Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bluetooth/btintel_pcie.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
*
4
* Bluetooth support for Intel PCIe devices
5
*
6
* Copyright (C) 2024 Intel Corporation
7
*/
8
9
#include <linux/kernel.h>
10
#include <linux/module.h>
11
#include <linux/firmware.h>
12
#include <linux/pci.h>
13
#include <linux/wait.h>
14
#include <linux/delay.h>
15
#include <linux/interrupt.h>
16
17
#include <linux/unaligned.h>
18
19
#include <net/bluetooth/bluetooth.h>
20
#include <net/bluetooth/hci_core.h>
21
22
#include "btintel.h"
23
#include "btintel_pcie.h"
24
25
#define VERSION "0.1"
26
27
#define BTINTEL_PCI_DEVICE(dev, subdev) \
28
.vendor = PCI_VENDOR_ID_INTEL, \
29
.device = (dev), \
30
.subvendor = PCI_ANY_ID, \
31
.subdevice = (subdev), \
32
.driver_data = 0
33
34
#define POLL_INTERVAL_US 10
35
36
/* Intel Bluetooth PCIe device id table */
37
static const struct pci_device_id btintel_pcie_table[] = {
38
{ BTINTEL_PCI_DEVICE(0x4D76, PCI_ANY_ID) },
39
{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
40
{ BTINTEL_PCI_DEVICE(0xE476, PCI_ANY_ID) },
41
{ 0 }
42
};
43
MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
44
45
struct btintel_pcie_dev_recovery {
46
struct list_head list;
47
u8 count;
48
time64_t last_error;
49
char name[];
50
};
51
52
/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
53
#define BTINTEL_PCIE_HCI_TYPE_LEN 4
54
#define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001
55
#define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002
56
#define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003
57
#define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004
58
#define BTINTEL_PCIE_HCI_ISO_PKT 0x00000005
59
60
#define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5
61
62
#define BTINTEL_PCIE_BLZR_HWEXP_SIZE 1024
63
#define BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR 0xB00A7C00
64
65
#define BTINTEL_PCIE_SCP_HWEXP_SIZE 4096
66
#define BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR 0xB030F800
67
68
#define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5
69
70
#define BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER 0x17A2
71
#define BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT 0x1E61
72
73
#define BTINTEL_PCIE_RESET_WINDOW_SECS 5
74
#define BTINTEL_PCIE_FLR_MAX_RETRY 1
75
76
/* Alive interrupt context */
77
enum {
78
BTINTEL_PCIE_ROM,
79
BTINTEL_PCIE_FW_DL,
80
BTINTEL_PCIE_HCI_RESET,
81
BTINTEL_PCIE_INTEL_HCI_RESET1,
82
BTINTEL_PCIE_INTEL_HCI_RESET2,
83
BTINTEL_PCIE_D0,
84
BTINTEL_PCIE_D3
85
};
86
87
/* Structure for dbgc fragment buffer
88
* @buf_addr_lsb: LSB of the buffer's physical address
89
* @buf_addr_msb: MSB of the buffer's physical address
90
* @buf_size: Total size of the buffer
91
*/
92
struct btintel_pcie_dbgc_ctxt_buf {
93
u32 buf_addr_lsb;
94
u32 buf_addr_msb;
95
u32 buf_size;
96
};
97
98
/* Structure for dbgc fragment
99
* @magic_num: 0XA5A5A5A5
100
* @ver: For Driver-FW compatibility
101
* @total_size: Total size of the payload debug info
102
* @num_buf: Num of allocated debug bufs
103
* @bufs: All buffer's addresses and sizes
104
*/
105
struct btintel_pcie_dbgc_ctxt {
106
u32 magic_num;
107
u32 ver;
108
u32 total_size;
109
u32 num_buf;
110
struct btintel_pcie_dbgc_ctxt_buf bufs[BTINTEL_PCIE_DBGC_BUFFER_COUNT];
111
};
112
113
struct btintel_pcie_removal {
114
struct pci_dev *pdev;
115
struct work_struct work;
116
};
117
118
static LIST_HEAD(btintel_pcie_recovery_list);
119
static DEFINE_SPINLOCK(btintel_pcie_recovery_lock);
120
121
static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt)
122
{
123
switch (alive_intr_ctxt) {
124
case BTINTEL_PCIE_ROM:
125
return "rom";
126
case BTINTEL_PCIE_FW_DL:
127
return "fw_dl";
128
case BTINTEL_PCIE_D0:
129
return "d0";
130
case BTINTEL_PCIE_D3:
131
return "d3";
132
case BTINTEL_PCIE_HCI_RESET:
133
return "hci_reset";
134
case BTINTEL_PCIE_INTEL_HCI_RESET1:
135
return "intel_reset1";
136
case BTINTEL_PCIE_INTEL_HCI_RESET2:
137
return "intel_reset2";
138
default:
139
return "unknown";
140
}
141
}
142
143
/* This function initializes the memory for DBGC buffers and formats the
144
* DBGC fragment which consists header info and DBGC buffer's LSB, MSB and
145
* size as the payload
146
*/
147
static int btintel_pcie_setup_dbgc(struct btintel_pcie_data *data)
148
{
149
struct btintel_pcie_dbgc_ctxt db_frag;
150
struct data_buf *buf;
151
int i;
152
153
data->dbgc.count = BTINTEL_PCIE_DBGC_BUFFER_COUNT;
154
data->dbgc.bufs = devm_kcalloc(&data->pdev->dev, data->dbgc.count,
155
sizeof(*buf), GFP_KERNEL);
156
if (!data->dbgc.bufs)
157
return -ENOMEM;
158
159
data->dbgc.buf_v_addr = dmam_alloc_coherent(&data->pdev->dev,
160
data->dbgc.count *
161
BTINTEL_PCIE_DBGC_BUFFER_SIZE,
162
&data->dbgc.buf_p_addr,
163
GFP_KERNEL | __GFP_NOWARN);
164
if (!data->dbgc.buf_v_addr)
165
return -ENOMEM;
166
167
data->dbgc.frag_v_addr = dmam_alloc_coherent(&data->pdev->dev,
168
sizeof(struct btintel_pcie_dbgc_ctxt),
169
&data->dbgc.frag_p_addr,
170
GFP_KERNEL | __GFP_NOWARN);
171
if (!data->dbgc.frag_v_addr)
172
return -ENOMEM;
173
174
data->dbgc.frag_size = sizeof(struct btintel_pcie_dbgc_ctxt);
175
176
db_frag.magic_num = BTINTEL_PCIE_MAGIC_NUM;
177
db_frag.ver = BTINTEL_PCIE_DBGC_FRAG_VERSION;
178
db_frag.total_size = BTINTEL_PCIE_DBGC_FRAG_PAYLOAD_SIZE;
179
db_frag.num_buf = BTINTEL_PCIE_DBGC_FRAG_BUFFER_COUNT;
180
181
for (i = 0; i < data->dbgc.count; i++) {
182
buf = &data->dbgc.bufs[i];
183
buf->data_p_addr = data->dbgc.buf_p_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
184
buf->data = data->dbgc.buf_v_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
185
db_frag.bufs[i].buf_addr_lsb = lower_32_bits(buf->data_p_addr);
186
db_frag.bufs[i].buf_addr_msb = upper_32_bits(buf->data_p_addr);
187
db_frag.bufs[i].buf_size = BTINTEL_PCIE_DBGC_BUFFER_SIZE;
188
}
189
190
memcpy(data->dbgc.frag_v_addr, &db_frag, sizeof(db_frag));
191
return 0;
192
}
193
194
static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
195
u16 queue_num)
196
{
197
bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u",
198
queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
199
ia->tr_hia[queue_num], ia->tr_tia[queue_num],
200
ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
201
}
202
203
static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
204
u16 index)
205
{
206
bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
207
index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
208
}
209
210
static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
211
{
212
u8 queue = entry->entry;
213
struct msix_entry *entries = entry - queue;
214
215
return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
216
}
217
218
/* Set the doorbell for TXQ to notify the device that @index (actually index-1)
219
* of the TFD is updated and ready to transmit.
220
*/
221
static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
222
{
223
u32 val;
224
225
val = index;
226
val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
227
228
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
229
}
230
231
/* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
232
* descriptor) with the data length and the DMA address of the data buffer.
