
762
BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
763
764
rinfo->shadow[id].num_sg = num_sg;
765
if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
766
likely(!require_extra_req)) {
767
/*
768
* The indirect operation can only be a BLKIF_OP_READ or
769
* BLKIF_OP_WRITE
770
*/
771
BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
772
ring_req->operation = BLKIF_OP_INDIRECT;
773
ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
774
BLKIF_OP_WRITE : BLKIF_OP_READ;
775
ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
776
ring_req->u.indirect.handle = info->handle;
777
ring_req->u.indirect.nr_segments = num_grant;
778
} else {
779
ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
780
ring_req->u.rw.handle = info->handle;
781
ring_req->operation = rq_data_dir(req) ?
782
BLKIF_OP_WRITE : BLKIF_OP_READ;
783
if (req_op(req) == REQ_OP_FLUSH ||
784
(req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
785
/*
786
* Ideally we can do an unordered flush-to-disk.
787
* In case the backend onlysupports barriers, use that.
788
* A barrier request a superset of FUA, so we can
789
* implement it the same way. (It's also a FLUSH+FUA,
790
* since it is guaranteed ordered WRT previous writes.)
791
*
792
* Note that can end up here with a FUA write and the
793
* flags cleared. This happens when the flag was
794
* run-time disabled after a failing I/O, and we'll
795
* simplify submit it as a normal write.
796
*/
797
if (info->feature_flush && info->feature_fua)
798
ring_req->operation =
799
BLKIF_OP_WRITE_BARRIER;
800
else if (info->feature_flush)
801
ring_req->operation =
802
BLKIF_OP_FLUSH_DISKCACHE;
803
}
804
ring_req->u.rw.nr_segments = num_grant;
805
if (unlikely(require_extra_req)) {
806
extra_id = blkif_ring_get_request(rinfo, req,
807
&final_extra_ring_req);
808
extra_ring_req = &rinfo->shadow[extra_id].req;
809
810
/*
811
* Only the first request contains the scatter-gather
812
* list.
813
*/
814
rinfo->shadow[extra_id].num_sg = 0;
815
816
blkif_setup_extra_req(ring_req, extra_ring_req);
817
818
/* Link the 2 requests together */
819
rinfo->shadow[extra_id].associated_id = id;
820
rinfo->shadow[id].associated_id = extra_id;
821
}
822
}
823
824
setup.ring_req = ring_req;
825
setup.id = id;
826
827
setup.require_extra_req = require_extra_req;
828
if (unlikely(require_extra_req))
829
setup.extra_ring_req = extra_ring_req;
830
831
for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
832
BUG_ON(sg->offset + sg->length > PAGE_SIZE);
833
834
if (setup.need_copy) {
835
setup.bvec_off = sg->offset;
836
setup.bvec_data = kmap_atomic(sg_page(sg));
837
}
838
839
gnttab_foreach_grant_in_range(sg_page(sg),
840
sg->offset,
841
sg->length,
842
blkif_setup_rw_req_grant,
843
&setup);
844
845
if (setup.need_copy)
846
kunmap_atomic(setup.bvec_data);
847
}
848
if (setup.segments)
849
kunmap_atomic(setup.segments);
850
851
/* Copy request(s) to the ring page. */
852
*final_ring_req = *ring_req;
853
rinfo->shadow[id].status = REQ_WAITING;
854
if (unlikely(require_extra_req)) {
855
*final_extra_ring_req = *extra_ring_req;
856
rinfo->shadow[extra_id].status = REQ_WAITING;
857
}
858
859
if (new_persistent_gnts)
860
gnttab_free_grant_references(setup.gref_head);
861
862
return 0;
863
}
864
865
/*
866
* Generate a Xen blkfront IO request from a blk layer request. Reads
867
* and writes are handled as expected.
868
*
869
* @req: a request struct
870
*/
871
static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
872
{
873
if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
874
return 1;
875
876
if (unlikely(req_op(req) == REQ_OP_DISCARD ||
877
req_op(req) == REQ_OP_SECURE_ERASE))
878
return blkif_queue_discard_req(req, rinfo);
879
else
880
return blkif_queue_rw_req(req, rinfo);
881
}
882
883
static inline void flush_requests(struct blkfront_ring_info *rinfo)
884
{
885
int notify;
886
887
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
888
889
if (notify)
890
notify_remote_via_irq(rinfo->irq);
891
}
892
893
static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
894
const struct blk_mq_queue_data *qd)
895
{
896
unsigned long flags;
897
int qid = hctx->queue_num;
898
struct blkfront_info *info = hctx->queue->queuedata;
899
struct blkfront_ring_info *rinfo = NULL;
900
901
rinfo = get_rinfo(info, qid);
902
blk_mq_start_request(qd->rq);
903
spin_lock_irqsave(&rinfo->ring_lock, flags);
904
905
/*
906
* Check if the backend actually supports flushes.
907
*
908
* While the block layer won't send us flushes if we don't claim to
909
* support them, the Xen protocol allows the backend to revoke support
910
* at any time. That is of course a really bad idea and dangerous, but
911
* has been allowed for 10+ years. In that case we simply clear the
912
* flags, and directly return here for an empty flush and ignore the
913
* FUA flag later on.
914
*/
915
if (unlikely(req_op(qd->rq) == REQ_OP_FLUSH && !info->feature_flush))
916
goto complete;
917
918
if (RING_FULL(&rinfo->ring))
919
goto out_busy;
920
if (blkif_queue_request(qd->rq, rinfo))
921
goto out_busy;
922
923
flush_requests(rinfo);
924
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
925
return BLK_STS_OK;
926
927
out_busy:
928
blk_mq_stop_hw_queue(hctx);
929
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
930
return BLK_STS_DEV_RESOURCE;
931
complete:
932
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
933
blk_mq_end_request(qd->rq, BLK_STS_OK);
934
return BLK_STS_OK;
935
}
936
937
static void blkif_complete_rq(struct request *rq)
938
{
939
blk_mq_end_request(rq, blkif_req(rq)->error);
940
}
941
942
static const struct blk_mq_ops blkfront_mq_ops = {
943
.queue_rq = blkif_queue_rq,
944
.complete = blkif_complete_rq,
945
};
946
947
static void blkif_set_queue_limits(const struct blkfront_info *info,
948
struct queue_limits *lim)
949
{
950
unsigned int segments = info->max_indirect_segments ? :
951
BLKIF_MAX_SEGMENTS_PER_REQUEST;
952
953
if (info->feature_discard) {
954
lim->max_hw_discard_sectors = UINT_MAX;
955
if (info->discard_granularity)
956
lim->discard_granularity = info->discard_granularity;
957
lim->discard_alignment = info->discard_alignment;
958
if (info->feature_secdiscard)
959
lim->max_secure_erase_sectors = UINT_MAX;
960
}
961
962
if (info->feature_flush) {
963
lim->features |= BLK_FEAT_WRITE_CACHE;
964
if (info->feature_fua)
965
lim->features |= BLK_FEAT_FUA;
966
}
967
968
/* Hard sector size and max sectors impersonate the equiv. hardware. */
969
lim->logical_block_size = info->sector_size;
970
lim->physical_block_size = info->physical_sector_size;
971
lim->max_hw_sectors = (segments * XEN_PAGE_SIZE) / 512;
972
973
/* Each segment in a request is up to an aligned page in size. */
974
lim->seg_boundary_mask = PAGE_SIZE - 1;
975
lim->max_segment_size = PAGE_SIZE;
976
977
/* Ensure a merged request will fit in a single I/O ring slot. */
978
lim->max_segments = segments / GRANTS_PER_PSEG;
979
980
/* Make sure buffer addresses are sector-aligned. */
981
lim->dma_alignment = 511;
982
}
983
984
static const char *flush_info(struct blkfront_info *info)
985
{
986
if (info->feature_flush && info->feature_fua)
987
return "barrier: enabled;";
988
else if (info->feature_flush)
989
return "flush diskcache: enabled;";
990
else
991
return "barrier or flush: disabled;";
992
}
993
994
static void xlvbd_flush(struct blkfront_info *info)
995
{
996
pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
997
info->gd->disk_name, flush_info(info),
998
"persistent grants:", info->feature_persistent ?
