Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bus/fsl-mc/fsl-mc-bus.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Freescale Management Complex (MC) bus driver
4
*
5
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
6
* Copyright 2019-2020 NXP
7
* Author: German Rivera <[email protected]>
8
*
9
*/
10
11
#define pr_fmt(fmt) "fsl-mc: " fmt
12
13
#include <linux/module.h>
14
#include <linux/of_device.h>
15
#include <linux/of_address.h>
16
#include <linux/ioport.h>
17
#include <linux/platform_device.h>
18
#include <linux/slab.h>
19
#include <linux/limits.h>
20
#include <linux/bitops.h>
21
#include <linux/dma-mapping.h>
22
#include <linux/acpi.h>
23
#include <linux/iommu.h>
24
#include <linux/dma-map-ops.h>
25
26
#include "fsl-mc-private.h"
27
28
/*
29
* Default DMA mask for devices on a fsl-mc bus
30
*/
31
#define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
32
33
static struct fsl_mc_version mc_version;
34
35
/**
36
* struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
37
* @root_mc_bus_dev: fsl-mc device representing the root DPRC
38
* @num_translation_ranges: number of entries in addr_translation_ranges
39
* @translation_ranges: array of bus to system address translation ranges
40
* @fsl_mc_regs: base address of register bank
41
*/
42
struct fsl_mc {
43
struct fsl_mc_device *root_mc_bus_dev;
44
u8 num_translation_ranges;
45
struct fsl_mc_addr_translation_range *translation_ranges;
46
void __iomem *fsl_mc_regs;
47
};
48
49
/**
50
* struct fsl_mc_addr_translation_range - bus to system address translation
51
* range
52
* @mc_region_type: Type of MC region for the range being translated
53
* @start_mc_offset: Start MC offset of the range being translated
54
* @end_mc_offset: MC offset of the first byte after the range (last MC
55
* offset of the range is end_mc_offset - 1)
56
* @start_phys_addr: system physical address corresponding to start_mc_addr
57
*/
58
struct fsl_mc_addr_translation_range {
59
enum dprc_region_type mc_region_type;
60
u64 start_mc_offset;
61
u64 end_mc_offset;
62
phys_addr_t start_phys_addr;
63
};
64
65
#define FSL_MC_GCR1 0x0
66
#define GCR1_P1_STOP BIT(31)
67
#define GCR1_P2_STOP BIT(30)
68
69
#define FSL_MC_FAPR 0x28
70
#define MC_FAPR_PL BIT(18)
71
#define MC_FAPR_BMT BIT(17)
72
73
static phys_addr_t mc_portal_base_phys_addr;
74
75
/**
76
* fsl_mc_bus_match - device to driver matching callback
77
* @dev: the fsl-mc device to match against
78
* @drv: the device driver to search for matching fsl-mc object type
79
* structures
80
*
81
* Returns 1 on success, 0 otherwise.
82
*/
83
static int fsl_mc_bus_match(struct device *dev, const struct device_driver *drv)
84
{
85
const struct fsl_mc_device_id *id;
86
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
87
const struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
88
bool found = false;
89
90
/* When driver_override is set, only bind to the matching driver */
91
if (mc_dev->driver_override) {
92
found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
93
goto out;
94
}
95
96
if (!mc_drv->match_id_table)
97
goto out;
98
99
/*
100
* If the object is not 'plugged' don't match.
101
* Only exception is the root DPRC, which is a special case.
102
*/
103
if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
104
!fsl_mc_is_root_dprc(&mc_dev->dev))
105
goto out;
106
107
/*
108
* Traverse the match_id table of the given driver, trying to find
109
* a matching for the given device.