233
*/
234
static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
235
struct sk_buff *skb)
236
{
237
struct data_buf *buf;
238
struct tfd *tfd;
239
240
tfd = &txq->tfds[tfd_index];
241
memset(tfd, 0, sizeof(*tfd));
242
243
buf = &txq->bufs[tfd_index];
244
245
tfd->size = skb->len;
246
tfd->addr = buf->data_p_addr;
247
248
/* Copy the outgoing data to DMA buffer */
249
memcpy(buf->data, skb->data, tfd->size);
250
}
251
252
static inline void btintel_pcie_dump_debug_registers(struct hci_dev *hdev)
253
{
254
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
255
u16 cr_hia, cr_tia;
256
u32 reg, mbox_reg;
257
struct sk_buff *skb;
258
u8 buf[80];
259
260
skb = alloc_skb(1024, GFP_ATOMIC);
261
if (!skb)
262
return;
263
264
snprintf(buf, sizeof(buf), "%s", "---- Dump of debug registers ---");
265
bt_dev_dbg(hdev, "%s", buf);
266
skb_put_data(skb, buf, strlen(buf));
267
268
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
269
snprintf(buf, sizeof(buf), "boot stage: 0x%8.8x", reg);
270
bt_dev_dbg(hdev, "%s", buf);
271
skb_put_data(skb, buf, strlen(buf));
272
data->boot_stage_cache = reg;
273
274
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_STATUS_REG);
275
snprintf(buf, sizeof(buf), "ipc status: 0x%8.8x", reg);
276
skb_put_data(skb, buf, strlen(buf));
277
bt_dev_dbg(hdev, "%s", buf);
278
279
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_CONTROL_REG);
280
snprintf(buf, sizeof(buf), "ipc control: 0x%8.8x", reg);
281
skb_put_data(skb, buf, strlen(buf));
282
bt_dev_dbg(hdev, "%s", buf);
283
284
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG);
285
snprintf(buf, sizeof(buf), "ipc sleep control: 0x%8.8x", reg);
286
skb_put_data(skb, buf, strlen(buf));
287
bt_dev_dbg(hdev, "%s", buf);
288
289
/*Read the Mail box status and registers*/
290
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MBOX_STATUS_REG);
291
snprintf(buf, sizeof(buf), "mbox status: 0x%8.8x", reg);
292
skb_put_data(skb, buf, strlen(buf));
293
if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX1) {
294
mbox_reg = btintel_pcie_rd_reg32(data,
295
BTINTEL_PCIE_CSR_MBOX_1_REG);
296
snprintf(buf, sizeof(buf), "mbox_1: 0x%8.8x", mbox_reg);
297
skb_put_data(skb, buf, strlen(buf));
298
bt_dev_dbg(hdev, "%s", buf);
299
}
300
301
if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX2) {
302
mbox_reg = btintel_pcie_rd_reg32(data,
303
BTINTEL_PCIE_CSR_MBOX_2_REG);
304
snprintf(buf, sizeof(buf), "mbox_2: 0x%8.8x", mbox_reg);
305
skb_put_data(skb, buf, strlen(buf));
306
bt_dev_dbg(hdev, "%s", buf);
307
}
308
309
if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX3) {
310
mbox_reg = btintel_pcie_rd_reg32(data,
311
BTINTEL_PCIE_CSR_MBOX_3_REG);
312
snprintf(buf, sizeof(buf), "mbox_3: 0x%8.8x", mbox_reg);
313
skb_put_data(skb, buf, strlen(buf));
314
bt_dev_dbg(hdev, "%s", buf);
315
}
316
317
if (reg & BTINTEL_PCIE_CSR_MBOX_STATUS_MBOX4) {
318
mbox_reg = btintel_pcie_rd_reg32(data,
319
BTINTEL_PCIE_CSR_MBOX_4_REG);
320
snprintf(buf, sizeof(buf), "mbox_4: 0x%8.8x", mbox_reg);
321
skb_put_data(skb, buf, strlen(buf));
322
bt_dev_dbg(hdev, "%s", buf);
323
}
324
325
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
326
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
327
snprintf(buf, sizeof(buf), "rxq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia);
328
skb_put_data(skb, buf, strlen(buf));
329
bt_dev_dbg(hdev, "%s", buf);
330
331
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
332
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
333
snprintf(buf, sizeof(buf), "txq: cr_tia: %u cr_hia: %u", cr_tia, cr_hia);
334
skb_put_data(skb, buf, strlen(buf));
335
bt_dev_dbg(hdev, "%s", buf);
336
snprintf(buf, sizeof(buf), "--------------------------------");
337
bt_dev_dbg(hdev, "%s", buf);
338
339
hci_recv_diag(hdev, skb);
340
}
341
342
static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
343
struct sk_buff *skb, u32 pkt_type, u16 opcode)
344
{
345
int ret;
346
u16 tfd_index;
347
u32 old_ctxt;
348
bool wait_on_alive = false;
349
struct hci_dev *hdev = data->hdev;
350
351
struct txq *txq = &data->txq;
352
353
tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
354
355
if (tfd_index > txq->count)
356
return -ERANGE;
357
358
/* Firmware raises alive interrupt on HCI_OP_RESET or
359
* BTINTEL_HCI_OP_RESET
360
*/
361
wait_on_alive = (pkt_type == BTINTEL_PCIE_HCI_CMD_PKT &&
362
(opcode == BTINTEL_HCI_OP_RESET || opcode == HCI_OP_RESET));
363
364
if (wait_on_alive) {
365
data->gp0_received = false;
366
old_ctxt = data->alive_intr_ctxt;
367
data->alive_intr_ctxt =
368
(opcode == BTINTEL_HCI_OP_RESET ? BTINTEL_PCIE_INTEL_HCI_RESET1 :
369
BTINTEL_PCIE_HCI_RESET);
370
bt_dev_dbg(data->hdev, "sending cmd: 0x%4.4x alive context changed: %s -> %s",
371
opcode, btintel_pcie_alivectxt_state2str(old_ctxt),
372
btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
373
}
374
375
memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &pkt_type,
376
BTINTEL_PCIE_HCI_TYPE_LEN);
377
378
/* Prepare for TX. It updates the TFD with the length of data and
379
* address of the DMA buffer, and copy the data to the DMA buffer
380
*/
381
btintel_pcie_prepare_tx(txq, tfd_index, skb);
382
383
tfd_index = (tfd_index + 1) % txq->count;
384
data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
385
386
/* Arm wait event condition */
387
data->tx_wait_done = false;
388
389
/* Set the doorbell to notify the device */
390
btintel_pcie_set_tx_db(data, tfd_index);
391
392
/* Wait for the complete interrupt - URBD0 */
393
ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
394
msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
395
if (!ret) {
396
bt_dev_err(data->hdev, "Timeout (%u ms) on tx completion",
397
BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS);
398
btintel_pcie_dump_debug_registers(data->hdev);
399
return -ETIME;
400
}
401
402
if (wait_on_alive) {
403
ret = wait_event_timeout(data->gp0_wait_q,
404
data->gp0_received,
405
msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
406
if (!ret) {
407
hdev->stat.err_tx++;
408
bt_dev_err(hdev, "Timeout (%u ms) on alive interrupt, alive context: %s",
409
BTINTEL_DEFAULT_INTR_TIMEOUT_MS,
410
btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
411
return -ETIME;
412
}
413
}
414
return 0;
415
}
416
417
/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
418
* is available to receive the data
419
*/
420
static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
421
{
422
u32 val;
423
424
val = index;
425
val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
426
427
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
428
}
429
430
/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
431
* DMA address of the free buffer.
432
*/
433
static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
434
{
435
struct data_buf *buf;
436
struct frbd *frbd;
437
438
/* Get the buffer of the FRBD for DMA */
439
buf = &rxq->bufs[frbd_index];
440
441
frbd = &rxq->frbds[frbd_index];
442
memset(frbd, 0, sizeof(*frbd));
443
444
/* Update FRBD */
445
frbd->tag = frbd_index;
446
frbd->addr = buf->data_p_addr;
447
}
448
449
static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
450
{
451
u16 frbd_index;
452
struct rxq *rxq = &data->rxq;
453
454
frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
455
456
if (frbd_index > rxq->count)
457
return -ERANGE;
458
459
/* Prepare for RX submit. It updates the FRBD with the address of DMA
460
* buffer
461
*/
462
btintel_pcie_prepare_rx(rxq, frbd_index);
463
464
frbd_index = (frbd_index + 1) % rxq->count;
465
data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
466
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
467
468
/* Set the doorbell to notify the device */
469
btintel_pcie_set_rx_db(data, frbd_index);
470
471
return 0;
472
}
473
474
static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
475
{
476
int i, ret;
477
struct rxq *rxq = &data->rxq;
478
479
/* Post (BTINTEL_PCIE_RX_DESCS_COUNT - 3) buffers to overcome the
480
* hardware issues leading to race condition at the firmware.
481
*/
482
483
for (i = 0; i < rxq->count - 3; i++) {
484
ret = btintel_pcie_submit_rx(data);
485
if (ret)
486
return ret;
487
}
488
489
return 0;
490
}
491
492
static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
493
{
494
memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
495
memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
496
memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
497
memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
498
}
499
500
static int btintel_pcie_reset_bt(struct btintel_pcie_data *data)
501
{
502
u32 reg;
503
int retry = 3;
504
505
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
506
507
reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
508
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
509
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
510
reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON;
511
512
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
513
514
do {
515
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
516
if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS)
517
break;
518
usleep_range(10000, 12000);
519
520
} while (--retry > 0);
521
usleep_range(10000, 12000);
522
523
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
524
525
reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
526
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
527
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
528
reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET;
529
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
530
usleep_range(10000, 12000);
531
532
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
533
bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg);
534
535
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
536
537
/* If shared hardware reset is success then boot stage register shall be
538
* set to 0
539
*/
540
return reg == 0 ? 0 : -ENODEV;
541
}
542
543
static void btintel_pcie_mac_init(struct btintel_pcie_data *data)
544
{
545
u32 reg;
546
547
/* Set MAC_INIT bit to start primary bootloader */
548
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
549
reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
550
BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
551
BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
552
reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
553
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
554
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
555
}
556
557
static int btintel_pcie_add_dmp_data(struct hci_dev *hdev, const void *data, int size)
558
{
559
struct sk_buff *skb;
560
int err;
561
562
skb = alloc_skb(size, GFP_ATOMIC);
563
if (!skb)
564
return -ENOMEM;
565
566
skb_put_data(skb, data, size);
567
err = hci_devcd_append(hdev, skb);
568
if (err) {
569
bt_dev_err(hdev, "Failed to append data in the coredump");
570
return err;
571
}
572
573
return 0;
574
}
575
576
static int btintel_pcie_get_mac_access(struct btintel_pcie_data *data)
577
{
578
u32 reg;
579
int retry = 15;
580
581
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
582
583
reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
584
reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
585
if ((reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) == 0)
586
reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
587
588
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
589
590
do {
591
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