999
"enabled;" : "disabled;", "indirect descriptors:",
1000
info->max_indirect_segments ? "enabled;" : "disabled;",
1001
"bounce buffer:", info->bounce ? "enabled" : "disabled;");
1002
}
1003
1004
static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1005
{
1006
int major;
1007
major = BLKIF_MAJOR(vdevice);
1008
*minor = BLKIF_MINOR(vdevice);
1009
switch (major) {
1010
case XEN_IDE0_MAJOR:
1011
*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1012
*minor = ((*minor / 64) * PARTS_PER_DISK) +
1013
EMULATED_HD_DISK_MINOR_OFFSET;
1014
break;
1015
case XEN_IDE1_MAJOR:
1016
*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1017
*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1018
EMULATED_HD_DISK_MINOR_OFFSET;
1019
break;
1020
case XEN_SCSI_DISK0_MAJOR:
1021
*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1022
*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1023
break;
1024
case XEN_SCSI_DISK1_MAJOR:
1025
case XEN_SCSI_DISK2_MAJOR:
1026
case XEN_SCSI_DISK3_MAJOR:
1027
case XEN_SCSI_DISK4_MAJOR:
1028
case XEN_SCSI_DISK5_MAJOR:
1029
case XEN_SCSI_DISK6_MAJOR:
1030
case XEN_SCSI_DISK7_MAJOR:
1031
*offset = (*minor / PARTS_PER_DISK) +
1032
((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1033
EMULATED_SD_DISK_NAME_OFFSET;
1034
*minor = *minor +
1035
((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1036
EMULATED_SD_DISK_MINOR_OFFSET;
1037
break;
1038
case XEN_SCSI_DISK8_MAJOR:
1039
case XEN_SCSI_DISK9_MAJOR:
1040
case XEN_SCSI_DISK10_MAJOR:
1041
case XEN_SCSI_DISK11_MAJOR:
1042
case XEN_SCSI_DISK12_MAJOR:
1043
case XEN_SCSI_DISK13_MAJOR:
1044
case XEN_SCSI_DISK14_MAJOR:
1045
case XEN_SCSI_DISK15_MAJOR:
1046
*offset = (*minor / PARTS_PER_DISK) +
1047
((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1048
EMULATED_SD_DISK_NAME_OFFSET;
1049
*minor = *minor +
1050
((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1051
EMULATED_SD_DISK_MINOR_OFFSET;
1052
break;
1053
case XENVBD_MAJOR:
1054
*offset = *minor / PARTS_PER_DISK;
1055
break;
1056
default:
1057
printk(KERN_WARNING "blkfront: your disk configuration is "
1058
"incorrect, please use an xvd device instead\n");
1059
return -ENODEV;
1060
}
1061
return 0;
1062
}
1063
1064
static char *encode_disk_name(char *ptr, unsigned int n)
1065
{
1066
if (n >= 26)
1067
ptr = encode_disk_name(ptr, n / 26 - 1);
1068
*ptr = 'a' + n % 26;
1069
return ptr + 1;
1070
}
1071
1072
static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1073
struct blkfront_info *info)
1074
{
1075
struct queue_limits lim = {};
1076
struct gendisk *gd;
1077
int nr_minors = 1;
1078
int err;
1079
unsigned int offset;
1080
int minor;
1081
int nr_parts;
1082
char *ptr;
1083
1084
BUG_ON(info->gd != NULL);
1085
BUG_ON(info->rq != NULL);
1086
1087
if ((info->vdevice>>EXT_SHIFT) > 1) {
1088
/* this is above the extended range; something is wrong */
1089
printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1090
return -ENODEV;
1091
}
1092
1093
if (!VDEV_IS_EXTENDED(info->vdevice)) {
1094
err = xen_translate_vdev(info->vdevice, &minor, &offset);
1095
if (err)
1096
return err;
1097
nr_parts = PARTS_PER_DISK;
1098
} else {
1099
minor = BLKIF_MINOR_EXT(info->vdevice);
1100
nr_parts = PARTS_PER_EXT_DISK;
1101
offset = minor / nr_parts;
1102
if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1103
printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1104
"emulated IDE disks,\n\t choose an xvd device name"
1105
"from xvde on\n", info->vdevice);
1106
}
1107
if (minor >> MINORBITS) {
1108
pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1109
info->vdevice, minor);
1110
return -ENODEV;
1111
}
1112
1113
if ((minor % nr_parts) == 0)
1114
nr_minors = nr_parts;
1115
1116
err = xlbd_reserve_minors(minor, nr_minors);
1117
if (err)
1118
return err;
1119
1120
memset(&info->tag_set, 0, sizeof(info->tag_set));
1121
info->tag_set.ops = &blkfront_mq_ops;
1122
info->tag_set.nr_hw_queues = info->nr_rings;
1123
if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1124
/*
1125
* When indirect descriptior is not supported, the I/O request
1126
* will be split between multiple request in the ring.
1127
* To avoid problems when sending the request, divide by
1128
* 2 the depth of the queue.