110
*/
111
for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
112
if (id->vendor == mc_dev->obj_desc.vendor &&
113
strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
114
found = true;
115
116
break;
117
}
118
}
119
120
out:
121
dev_dbg(dev, "%smatched\n", found ? "" : "not ");
122
return found;
123
}
124
125
/*
126
* fsl_mc_bus_uevent - callback invoked when a device is added
127
*/
128
static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
129
{
130
const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
131
132
if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
133
mc_dev->obj_desc.vendor,
134
mc_dev->obj_desc.type))
135
return -ENOMEM;
136
137
return 0;
138
}
139
140
static int fsl_mc_dma_configure(struct device *dev)
141
{
142
const struct device_driver *drv = READ_ONCE(dev->driver);
143
struct device *dma_dev = dev;
144
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
145
u32 input_id = mc_dev->icid;
146
int ret;
147
148
while (dev_is_fsl_mc(dma_dev))
149
dma_dev = dma_dev->parent;
150
151
if (dev_of_node(dma_dev))
152
ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
153
else
154
ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
155
156
/* @drv may not be valid when we're called from the IOMMU layer */
157
if (!ret && drv && !to_fsl_mc_driver(drv)->driver_managed_dma) {
158
ret = iommu_device_use_default_domain(dev);
159
if (ret)
160
arch_teardown_dma_ops(dev);
161
}
162
163
return ret;
164
}
165
166
static void fsl_mc_dma_cleanup(struct device *dev)
167
{
168
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
169
170
if (!mc_drv->driver_managed_dma)
171
iommu_device_unuse_default_domain(dev);
172
}
173
174
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
175
char *buf)
176
{
177
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
178
179
return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
180
mc_dev->obj_desc.type);
181
}
182
static DEVICE_ATTR_RO(modalias);
183
184
static ssize_t driver_override_store(struct device *dev,
185
struct device_attribute *attr,
186
const char *buf, size_t count)
187
{
188
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
189
int ret;
190
191
if (WARN_ON(dev->bus != &fsl_mc_bus_type))
192
return -EINVAL;
193
194
ret = driver_set_override(dev, &mc_dev->driver_override, buf, count);
195
if (ret)
196
return ret;
197
198
return count;
199
}
200
201
static ssize_t driver_override_show(struct device *dev,
202
struct device_attribute *attr, char *buf)
203
{
204
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
205
206
return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
207
}
208
static DEVICE_ATTR_RW(driver_override);
209
210
static struct attribute *fsl_mc_dev_attrs[] = {
211
&dev_attr_modalias.attr,
212
&dev_attr_driver_override.attr,
213
NULL,
214
};
215
216
ATTRIBUTE_GROUPS(fsl_mc_dev);
217
218
static int scan_fsl_mc_bus(struct device *dev, void *data)
219
{
220
struct fsl_mc_device *root_mc_dev;
221
struct fsl_mc_bus *root_mc_bus;
222
223
if (!fsl_mc_is_root_dprc(dev))
224
goto exit;
225
226
root_mc_dev = to_fsl_mc_device(dev);
227
root_mc_bus = to_fsl_mc_bus(root_mc_dev);
228
mutex_lock(&root_mc_bus->scan_mutex);
229
dprc_scan_objects(root_mc_dev, false);
230
mutex_unlock(&root_mc_bus->scan_mutex);
231
232
exit:
233
return 0;
234
}
235
236
static ssize_t rescan_store(const struct bus_type *bus,
237
const char *buf, size_t count)
238
{
239
unsigned long val;
240
241
if (kstrtoul(buf, 0, &val) < 0)
242
return -EINVAL;
243
244
if (val)
245
bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
246
247
return count;
248
}
249
static BUS_ATTR_WO(rescan);
250
251
static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
252
{
253
struct fsl_mc_device *root_mc_dev;
254
unsigned long val;
255
char *buf = data;
256
257
if (!fsl_mc_is_root_dprc(dev))
258
goto exit;
259
260
root_mc_dev = to_fsl_mc_device(dev);
261
262
if (kstrtoul(buf, 0, &val) < 0)
263
return -EINVAL;
264
265
if (val)
266
enable_dprc_irq(root_mc_dev);
267
else
268
disable_dprc_irq(root_mc_dev);
269
270
exit:
271
return 0;
272
}
273
274
static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
275
{
276
struct fsl_mc_device *root_mc_dev;
277
char *buf = data;
278
279
if (!fsl_mc_is_root_dprc(dev))
280
goto exit;
281
282
root_mc_dev = to_fsl_mc_device(dev);
283
284
sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
285
exit:
286
return 0;
287
}
288
289
static ssize_t autorescan_store(const struct bus_type *bus,
290
const char *buf, size_t count)
291
{
292
bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
293
294
return count;
295
}
296
297
static ssize_t autorescan_show(const struct bus_type *bus, char *buf)
298
{
299
bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
300
return strlen(buf);
301
}
302
303
static BUS_ATTR_RW(autorescan);
304
305
static struct attribute *fsl_mc_bus_attrs[] = {
306
&bus_attr_rescan.attr,
307
&bus_attr_autorescan.attr,
308
NULL,
309
};
310
311
ATTRIBUTE_GROUPS(fsl_mc_bus);
312
313