592
if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS)
593
return 0;
594
/* Need delay here for Target Access harwdware to settle down*/
595
usleep_range(1000, 1200);
596
597
} while (--retry > 0);
598
599
return -ETIME;
600
}
601
602
static void btintel_pcie_release_mac_access(struct btintel_pcie_data *data)
603
{
604
u32 reg;
605
606
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
607
608
if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ)
609
reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ;
610
611
if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS)
612
reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS;
613
614
if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ)
615
reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ;
616
617
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
618
}
619
620
static void btintel_pcie_copy_tlv(struct sk_buff *skb, enum btintel_pcie_tlv_type type,
621
void *data, int size)
622
{
623
struct intel_tlv *tlv;
624
625
tlv = skb_put(skb, sizeof(*tlv) + size);
626
tlv->type = type;
627
tlv->len = size;
628
memcpy(tlv->val, data, tlv->len);
629
}
630
631
static int btintel_pcie_read_dram_buffers(struct btintel_pcie_data *data)
632
{
633
u32 offset, prev_size, wr_ptr_status, dump_size, i;
634
struct btintel_pcie_dbgc *dbgc = &data->dbgc;
635
u8 buf_idx, dump_time_len, fw_build;
636
struct hci_dev *hdev = data->hdev;
637
struct intel_tlv *tlv;
638
struct timespec64 now;
639
struct sk_buff *skb;
640
struct tm tm_now;
641
char buf[256];
642
u16 hdr_len;
643
int ret;
644
645
wr_ptr_status = btintel_pcie_rd_dev_mem(data, BTINTEL_PCIE_DBGC_CUR_DBGBUFF_STATUS);
646
offset = wr_ptr_status & BTINTEL_PCIE_DBG_OFFSET_BIT_MASK;
647
648
buf_idx = BTINTEL_PCIE_DBGC_DBG_BUF_IDX(wr_ptr_status);
649
if (buf_idx > dbgc->count) {
650
bt_dev_warn(hdev, "Buffer index is invalid");
651
return -EINVAL;
652
}
653
654
prev_size = buf_idx * BTINTEL_PCIE_DBGC_BUFFER_SIZE;
655
if (prev_size + offset >= prev_size)
656
data->dmp_hdr.write_ptr = prev_size + offset;
657
else
658
return -EINVAL;
659
660
ktime_get_real_ts64(&now);
661
time64_to_tm(now.tv_sec, 0, &tm_now);
662
dump_time_len = snprintf(buf, sizeof(buf), "Dump Time: %02d-%02d-%04ld %02d:%02d:%02d",
663
tm_now.tm_mday, tm_now.tm_mon + 1, tm_now.tm_year + 1900,
664
tm_now.tm_hour, tm_now.tm_min, tm_now.tm_sec);
665
666
fw_build = snprintf(buf + dump_time_len, sizeof(buf) - dump_time_len,
667
"Firmware Timestamp: Year %u WW %02u buildtype %u build %u",
668
2000 + (data->dmp_hdr.fw_timestamp >> 8),
669
data->dmp_hdr.fw_timestamp & 0xff, data->dmp_hdr.fw_build_type,
670
data->dmp_hdr.fw_build_num);
671
672
hdr_len = sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_bt) +
673
sizeof(*tlv) + sizeof(data->dmp_hdr.write_ptr) +
674
sizeof(*tlv) + sizeof(data->dmp_hdr.wrap_ctr) +
675
sizeof(*tlv) + sizeof(data->dmp_hdr.trigger_reason) +
676
sizeof(*tlv) + sizeof(data->dmp_hdr.fw_git_sha1) +
677
sizeof(*tlv) + sizeof(data->dmp_hdr.cnvr_top) +
678
sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_top) +
679
sizeof(*tlv) + dump_time_len +
680
sizeof(*tlv) + fw_build;
681
682
dump_size = hdr_len + sizeof(hdr_len);
683
684
skb = alloc_skb(dump_size, GFP_KERNEL);
685
if (!skb)
686
return -ENOMEM;
687
688
/* Add debug buffers data length to dump size */
689
dump_size += BTINTEL_PCIE_DBGC_BUFFER_SIZE * dbgc->count;
690
691
ret = hci_devcd_init(hdev, dump_size);
692
if (ret) {
693
bt_dev_err(hdev, "Failed to init devcoredump, err %d", ret);
694
kfree_skb(skb);
695
return ret;
696
}
697
698
skb_put_data(skb, &hdr_len, sizeof(hdr_len));
699
700
btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_BT, &data->dmp_hdr.cnvi_bt,
701
sizeof(data->dmp_hdr.cnvi_bt));
702
703
btintel_pcie_copy_tlv(skb, BTINTEL_WRITE_PTR, &data->dmp_hdr.write_ptr,
704
sizeof(data->dmp_hdr.write_ptr));
705
706
data->dmp_hdr.wrap_ctr = btintel_pcie_rd_dev_mem(data,
707
BTINTEL_PCIE_DBGC_DBGBUFF_WRAP_ARND);
708
709
btintel_pcie_copy_tlv(skb, BTINTEL_WRAP_CTR, &data->dmp_hdr.wrap_ctr,
710
sizeof(data->dmp_hdr.wrap_ctr));
711
712
btintel_pcie_copy_tlv(skb, BTINTEL_TRIGGER_REASON, &data->dmp_hdr.trigger_reason,
713
sizeof(data->dmp_hdr.trigger_reason));
714
715
btintel_pcie_copy_tlv(skb, BTINTEL_FW_SHA, &data->dmp_hdr.fw_git_sha1,
716
sizeof(data->dmp_hdr.fw_git_sha1));
717
718
btintel_pcie_copy_tlv(skb, BTINTEL_CNVR_TOP, &data->dmp_hdr.cnvr_top,
719
sizeof(data->dmp_hdr.cnvr_top));
720
721
btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_TOP, &data->dmp_hdr.cnvi_top,
722
sizeof(data->dmp_hdr.cnvi_top));
723
724
btintel_pcie_copy_tlv(skb, BTINTEL_DUMP_TIME, buf, dump_time_len);
725
726
btintel_pcie_copy_tlv(skb, BTINTEL_FW_BUILD, buf + dump_time_len, fw_build);
727
728
ret = hci_devcd_append(hdev, skb);
729
if (ret)
730
goto exit_err;
731
732
for (i = 0; i < dbgc->count; i++) {
733
ret = btintel_pcie_add_dmp_data(hdev, dbgc->bufs[i].data,
734
BTINTEL_PCIE_DBGC_BUFFER_SIZE);
735
if (ret)
736
break;
737
}
738
739
exit_err:
740
hci_devcd_complete(hdev);
741
return ret;
742
}
743
744
static void btintel_pcie_dump_traces(struct hci_dev *hdev)
745
{
746
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
747
int ret = 0;
748
749
ret = btintel_pcie_get_mac_access(data);
750
if (ret) {
751
bt_dev_err(hdev, "Failed to get mac access: (%d)", ret);
752
return;
753
}
754
755
ret = btintel_pcie_read_dram_buffers(data);
756
757
btintel_pcie_release_mac_access(data);
758
759
if (ret)
760
bt_dev_err(hdev, "Failed to dump traces: (%d)", ret);
761
}
762
763
static void btintel_pcie_dump_hdr(struct hci_dev *hdev, struct sk_buff *skb)
764
{
765
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
766
u16 len = skb->len;
767
u16 *hdrlen_ptr;
768
char buf[80];
769
770
hdrlen_ptr = skb_put_zero(skb, sizeof(len));
771
772
snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
773
INTEL_HW_VARIANT(data->dmp_hdr.cnvi_bt));
774
skb_put_data(skb, buf, strlen(buf));
775
776
snprintf(buf, sizeof(buf), "Firmware Build Number: %u\n",
777
data->dmp_hdr.fw_build_num);
778
skb_put_data(skb, buf, strlen(buf));
779
780
snprintf(buf, sizeof(buf), "Driver: %s\n", data->dmp_hdr.driver_name);
781
skb_put_data(skb, buf, strlen(buf));
782
783
snprintf(buf, sizeof(buf), "Vendor: Intel\n");
784
skb_put_data(skb, buf, strlen(buf));
785
786
*hdrlen_ptr = skb->len - len;
787
}
788
789
static void btintel_pcie_dump_notify(struct hci_dev *hdev, int state)
790
{
791
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
792
793
switch (state) {
794
case HCI_DEVCOREDUMP_IDLE:
795
data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
796
break;
797
case HCI_DEVCOREDUMP_ACTIVE:
798
data->dmp_hdr.state = HCI_DEVCOREDUMP_ACTIVE;
799
break;
800
case HCI_DEVCOREDUMP_TIMEOUT:
801
case HCI_DEVCOREDUMP_ABORT:
802
case HCI_DEVCOREDUMP_DONE:
803
data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE;
804
break;
805
}
806
}
807
808
/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
809
* BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
810
* BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
811
* Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
812
* from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
813
*/
814
static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
815
{
816
int err;
817
u32 reg;
818
819
data->gp0_received = false;
820
821
/* Update the DMA address of CI struct to CSR */
822
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
823
data->ci_p_addr & 0xffffffff);
824
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
825
(u64)data->ci_p_addr >> 32);
826
827
/* Reset the cached value of boot stage. it is updated by the MSI-X
828
* gp0 interrupt handler.
829
*/
830
data->boot_stage_cache = 0x0;
831
832
/* Set MAC_INIT bit to start primary bootloader */
833
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
834
reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
835
BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
836
BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
837
reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
838
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
839
840
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
841
842
/* MAC is ready. Enable BT FUNC */
843
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
844
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
845
846
btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
847
848
/* wait for interrupt from the device after booting up to primary
849
* bootloader.
850
*/
851
data->alive_intr_ctxt = BTINTEL_PCIE_ROM;
852
err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
853
msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
854
if (!err)
855
return -ETIME;
856
857
/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
858
if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
859
return -ENODEV;
860
861
return 0;
862
}
863
864
static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data)
865
{
866
return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW;
867
}
868
869
static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data)
870
{
871
return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML &&
872
!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
873
}
874
875
static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data)
876
{
877
return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY;
878
}
879
880
static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data)
881
{
882
return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY);
883
}
884
885
static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data,
886
u32 dxstate)
887
{
888
bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate);
889
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate);
890
}
891
892
static int btintel_pcie_read_device_mem(struct btintel_pcie_data *data,
893
void *buf, u32 dev_addr, int len)
894
{
895
int err;
896
u32 *val = buf;
897
898
/* Get device mac access */
899
err = btintel_pcie_get_mac_access(data);
900
if (err) {
901
bt_dev_err(data->hdev, "Failed to get mac access %d", err);
902
return err;
903
}
904
905
for (; len > 0; len -= 4, dev_addr += 4, val++)
906
*val = btintel_pcie_rd_dev_mem(data, dev_addr);
907
908
btintel_pcie_release_mac_access(data);
909
910
return 0;
911
}
912
913
static inline bool btintel_pcie_in_lockdown(struct btintel_pcie_data *data)
914
{
915
return (data->boot_stage_cache &
916
BTINTEL_PCIE_CSR_BOOT_STAGE_ROM_LOCKDOWN) ||
917
(data->boot_stage_cache &
918
BTINTEL_PCIE_CSR_BOOT_STAGE_IML_LOCKDOWN);
919
}
920
921
static inline bool btintel_pcie_in_error(struct btintel_pcie_data *data)
922
{
923
return (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_DEVICE_ERR) ||
924
(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ABORT_HANDLER);
925
}
926
927
static void btintel_pcie_msix_gp1_handler(struct btintel_pcie_data *data)
928
{
929
bt_dev_err(data->hdev, "Received gp1 mailbox interrupt");
930
btintel_pcie_dump_debug_registers(data->hdev);
931
}
932
933
/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
934
* BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
935
*/
936
static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
937
{
938
bool submit_rx, signal_waitq;
939
u32 reg, old_ctxt;
940
941
/* This interrupt is for three different causes and it is not easy to
942
* know what causes the interrupt. So, it compares each register value
943
* with cached value and update it before it wake up the queue.