1129
*/
1130
info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
1131
} else
1132
info->tag_set.queue_depth = BLK_RING_SIZE(info);
1133
info->tag_set.numa_node = NUMA_NO_NODE;
1134
info->tag_set.cmd_size = sizeof(struct blkif_req);
1135
info->tag_set.driver_data = info;
1136
1137
err = blk_mq_alloc_tag_set(&info->tag_set);
1138
if (err)
1139
goto out_release_minors;
1140
1141
blkif_set_queue_limits(info, &lim);
1142
gd = blk_mq_alloc_disk(&info->tag_set, &lim, info);
1143
if (IS_ERR(gd)) {
1144
err = PTR_ERR(gd);
1145
goto out_free_tag_set;
1146
}
1147
1148
strcpy(gd->disk_name, DEV_NAME);
1149
ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1150
BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1151
if (nr_minors > 1)
1152
*ptr = 0;
1153
else
1154
snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1155
"%d", minor & (nr_parts - 1));
1156
1157
gd->major = XENVBD_MAJOR;
1158
gd->first_minor = minor;
1159
gd->minors = nr_minors;
1160
gd->fops = &xlvbd_block_fops;
1161
gd->private_data = info;
1162
set_capacity(gd, capacity);
1163
1164
info->rq = gd->queue;
1165
info->gd = gd;
1166
1167
xlvbd_flush(info);
1168
1169
if (info->vdisk_info & VDISK_READONLY)
1170
set_disk_ro(gd, 1);
1171
if (info->vdisk_info & VDISK_REMOVABLE)
1172
gd->flags |= GENHD_FL_REMOVABLE;
1173
1174
return 0;
1175
1176
out_free_tag_set:
1177
blk_mq_free_tag_set(&info->tag_set);
1178
out_release_minors:
1179
xlbd_release_minors(minor, nr_minors);
1180
return err;
1181
}
1182
1183
/* Already hold rinfo->ring_lock. */
1184
static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1185
{
1186
if (!RING_FULL(&rinfo->ring))
1187
blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1188
}
1189
1190
static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1191
{
1192
unsigned long flags;
1193
1194
spin_lock_irqsave(&rinfo->ring_lock, flags);
1195
kick_pending_request_queues_locked(rinfo);
1196
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1197
}
1198
1199
static void blkif_restart_queue(struct work_struct *work)
1200
{
1201
struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1202
1203
if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1204
kick_pending_request_queues(rinfo);
1205
}
1206
1207
static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1208
{
1209
struct grant *persistent_gnt, *n;
1210
struct blkfront_info *info = rinfo->dev_info;
1211
int i, j, segs;
1212
1213
/*
1214
* Remove indirect pages, this only happens when using indirect
1215
* descriptors but not persistent grants
1216
*/
1217
if (!list_empty(&rinfo->indirect_pages)) {
1218
struct page *indirect_page, *n;
1219
1220
BUG_ON(info->bounce);
1221
list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1222
list_del(&indirect_page->lru);
1223
__free_page(indirect_page);
1224
}
1225
}
1226
1227
/* Remove all persistent grants. */
1228
if (!list_empty(&rinfo->grants)) {
1229
list_for_each_entry_safe(persistent_gnt, n,
1230
&rinfo->grants, node) {
1231
list_del(&persistent_gnt->node);
1232
if (persistent_gnt->gref != INVALID_GRANT_REF) {
1233
gnttab_end_foreign_access(persistent_gnt->gref,
1234
NULL);
1235
rinfo->persistent_gnts_c--;
1236
}
1237
if (info->bounce)
1238
__free_page(persistent_gnt->page);
1239
kfree(persistent_gnt);
1240
}
1241
}
1242
BUG_ON(rinfo->persistent_gnts_c != 0);
1243
1244
for (i = 0; i < BLK_RING_SIZE(info); i++) {
1245
/*
1246
* Clear persistent grants present in requests already
1247
* on the shared ring
1248
*/
1249
if (!rinfo->shadow[i].request)
1250
goto free_shadow;
1251
1252
segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1253
rinfo->shadow[i].req.u.indirect.nr_segments :
1254
rinfo->shadow[i].req.u.rw.nr_segments;
1255
for (j = 0; j < segs; j++) {
1256
persistent_gnt = rinfo->shadow[i].grants_used[j];
1257
gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1258
if (info->bounce)
1259
__free_page(persistent_gnt->page);
1260
kfree(persistent_gnt);
1261
}
1262
1263
if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1264
/*
1265
* If this is not an indirect operation don't try to
1266
* free indirect segments
1267
*/
1268
goto free_shadow;
1269
1270
for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1271
persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1272
gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1273
__free_page(persistent_gnt->page);
1274
kfree(persistent_gnt);
1275
}
1276
1277
free_shadow:
1278
kvfree(rinfo->shadow[i].grants_used);
1279
rinfo->shadow[i].grants_used = NULL;
1280
kvfree(rinfo->shadow[i].indirect_grants);
1281
rinfo->shadow[i].indirect_grants = NULL;
1282
kvfree(rinfo->shadow[i].sg);
1283
rinfo->shadow[i].sg = NULL;
1284
}
1285
1286
/* No more gnttab callback work. */
1287
gnttab_cancel_free_callback(&rinfo->callback);
1288
1289
/* Flush gnttab callback work. Must be done with no locks held. */
1290
flush_work(&rinfo->work);
1291
1292
/* Free resources associated with old device channel. */
1293
xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1294
rinfo->ring_ref);
1295
1296
if (rinfo->irq)
1297
unbind_from_irqhandler(rinfo->irq, rinfo);
1298
rinfo->evtchn = rinfo->irq = 0;
1299
}
1300
1301
static void blkif_free(struct blkfront_info *info, int suspend)
1302
{
1303
unsigned int i;
1304
struct blkfront_ring_info *rinfo;
1305
1306
/* Prevent new requests being issued until we fix things up. */
1307
info->connected = suspend ?
1308
BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1309
/* No more blkif_request(). */
1310
if (info->rq)
1311
blk_mq_stop_hw_queues(info->rq);
1312
1313
for_each_rinfo(info, rinfo, i)
1314
blkif_free_ring(rinfo);
1315
1316
kvfree(info->rinfo);
1317
info->rinfo = NULL;
1318
info->nr_rings = 0;
1319
}
1320
1321
struct copy_from_grant {
1322
const struct blk_shadow *s;
1323
unsigned int grant_idx;
1324
unsigned int bvec_offset;
1325
char *bvec_data;
1326
};
1327
1328
static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1329
unsigned int len, void *data)
1330
{
1331
struct copy_from_grant *info = data;
1332
char *shared_data;
1333
/* Convenient aliases */
1334
const struct blk_shadow *s = info->s;
1335
1336
shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1337
1338
memcpy(info->bvec_data + info->bvec_offset,
1339
shared_data + offset, len);
1340
1341
info->bvec_offset += len;
1342
info->grant_idx++;
1343
1344
kunmap_atomic(shared_data);
1345
}
1346
1347
static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1348
{
1349
switch (rsp)
1350
{
1351
case BLKIF_RSP_OKAY:
1352
return REQ_DONE;
1353
case BLKIF_RSP_EOPNOTSUPP:
1354
return REQ_EOPNOTSUPP;
1355
case BLKIF_RSP_ERROR:
1356
default:
1357
return REQ_ERROR;
1358
}
1359
}
1360
1361
/*
1362
* Get the final status of the block request based on two ring response
1363
*/
1364
static int blkif_get_final_status(enum blk_req_status s1,
1365
enum blk_req_status s2)
1366
{
1367
BUG_ON(s1 < REQ_DONE);
1368
BUG_ON(s2 < REQ_DONE);
1369
1370
if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1371
return BLKIF_RSP_ERROR;
1372
else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1373
return BLKIF_RSP_EOPNOTSUPP;
1374
return BLKIF_RSP_OKAY;
1375
}
1376
1377
/*
1378
* Return values:
1379
* 1 response processed.
1380
* 0 missing further responses.
1381
* -1 error while processing.
1382
*/
1383
static int blkif_completion(unsigned long *id,
1384
struct blkfront_ring_info *rinfo,
1385
struct blkif_response *bret)
1386
{
1387
int i = 0;
1388
struct scatterlist *sg;
1389
int num_sg, num_grant;
1390
struct blkfront_info *info = rinfo->dev_info;
1391
struct blk_shadow *s = &rinfo->shadow[*id];
1392
struct copy_from_grant data = {
1393
.grant_idx = 0,
1394
};
1395
1396
num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1397
s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1398
1399
/* The I/O request may be split in two. */
1400
if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1401
struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1402
1403
/* Keep the status of the current response in shadow. */
1404
s->status = blkif_rsp_to_req_status(bret->status);
1405
1406
/* Wait the second response if not yet here. */
1407
if (s2->status < REQ_DONE)
1408
return 0;
1409
1410
bret->status = blkif_get_final_status(s->status,
1411
s2->status);
1412
1413
/*
1414
* All the grants is stored in the first shadow in order
1415
* to make the completion code simpler.
1416
*/
1417
num_grant += s2->req.u.rw.nr_segments;
1418
1419
/*
1420
* The two responses may not come in order. Only the
1421
* first request will store the scatter-gather list.
1422
*/
1423
if (s2->num_sg != 0) {
1424
/* Update "id" with the ID of the first response. */
1425
*id = s->associated_id;
1426
s = s2;
1427
}
1428
1429
/*
1430
* We don't need anymore the second request, so recycling
1431
* it now.