const struct bus_type fsl_mc_bus_type = {
314
.name = "fsl-mc",
315
.match = fsl_mc_bus_match,
316
.uevent = fsl_mc_bus_uevent,
317
.dma_configure = fsl_mc_dma_configure,
318
.dma_cleanup = fsl_mc_dma_cleanup,
319
.dev_groups = fsl_mc_dev_groups,
320
.bus_groups = fsl_mc_bus_groups,
321
};
322
EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
323
324
const struct device_type fsl_mc_bus_dprc_type = {
325
.name = "fsl_mc_bus_dprc"
326
};
327
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
328
329
const struct device_type fsl_mc_bus_dpni_type = {
330
.name = "fsl_mc_bus_dpni"
331
};
332
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
333
334
const struct device_type fsl_mc_bus_dpio_type = {
335
.name = "fsl_mc_bus_dpio"
336
};
337
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
338
339
const struct device_type fsl_mc_bus_dpsw_type = {
340
.name = "fsl_mc_bus_dpsw"
341
};
342
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
343
344
const struct device_type fsl_mc_bus_dpbp_type = {
345
.name = "fsl_mc_bus_dpbp"
346
};
347
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
348
349
const struct device_type fsl_mc_bus_dpcon_type = {
350
.name = "fsl_mc_bus_dpcon"
351
};
352
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
353
354
const struct device_type fsl_mc_bus_dpmcp_type = {
355
.name = "fsl_mc_bus_dpmcp"
356
};
357
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
358
359
const struct device_type fsl_mc_bus_dpmac_type = {
360
.name = "fsl_mc_bus_dpmac"
361
};
362
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
363
364
const struct device_type fsl_mc_bus_dprtc_type = {
365
.name = "fsl_mc_bus_dprtc"
366
};
367
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
368
369
const struct device_type fsl_mc_bus_dpseci_type = {
370
.name = "fsl_mc_bus_dpseci"
371
};
372
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
373
374
const struct device_type fsl_mc_bus_dpdmux_type = {
375
.name = "fsl_mc_bus_dpdmux"
376
};
377
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
378
379
const struct device_type fsl_mc_bus_dpdcei_type = {
380
.name = "fsl_mc_bus_dpdcei"
381
};
382
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
383
384
const struct device_type fsl_mc_bus_dpaiop_type = {
385
.name = "fsl_mc_bus_dpaiop"
386
};
387
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
388
389
const struct device_type fsl_mc_bus_dpci_type = {
390
.name = "fsl_mc_bus_dpci"
391
};
392
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
393
394
const struct device_type fsl_mc_bus_dpdmai_type = {
395
.name = "fsl_mc_bus_dpdmai"
396
};
397
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
398
399
const struct device_type fsl_mc_bus_dpdbg_type = {
400
.name = "fsl_mc_bus_dpdbg"
401
};
402
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
403
404
static const struct device_type *fsl_mc_get_device_type(const char *type)
405
{
406
static const struct {
407
const struct device_type *dev_type;
408
const char *type;
409
} dev_types[] = {
410
{ &fsl_mc_bus_dprc_type, "dprc" },
411
{ &fsl_mc_bus_dpni_type, "dpni" },
412
{ &fsl_mc_bus_dpio_type, "dpio" },
413
{ &fsl_mc_bus_dpsw_type, "dpsw" },
414
{ &fsl_mc_bus_dpbp_type, "dpbp" },
415
{ &fsl_mc_bus_dpcon_type, "dpcon" },
416
{ &fsl_mc_bus_dpmcp_type, "dpmcp" },
417
{ &fsl_mc_bus_dpmac_type, "dpmac" },
418
{ &fsl_mc_bus_dprtc_type, "dprtc" },
419
{ &fsl_mc_bus_dpseci_type, "dpseci" },
420
{ &fsl_mc_bus_dpdmux_type, "dpdmux" },
421
{ &fsl_mc_bus_dpdcei_type, "dpdcei" },
422
{ &fsl_mc_bus_dpaiop_type, "dpaiop" },
423
{ &fsl_mc_bus_dpci_type, "dpci" },
424
{ &fsl_mc_bus_dpdmai_type, "dpdmai" },
425
{ &fsl_mc_bus_dpdbg_type, "dpdbg" },
426
{ NULL, NULL }
427
};
428
int i;
429
430
for (i = 0; dev_types[i].dev_type; i++)
431
if (!strcmp(dev_types[i].type, type))
432
return dev_types[i].dev_type;
433
434
return NULL;
435
}
436
437
static int fsl_mc_driver_probe(struct device *dev)
438
{
439
struct fsl_mc_driver *mc_drv;
440
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
441
int error;
442
443
mc_drv = to_fsl_mc_driver(dev->driver);
444
445
error = mc_drv->probe(mc_dev);
446
if (error < 0) {
447
if (error != -EPROBE_DEFER)
448
dev_err(dev, "%s failed: %d\n", __func__, error);
449
return error;
450
}
451
452
return 0;
453
}
454
455
static int fsl_mc_driver_remove(struct device *dev)
456
{
457
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
458
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
459
460
mc_drv->remove(mc_dev);
461
462
return 0;
463
}
464
465
static void fsl_mc_driver_shutdown(struct device *dev)
466
{
467
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
468
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
469
470
mc_drv->shutdown(mc_dev);
471
}
472
473
/*
474
* __fsl_mc_driver_register - registers a child device driver with the
475
* MC bus
476
*
477
* This function is implicitly invoked from the registration function of
478
* fsl_mc device drivers, which is generated by the
479
* module_fsl_mc_driver() macro.