944
*/
945
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
946
if (reg != data->boot_stage_cache)
947
data->boot_stage_cache = reg;
948
949
bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x",
950
btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt),
951
data->boot_stage_cache, reg);
952
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
953
if (reg != data->img_resp_cache)
954
data->img_resp_cache = reg;
955
956
if (btintel_pcie_in_error(data)) {
957
bt_dev_err(data->hdev, "Controller in error state");
958
btintel_pcie_dump_debug_registers(data->hdev);
959
return;
960
}
961
962
if (btintel_pcie_in_lockdown(data)) {
963
bt_dev_err(data->hdev, "Controller in lockdown state");
964
btintel_pcie_dump_debug_registers(data->hdev);
965
return;
966
}
967
968
data->gp0_received = true;
969
970
old_ctxt = data->alive_intr_ctxt;
971
submit_rx = false;
972
signal_waitq = false;
973
974
switch (data->alive_intr_ctxt) {
975
case BTINTEL_PCIE_ROM:
976
data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
977
signal_waitq = true;
978
break;
979
case BTINTEL_PCIE_FW_DL:
980
/* Error case is already handled. Ideally control shall not
981
* reach here
982
*/
983
break;
984
case BTINTEL_PCIE_INTEL_HCI_RESET1:
985
if (btintel_pcie_in_op(data)) {
986
submit_rx = true;
987
signal_waitq = true;
988
break;
989
}
990
991
if (btintel_pcie_in_iml(data)) {
992
submit_rx = true;
993
signal_waitq = true;
994
data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
995
break;
996
}
997
break;
998
case BTINTEL_PCIE_INTEL_HCI_RESET2:
999
if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) {
1000
btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0);
1001
data->alive_intr_ctxt = BTINTEL_PCIE_D0;
1002
}
1003
break;
1004
case BTINTEL_PCIE_D0:
1005
if (btintel_pcie_in_d3(data)) {
1006
data->alive_intr_ctxt = BTINTEL_PCIE_D3;
1007
signal_waitq = true;
1008
break;
1009
}
1010
break;
1011
case BTINTEL_PCIE_D3:
1012
if (btintel_pcie_in_d0(data)) {
1013
data->alive_intr_ctxt = BTINTEL_PCIE_D0;
1014
submit_rx = true;
1015
signal_waitq = true;
1016
break;
1017
}
1018
break;
1019
case BTINTEL_PCIE_HCI_RESET:
1020
data->alive_intr_ctxt = BTINTEL_PCIE_D0;
1021
submit_rx = true;
1022
signal_waitq = true;
1023
break;
1024
default:
1025
bt_dev_err(data->hdev, "Unknown state: 0x%2.2x",
1026
data->alive_intr_ctxt);
1027
break;
1028
}
1029
1030
if (submit_rx) {
1031
btintel_pcie_reset_ia(data);
1032
btintel_pcie_start_rx(data);
1033
}
1034
1035
if (signal_waitq) {
1036
bt_dev_dbg(data->hdev, "wake up gp0 wait_q");
1037
wake_up(&data->gp0_wait_q);
1038
}
1039
1040
if (old_ctxt != data->alive_intr_ctxt)
1041
bt_dev_dbg(data->hdev, "alive context changed: %s -> %s",
1042
btintel_pcie_alivectxt_state2str(old_ctxt),
1043
btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
1044
}
1045
1046
/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
1047
*/
1048
static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
1049
{
1050
u16 cr_tia, cr_hia;
1051
struct txq *txq;
1052
struct urbd0 *urbd0;
1053
1054
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
1055
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
1056
1057
if (cr_tia == cr_hia)
1058
return;
1059
1060
txq = &data->txq;
1061
1062
while (cr_tia != cr_hia) {
1063
data->tx_wait_done = true;
1064
wake_up(&data->tx_wait_q);
1065
1066
urbd0 = &txq->urbd0s[cr_tia];
1067
1068
if (urbd0->tfd_index > txq->count)
1069
return;
1070
1071
cr_tia = (cr_tia + 1) % txq->count;
1072
data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
1073
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
1074
}
1075
}
1076
1077
static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1078
{
1079
struct hci_event_hdr *hdr = (void *)skb->data;
1080
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1081
1082
if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
1083
hdr->plen > 0) {
1084
const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
1085
unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
1086
1087
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1088
switch (skb->data[2]) {
1089
case 0x02:
1090
/* When switching to the operational firmware
1091
* the device sends a vendor specific event
1092
* indicating that the bootup completed.
1093
*/
1094
btintel_bootup(hdev, ptr, len);
1095
1096
/* If bootup event is from operational image,
1097
* driver needs to write sleep control register to
1098
* move into D0 state
1099
*/
1100
if (btintel_pcie_in_op(data)) {
1101
btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0);
1102
data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2;
1103
kfree_skb(skb);
1104
return 0;
1105
}
1106
1107
if (btintel_pcie_in_iml(data)) {
1108
/* In case of IML, there is no concept
1109
* of D0 transition. Just mimic as if
1110
* IML moved to D0 by clearing INTEL_WAIT_FOR_D0
1111
* bit and waking up the task waiting on
1112
* INTEL_WAIT_FOR_D0. This is required
1113
* as intel_boot() is common function for
1114
* both IML and OP image loading.
1115
*/
1116
if (btintel_test_and_clear_flag(data->hdev,
1117
INTEL_WAIT_FOR_D0))
1118
btintel_wake_up_flag(data->hdev,
1119
INTEL_WAIT_FOR_D0);
1120
}
1121
kfree_skb(skb);
1122
return 0;
1123
case 0x06:
1124
/* When the firmware loading completes the
1125
* device sends out a vendor specific event
1126
* indicating the result of the firmware
1127
* loading.
1128
*/
1129
btintel_secure_send_result(hdev, ptr, len);
1130
kfree_skb(skb);
1131
return 0;
1132
}
1133
}
1134
1135
/* This is a debug event that comes from IML and OP image when it
1136
* starts execution. There is no need pass this event to stack.
1137
*/
1138
if (skb->data[2] == 0x97) {
1139
hci_recv_diag(hdev, skb);
1140
return 0;
1141
}
1142
}
1143
1144
return hci_recv_frame(hdev, skb);
1145
}
1146
/* Process the received rx data
1147
* It check the frame header to identify the data type and create skb
1148
* and calling HCI API
1149
*/
1150
static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
1151
struct sk_buff *skb)
1152
{
1153
int ret;
1154
u8 pkt_type;
1155
u16 plen;
1156
u32 pcie_pkt_type;
1157
void *pdata;
1158
struct hci_dev *hdev = data->hdev;
1159
1160
spin_lock(&data->hci_rx_lock);
1161
1162
/* The first 4 bytes indicates the Intel PCIe specific packet type */
1163
pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
1164
if (!pdata) {
1165
bt_dev_err(hdev, "Corrupted packet received");
1166
ret = -EILSEQ;
1167
goto exit_error;
1168
}
1169
1170
pcie_pkt_type = get_unaligned_le32(pdata);
1171
1172
switch (pcie_pkt_type) {
1173
case BTINTEL_PCIE_HCI_ACL_PKT:
1174
if (skb->len >= HCI_ACL_HDR_SIZE) {
1175
plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
1176
pkt_type = HCI_ACLDATA_PKT;
1177
} else {
1178
bt_dev_err(hdev, "ACL packet is too short");
1179
ret = -EILSEQ;
1180
goto exit_error;
1181
}
1182
break;
1183
1184
case BTINTEL_PCIE_HCI_SCO_PKT:
1185
if (skb->len >= HCI_SCO_HDR_SIZE) {
1186
plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
1187
pkt_type = HCI_SCODATA_PKT;
1188
} else {
1189
bt_dev_err(hdev, "SCO packet is too short");
1190
ret = -EILSEQ;
1191
goto exit_error;
1192
}
1193
break;
1194
1195
case BTINTEL_PCIE_HCI_EVT_PKT:
1196
if (skb->len >= HCI_EVENT_HDR_SIZE) {
1197
plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
1198
pkt_type = HCI_EVENT_PKT;
1199
} else {
1200
bt_dev_err(hdev, "Event packet is too short");
1201
ret = -EILSEQ;
1202
goto exit_error;
1203
}
1204
break;
1205
1206
case BTINTEL_PCIE_HCI_ISO_PKT:
1207
if (skb->len >= HCI_ISO_HDR_SIZE) {
1208
plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
1209
pkt_type = HCI_ISODATA_PKT;
1210
} else {
1211
bt_dev_err(hdev, "ISO packet is too short");
1212
ret = -EILSEQ;
1213
goto exit_error;
1214
}
1215
break;
1216
1217
default:
1218
bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
1219
pcie_pkt_type);
1220
ret = -EINVAL;
1221
goto exit_error;
1222
}
1223
1224
if (skb->len < plen) {
1225
bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
1226
pkt_type);
1227
ret = -EILSEQ;
1228
goto exit_error;
1229
}
1230
1231
bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
1232
1233
hci_skb_pkt_type(skb) = pkt_type;
1234
hdev->stat.byte_rx += plen;
1235
skb_trim(skb, plen);
1236
1237
if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
1238
ret = btintel_pcie_recv_event(hdev, skb);
1239
else
1240
ret = hci_recv_frame(hdev, skb);
1241
skb = NULL; /* skb is freed in the callee */
1242
1243
exit_error:
1244
if (skb)
1245
kfree_skb(skb);
1246
1247
if (ret)
1248
hdev->stat.err_rx++;
1249
1250
spin_unlock(&data->hci_rx_lock);
1251
1252
return ret;
1253
}
1254
1255
static void btintel_pcie_read_hwexp(struct btintel_pcie_data *data)
1256
{
1257
int len, err, offset, pending;
1258
struct sk_buff *skb;
1259
u8 *buf, prefix[64];
1260
u32 addr, val;
1261
u16 pkt_len;
1262
1263
struct tlv {
1264
u8 type;
1265
__le16 len;
1266
u8 val[];
1267
} __packed;
1268
1269
struct tlv *tlv;
1270
1271
switch (data->dmp_hdr.cnvi_top & 0xfff) {
1272
case BTINTEL_CNVI_BLAZARI:
1273
case BTINTEL_CNVI_BLAZARIW:
1274
/* only from step B0 onwards */
1275
if (INTEL_CNVX_TOP_STEP(data->dmp_hdr.cnvi_top) != 0x01)
1276
return;
1277
len = BTINTEL_PCIE_BLZR_HWEXP_SIZE; /* exception data length */
1278
addr = BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR;
1279
break;
1280
case BTINTEL_CNVI_SCP:
1281
len = BTINTEL_PCIE_SCP_HWEXP_SIZE;
1282
addr = BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR;
1283
break;
1284
default:
1285
bt_dev_err(data->hdev, "Unsupported cnvi 0x%8.8x", data->dmp_hdr.cnvi_top);
1286
return;
1287
}
1288
1289
buf = kzalloc(len, GFP_KERNEL);
1290
if (!buf)
1291
goto exit_on_error;
1292
1293
btintel_pcie_mac_init(data);
1294
1295
err = btintel_pcie_read_device_mem(data, buf, addr, len);
1296
if (err)
1297
goto exit_on_error;
1298
1299
val = get_unaligned_le32(buf);
1300
if (val != BTINTEL_PCIE_MAGIC_NUM) {
1301
bt_dev_err(data->hdev, "Invalid exception dump signature: 0x%8.8x",
1302
val);
1303
goto exit_on_error;
1304
}
1305
1306
snprintf(prefix, sizeof(prefix), "Bluetooth: %s: ", bt_dev_name(data->hdev));
1307
1308
offset = 4;
1309
do {
1310
pending = len - offset;
1311
if (pending < sizeof(*tlv))
1312
break;
1313
tlv = (struct tlv *)(buf + offset);
1314
1315
/* If type == 0, then there are no more TLVs to be parsed */
1316
if (!tlv->type) {
1317
bt_dev_dbg(data->hdev, "Invalid TLV type 0");
1318
break;
1319
}
1320
pkt_len = le16_to_cpu(tlv->len);
1321
offset += sizeof(*tlv);
1322
pending = len - offset;
1323
if (pkt_len > pending)
1324
break;
1325
1326
offset += pkt_len;
1327
1328
/* Only TLVs of type == 1 are HCI events, no need to process other
1329
* TLVs
1330
*/
1331
if (tlv->type != 1)
1332
continue;
1333
1334
bt_dev_dbg(data->hdev, "TLV packet length: %u", pkt_len);
1335
if (pkt_len > HCI_MAX_EVENT_SIZE)
1336
break;
1337
skb = bt_skb_alloc(pkt_len, GFP_KERNEL);
1338
if (!skb)
1339
goto exit_on_error;
1340
hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1341
skb_put_data(skb, tlv->val, pkt_len);
1342
1343
/* copy Intel specific pcie packet type */
1344
val = BTINTEL_PCIE_HCI_EVT_PKT;
1345
memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &val,
1346
BTINTEL_PCIE_HCI_TYPE_LEN);
1347
1348
print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_OFFSET, 16, 1,
1349
tlv->val, pkt_len, false);
1350
1351
btintel_pcie_recv_frame(data, skb);
1352
} while (offset < len);
1353
1354
exit_on_error:
1355
kfree(buf);
1356
}
1357
1358
static void btintel_pcie_msix_hw_exp_handler(struct btintel_pcie_data *data)
1359
{
1360
bt_dev_err(data->hdev, "Received hw exception interrupt");
1361
1362
if (test_and_set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags))
1363
return;
1364
1365
if (test_and_set_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags))
1366
return;
1367
1368
/* Trigger device core dump when there is HW exception */
1369
if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
1370
data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT;
1371
1372
queue_work(data->workqueue, &data->rx_work);
1373
}
1374
1375
static void btintel_pcie_rx_work(struct work_struct *work)
1376
{
1377
struct btintel_pcie_data *data = container_of(work,
1378
struct btintel_pcie_data, rx_work);
1379
struct sk_buff *skb;
1380
1381
if (test_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) {
1382
/* Unlike usb products, controller will not send hardware
1383
* exception event on exception. Instead controller writes the
1384
* hardware event to device memory along with optional debug
1385
* events, raises MSIX and halts. Driver shall read the
1386
* exception event from device memory and passes it stack for
1387
* further processing.