1432
*/
1433
if (add_id_to_freelist(rinfo, s->associated_id))
1434
WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1435
info->gd->disk_name, s->associated_id);
1436
}
1437
1438
data.s = s;
1439
num_sg = s->num_sg;
1440
1441
if (bret->operation == BLKIF_OP_READ && info->bounce) {
1442
for_each_sg(s->sg, sg, num_sg, i) {
1443
BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1444
1445
data.bvec_offset = sg->offset;
1446
data.bvec_data = kmap_atomic(sg_page(sg));
1447
1448
gnttab_foreach_grant_in_range(sg_page(sg),
1449
sg->offset,
1450
sg->length,
1451
blkif_copy_from_grant,
1452
&data);
1453
1454
kunmap_atomic(data.bvec_data);
1455
}
1456
}
1457
/* Add the persistent grant into the list of free grants */
1458
for (i = 0; i < num_grant; i++) {
1459
if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1460
/*
1461
* If the grant is still mapped by the backend (the
1462
* backend has chosen to make this grant persistent)
1463
* we add it at the head of the list, so it will be
1464
* reused first.
1465
*/
1466
if (!info->feature_persistent) {
1467
pr_alert("backed has not unmapped grant: %u\n",
1468
s->grants_used[i]->gref);
1469
return -1;
1470
}
1471
list_add(&s->grants_used[i]->node, &rinfo->grants);
1472
rinfo->persistent_gnts_c++;
1473
} else {
1474
/*
1475
* If the grant is not mapped by the backend we add it
1476
* to the tail of the list, so it will not be picked
1477
* again unless we run out of persistent grants.
1478
*/
1479
s->grants_used[i]->gref = INVALID_GRANT_REF;
1480
list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1481
}
1482
}
1483
if (s->req.operation == BLKIF_OP_INDIRECT) {
1484
for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1485
if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1486
if (!info->feature_persistent) {
1487
pr_alert("backed has not unmapped grant: %u\n",
1488
s->indirect_grants[i]->gref);
1489
return -1;
1490
}
1491
list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1492
rinfo->persistent_gnts_c++;
1493
} else {
1494
struct page *indirect_page;
1495
1496
/*
1497
* Add the used indirect page back to the list of
1498
* available pages for indirect grefs.
1499
*/
1500
if (!info->bounce) {
1501
indirect_page = s->indirect_grants[i]->page;
1502
list_add(&indirect_page->lru, &rinfo->indirect_pages);
1503
}
1504
s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1505
list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1506
}
1507
}
1508
}
1509
1510
return 1;
1511
}
1512
1513
static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1514
{
1515
struct request *req;
1516
struct blkif_response bret;
1517
RING_IDX i, rp;
1518
unsigned long flags;
1519
struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1520
struct blkfront_info *info = rinfo->dev_info;
1521
unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1522
1523
if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1524
xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1525
return IRQ_HANDLED;
1526
}
1527
1528
spin_lock_irqsave(&rinfo->ring_lock, flags);
1529
again:
1530
rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1531
virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1532
if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1533
pr_alert("%s: illegal number of responses %u\n",
1534
info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1535
goto err;
1536
}
1537
1538
for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1539
unsigned long id;
1540
unsigned int op;
1541
1542
eoiflag = 0;
1543
1544
RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1545
id = bret.id;
1546
1547
/*
1548
* The backend has messed up and given us an id that we would
1549
* never have given to it (we stamp it up to BLK_RING_SIZE -
1550
* look in get_id_from_freelist.
1551
*/
1552
if (id >= BLK_RING_SIZE(info)) {
1553
pr_alert("%s: response has incorrect id (%ld)\n",
1554
info->gd->disk_name, id);
1555
goto err;
1556
}
1557
if (rinfo->shadow[id].status != REQ_WAITING) {
1558
pr_alert("%s: response references no pending request\n",
1559
info->gd->disk_name);
1560
goto err;
1561
}
1562
1563
rinfo->shadow[id].status = REQ_PROCESSING;
1564
req = rinfo->shadow[id].request;
1565
1566
op = rinfo->shadow[id].req.operation;
1567
if (op == BLKIF_OP_INDIRECT)
1568
op = rinfo->shadow[id].req.u.indirect.indirect_op;
1569
if (bret.operation != op) {
1570
pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1571
info->gd->disk_name, bret.operation, op);
1572
goto err;
1573
}
1574
1575
if (bret.operation != BLKIF_OP_DISCARD) {
1576
int ret;
1577
1578
/*
1579
* We may need to wait for an extra response if the
1580
* I/O request is split in 2
1581
*/
1582
ret = blkif_completion(&id, rinfo, &bret);
1583
if (!ret)
1584
continue;
1585
if (unlikely(ret < 0))
1586
goto err;
1587
}
1588
1589
if (add_id_to_freelist(rinfo, id)) {
1590
WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1591
info->gd->disk_name, op_name(bret.operation), id);
1592
continue;
1593
}
1594
1595
if (bret.status == BLKIF_RSP_OKAY)
1596
blkif_req(req)->error = BLK_STS_OK;
1597
else
1598
blkif_req(req)->error = BLK_STS_IOERR;
1599
1600
switch (bret.operation) {
1601
case BLKIF_OP_DISCARD:
1602
if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1603
struct request_queue *rq = info->rq;
1604
1605
pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1606
info->gd->disk_name, op_name(bret.operation));
1607
blkif_req(req)->error = BLK_STS_NOTSUPP;
1608
info->feature_discard = 0;
1609
info->feature_secdiscard = 0;
1610
blk_queue_disable_discard(rq);
1611
blk_queue_disable_secure_erase(rq);
1612
}
1613
break;
1614
case BLKIF_OP_FLUSH_DISKCACHE:
1615
case BLKIF_OP_WRITE_BARRIER:
1616
if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1617
pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1618
info->gd->disk_name, op_name(bret.operation));
1619
blkif_req(req)->error = BLK_STS_NOTSUPP;
1620
}
1621
if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1622
rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1623
pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1624
info->gd->disk_name, op_name(bret.operation));
1625
blkif_req(req)->error = BLK_STS_NOTSUPP;
1626
}
1627
if (unlikely(blkif_req(req)->error)) {
1628
if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1629
blkif_req(req)->error = BLK_STS_OK;
1630
info->feature_fua = 0;
1631
info->feature_flush = 0;
1632
}
1633
fallthrough;
1634
case BLKIF_OP_READ:
1635
case BLKIF_OP_WRITE:
1636
if (unlikely(bret.status != BLKIF_RSP_OKAY))
1637
dev_dbg_ratelimited(&info->xbdev->dev,
1638
"Bad return from blkdev data request: %#x\n",
1639
bret.status);
1640
1641
break;
1642
default:
1643
BUG();
1644
}
1645
1646
if (likely(!blk_should_fake_timeout(req->q)))
1647
blk_mq_complete_request(req);
1648
}
1649
1650
rinfo->ring.rsp_cons = i;
1651
1652
if (i != rinfo->ring.req_prod_pvt) {
1653
int more_to_do;
1654
RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1655
if (more_to_do)
1656
goto again;
1657
} else
1658
rinfo->ring.sring->rsp_event = i + 1;
1659
1660
kick_pending_request_queues_locked(rinfo);
1661
1662
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1663
1664
xen_irq_lateeoi(irq, eoiflag);
1665
1666
return IRQ_HANDLED;
1667
1668
err:
1669
info->connected = BLKIF_STATE_ERROR;
1670
1671
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1672
1673
/* No EOI in order to avoid further interrupts. */
1674
1675
pr_alert("%s disabled for further use\n", info->gd->disk_name);
1676
return IRQ_HANDLED;
1677
}
1678
1679
1680
static int setup_blkring(struct xenbus_device *dev,
1681
struct blkfront_ring_info *rinfo)
1682
{
1683
struct blkif_sring *sring;
1684
int err;
1685
struct blkfront_info *info = rinfo->dev_info;
1686
unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1687
1688
err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1689
info->nr_ring_pages, rinfo->ring_ref);
1690
if (err)
1691
goto fail;
1692
1693
XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1694
1695
err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1696
if (err)
1697
goto fail;
1698
1699
err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1700
0, "blkif", rinfo);
1701
if (err <= 0) {
1702
xenbus_dev_fatal(dev, err,
1703
"bind_evtchn_to_irqhandler failed");
1704
goto fail;
1705
}
1706
rinfo->irq = err;
1707
1708
return 0;
1709
fail:
1710
blkif_free(info, 0);
1711
return err;
1712
}
1713
1714
/*
1715
* Write out per-ring/queue nodes including ring-ref and event-channel, and each
1716
* ring buffer may have multi pages depending on ->nr_ring_pages.