480
*/
481
int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
482
struct module *owner)
483
{
484
int error;
485
486
mc_driver->driver.owner = owner;
487
mc_driver->driver.bus = &fsl_mc_bus_type;
488
489
if (mc_driver->probe)
490
mc_driver->driver.probe = fsl_mc_driver_probe;
491
492
if (mc_driver->remove)
493
mc_driver->driver.remove = fsl_mc_driver_remove;
494
495
if (mc_driver->shutdown)
496
mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
497
498
error = driver_register(&mc_driver->driver);
499
if (error < 0) {
500
pr_err("driver_register() failed for %s: %d\n",
501
mc_driver->driver.name, error);
502
return error;
503
}
504
505
return 0;
506
}
507
EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
508
509
/*
510
* fsl_mc_driver_unregister - unregisters a device driver from the
511
* MC bus
512
*/
513
void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
514
{
515
driver_unregister(&mc_driver->driver);
516
}
517
EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
518
519
/**
520
* mc_get_version() - Retrieves the Management Complex firmware
521
* version information
522
* @mc_io: Pointer to opaque I/O object
523
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
524
* @mc_ver_info: Returned version information structure
525
*
526
* Return: '0' on Success; Error code otherwise.
527
*/
528
static int mc_get_version(struct fsl_mc_io *mc_io,
529
u32 cmd_flags,
530
struct fsl_mc_version *mc_ver_info)
531
{
532
struct fsl_mc_command cmd = { 0 };
533
struct dpmng_rsp_get_version *rsp_params;
534
int err;
535
536
/* prepare command */
537
cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
538
cmd_flags,
539
0);
540
541
/* send command to mc*/
542
err = mc_send_command(mc_io, &cmd);
543
if (err)
544
return err;
545
546
/* retrieve response parameters */
547
rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
548
mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
549
mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
550
mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
551
552
return 0;
553
}
554
555
/**
556
* fsl_mc_get_version - function to retrieve the MC f/w version information
557
*
558
* Return: mc version when called after fsl-mc-bus probe; NULL otherwise.
559
*/
560
struct fsl_mc_version *fsl_mc_get_version(void)
561
{
562
if (mc_version.major)
563
return &mc_version;
564
565
return NULL;
566
}
567
EXPORT_SYMBOL_GPL(fsl_mc_get_version);
568
569
/*
570
* fsl_mc_get_root_dprc - function to traverse to the root dprc
571
*/
572
void fsl_mc_get_root_dprc(struct device *dev,
573
struct device **root_dprc_dev)
574
{
575
if (!dev) {
576
*root_dprc_dev = NULL;
577
} else if (!dev_is_fsl_mc(dev)) {
578
*root_dprc_dev = NULL;
579
} else {
580
*root_dprc_dev = dev;
581
while (dev_is_fsl_mc((*root_dprc_dev)->parent))
582
*root_dprc_dev = (*root_dprc_dev)->parent;
583
}
584
}
585
586
static int get_dprc_attr(struct fsl_mc_io *mc_io,
587
int container_id, struct dprc_attributes *attr)
588
{
589
u16 dprc_handle;
590
int error;
591
592
error = dprc_open(mc_io, 0, container_id, &dprc_handle);
593
if (error < 0) {
594
dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
595
return error;
596
}
597
598
memset(attr, 0, sizeof(struct dprc_attributes));
599
error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
600
if (error < 0) {
601
dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
602
error);
603
goto common_cleanup;
604
}
605
606
error = 0;
607
608
common_cleanup:
609
(void)dprc_close(mc_io, 0, dprc_handle);
610
return error;
611
}
612
613
static int get_dprc_icid(struct fsl_mc_io *mc_io,
614
int container_id, u32 *icid)
615
{
616
struct dprc_attributes attr;
617
int error;
618
619
error = get_dprc_attr(mc_io, container_id, &attr);
620
if (error == 0)
621
*icid = attr.icid;
622
623
return error;
624
}
625
626
static int translate_mc_addr(struct fsl_mc_device *mc_dev,
627
enum dprc_region_type mc_region_type,
628
u64 mc_offset, phys_addr_t *phys_addr)
629
{
630
int i;
631
struct device *root_dprc_dev;
632
struct fsl_mc *mc;
633
634
fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
635
mc = dev_get_drvdata(root_dprc_dev->parent);
636
637
if (mc->num_translation_ranges == 0) {
638
/*
639
* Do identity mapping:
640
*/
641
*phys_addr = mc_offset;
642
return 0;
643
}
644
645
for (i = 0; i < mc->num_translation_ranges; i++) {
646
struct fsl_mc_addr_translation_range *range =
647
&mc->translation_ranges[i];
648
649
if (mc_region_type == range->mc_region_type &&
650
mc_offset >= range->start_mc_offset &&
651
mc_offset < range->end_mc_offset) {
652
*phys_addr = range->start_phys_addr +
653
(mc_offset - range->start_mc_offset);
654
return 0;
655
}
656
}
657
658
return -EFAULT;
659
}
660
661
static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
662
struct fsl_mc_device *mc_bus_dev)
663
{
664
int i;
665
int error;
666
struct resource *regions;
667
struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
668
struct device *parent_dev = mc_dev->dev.parent;
669
enum dprc_region_type mc_region_type;
670
671
if (is_fsl_mc_bus_dprc(mc_dev) ||
672
is_fsl_mc_bus_dpmcp(mc_dev)) {
673
mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
674
} else if (is_fsl_mc_bus_dpio(mc_dev)) {
675
mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
676
} else {
677
/*
678
* This function should not have been called for this MC object
679
* type, as this object type is not supposed to have MMIO
680
* regions
681
*/
682
return -EINVAL;
683
}
684
685
regions = kmalloc_array(obj_desc->region_count,
686
sizeof(regions[0]), GFP_KERNEL);
687
if (!regions)
688
return -ENOMEM;
689
690
for (i = 0; i < obj_desc->region_count; i++) {
691
struct dprc_region_desc region_desc;
692
693
error = dprc_get_obj_region(mc_bus_dev->mc_io,
694
0,
695
mc_bus_dev->mc_handle,
696
obj_desc->type,
697
obj_desc->id, i, &region_desc);
698
if (error < 0) {
699
dev_err(parent_dev,
700
"dprc_get_obj_region() failed: %d\n", error);
701
goto error_cleanup_regions;
702
}
703
/*
704
* Older MC only returned region offset and no base address
705
* If base address is in the region_desc use it otherwise
706
* revert to old mechanism
707
*/
708
if (region_desc.base_address) {
709
regions[i].start = region_desc.base_address +
710
region_desc.base_offset;
711
} else {
712
error = translate_mc_addr(mc_dev, mc_region_type,
713
region_desc.base_offset,
714
&regions[i].start);
715
716
/*
717
* Some versions of the MC firmware wrongly report
718
* 0 for register base address of the DPMCP associated
719
* with child DPRC objects thus rendering them unusable.