1388
*/
1389
btintel_pcie_read_hwexp(data);
1390
clear_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags);
1391
}
1392
1393
if (test_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) {
1394
btintel_pcie_dump_traces(data->hdev);
1395
clear_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags);
1396
}
1397
1398
/* Process the sk_buf in queue and send to the HCI layer */
1399
while ((skb = skb_dequeue(&data->rx_skb_q))) {
1400
btintel_pcie_recv_frame(data, skb);
1401
}
1402
}
1403
1404
/* create sk_buff with data and save it to queue and start RX work */
1405
static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
1406
void *buf)
1407
{
1408
int ret, len;
1409
struct rfh_hdr *rfh_hdr;
1410
struct sk_buff *skb;
1411
1412
rfh_hdr = buf;
1413
1414
len = rfh_hdr->packet_len;
1415
if (len <= 0) {
1416
ret = -EINVAL;
1417
goto resubmit;
1418
}
1419
1420
/* Remove RFH header */
1421
buf += sizeof(*rfh_hdr);
1422
1423
skb = alloc_skb(len, GFP_ATOMIC);
1424
if (!skb)
1425
goto resubmit;
1426
1427
skb_put_data(skb, buf, len);
1428
skb_queue_tail(&data->rx_skb_q, skb);
1429
queue_work(data->workqueue, &data->rx_work);
1430
1431
resubmit:
1432
ret = btintel_pcie_submit_rx(data);
1433
1434
return ret;
1435
}
1436
1437
/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
1438
static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
1439
{
1440
u16 cr_hia, cr_tia;
1441
struct rxq *rxq;
1442
struct urbd1 *urbd1;
1443
struct data_buf *buf;
1444
int ret;
1445
struct hci_dev *hdev = data->hdev;
1446
1447
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
1448
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
1449
1450
bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia);
1451
1452
/* Check CR_TIA and CR_HIA for change */
1453
if (cr_tia == cr_hia)
1454
return;
1455
1456
rxq = &data->rxq;
1457
1458
/* The firmware sends multiple CD in a single MSI-X and it needs to
1459
* process all received CDs in this interrupt.
1460
*/
1461
while (cr_tia != cr_hia) {
1462
urbd1 = &rxq->urbd1s[cr_tia];
1463
ipc_print_urbd1(data->hdev, urbd1, cr_tia);
1464
1465
buf = &rxq->bufs[urbd1->frbd_tag];
1466
if (!buf) {
1467
bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
1468
urbd1->frbd_tag);
1469
return;
1470
}
1471
1472
ret = btintel_pcie_submit_rx_work(data, urbd1->status,
1473
buf->data);
1474
if (ret) {
1475
bt_dev_err(hdev, "RXQ: failed to submit rx request");
1476
return;
1477
}
1478
1479
cr_tia = (cr_tia + 1) % rxq->count;
1480
data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
1481
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
1482
}
1483
}
1484
1485
static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
1486
{
1487
return IRQ_WAKE_THREAD;
1488
}
1489
1490
static inline bool btintel_pcie_is_rxq_empty(struct btintel_pcie_data *data)
1491
{
1492
return data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM] == data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
1493
}
1494
1495
static inline bool btintel_pcie_is_txackq_empty(struct btintel_pcie_data *data)
1496
{
1497
return data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] == data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
1498
}
1499
1500
static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
1501
{
1502
struct msix_entry *entry = dev_id;
1503
struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
1504
u32 intr_fh, intr_hw;
1505
1506
spin_lock(&data->irq_lock);
1507
intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
1508
intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
1509
1510
/* Clear causes registers to avoid being handling the same cause */
1511
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
1512
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
1513
spin_unlock(&data->irq_lock);
1514
1515
if (unlikely(!(intr_fh | intr_hw))) {
1516
/* Ignore interrupt, inta == 0 */
1517
return IRQ_NONE;
1518
}
1519
1520
/* This interrupt is raised when there is an hardware exception */
1521
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP)
1522
btintel_pcie_msix_hw_exp_handler(data);
1523
1524
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP1)
1525
btintel_pcie_msix_gp1_handler(data);
1526
1527
/* This interrupt is triggered by the firmware after updating
1528
* boot_stage register and image_response register
1529
*/
1530
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
1531
btintel_pcie_msix_gp0_handler(data);
1532
1533
/* For TX */
1534
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) {
1535
btintel_pcie_msix_tx_handle(data);
1536
if (!btintel_pcie_is_rxq_empty(data))
1537
btintel_pcie_msix_rx_handle(data);
1538
}
1539
1540
/* For RX */
1541
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) {
1542
btintel_pcie_msix_rx_handle(data);
1543
if (!btintel_pcie_is_txackq_empty(data))
1544
btintel_pcie_msix_tx_handle(data);
1545
}
1546
1547
/*
1548
* Before sending the interrupt the HW disables it to prevent a nested
1549
* interrupt. This is done by writing 1 to the corresponding bit in
1550
* the mask register. After handling the interrupt, it should be
1551
* re-enabled by clearing this bit. This register is defined as write 1
1552
* clear (W1C) register, meaning that it's cleared by writing 1
1553
* to the bit.
1554
*/
1555
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
1556
BIT(entry->entry));
1557
1558
return IRQ_HANDLED;
1559
}
1560
1561
/* This function requests the irq for MSI-X and registers the handlers per irq.
1562
* Currently, it requests only 1 irq for all interrupt causes.
1563
*/
1564
static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
1565
{
1566
int err;
1567
int num_irqs, i;
1568
1569
for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
1570
data->msix_entries[i].entry = i;
1571
1572
num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
1573
BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
1574
if (num_irqs < 0)
1575
return num_irqs;
1576
1577
data->alloc_vecs = num_irqs;
1578
data->msix_enabled = 1;
1579
data->def_irq = 0;
1580
1581
/* setup irq handler */
1582
for (i = 0; i < data->alloc_vecs; i++) {
1583
struct msix_entry *msix_entry;
1584
1585
msix_entry = &data->msix_entries[i];
1586
msix_entry->vector = pci_irq_vector(data->pdev, i);
1587
1588
err = devm_request_threaded_irq(&data->pdev->dev,
1589
msix_entry->vector,
1590
btintel_pcie_msix_isr,
1591
btintel_pcie_irq_msix_handler,
1592
IRQF_SHARED,
1593
KBUILD_MODNAME,
1594
msix_entry);
1595
if (err) {
1596
pci_free_irq_vectors(data->pdev);
1597
data->alloc_vecs = 0;
1598
return err;
1599
}
1600
}
1601
return 0;
1602
}
1603
1604
struct btintel_pcie_causes_list {
1605
u32 cause;
1606
u32 mask_reg;
1607
u8 cause_num;
1608
};
1609
1610
static struct btintel_pcie_causes_list causes_list[] = {
1611
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 },
1612
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 },
1613
{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 },
1614
{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x23 },
1615
};
1616
1617
/* This function configures the interrupt masks for both HW_INT_CAUSES and
1618
* FH_INT_CAUSES which are meaningful to us.
1619
*
1620
* After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
1621
* need to call this function again to configure since the masks
1622
* are reset to 0xFFFFFFFF after reset.