1717
*/
1718
static int write_per_ring_nodes(struct xenbus_transaction xbt,
1719
struct blkfront_ring_info *rinfo, const char *dir)
1720
{
1721
int err;
1722
unsigned int i;
1723
const char *message = NULL;
1724
struct blkfront_info *info = rinfo->dev_info;
1725
1726
if (info->nr_ring_pages == 1) {
1727
err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1728
if (err) {
1729
message = "writing ring-ref";
1730
goto abort_transaction;
1731
}
1732
} else {
1733
for (i = 0; i < info->nr_ring_pages; i++) {
1734
char ring_ref_name[RINGREF_NAME_LEN];
1735
1736
snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1737
err = xenbus_printf(xbt, dir, ring_ref_name,
1738
"%u", rinfo->ring_ref[i]);
1739
if (err) {
1740
message = "writing ring-ref";
1741
goto abort_transaction;
1742
}
1743
}
1744
}
1745
1746
err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1747
if (err) {
1748
message = "writing event-channel";
1749
goto abort_transaction;
1750
}
1751
1752
return 0;
1753
1754
abort_transaction:
1755
xenbus_transaction_end(xbt, 1);
1756
if (message)
1757
xenbus_dev_fatal(info->xbdev, err, "%s", message);
1758
1759
return err;
1760
}
1761
1762
/* Enable the persistent grants feature. */
1763
static bool feature_persistent = true;
1764
module_param(feature_persistent, bool, 0644);
1765
MODULE_PARM_DESC(feature_persistent,
1766
"Enables the persistent grants feature");
1767
1768
/* Common code used when first setting up, and when resuming. */
1769
static int talk_to_blkback(struct xenbus_device *dev,
1770
struct blkfront_info *info)
1771
{
1772
const char *message = NULL;
1773
struct xenbus_transaction xbt;
1774
int err;
1775
unsigned int i, max_page_order;
1776
unsigned int ring_page_order;
1777
struct blkfront_ring_info *rinfo;
1778
1779
if (!info)
1780
return -ENODEV;
1781
1782
/* Check if backend is trusted. */
1783
info->bounce = !xen_blkif_trusted ||
1784
!xenbus_read_unsigned(dev->nodename, "trusted", 1);
1785
1786
max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1787
"max-ring-page-order", 0);
1788
ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1789
info->nr_ring_pages = 1 << ring_page_order;
1790
1791
err = negotiate_mq(info);
1792
if (err)
1793
goto destroy_blkring;
1794
1795
for_each_rinfo(info, rinfo, i) {
1796
/* Create shared ring, alloc event channel. */
1797
err = setup_blkring(dev, rinfo);
1798
if (err)
1799
goto destroy_blkring;
1800
}
1801
1802
again:
1803
err = xenbus_transaction_start(&xbt);
1804
if (err) {
1805
xenbus_dev_fatal(dev, err, "starting transaction");
1806
goto destroy_blkring;
1807
}
1808
1809
if (info->nr_ring_pages > 1) {
1810
err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1811
ring_page_order);
1812
if (err) {
1813
message = "writing ring-page-order";
1814
goto abort_transaction;
1815
}
1816
}
1817
1818
/* We already got the number of queues/rings in _probe */
1819
if (info->nr_rings == 1) {
1820
err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1821
if (err)
1822
goto destroy_blkring;
1823
} else {
1824
char *path;
1825
size_t pathsize;
1826
1827
err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1828
info->nr_rings);
1829
if (err) {
1830
message = "writing multi-queue-num-queues";
1831
goto abort_transaction;
1832
}
1833
1834
pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1835
path = kmalloc(pathsize, GFP_KERNEL);
1836
if (!path) {
1837
err = -ENOMEM;
1838
message = "ENOMEM while writing ring references";
1839
goto abort_transaction;
1840
}
1841
1842
for_each_rinfo(info, rinfo, i) {
1843
memset(path, 0, pathsize);
1844
snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1845
err = write_per_ring_nodes(xbt, rinfo, path);
1846
if (err) {
1847
kfree(path);
1848
goto destroy_blkring;
1849
}
1850
}
1851
kfree(path);
1852
}
1853
err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1854
XEN_IO_PROTO_ABI_NATIVE);
1855
if (err) {
1856
message = "writing protocol";
1857
goto abort_transaction;
1858
}
1859
info->feature_persistent_parm = feature_persistent;
1860
err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1861
info->feature_persistent_parm);
1862
if (err)
1863
dev_warn(&dev->dev,
1864
"writing persistent grants feature to xenbus");
1865
1866
err = xenbus_transaction_end(xbt, 0);
1867
if (err) {
1868
if (err == -EAGAIN)
1869
goto again;
1870
xenbus_dev_fatal(dev, err, "completing transaction");
1871
goto destroy_blkring;
1872
}
1873
1874
for_each_rinfo(info, rinfo, i) {
1875
unsigned int j;
1876
1877
for (j = 0; j < BLK_RING_SIZE(info); j++)
1878
rinfo->shadow[j].req.u.rw.id = j + 1;
1879
rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1880
}
1881
xenbus_switch_state(dev, XenbusStateInitialised);
1882
1883
return 0;
1884
1885
abort_transaction:
1886
xenbus_transaction_end(xbt, 1);
1887
if (message)
1888
xenbus_dev_fatal(dev, err, "%s", message);
1889
destroy_blkring:
1890
blkif_free(info, 0);
1891
return err;
1892
}
1893
1894
static int negotiate_mq(struct blkfront_info *info)
1895
{
1896
unsigned int backend_max_queues;
1897
unsigned int i;
1898
struct blkfront_ring_info *rinfo;
1899
1900
BUG_ON(info->nr_rings);
1901
1902
/* Check if backend supports multiple queues. */
1903
backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1904
"multi-queue-max-queues", 1);
1905
info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1906
/* We need at least one ring. */
1907
if (!info->nr_rings)
1908
info->nr_rings = 1;
1909
1910
info->rinfo_size = struct_size(info->rinfo, shadow,
1911
BLK_RING_SIZE(info));
1912
info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1913
if (!info->rinfo) {
1914
xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1915
info->nr_rings = 0;
1916
return -ENOMEM;
1917
}
1918
1919
for_each_rinfo(info, rinfo, i) {
1920
INIT_LIST_HEAD(&rinfo->indirect_pages);
1921
INIT_LIST_HEAD(&rinfo->grants);
1922
rinfo->dev_info = info;
1923
INIT_WORK(&rinfo->work, blkif_restart_queue);
1924
spin_lock_init(&rinfo->ring_lock);
1925
}
1926
return 0;
1927
}
1928
1929
/*
1930
* Entry point to this code when a new device is created. Allocate the basic
1931
* structures and the ring buffer for communication with the backend, and
1932
* inform the backend of the appropriate details for those. Switch to
1933
* Initialised state.