720
* This is particularly troublesome in ACPI boot
721
* scenarios where the legacy way of extracting this
722
* base address from the device tree does not apply.
723
* Given that DPMCPs share the same base address,
724
* workaround this by using the base address extracted
725
* from the root DPRC container.
726
*/
727
if (is_fsl_mc_bus_dprc(mc_dev) &&
728
regions[i].start == region_desc.base_offset)
729
regions[i].start += mc_portal_base_phys_addr;
730
}
731
732
if (error < 0) {
733
dev_err(parent_dev,
734
"Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
735
region_desc.base_offset,
736
obj_desc->type, obj_desc->id, i);
737
goto error_cleanup_regions;
738
}
739
740
regions[i].end = regions[i].start + region_desc.size - 1;
741
regions[i].name = "fsl-mc object MMIO region";
742
regions[i].flags = region_desc.flags & IORESOURCE_BITS;
743
regions[i].flags |= IORESOURCE_MEM;
744
}
745
746
mc_dev->regions = regions;
747
return 0;
748
749
error_cleanup_regions:
750
kfree(regions);
751
return error;
752
}
753
754
/*
755
* fsl_mc_is_root_dprc - function to check if a given device is a root dprc
756
*/
757
bool fsl_mc_is_root_dprc(struct device *dev)
758
{
759
struct device *root_dprc_dev;
760
761
fsl_mc_get_root_dprc(dev, &root_dprc_dev);
762
if (!root_dprc_dev)
763
return false;
764
return dev == root_dprc_dev;
765
}
766
767
static void fsl_mc_device_release(struct device *dev)
768
{
769
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
770
771
kfree(mc_dev->regions);
772
773
if (is_fsl_mc_bus_dprc(mc_dev))
774
kfree(to_fsl_mc_bus(mc_dev));
775
else
776
kfree(mc_dev);
777
}
778
779
/*
780
* Add a newly discovered fsl-mc device to be visible in Linux
781
*/
782
int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
783
struct fsl_mc_io *mc_io,
784
struct device *parent_dev,
785
struct fsl_mc_device **new_mc_dev)
786
{
787
int error;
788
struct fsl_mc_device *mc_dev = NULL;
789
struct fsl_mc_bus *mc_bus = NULL;
790
struct fsl_mc_device *parent_mc_dev;
791
792
if (dev_is_fsl_mc(parent_dev))
793
parent_mc_dev = to_fsl_mc_device(parent_dev);
794
else
795
parent_mc_dev = NULL;
796
797
if (strcmp(obj_desc->type, "dprc") == 0) {
798
/*
799
* Allocate an MC bus device object:
800
*/
801
mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
802
if (!mc_bus)
803
return -ENOMEM;
804
805
mutex_init(&mc_bus->scan_mutex);
806
mc_dev = &mc_bus->mc_dev;
807
} else {
808
/*
809
* Allocate a regular fsl_mc_device object:
810
*/
811
mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
812
if (!mc_dev)
813
return -ENOMEM;
814
}
815
816
mc_dev->obj_desc = *obj_desc;
817
mc_dev->mc_io = mc_io;
818
device_initialize(&mc_dev->dev);
819
mc_dev->dev.parent = parent_dev;
820
mc_dev->dev.bus = &fsl_mc_bus_type;
821
mc_dev->dev.release = fsl_mc_device_release;
822
mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
823
if (!mc_dev->dev.type) {
824
error = -ENODEV;
825
dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
826
goto error_cleanup_dev;
827
}
828
dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
829
830
if (strcmp(obj_desc->type, "dprc") == 0) {
831
struct fsl_mc_io *mc_io2;
832
833
mc_dev->flags |= FSL_MC_IS_DPRC;
834
835
/*
836
* To get the DPRC's ICID, we need to open the DPRC
837
* in get_dprc_icid(). For child DPRCs, we do so using the
838
* parent DPRC's MC portal instead of the child DPRC's MC
839
* portal, in case the child DPRC is already opened with
840
* its own portal (e.g., the DPRC used by AIOP).