1623
*/
1624
static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
1625
{
1626
int i;
1627
int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
1628
1629
/* Set Non Auto Clear Cause */
1630
for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
1631
btintel_pcie_wr_reg8(data,
1632
BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
1633
val);
1634
btintel_pcie_clr_reg_bits(data,
1635
causes_list[i].mask_reg,
1636
causes_list[i].cause);
1637
}
1638
1639
/* Save the initial interrupt mask */
1640
data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
1641
data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
1642
}
1643
1644
static int btintel_pcie_config_pcie(struct pci_dev *pdev,
1645
struct btintel_pcie_data *data)
1646
{
1647
int err;
1648
1649
err = pcim_enable_device(pdev);
1650
if (err)
1651
return err;
1652
1653
pci_set_master(pdev);
1654
1655
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1656
if (err) {
1657
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1658
if (err)
1659
return err;
1660
}
1661
1662
data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME);
1663
if (IS_ERR(data->base_addr))
1664
return PTR_ERR(data->base_addr);
1665
1666
err = btintel_pcie_setup_irq(data);
1667
if (err)
1668
return err;
1669
1670
/* Configure MSI-X with causes list */
1671
btintel_pcie_config_msix(data);
1672
1673
return 0;
1674
}
1675
1676
static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
1677
struct ctx_info *ci)
1678
{
1679
ci->version = 0x1;
1680
ci->size = sizeof(*ci);
1681
ci->config = 0x0000;
1682
ci->addr_cr_hia = data->ia.cr_hia_p_addr;
1683
ci->addr_tr_tia = data->ia.tr_tia_p_addr;
1684
ci->addr_cr_tia = data->ia.cr_tia_p_addr;
1685
ci->addr_tr_hia = data->ia.tr_hia_p_addr;
1686
ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
1687
ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
1688
ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
1689
ci->addr_tfdq = data->txq.tfds_p_addr;
1690
ci->num_tfdq = data->txq.count;
1691
ci->num_urbdq0 = data->txq.count;
1692
ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
1693
ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
1694
ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
1695
ci->addr_frbdq = data->rxq.frbds_p_addr;
1696
ci->num_frbdq = data->rxq.count;
1697
ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1698
ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
1699
ci->num_urbdq1 = data->rxq.count;
1700
ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1701
1702
ci->dbg_output_mode = 0x01;
1703
ci->dbgc_addr = data->dbgc.frag_p_addr;
1704
ci->dbgc_size = data->dbgc.frag_size;
1705
ci->dbg_preset = 0x00;
1706
}
1707
1708
static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
1709
struct txq *txq)
1710
{
1711
/* Free data buffers first */
1712
dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1713
txq->buf_v_addr, txq->buf_p_addr);
1714
kfree(txq->bufs);
1715
}
1716
1717
static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
1718
struct txq *txq)
1719
{
1720
int i;
1721
struct data_buf *buf;
1722
1723
/* Allocate the same number of buffers as the descriptor */
1724
txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
1725
if (!txq->bufs)
1726
return -ENOMEM;
1727
1728
/* Allocate full chunk of data buffer for DMA first and do indexing and
1729
* initialization next, so it can be freed easily
1730
*/
1731
txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1732
txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1733
&txq->buf_p_addr,
1734
GFP_KERNEL | __GFP_NOWARN);
1735
if (!txq->buf_v_addr) {
1736
kfree(txq->bufs);
1737
return -ENOMEM;
1738
}
1739
1740
/* Setup the allocated DMA buffer to bufs. Each data_buf should
1741
* have virtual address and physical address
1742
*/
1743
for (i = 0; i < txq->count; i++) {
1744
buf = &txq->bufs[i];
1745
buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1746
buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1747
}
1748
1749
return 0;
1750
}
1751
1752
static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
1753
struct rxq *rxq)
1754
{
1755
/* Free data buffers first */
1756
dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1757
rxq->buf_v_addr, rxq->buf_p_addr);
1758
kfree(rxq->bufs);
1759
}
1760
1761
static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
1762
struct rxq *rxq)
1763
{
1764
int i;
1765
struct data_buf *buf;
1766
1767
/* Allocate the same number of buffers as the descriptor */
1768
rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
1769
if (!rxq->bufs)
1770
return -ENOMEM;
1771
1772
/* Allocate full chunk of data buffer for DMA first and do indexing and
1773
* initialization next, so it can be freed easily
1774
*/
1775
rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1776
rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1777
&rxq->buf_p_addr,
1778
GFP_KERNEL | __GFP_NOWARN);
1779
if (!rxq->buf_v_addr) {
1780
kfree(rxq->bufs);
1781
return -ENOMEM;
1782
}
1783
1784
/* Setup the allocated DMA buffer to bufs. Each data_buf should
1785
* have virtual address and physical address
1786
*/
1787
for (i = 0; i < rxq->count; i++) {
1788
buf = &rxq->bufs[i];
1789
buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1790
buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1791
}
1792
1793
return 0;
1794
}
1795
1796
static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
1797
dma_addr_t p_addr, void *v_addr,
1798
struct ia *ia)
1799
{
1800
/* TR Head Index Array */
1801
ia->tr_hia_p_addr = p_addr;
1802
ia->tr_hia = v_addr;
1803
1804
/* TR Tail Index Array */
1805
ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1806
ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1807
1808
/* CR Head index Array */
1809
ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1810
ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1811
1812
/* CR Tail Index Array */
1813
ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1814
ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1815
}
1816
1817
static void btintel_pcie_free(struct btintel_pcie_data *data)
1818
{
1819
btintel_pcie_free_rxq_bufs(data, &data->rxq);
1820
btintel_pcie_free_txq_bufs(data, &data->txq);
1821
1822
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1823
dma_pool_destroy(data->dma_pool);
1824
}
1825
1826
/* Allocate tx and rx queues, any related data structures and buffers.
1827
*/
1828
static int btintel_pcie_alloc(struct btintel_pcie_data *data)
1829
{
1830
int err = 0;
1831
size_t total;
1832
dma_addr_t p_addr;
1833
void *v_addr;
1834
1835
/* Allocate the chunk of DMA memory for descriptors, index array, and
1836
* context information, instead of allocating individually.
1837
* The DMA memory for data buffer is allocated while setting up the
1838
* each queue.
1839
*
1840
* Total size is sum of the following
1841
* + size of TFD * Number of descriptors in queue
1842
* + size of URBD0 * Number of descriptors in queue
1843
* + size of FRBD * Number of descriptors in queue
1844
* + size of URBD1 * Number of descriptors in queue
1845
* + size of index * Number of queues(2) * type of index array(4)
1846
* + size of context information
1847
*/
1848
total = (sizeof(struct tfd) + sizeof(struct urbd0)) * BTINTEL_PCIE_TX_DESCS_COUNT;
1849
total += (sizeof(struct frbd) + sizeof(struct urbd1)) * BTINTEL_PCIE_RX_DESCS_COUNT;
1850
1851
/* Add the sum of size of index array and size of ci struct */
1852
total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
1853
1854
/* Allocate DMA Pool */
1855
data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
1856
total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
1857
if (!data->dma_pool) {
1858
err = -ENOMEM;
1859
goto exit_error;
1860
}
1861
1862
v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
1863
&p_addr);
1864
if (!v_addr) {
1865
dma_pool_destroy(data->dma_pool);
1866
err = -ENOMEM;
1867
goto exit_error;
1868
}
1869
1870
data->dma_p_addr = p_addr;
1871
data->dma_v_addr = v_addr;
1872
1873
/* Setup descriptor count */
1874
data->txq.count = BTINTEL_PCIE_TX_DESCS_COUNT;
1875
data->rxq.count = BTINTEL_PCIE_RX_DESCS_COUNT;
1876
1877
/* Setup tfds */
1878
data->txq.tfds_p_addr = p_addr;
1879
data->txq.tfds = v_addr;
1880
1881
p_addr += (sizeof(struct tfd) * BTINTEL_PCIE_TX_DESCS_COUNT);
1882
v_addr += (sizeof(struct tfd) * BTINTEL_PCIE_TX_DESCS_COUNT);
1883
1884
/* Setup urbd0 */
1885
data->txq.urbd0s_p_addr = p_addr;
1886
data->txq.urbd0s = v_addr;
1887
1888
p_addr += (sizeof(struct urbd0) * BTINTEL_PCIE_TX_DESCS_COUNT);
1889
v_addr += (sizeof(struct urbd0) * BTINTEL_PCIE_TX_DESCS_COUNT);
1890
1891
/* Setup FRBD*/
1892
data->rxq.frbds_p_addr = p_addr;
1893
data->rxq.frbds = v_addr;
1894
1895
p_addr += (sizeof(struct frbd) * BTINTEL_PCIE_RX_DESCS_COUNT);
1896
v_addr += (sizeof(struct frbd) * BTINTEL_PCIE_RX_DESCS_COUNT);
1897
1898
/* Setup urbd1 */
1899
data->rxq.urbd1s_p_addr = p_addr;
1900
data->rxq.urbd1s = v_addr;
1901
1902
p_addr += (sizeof(struct urbd1) * BTINTEL_PCIE_RX_DESCS_COUNT);
1903
v_addr += (sizeof(struct urbd1) * BTINTEL_PCIE_RX_DESCS_COUNT);
1904
1905
/* Setup data buffers for txq */
1906
err = btintel_pcie_setup_txq_bufs(data, &data->txq);
1907
if (err)
1908
goto exit_error_pool;
1909
1910
/* Setup data buffers for rxq */
1911
err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
1912
if (err)
1913
goto exit_error_txq;
1914
1915
/* Setup Index Array */
1916
btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
1917
1918
/* Setup data buffers for dbgc */
1919
err = btintel_pcie_setup_dbgc(data);
1920
if (err)
1921
goto exit_error_txq;
1922
1923
/* Setup Context Information */
1924
p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1925
v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1926
1927
data->ci = v_addr;
1928
data->ci_p_addr = p_addr;
1929
1930
/* Initialize the CI */
1931
btintel_pcie_init_ci(data, data->ci);
1932
1933
return 0;
1934
1935
exit_error_txq:
1936
btintel_pcie_free_txq_bufs(data, &data->txq);
1937
exit_error_pool:
1938
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1939
dma_pool_destroy(data->dma_pool);
1940
exit_error:
1941
return err;
1942
}
1943
1944
static int btintel_pcie_open(struct hci_dev *hdev)
1945
{
1946
bt_dev_dbg(hdev, "");
1947
1948
return 0;
1949
}
1950
1951
static int btintel_pcie_close(struct hci_dev *hdev)
1952
{
1953
bt_dev_dbg(hdev, "");
1954
1955
return 0;
1956
}
1957
1958
static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1959
{
1960
struct sk_buff *skb;
1961
struct hci_event_hdr *hdr;
1962
struct hci_ev_cmd_complete *evt;
1963
1964
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
1965
if (!skb)
1966
return -ENOMEM;
1967
1968
hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1969
hdr->evt = HCI_EV_CMD_COMPLETE;
1970
hdr->plen = sizeof(*evt) + 1;
1971
1972
evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1973
evt->ncmd = 0x01;
1974
evt->opcode = cpu_to_le16(opcode);
1975
1976
*(u8 *)skb_put(skb, 1) = 0x00;
1977
1978
hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1979
1980
return hci_recv_frame(hdev, skb);
1981
}
1982
1983
static int btintel_pcie_send_frame(struct hci_dev *hdev,
1984
struct sk_buff *skb)
1985
{
1986
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1987
struct hci_command_hdr *cmd;
1988
__u16 opcode = ~0;
1989
int ret;
1990
u32 type;
1991
1992
if (test_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags))
1993
return -ENODEV;
1994
1995
/* Due to the fw limitation, the type header of the packet should be
1996
* 4 bytes unlike 1 byte for UART. In UART, the firmware can read
1997
* the first byte to get the packet type and redirect the rest of data
1998
* packet to the right handler.