1934
*/
1935
static int blkfront_probe(struct xenbus_device *dev,
1936
const struct xenbus_device_id *id)
1937
{
1938
int err, vdevice;
1939
struct blkfront_info *info;
1940
1941
/* FIXME: Use dynamic device id if this is not set. */
1942
err = xenbus_scanf(XBT_NIL, dev->nodename,
1943
"virtual-device", "%i", &vdevice);
1944
if (err != 1) {
1945
/* go looking in the extended area instead */
1946
err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1947
"%i", &vdevice);
1948
if (err != 1) {
1949
xenbus_dev_fatal(dev, err, "reading virtual-device");
1950
return err;
1951
}
1952
}
1953
1954
if (xen_hvm_domain()) {
1955
char *type;
1956
int len;
1957
/* no unplug has been done: do not hook devices != xen vbds */
1958
if (xen_has_pv_and_legacy_disk_devices()) {
1959
int major;
1960
1961
if (!VDEV_IS_EXTENDED(vdevice))
1962
major = BLKIF_MAJOR(vdevice);
1963
else
1964
major = XENVBD_MAJOR;
1965
1966
if (major != XENVBD_MAJOR) {
1967
printk(KERN_INFO
1968
"%s: HVM does not support vbd %d as xen block device\n",
1969
__func__, vdevice);
1970
return -ENODEV;
1971
}
1972
}
1973
/* do not create a PV cdrom device if we are an HVM guest */
1974
type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1975
if (IS_ERR(type))
1976
return -ENODEV;
1977
if (strncmp(type, "cdrom", 5) == 0) {
1978
kfree(type);
1979
return -ENODEV;
1980
}
1981
kfree(type);
1982
}
1983
info = kzalloc(sizeof(*info), GFP_KERNEL);
1984
if (!info) {
1985
xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1986
return -ENOMEM;
1987
}
1988
1989
info->xbdev = dev;
1990
1991
mutex_init(&info->mutex);
1992
info->vdevice = vdevice;
1993
info->connected = BLKIF_STATE_DISCONNECTED;
1994
1995
/* Front end dir is a number, which is used as the id. */
1996
info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1997
dev_set_drvdata(&dev->dev, info);
1998
1999
mutex_lock(&blkfront_mutex);
2000
list_add(&info->info_list, &info_list);
2001
mutex_unlock(&blkfront_mutex);
2002
2003
return 0;
2004
}
2005
2006
static int blkif_recover(struct blkfront_info *info)
2007
{
2008
struct queue_limits lim;
2009
unsigned int r_index;
2010
struct request *req, *n;
2011
int rc;
2012
struct bio *bio;
2013
struct blkfront_ring_info *rinfo;
2014
2015
lim = queue_limits_start_update(info->rq);
2016
blkfront_gather_backend_features(info);
2017
blkif_set_queue_limits(info, &lim);
2018
rc = queue_limits_commit_update(info->rq, &lim);
2019
if (rc)
2020
return rc;
2021
2022
for_each_rinfo(info, rinfo, r_index) {
2023
rc = blkfront_setup_indirect(rinfo);
2024
if (rc)
2025
return rc;
2026
}
2027
xenbus_switch_state(info->xbdev, XenbusStateConnected);
2028
2029
/* Now safe for us to use the shared ring */
2030
info->connected = BLKIF_STATE_CONNECTED;
2031
2032
for_each_rinfo(info, rinfo, r_index) {
2033
/* Kick any other new requests queued since we resumed */
2034
kick_pending_request_queues(rinfo);
2035
}
2036
2037
list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2038
/* Requeue pending requests (flush or discard) */
2039
list_del_init(&req->queuelist);
2040
BUG_ON(req->nr_phys_segments >
2041
(info->max_indirect_segments ? :
2042
BLKIF_MAX_SEGMENTS_PER_REQUEST));
2043
blk_mq_requeue_request(req, false);
2044
}
2045
blk_mq_start_stopped_hw_queues(info->rq, true);
2046
blk_mq_kick_requeue_list(info->rq);
2047
2048
while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2049
/* Traverse the list of pending bios and re-queue them */
2050
submit_bio(bio);
2051
}
2052
2053
return 0;
2054
}
2055
2056
/*
2057
* We are reconnecting to the backend, due to a suspend/resume, or a backend
2058
* driver restart. We tear down our blkif structure and recreate it, but
2059
* leave the device-layer structures intact so that this is transparent to the
2060
* rest of the kernel.
2061
*/
2062
static int blkfront_resume(struct xenbus_device *dev)
2063
{
2064
struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2065
int err = 0;
2066
unsigned int i, j;
2067
struct blkfront_ring_info *rinfo;
2068
2069
dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2070
2071
bio_list_init(&info->bio_list);
2072
INIT_LIST_HEAD(&info->requests);
2073
for_each_rinfo(info, rinfo, i) {
2074
struct bio_list merge_bio;
2075
struct blk_shadow *shadow = rinfo->shadow;
2076
2077
for (j = 0; j < BLK_RING_SIZE(info); j++) {
2078
/* Not in use? */
2079
if (!shadow[j].request)
2080
continue;
2081
2082
/*
2083
* Get the bios in the request so we can re-queue them.
2084
*/
2085
if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2086
req_op(shadow[j].request) == REQ_OP_DISCARD ||
2087
req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2088
shadow[j].request->cmd_flags & REQ_FUA) {
2089
/*
2090
* Flush operations don't contain bios, so
2091
* we need to requeue the whole request
2092
*
2093
* XXX: but this doesn't make any sense for a
2094
* write with the FUA flag set..
2095
*/
2096
list_add(&shadow[j].request->queuelist, &info->requests);
2097
continue;
2098
}
2099
merge_bio.head = shadow[j].request->bio;
2100
merge_bio.tail = shadow[j].request->biotail;
2101
bio_list_merge(&info->bio_list, &merge_bio);
2102
shadow[j].request->bio = NULL;
2103
blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2104
}
2105
}
2106
2107
blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2108
2109
err = talk_to_blkback(dev, info);
2110
if (!err)
2111
blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2112
2113
/*
2114
* We have to wait for the backend to switch to
2115
* connected state, since we want to read which
2116
* features it supports.
2117
*/
2118
2119
return err;
2120
}
2121
2122
static void blkfront_closing(struct blkfront_info *info)
2123
{
2124
struct xenbus_device *xbdev = info->xbdev;
2125
struct blkfront_ring_info *rinfo;
2126
unsigned int i;
2127
2128
if (xbdev->state == XenbusStateClosing)
2129
return;
2130
2131
/* No more blkif_request(). */
2132
if (info->rq && info->gd) {
2133
blk_mq_stop_hw_queues(info->rq);
2134
blk_mark_disk_dead(info->gd);
2135
}
2136
2137
for_each_rinfo(info, rinfo, i) {
2138
/* No more gnttab callback work. */
2139
gnttab_cancel_free_callback(&rinfo->callback);
2140
2141
/* Flush gnttab callback work. Must be done with no locks held. */
2142
flush_work(&rinfo->work);
2143
}
2144
2145
xenbus_frontend_closed(xbdev);
2146
}
2147
2148
static void blkfront_setup_discard(struct blkfront_info *info)
2149
{
2150
info->feature_discard = 1;
2151
info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2152
"discard-granularity",
2153
0);
2154
info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2155
"discard-alignment", 0);
2156
info->feature_secdiscard =
2157
!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2158
0);
2159
}
2160
2161
static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2162
{
2163
unsigned int psegs, grants, memflags;
2164
int err, i;
2165
struct blkfront_info *info = rinfo->dev_info;
2166
2167
memflags = memalloc_noio_save();
2168
2169
if (info->max_indirect_segments == 0) {
2170
if (!HAS_EXTRA_REQ)
2171
grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2172
else {
2173
/*
2174
* When an extra req is required, the maximum
2175
* grants supported is related to the size of the
2176
* Linux block segment.