841
*
842
* NOTE: There cannot be more than one active open for a
843
* given MC object, using the same MC portal.
844
*/
845
if (parent_mc_dev) {
846
/*
847
* device being added is a child DPRC device
848
*/
849
mc_io2 = parent_mc_dev->mc_io;
850
} else {
851
/*
852
* device being added is the root DPRC device
853
*/
854
if (!mc_io) {
855
error = -EINVAL;
856
goto error_cleanup_dev;
857
}
858
859
mc_io2 = mc_io;
860
}
861
862
error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
863
if (error < 0)
864
goto error_cleanup_dev;
865
} else {
866
/*
867
* A non-DPRC object has to be a child of a DPRC, use the
868
* parent's ICID and interrupt domain.
869
*/
870
mc_dev->icid = parent_mc_dev->icid;
871
mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
872
mc_dev->dev.dma_mask = &mc_dev->dma_mask;
873
mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
874
dev_set_msi_domain(&mc_dev->dev,
875
dev_get_msi_domain(&parent_mc_dev->dev));
876
}
877
878
/*
879
* Get MMIO regions for the device from the MC:
880
*
881
* NOTE: the root DPRC is a special case as its MMIO region is
882
* obtained from the device tree
883
*/
884
if (parent_mc_dev && obj_desc->region_count != 0) {
885
error = fsl_mc_device_get_mmio_regions(mc_dev,
886
parent_mc_dev);
887
if (error < 0)
888
goto error_cleanup_dev;
889
}
890
891
/*
892
* The device-specific probe callback will get invoked by device_add()
893
*/
894
error = device_add(&mc_dev->dev);
895
if (error < 0) {
896
dev_err(parent_dev,
897
"device_add() failed for device %s: %d\n",
898
dev_name(&mc_dev->dev), error);
899
goto error_cleanup_dev;
900
}
901
902
dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
903
904
*new_mc_dev = mc_dev;
905
return 0;
906
907
error_cleanup_dev:
908
kfree(mc_dev->regions);
909
if (mc_bus)
910
kfree(mc_bus);
911
else
912
kfree(mc_dev);
913
914
return error;
915
}
916
EXPORT_SYMBOL_GPL(fsl_mc_device_add);
917
918
static struct notifier_block fsl_mc_nb;
919
920
/**
921
* fsl_mc_device_remove - Remove an fsl-mc device from being visible to
922
* Linux
923
*
924
* @mc_dev: Pointer to an fsl-mc device
925
*/
926
void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
927
{
928
kfree(mc_dev->driver_override);
929
mc_dev->driver_override = NULL;
930
931
/*
932
* The device-specific remove callback will get invoked by device_del()
933
*/
934
device_del(&mc_dev->dev);
935
put_device(&mc_dev->dev);
936
}
937
EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
938
939
struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
940
u16 if_id)
941
{
942
struct fsl_mc_device *mc_bus_dev, *endpoint;
943
struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
944
struct dprc_endpoint endpoint1 = {{ 0 }};
945
struct dprc_endpoint endpoint2 = {{ 0 }};
946
struct fsl_mc_bus *mc_bus;
947
int state, err;
948
949
mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
950
strcpy(endpoint1.type, mc_dev->obj_desc.type);
951
endpoint1.id = mc_dev->obj_desc.id;
952
endpoint1.if_id = if_id;
953
954
err = dprc_get_connection(mc_bus_dev->mc_io, 0,
955
mc_bus_dev->mc_handle,
956
&endpoint1, &endpoint2,
957
&state);
958
959
if (err == -ENOTCONN || state == -1)
960
return ERR_PTR(-ENOTCONN);
961
962
if (err < 0) {
963
dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
964
return ERR_PTR(err);
965
}
966
967
strcpy(endpoint_desc.type, endpoint2.type);
968
endpoint_desc.id = endpoint2.id;
969
endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
970
if (endpoint)
971
return endpoint;
972
973
/*
974
* We know that the device has an endpoint because we verified by
975
* interrogating the firmware. This is the case when the device was not
976
* yet discovered by the fsl-mc bus, thus the lookup returned NULL.
977
* Force a rescan of the devices in this container and retry the lookup.
978
*/
979
mc_bus = to_fsl_mc_bus(mc_bus_dev);
980
if (mutex_trylock(&mc_bus->scan_mutex)) {
981
err = dprc_scan_objects(mc_bus_dev, true);
982
mutex_unlock(&mc_bus->scan_mutex);
983
}
984
if (err < 0)
985
return ERR_PTR(err);
986
987
endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
988
/*
989
* This means that the endpoint might reside in a different isolation
990
* context (DPRC/container). Not much to do, so return a permssion
991
* error.