1999
*
2000
* But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
2001
* from DMA memory and by the time it reads the first 4 bytes, it has
2002
* already consumed some part of packet. Thus the packet type indicator
2003
* for iBT PCIe is 4 bytes.
2004
*
2005
* Luckily, when HCI core creates the skb, it allocates 8 bytes of
2006
* head room for profile and driver use, and before sending the data
2007
* to the device, append the iBT PCIe packet type in the front.
2008
*/
2009
switch (hci_skb_pkt_type(skb)) {
2010
case HCI_COMMAND_PKT:
2011
type = BTINTEL_PCIE_HCI_CMD_PKT;
2012
cmd = (void *)skb->data;
2013
opcode = le16_to_cpu(cmd->opcode);
2014
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2015
struct hci_command_hdr *cmd = (void *)skb->data;
2016
__u16 opcode = le16_to_cpu(cmd->opcode);
2017
2018
/* When the BTINTEL_HCI_OP_RESET command is issued to
2019
* boot into the operational firmware, it will actually
2020
* not send a command complete event. To keep the flow
2021
* control working inject that event here.
2022
*/
2023
if (opcode == BTINTEL_HCI_OP_RESET)
2024
btintel_pcie_inject_cmd_complete(hdev, opcode);
2025
}
2026
2027
hdev->stat.cmd_tx++;
2028
break;
2029
case HCI_ACLDATA_PKT:
2030
type = BTINTEL_PCIE_HCI_ACL_PKT;
2031
hdev->stat.acl_tx++;
2032
break;
2033
case HCI_SCODATA_PKT:
2034
type = BTINTEL_PCIE_HCI_SCO_PKT;
2035
hdev->stat.sco_tx++;
2036
break;
2037
case HCI_ISODATA_PKT:
2038
type = BTINTEL_PCIE_HCI_ISO_PKT;
2039
break;
2040
default:
2041
bt_dev_err(hdev, "Unknown HCI packet type");
2042
return -EILSEQ;
2043
}
2044
2045
ret = btintel_pcie_send_sync(data, skb, type, opcode);
2046
if (ret) {
2047
hdev->stat.err_tx++;
2048
bt_dev_err(hdev, "Failed to send frame (%d)", ret);
2049
goto exit_error;
2050
}
2051
2052
hdev->stat.byte_tx += skb->len;
2053
kfree_skb(skb);
2054
2055
exit_error:
2056
return ret;
2057
}
2058
2059
static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
2060
{
2061
struct hci_dev *hdev;
2062
2063
hdev = data->hdev;
2064
hci_unregister_dev(hdev);
2065
hci_free_dev(hdev);
2066
data->hdev = NULL;
2067
}
2068
2069
static void btintel_pcie_disable_interrupts(struct btintel_pcie_data *data)
2070
{
2071
spin_lock(&data->irq_lock);
2072
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, data->fh_init_mask);
2073
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, data->hw_init_mask);
2074
spin_unlock(&data->irq_lock);
2075
}
2076
2077
static void btintel_pcie_enable_interrupts(struct btintel_pcie_data *data)
2078
{
2079
spin_lock(&data->irq_lock);
2080
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, ~data->fh_init_mask);
2081
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, ~data->hw_init_mask);
2082
spin_unlock(&data->irq_lock);
2083
}
2084
2085
static void btintel_pcie_synchronize_irqs(struct btintel_pcie_data *data)
2086
{
2087
for (int i = 0; i < data->alloc_vecs; i++)
2088
synchronize_irq(data->msix_entries[i].vector);
2089
}
2090
2091
static int btintel_pcie_setup_internal(struct hci_dev *hdev)
2092
{
2093
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
2094
const u8 param[1] = { 0xFF };
2095
struct intel_version_tlv ver_tlv;
2096
struct sk_buff *skb;
2097
int err;
2098
2099
BT_DBG("%s", hdev->name);
2100
2101
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2102
if (IS_ERR(skb)) {
2103
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2104
PTR_ERR(skb));
2105
return PTR_ERR(skb);
2106
}
2107
2108
/* Check the status */
2109
if (skb->data[0]) {
2110
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2111
skb->data[0]);
2112
err = -EIO;
2113
goto exit_error;
2114
}
2115
2116
/* Apply the common HCI quirks for Intel device */
2117
hci_set_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER);
2118
hci_set_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY);
2119
hci_set_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG);
2120
2121
/* Set up the quality report callback for Intel devices */
2122
hdev->set_quality_report = btintel_set_quality_report;
2123
2124
memset(&ver_tlv, 0, sizeof(ver_tlv));
2125
/* For TLV type device, parse the tlv data */
2126
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2127
if (err) {
2128
bt_dev_err(hdev, "Failed to parse TLV version information");
2129
goto exit_error;
2130
}
2131
2132
switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
2133
case 0x37:
2134
break;
2135
default:
2136
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2137
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2138
err = -EINVAL;
2139
goto exit_error;
2140
}
2141
2142
/* Check for supported iBT hardware variants of this firmware
2143
* loading method.
2144
*
2145
* This check has been put in place to ensure correct forward
2146
* compatibility options when newer hardware variants come
2147
* along.
2148
*/
2149
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2150
case 0x1e: /* BzrI */
2151
case 0x1f: /* ScP */
2152
/* Display version information of TLV type */
2153
btintel_version_info_tlv(hdev, &ver_tlv);
2154
2155
/* Apply the device specific HCI quirks for TLV based devices
2156
*
2157
* All TLV based devices support WBS
2158
*/
2159
hci_set_quirk(hdev, HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
2160
2161
/* Setup MSFT Extension support */
2162
btintel_set_msft_opcode(hdev,
2163
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2164
2165
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2166
if (err)
2167
goto exit_error;
2168
break;
2169
default:
2170
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2171
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2172
err = -EINVAL;
2173
goto exit_error;
2174
break;
2175
}
2176
2177
data->dmp_hdr.cnvi_top = ver_tlv.cnvi_top;
2178
data->dmp_hdr.cnvr_top = ver_tlv.cnvr_top;
2179
data->dmp_hdr.fw_timestamp = ver_tlv.timestamp;
2180
data->dmp_hdr.fw_build_type = ver_tlv.build_type;
2181
data->dmp_hdr.fw_build_num = ver_tlv.build_num;
2182
data->dmp_hdr.cnvi_bt = ver_tlv.cnvi_bt;
2183
2184
if (ver_tlv.img_type == 0x02 || ver_tlv.img_type == 0x03)
2185
data->dmp_hdr.fw_git_sha1 = ver_tlv.git_sha1;
2186
2187
err = hci_devcd_register(hdev, btintel_pcie_dump_traces, btintel_pcie_dump_hdr,
2188
btintel_pcie_dump_notify);
2189
if (err) {
2190
bt_dev_err(hdev, "Failed to register coredump (%d)", err);
2191
goto exit_error;
2192
}
2193
2194
btintel_print_fseq_info(hdev);
2195
exit_error:
2196
kfree_skb(skb);
2197
2198
return err;
2199
}
2200
2201
static int btintel_pcie_setup(struct hci_dev *hdev)
2202
{
2203
int err, fw_dl_retry = 0;
2204
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
2205
2206
while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) {
2207
bt_dev_err(hdev, "Firmware download retry count: %d",
2208
fw_dl_retry);
2209
btintel_pcie_dump_debug_registers(hdev);
2210
btintel_pcie_disable_interrupts(data);
2211
btintel_pcie_synchronize_irqs(data);
2212
err = btintel_pcie_reset_bt(data);
2213
if (err) {
2214
bt_dev_err(hdev, "Failed to do shr reset: %d", err);
2215
break;
2216
}
2217
usleep_range(10000, 12000);
2218
btintel_pcie_reset_ia(data);
2219
btintel_pcie_enable_interrupts(data);
2220
btintel_pcie_config_msix(data);
2221
err = btintel_pcie_enable_bt(data);
2222
if (err) {
2223
bt_dev_err(hdev, "Failed to enable hardware: %d", err);
2224
break;
2225
}
2226
btintel_pcie_start_rx(data);
2227
}
2228
2229
if (!err)
2230
set_bit(BTINTEL_PCIE_SETUP_DONE, &data->flags);
2231
return err;
2232
}
2233
2234
static struct btintel_pcie_dev_recovery *
2235
btintel_pcie_get_recovery(struct pci_dev *pdev, struct device *dev)
2236
{
2237
struct btintel_pcie_dev_recovery *tmp, *data = NULL;
2238
const char *name = pci_name(pdev);
2239
struct hci_dev *hdev = to_hci_dev(dev);
2240
2241
spin_lock(&btintel_pcie_recovery_lock);
2242
list_for_each_entry(tmp, &btintel_pcie_recovery_list, list) {
2243
if (strcmp(tmp->name, name))
2244
continue;
2245
data = tmp;
2246
break;
2247
}
2248
spin_unlock(&btintel_pcie_recovery_lock);
2249
2250
if (data) {
2251
bt_dev_dbg(hdev, "Found restart data for BDF: %s", data->name);
2252
return data;
2253
}
2254
2255
data = kzalloc(struct_size(data, name, strlen(name) + 1), GFP_ATOMIC);
2256
if (!data)
2257
return NULL;
2258
2259
strscpy_pad(data->name, name, strlen(name) + 1);
2260
spin_lock(&btintel_pcie_recovery_lock);
2261
list_add_tail(&data->list, &btintel_pcie_recovery_list);
2262
spin_unlock(&btintel_pcie_recovery_lock);
2263
2264
return data;
2265
}
2266
2267
static void btintel_pcie_free_restart_list(void)
2268
{
2269
struct btintel_pcie_dev_recovery *tmp;
2270
2271
while ((tmp = list_first_entry_or_null(&btintel_pcie_recovery_list,
2272
typeof(*tmp), list))) {
2273
list_del(&tmp->list);
2274
kfree(tmp);
2275
}
2276
}
2277
2278