2177
*/
2178
grants = GRANTS_PER_PSEG;
2179
}
2180
}
2181
else
2182
grants = info->max_indirect_segments;
2183
psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2184
2185
err = fill_grant_buffer(rinfo,
2186
(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2187
if (err)
2188
goto out_of_memory;
2189
2190
if (!info->bounce && info->max_indirect_segments) {
2191
/*
2192
* We are using indirect descriptors but don't have a bounce
2193
* buffer, we need to allocate a set of pages that can be
2194
* used for mapping indirect grefs
2195
*/
2196
int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2197
2198
BUG_ON(!list_empty(&rinfo->indirect_pages));
2199
for (i = 0; i < num; i++) {
2200
struct page *indirect_page = alloc_page(GFP_KERNEL |
2201
__GFP_ZERO);
2202
if (!indirect_page)
2203
goto out_of_memory;
2204
list_add(&indirect_page->lru, &rinfo->indirect_pages);
2205
}
2206
}
2207
2208
for (i = 0; i < BLK_RING_SIZE(info); i++) {
2209
rinfo->shadow[i].grants_used =
2210
kvcalloc(grants,
2211
sizeof(rinfo->shadow[i].grants_used[0]),
2212
GFP_KERNEL);
2213
rinfo->shadow[i].sg = kvcalloc(psegs,
2214
sizeof(rinfo->shadow[i].sg[0]),
2215
GFP_KERNEL);
2216
if (info->max_indirect_segments)
2217
rinfo->shadow[i].indirect_grants =
2218
kvcalloc(INDIRECT_GREFS(grants),
2219
sizeof(rinfo->shadow[i].indirect_grants[0]),
2220
GFP_KERNEL);
2221
if ((rinfo->shadow[i].grants_used == NULL) ||
2222
(rinfo->shadow[i].sg == NULL) ||
2223
(info->max_indirect_segments &&
2224
(rinfo->shadow[i].indirect_grants == NULL)))
2225
goto out_of_memory;
2226
sg_init_table(rinfo->shadow[i].sg, psegs);
2227
}
2228
2229
memalloc_noio_restore(memflags);
2230
2231
return 0;
2232
2233
out_of_memory:
2234
for (i = 0; i < BLK_RING_SIZE(info); i++) {
2235
kvfree(rinfo->shadow[i].grants_used);
2236
rinfo->shadow[i].grants_used = NULL;
2237
kvfree(rinfo->shadow[i].sg);
2238
rinfo->shadow[i].sg = NULL;
2239
kvfree(rinfo->shadow[i].indirect_grants);
2240
rinfo->shadow[i].indirect_grants = NULL;
2241
}
2242
if (!list_empty(&rinfo->indirect_pages)) {
2243
struct page *indirect_page, *n;
2244
list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2245
list_del(&indirect_page->lru);
2246
__free_page(indirect_page);
2247
}
2248
}
2249
2250
memalloc_noio_restore(memflags);
2251
2252
return -ENOMEM;
2253
}
2254
2255
/*
2256
* Gather all backend feature-*
2257
*/
2258
static void blkfront_gather_backend_features(struct blkfront_info *info)
2259
{
2260
unsigned int indirect_segments;
2261
2262
info->feature_flush = 0;
2263
info->feature_fua = 0;
2264
2265
/*
2266
* If there's no "feature-barrier" defined, then it means
2267
* we're dealing with a very old backend which writes
2268
* synchronously; nothing to do.
2269
*
2270
* If there are barriers, then we use flush.
2271
*/
2272
if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2273
info->feature_flush = 1;
2274
info->feature_fua = 1;
2275
}
2276
2277
/*
2278
* And if there is "feature-flush-cache" use that above
2279
* barriers.
2280
*/
2281
if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2282
0)) {
2283
info->feature_flush = 1;
2284
info->feature_fua = 0;
2285
}
2286
2287
if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2288
blkfront_setup_discard(info);
2289
2290
if (info->feature_persistent_parm)
2291
info->feature_persistent =
2292
!!xenbus_read_unsigned(info->xbdev->otherend,
2293
"feature-persistent", 0);
2294
if (info->feature_persistent)
2295
info->bounce = true;
2296
2297
indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2298
"feature-max-indirect-segments", 0);
2299
if (indirect_segments > xen_blkif_max_segments)
2300
indirect_segments = xen_blkif_max_segments;
2301
if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2302
indirect_segments = 0;
2303
info->max_indirect_segments = indirect_segments;
2304
2305
if (info->feature_persistent) {
2306
mutex_lock(&blkfront_mutex);
2307
schedule_delayed_work(&blkfront_work, HZ * 10);
2308
mutex_unlock(&blkfront_mutex);
2309
}
2310
}
2311
2312
/*
2313
* Invoked when the backend is finally 'ready' (and has told produced
2314
* the details about the physical device - #sectors, size, etc).
2315
*/
2316
static void blkfront_connect(struct blkfront_info *info)
2317
{
2318
unsigned long long sectors;
2319
int err, i;
2320
struct blkfront_ring_info *rinfo;
2321
2322
switch (info->connected) {
2323
case BLKIF_STATE_CONNECTED:
2324
/*
2325
* Potentially, the back-end may be signalling
2326
* a capacity change; update the capacity.
2327
*/
2328
err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2329
"sectors", "%Lu", &sectors);
2330
if (XENBUS_EXIST_ERR(err))
2331
return;
2332
printk(KERN_INFO "Setting capacity to %Lu\n",
2333
sectors);
2334
set_capacity_and_notify(info->gd, sectors);
2335
2336
return;
2337
case BLKIF_STATE_SUSPENDED:
2338
/*
2339
* If we are recovering from suspension, we need to wait
2340
* for the backend to announce it's features before
2341
* reconnecting, at least we need to know if the backend
2342
* supports indirect descriptors, and how many.
2343
*/
2344
blkif_recover(info);
2345
return;
2346
2347
default:
2348
break;
2349
}
2350
2351
dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2352
__func__, info->xbdev->otherend);
2353
2354
err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2355
"sectors", "%llu", &sectors,
2356
"info", "%u", &info->vdisk_info,
2357
"sector-size", "%lu", &info->sector_size,
2358
NULL);
2359
if (err) {
2360
xenbus_dev_fatal(info->xbdev, err,
2361
"reading backend fields at %s",
2362
info->xbdev->otherend);
2363
return;
2364
}
2365
2366
/*
2367
* physical-sector-size is a newer field, so old backends may not
2368
* provide this. Assume physical sector size to be the same as
2369
* sector_size in that case.