992
*/
993
if (!endpoint)
994
return ERR_PTR(-EPERM);
995
996
return endpoint;
997
}
998
EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
999
1000
static int get_mc_addr_translation_ranges(struct device *dev,
1001
struct fsl_mc_addr_translation_range
1002
**ranges,
1003
u8 *num_ranges)
1004
{
1005
struct fsl_mc_addr_translation_range *r;
1006
struct of_range_parser parser;
1007
struct of_range range;
1008
1009
of_range_parser_init(&parser, dev->of_node);
1010
*num_ranges = of_range_count(&parser);
1011
if (!*num_ranges) {
1012
/*
1013
* Missing or empty ranges property ("ranges;") for the
1014
* 'fsl,qoriq-mc' node. In this case, identity mapping
1015
* will be used.
1016
*/
1017
*ranges = NULL;
1018
return 0;
1019
}
1020
1021
*ranges = devm_kcalloc(dev, *num_ranges,
1022
sizeof(struct fsl_mc_addr_translation_range),
1023
GFP_KERNEL);
1024
if (!(*ranges))
1025
return -ENOMEM;
1026
1027
r = *ranges;
1028
for_each_of_range(&parser, &range) {
1029
r->mc_region_type = range.flags;
1030
r->start_mc_offset = range.bus_addr;
1031
r->end_mc_offset = range.bus_addr + range.size;
1032
r->start_phys_addr = range.cpu_addr;
1033
r++;
1034
}
1035
1036
return 0;
1037
}
1038
1039
/*
1040
* fsl_mc_bus_probe - callback invoked when the root MC bus is being
1041
* added
1042
*/
1043
static int fsl_mc_bus_probe(struct platform_device *pdev)
1044
{
1045
struct fsl_mc_obj_desc obj_desc;
1046
int error;
1047
struct fsl_mc *mc;
1048
struct fsl_mc_device *mc_bus_dev = NULL;
1049
struct fsl_mc_io *mc_io = NULL;
1050
int container_id;
1051
phys_addr_t mc_portal_phys_addr;
1052
u32 mc_portal_size, mc_stream_id;
1053
struct resource *plat_res;
1054
1055
mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1056
if (!mc)
1057
return -ENOMEM;
1058
1059
platform_set_drvdata(pdev, mc);
1060
1061
plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1062
if (plat_res) {
1063
mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1064
if (IS_ERR(mc->fsl_mc_regs))
1065
return PTR_ERR(mc->fsl_mc_regs);
1066
}
1067
1068
if (mc->fsl_mc_regs) {
1069
if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1070
mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1071
/*
1072
* HW ORs the PL and BMT bit, places the result in bit
1073
* 14 of the StreamID and ORs in the ICID. Calculate it
1074
* accordingly.
1075
*/
1076
mc_stream_id = (mc_stream_id & 0xffff) |
1077
((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1078
BIT(14) : 0);
1079
error = acpi_dma_configure_id(&pdev->dev,
1080
DEV_DMA_COHERENT,
1081
&mc_stream_id);
1082
if (error == -EPROBE_DEFER)
1083
return error;
1084
if (error)
1085
dev_warn(&pdev->dev,
1086
"failed to configure dma: %d.\n",
1087
error);
1088
}
1089
1090
/*
1091
* Some bootloaders pause the MC firmware before booting the
1092
* kernel so that MC will not cause faults as soon as the
1093
* SMMU probes due to the fact that there's no configuration
1094
* in place for MC.
1095
* At this point MC should have all its SMMU setup done so make
1096
* sure it is resumed.