static void btintel_pcie_inc_recovery_count(struct pci_dev *pdev,
2279
struct device *dev)
2280
{
2281
struct btintel_pcie_dev_recovery *data;
2282
time64_t retry_window;
2283
2284
data = btintel_pcie_get_recovery(pdev, dev);
2285
if (!data)
2286
return;
2287
2288
retry_window = ktime_get_boottime_seconds() - data->last_error;
2289
if (data->count == 0) {
2290
data->last_error = ktime_get_boottime_seconds();
2291
data->count++;
2292
} else if (retry_window < BTINTEL_PCIE_RESET_WINDOW_SECS &&
2293
data->count <= BTINTEL_PCIE_FLR_MAX_RETRY) {
2294
data->count++;
2295
} else if (retry_window > BTINTEL_PCIE_RESET_WINDOW_SECS) {
2296
data->last_error = 0;
2297
data->count = 0;
2298
}
2299
}
2300
2301
static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data);
2302
2303
static void btintel_pcie_removal_work(struct work_struct *wk)
2304
{
2305
struct btintel_pcie_removal *removal =
2306
container_of(wk, struct btintel_pcie_removal, work);
2307
struct pci_dev *pdev = removal->pdev;
2308
struct btintel_pcie_data *data;
2309
int err;
2310
2311
pci_lock_rescan_remove();
2312
2313
if (!pdev->bus)
2314
goto error;
2315
2316
data = pci_get_drvdata(pdev);
2317
2318
btintel_pcie_disable_interrupts(data);
2319
btintel_pcie_synchronize_irqs(data);
2320
2321
flush_work(&data->rx_work);
2322
flush_work(&data->hdev->dump.dump_rx);
2323
2324
bt_dev_dbg(data->hdev, "Release bluetooth interface");
2325
btintel_pcie_release_hdev(data);
2326
2327
err = pci_reset_function(pdev);
2328
if (err) {
2329
BT_ERR("Failed resetting the pcie device (%d)", err);
2330
goto error;
2331
}
2332
2333
btintel_pcie_enable_interrupts(data);
2334
btintel_pcie_config_msix(data);
2335
2336
err = btintel_pcie_enable_bt(data);
2337
if (err) {
2338
BT_ERR("Failed to enable bluetooth hardware after reset (%d)",
2339
err);
2340
goto error;
2341
}
2342
2343
btintel_pcie_reset_ia(data);
2344
btintel_pcie_start_rx(data);
2345
data->flags = 0;
2346
2347
err = btintel_pcie_setup_hdev(data);
2348
if (err) {
2349
BT_ERR("Failed registering hdev (%d)", err);
2350
goto error;
2351
}
2352
error:
2353
pci_dev_put(pdev);
2354
pci_unlock_rescan_remove();
2355
kfree(removal);
2356
}
2357
2358
static void btintel_pcie_reset(struct hci_dev *hdev)
2359
{
2360
struct btintel_pcie_removal *removal;
2361
struct btintel_pcie_data *data;
2362
2363
data = hci_get_drvdata(hdev);
2364
2365
if (!test_bit(BTINTEL_PCIE_SETUP_DONE, &data->flags))
2366
return;
2367
2368
if (test_and_set_bit(BTINTEL_PCIE_RECOVERY_IN_PROGRESS, &data->flags))
2369
return;
2370
2371
removal = kzalloc(sizeof(*removal), GFP_ATOMIC);
2372
if (!removal)
2373
return;
2374
2375
removal->pdev = data->pdev;
2376
INIT_WORK(&removal->work, btintel_pcie_removal_work);
2377
pci_dev_get(removal->pdev);
2378
schedule_work(&removal->work);
2379
}
2380
2381
static void btintel_pcie_hw_error(struct hci_dev *hdev, u8 code)
2382
{
2383
struct btintel_pcie_dev_recovery *data;
2384
struct btintel_pcie_data *dev_data = hci_get_drvdata(hdev);
2385
struct pci_dev *pdev = dev_data->pdev;
2386
time64_t retry_window;
2387
2388
if (code == 0x13) {
2389
bt_dev_err(hdev, "Encountered top exception");
2390
return;
2391
}
2392
2393
data = btintel_pcie_get_recovery(pdev, &hdev->dev);
2394
if (!data)
2395
return;
2396
2397
retry_window = ktime_get_boottime_seconds() - data->last_error;
2398
2399
if (retry_window < BTINTEL_PCIE_RESET_WINDOW_SECS &&
2400
data->count >= BTINTEL_PCIE_FLR_MAX_RETRY) {
2401
bt_dev_err(hdev, "Exhausted maximum: %d recovery attempts: %d",
2402
BTINTEL_PCIE_FLR_MAX_RETRY, data->count);
2403
bt_dev_dbg(hdev, "Boot time: %lld seconds",
2404
ktime_get_boottime_seconds());
2405
bt_dev_dbg(hdev, "last error at: %lld seconds",
2406
data->last_error);
2407
return;
2408
}
2409
btintel_pcie_inc_recovery_count(pdev, &hdev->dev);
2410
btintel_pcie_reset(hdev);
2411
}
2412
2413
static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
2414
{
2415
int err;
2416
struct hci_dev *hdev;
2417
2418
hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
2419
if (!hdev)
2420
return -ENOMEM;
2421
2422
hdev->bus = HCI_PCI;
2423
hci_set_drvdata(hdev, data);
2424
2425
data->hdev = hdev;
2426
SET_HCIDEV_DEV(hdev, &data->pdev->dev);
2427
2428
hdev->manufacturer = 2;
2429
hdev->open = btintel_pcie_open;
2430
hdev->close = btintel_pcie_close;
2431
hdev->send = btintel_pcie_send_frame;
2432
hdev->setup = btintel_pcie_setup;
2433
hdev->shutdown = btintel_shutdown_combined;
2434
hdev->hw_error = btintel_pcie_hw_error;
2435
hdev->set_diag = btintel_set_diag;
2436
hdev->set_bdaddr = btintel_set_bdaddr;
2437
hdev->reset = btintel_pcie_reset;
2438
2439
err = hci_register_dev(hdev);
2440
if (err < 0) {
2441
BT_ERR("Failed to register to hdev (%d)", err);
2442
goto exit_error;
2443
}
2444
2445
data->dmp_hdr.driver_name = KBUILD_MODNAME;
2446
return 0;
2447
2448
exit_error:
2449
hci_free_dev(hdev);
2450
return err;
2451
}
2452
2453
static int btintel_pcie_probe(struct pci_dev *pdev,
2454
const struct pci_device_id *ent)
2455
{
2456
int err;
2457
struct btintel_pcie_data *data;
2458
2459
if (!pdev)
2460
return -ENODEV;
2461
2462
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
2463
if (!data)
2464
return -ENOMEM;
2465
2466
data->pdev = pdev;
2467
2468
spin_lock_init(&data->irq_lock);
2469
spin_lock_init(&data->hci_rx_lock);
2470
2471
init_waitqueue_head(&data->gp0_wait_q);
2472
data->gp0_received = false;
2473
2474
init_waitqueue_head(&data->tx_wait_q);
2475
data->tx_wait_done = false;
2476
2477
data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
2478
if (!data->workqueue)
2479
return -ENOMEM;
2480
2481
skb_queue_head_init(&data->rx_skb_q);
2482
INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
2483
2484
data->boot_stage_cache = 0x00;
2485
data->img_resp_cache = 0x00;
2486
2487
err = btintel_pcie_config_pcie(pdev, data);
2488
if (err)
2489
goto exit_error;
2490
2491
pci_set_drvdata(pdev, data);
2492
2493
err = btintel_pcie_alloc(data);
2494
if (err)
2495
goto exit_error;
2496
2497
err = btintel_pcie_enable_bt(data);
2498
if (err)
2499
goto exit_error;
2500
2501
/* CNV information (CNVi and CNVr) is in CSR */
2502
data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
2503
2504
data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
2505
2506
err = btintel_pcie_start_rx(data);
2507
if (err)
2508
goto exit_error;
2509
2510
err = btintel_pcie_setup_hdev(data);
2511
if (err)
2512
goto exit_error;
2513
2514
bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
2515
data->cnvr);
2516
return 0;
2517
2518
exit_error:
2519
/* reset device before exit */
2520
btintel_pcie_reset_bt(data);
2521
2522
pci_clear_master(pdev);
2523
2524
pci_set_drvdata(pdev, NULL);
2525
2526
return err;
2527
}
2528
2529
static void btintel_pcie_remove(struct pci_dev *pdev)
2530
{
2531
struct btintel_pcie_data *data;
2532
2533
data = pci_get_drvdata(pdev);
2534
2535
btintel_pcie_disable_interrupts(data);
2536
2537
btintel_pcie_synchronize_irqs(data);
2538
2539
flush_work(&data->rx_work);
2540
2541
btintel_pcie_reset_bt(data);
2542
for (int i = 0; i < data->alloc_vecs; i++) {
2543
struct msix_entry *msix_entry;
2544
2545
msix_entry = &data->msix_entries[i];
2546
free_irq(msix_entry->vector, msix_entry);
2547
}
2548
2549
pci_free_irq_vectors(pdev);
2550
2551
btintel_pcie_release_hdev(data);
2552
2553
destroy_workqueue(data->workqueue);
2554
2555
btintel_pcie_free(data);
2556
2557
pci_clear_master(pdev);
2558
2559
pci_set_drvdata(pdev, NULL);
2560
}
2561
2562
#ifdef CONFIG_DEV_COREDUMP
2563
static void btintel_pcie_coredump(struct device *dev)
2564
{
2565
struct pci_dev *pdev = to_pci_dev(dev);
2566
struct btintel_pcie_data *data = pci_get_drvdata(pdev);
2567
2568
if (test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags))
2569
return;
2570
2571
data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER;
2572
queue_work(data->workqueue, &data->rx_work);
2573
}
2574
#endif
2575
2576
static struct pci_driver btintel_pcie_driver = {
2577
.name = KBUILD_MODNAME,
2578
.id_table = btintel_pcie_table,
2579
.probe = btintel_pcie_probe,
2580
.remove = btintel_pcie_remove,
2581
#ifdef CONFIG_DEV_COREDUMP
2582
.driver.coredump = btintel_pcie_coredump
2583
#endif
2584
};
2585
2586
static int __init btintel_pcie_init(void)
2587
{
2588
return pci_register_driver(&btintel_pcie_driver);
2589
}
2590
2591
static void __exit btintel_pcie_exit(void)
2592
{
2593
pci_unregister_driver(&btintel_pcie_driver);
2594
btintel_pcie_free_restart_list();
2595
}
2596
2597
module_init(btintel_pcie_init);
2598
module_exit(btintel_pcie_exit);
2599
2600
MODULE_AUTHOR("Tedd Ho-Jeong An <[email protected]>");
2601
MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
2602
MODULE_VERSION(VERSION);
2603
MODULE_LICENSE("GPL");
2604
2605