2370
*/
2371
info->physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2372
"physical-sector-size",
2373
info->sector_size);
2374
blkfront_gather_backend_features(info);
2375
for_each_rinfo(info, rinfo, i) {
2376
err = blkfront_setup_indirect(rinfo);
2377
if (err) {
2378
xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2379
info->xbdev->otherend);
2380
blkif_free(info, 0);
2381
break;
2382
}
2383
}
2384
2385
err = xlvbd_alloc_gendisk(sectors, info);
2386
if (err) {
2387
xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2388
info->xbdev->otherend);
2389
goto fail;
2390
}
2391
2392
xenbus_switch_state(info->xbdev, XenbusStateConnected);
2393
2394
/* Kick pending requests. */
2395
info->connected = BLKIF_STATE_CONNECTED;
2396
for_each_rinfo(info, rinfo, i)
2397
kick_pending_request_queues(rinfo);
2398
2399
err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2400
if (err) {
2401
put_disk(info->gd);
2402
blk_mq_free_tag_set(&info->tag_set);
2403
info->rq = NULL;
2404
goto fail;
2405
}
2406
2407
info->is_ready = 1;
2408
return;
2409
2410
fail:
2411
blkif_free(info, 0);
2412
return;
2413
}
2414
2415
/*
2416
* Callback received when the backend's state changes.
2417
*/
2418
static void blkback_changed(struct xenbus_device *dev,
2419
enum xenbus_state backend_state)
2420
{
2421
struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2422
2423
dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2424
2425
switch (backend_state) {
2426
case XenbusStateInitWait:
2427
if (dev->state != XenbusStateInitialising)
2428
break;
2429
if (talk_to_blkback(dev, info))
2430
break;
2431
break;
2432
case XenbusStateInitialising:
2433
case XenbusStateInitialised:
2434
case XenbusStateReconfiguring:
2435
case XenbusStateReconfigured:
2436
case XenbusStateUnknown:
2437
break;
2438
2439
case XenbusStateConnected:
2440
/*
2441
* talk_to_blkback sets state to XenbusStateInitialised
2442
* and blkfront_connect sets it to XenbusStateConnected
2443
* (if connection went OK).
2444
*
2445
* If the backend (or toolstack) decides to poke at backend
2446
* state (and re-trigger the watch by setting the state repeatedly
2447
* to XenbusStateConnected (4)) we need to deal with this.
2448
* This is allowed as this is used to communicate to the guest
2449
* that the size of disk has changed!
2450
*/
2451
if ((dev->state != XenbusStateInitialised) &&
2452
(dev->state != XenbusStateConnected)) {
2453
if (talk_to_blkback(dev, info))
2454
break;
2455
}
2456
2457
blkfront_connect(info);
2458
break;
2459
2460
case XenbusStateClosed:
2461
if (dev->state == XenbusStateClosed)
2462
break;
2463
fallthrough;
2464
case XenbusStateClosing:
2465
blkfront_closing(info);
2466
break;
2467
}
2468
}
2469
2470
static void blkfront_remove(struct xenbus_device *xbdev)
2471
{
2472
struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2473
2474
dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2475
2476
if (info->gd)
2477
del_gendisk(info->gd);
2478
2479
mutex_lock(&blkfront_mutex);
2480
list_del(&info->info_list);
2481
mutex_unlock(&blkfront_mutex);
2482
2483
blkif_free(info, 0);
2484
if (info->gd) {
2485
xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2486
put_disk(info->gd);
2487
blk_mq_free_tag_set(&info->tag_set);
2488
}
2489
2490
kfree(info);
2491
}
2492
2493
static int blkfront_is_ready(struct xenbus_device *dev)
2494
{
2495
struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2496
2497
return info->is_ready && info->xbdev;
2498
}
2499
2500
static const struct block_device_operations xlvbd_block_fops =
2501
{
2502
.owner = THIS_MODULE,
2503
.getgeo = blkif_getgeo,
2504
.ioctl = blkif_ioctl,
2505
.compat_ioctl = blkdev_compat_ptr_ioctl,
2506
};
2507
2508
2509
static const struct xenbus_device_id blkfront_ids[] = {
2510
{ "vbd" },
2511
{ "" }
2512
};
2513
2514
static struct xenbus_driver blkfront_driver = {
2515
.ids = blkfront_ids,
2516
.probe = blkfront_probe,
2517
.remove = blkfront_remove,
2518
.resume = blkfront_resume,
2519
.otherend_changed = blkback_changed,
2520
.is_ready = blkfront_is_ready,
2521
};
2522
2523
static void purge_persistent_grants(struct blkfront_info *info)
2524
{
2525
unsigned int i;
2526
unsigned long flags;
2527
struct blkfront_ring_info *rinfo;
2528
2529
for_each_rinfo(info, rinfo, i) {
2530
struct grant *gnt_list_entry, *tmp;
2531
LIST_HEAD(grants);
2532
2533
spin_lock_irqsave(&rinfo->ring_lock, flags);
2534
2535
if (rinfo->persistent_gnts_c == 0) {
2536
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2537
continue;
2538
}
2539
2540
list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2541
node) {
2542
if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2543
!gnttab_try_end_foreign_access(gnt_list_entry->gref))
2544
continue;
2545
2546
list_del(&gnt_list_entry->node);
2547
rinfo->persistent_gnts_c--;
2548
gnt_list_entry->gref = INVALID_GRANT_REF;
2549
list_add_tail(&gnt_list_entry->node, &grants);
2550
}
2551
2552
list_splice_tail(&grants, &rinfo->grants);
2553
2554
spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2555
}
2556
}
2557
2558
static void blkfront_delay_work(struct work_struct *work)
2559
{
2560
struct blkfront_info *info;
2561
bool need_schedule_work = false;
2562
2563
/*
2564
* Note that when using bounce buffers but not persistent grants
2565
* there's no need to run blkfront_delay_work because grants are
2566
* revoked in blkif_completion or else an error is reported and the
2567
* connection is closed.
2568
*/
2569
2570
mutex_lock(&blkfront_mutex);
2571
2572
list_for_each_entry(info, &info_list, info_list) {
2573
if (info->feature_persistent) {
2574
need_schedule_work = true;
2575
mutex_lock(&info->mutex);
2576
purge_persistent_grants(info);
2577
mutex_unlock(&info->mutex);
2578
}
2579
}
2580
2581
if (need_schedule_work)
2582
schedule_delayed_work(&blkfront_work, HZ * 10);
2583
2584
mutex_unlock(&blkfront_mutex);
2585
}
2586
2587
static int __init xlblk_init(void)
2588
{
2589
int ret;
2590
int nr_cpus = num_online_cpus();
2591
2592
if (!xen_domain())
2593
return -ENODEV;
2594
2595
if (!xen_has_pv_disk_devices())
2596
return -ENODEV;
2597
2598
if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2599
pr_warn("xen_blk: can't get major %d with name %s\n",
2600
XENVBD_MAJOR, DEV_NAME);
2601
return -ENODEV;
2602
}
2603
2604
if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2605
xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2606
2607
if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2608
pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2609
xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2610
xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2611
}
2612
2613
if (xen_blkif_max_queues > nr_cpus) {
2614
pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2615
xen_blkif_max_queues, nr_cpus);
2616
xen_blkif_max_queues = nr_cpus;
2617
}
2618
2619
INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2620
2621
ret = xenbus_register_frontend(&blkfront_driver);
2622
if (ret) {
2623
unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2624
return ret;
2625
}
2626
2627
return 0;
2628
}
2629
module_init(xlblk_init);
2630
2631
2632
static void __exit xlblk_exit(void)
2633
{
2634
cancel_delayed_work_sync(&blkfront_work);
2635
2636
xenbus_unregister_driver(&blkfront_driver);
2637
unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2638
kfree(minors);
2639
}
2640
module_exit(xlblk_exit);
2641
2642
MODULE_DESCRIPTION("Xen virtual block device frontend");
2643
MODULE_LICENSE("GPL");
2644
MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2645
MODULE_ALIAS("xen:vbd");
2646
MODULE_ALIAS("xenblk");
2647
2648