1097
*/
1098
writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
1099
(~(GCR1_P1_STOP | GCR1_P2_STOP)),
1100
mc->fsl_mc_regs + FSL_MC_GCR1);
1101
}
1102
1103
/*
1104
* Get physical address of MC portal for the root DPRC:
1105
*/
1106
plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1107
mc_portal_phys_addr = plat_res->start;
1108
mc_portal_size = resource_size(plat_res);
1109
mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
1110
1111
error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1112
mc_portal_size, NULL,
1113
FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1114
if (error < 0)
1115
return error;
1116
1117
error = mc_get_version(mc_io, 0, &mc_version);
1118
if (error != 0) {
1119
dev_err(&pdev->dev,
1120
"mc_get_version() failed with error %d\n", error);
1121
goto error_cleanup_mc_io;
1122
}
1123
1124
dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1125
mc_version.major, mc_version.minor, mc_version.revision);
1126
1127
if (dev_of_node(&pdev->dev)) {
1128
error = get_mc_addr_translation_ranges(&pdev->dev,
1129
&mc->translation_ranges,
1130
&mc->num_translation_ranges);
1131
if (error < 0)
1132
goto error_cleanup_mc_io;
1133
}
1134
1135
error = dprc_get_container_id(mc_io, 0, &container_id);
1136
if (error < 0) {
1137
dev_err(&pdev->dev,
1138
"dprc_get_container_id() failed: %d\n", error);
1139
goto error_cleanup_mc_io;
1140
}
1141
1142
memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1143
error = dprc_get_api_version(mc_io, 0,
1144
&obj_desc.ver_major,
1145
&obj_desc.ver_minor);
1146
if (error < 0)
1147
goto error_cleanup_mc_io;
1148
1149
obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1150
strcpy(obj_desc.type, "dprc");
1151
obj_desc.id = container_id;
1152
obj_desc.irq_count = 1;
1153
obj_desc.region_count = 0;
1154
1155
error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1156
if (error < 0)
1157
goto error_cleanup_mc_io;
1158
1159
mc->root_mc_bus_dev = mc_bus_dev;
1160
mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1161
return 0;
1162
1163
error_cleanup_mc_io:
1164
fsl_destroy_mc_io(mc_io);
1165
return error;
1166
}
1167
1168
/*
1169
* fsl_mc_bus_remove - callback invoked when the root MC bus is being
1170
* removed
1171
*/
1172
static void fsl_mc_bus_remove(struct platform_device *pdev)
1173
{
1174
struct fsl_mc *mc = platform_get_drvdata(pdev);
1175
struct fsl_mc_io *mc_io;
1176
1177
mc_io = mc->root_mc_bus_dev->mc_io;
1178
fsl_mc_device_remove(mc->root_mc_bus_dev);
1179
fsl_destroy_mc_io(mc_io);
1180
1181
bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
1182
1183
if (mc->fsl_mc_regs) {
1184
/*
1185
* Pause the MC firmware so that it doesn't crash in certain
1186
* scenarios, such as kexec.
1187
*/
1188
writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
1189
(GCR1_P1_STOP | GCR1_P2_STOP),
1190
mc->fsl_mc_regs + FSL_MC_GCR1);
1191
}
1192
}
1193
1194
static const struct of_device_id fsl_mc_bus_match_table[] = {
1195
{.compatible = "fsl,qoriq-mc",},
1196
{},
1197
};
1198
1199
MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1200
1201
static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1202
{"NXP0008", 0 },
1203
{ }
1204
};
1205
MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1206
1207
static struct platform_driver fsl_mc_bus_driver = {
1208
.driver = {
1209
.name = "fsl_mc_bus",
1210
.pm = NULL,
1211
.of_match_table = fsl_mc_bus_match_table,
1212
.acpi_match_table = fsl_mc_bus_acpi_match_table,
1213
},
1214
.probe = fsl_mc_bus_probe,
1215
.remove = fsl_mc_bus_remove,
1216
.shutdown = fsl_mc_bus_remove,
1217
};
1218
1219
static int fsl_mc_bus_notifier(struct notifier_block *nb,
1220
unsigned long action, void *data)
1221
{
1222
struct device *dev = data;
1223
struct resource *res;
1224
void __iomem *fsl_mc_regs;
1225
1226
if (action != BUS_NOTIFY_ADD_DEVICE)
1227
return 0;
1228
1229
if (!of_match_device(fsl_mc_bus_match_table, dev) &&
1230
!acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
1231
return 0;
1232
1233
res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
1234
if (!res)
1235
return 0;
1236
1237
fsl_mc_regs = ioremap(res->start, resource_size(res));
1238
if (!fsl_mc_regs)
1239
return 0;
1240
1241
/*
1242
* Make sure that the MC firmware is paused before the IOMMU setup for
1243
* it is done or otherwise the firmware will crash right after the SMMU
1244
* gets probed and enabled.
1245
*/
1246
writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
1247
fsl_mc_regs + FSL_MC_GCR1);
1248
iounmap(fsl_mc_regs);
1249
1250
return 0;
1251
}
1252
1253
static struct notifier_block fsl_mc_nb = {
1254
.notifier_call = fsl_mc_bus_notifier,
1255
};
1256
1257
static int __init fsl_mc_bus_driver_init(void)
1258
{
1259
int error;
1260
1261
error = bus_register(&fsl_mc_bus_type);
1262
if (error < 0) {
1263
pr_err("bus type registration failed: %d\n", error);
1264
goto error_cleanup_cache;
1265
}
1266
1267
error = platform_driver_register(&fsl_mc_bus_driver);
1268
if (error < 0) {
1269
pr_err("platform_driver_register() failed: %d\n", error);
1270
goto error_cleanup_bus;
1271
}
1272
1273
error = dprc_driver_init();
1274
if (error < 0)
1275
goto error_cleanup_driver;
1276
1277
error = fsl_mc_allocator_driver_init();
1278
if (error < 0)
1279
goto error_cleanup_dprc_driver;
1280
1281
return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
1282
1283
error_cleanup_dprc_driver:
1284
dprc_driver_exit();
1285
1286
error_cleanup_driver:
1287
platform_driver_unregister(&fsl_mc_bus_driver);
1288
1289
error_cleanup_bus:
1290
bus_unregister(&fsl_mc_bus_type);
1291
1292
error_cleanup_cache:
1293
return error;
1294
}
1295
postcore_initcall(fsl_mc_bus_driver_init);
1296
1297