Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bus/mhi/ep/main.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* MHI Endpoint bus stack
4
*
5
* Copyright (C) 2022 Linaro Ltd.
6
* Author: Manivannan Sadhasivam <[email protected]>
7
*/
8
9
#include <linux/bitfield.h>
10
#include <linux/delay.h>
11
#include <linux/dma-direction.h>
12
#include <linux/interrupt.h>
13
#include <linux/io.h>
14
#include <linux/irq.h>
15
#include <linux/mhi_ep.h>
16
#include <linux/mod_devicetable.h>
17
#include <linux/module.h>
18
#include "internal.h"
19
20
#define M0_WAIT_DELAY_MS 100
21
#define M0_WAIT_COUNT 100
22
23
static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26
static int mhi_ep_destroy_device(struct device *dev, void *data);
27
28
static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29
struct mhi_ring_element *el, bool bei)
30
{
31
struct device *dev = &mhi_cntrl->mhi_dev->dev;
32
union mhi_ep_ring_ctx *ctx;
33
struct mhi_ep_ring *ring;
34
int ret;
35
36
mutex_lock(&mhi_cntrl->event_lock);
37
ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38
ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39
if (!ring->started) {
40
ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41
if (ret) {
42
dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43
goto err_unlock;
44
}
45
}
46
47
/* Add element to the event ring */
48
ret = mhi_ep_ring_add_element(ring, el);
49
if (ret) {
50
dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51
goto err_unlock;
52
}
53
54
mutex_unlock(&mhi_cntrl->event_lock);
55
56
/*
57
* As per the MHI specification, section 4.3, Interrupt moderation:
58
*
59
* 1. If BEI flag is not set, cancel any pending intmodt work if started
60
* for the event ring and raise IRQ immediately.
61
*
62
* 2. If both BEI and intmodt are set, and if no IRQ is pending for the
63
* same event ring, start the IRQ delayed work as per the value of
64
* intmodt. If previous IRQ is pending, then do nothing as the pending
65
* IRQ is enough for the host to process the current event ring element.
66
*
67
* 3. If BEI is set and intmodt is not set, no need to raise IRQ.
68
*/
69
if (!bei) {
70
if (READ_ONCE(ring->irq_pending))
71
cancel_delayed_work(&ring->intmodt_work);
72
73
mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
74
} else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
75
WRITE_ONCE(ring->irq_pending, true);
76
schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
77
}
78
79
return 0;
80
81
err_unlock:
82
mutex_unlock(&mhi_cntrl->event_lock);
83
84
return ret;
85
}
86
87
static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
88
struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
89
{
90
struct mhi_ring_element *event;
91
int ret;
92
93
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
94
if (!event)
95
return -ENOMEM;
96
97
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
98
event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
99
event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
100
101
ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
102
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
103
104
return ret;
105
}
106
107
int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
108
{
109
struct mhi_ring_element *event;
110
int ret;
111
112
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
113
if (!event)
114
return -ENOMEM;
115
116
event->dword[0] = MHI_SC_EV_DWORD0(state);
117
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
118
119
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
120
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
121
122
return ret;
123
}
124
125
int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
126
{
127
struct mhi_ring_element *event;
128
int ret;
129
130
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
131
if (!event)
132
return -ENOMEM;
133
134
event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
135
event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
136
137
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
138
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
139
140
return ret;
141
}
142
143
static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
144
{
145
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
146
struct mhi_ring_element *event;
147
int ret;
148
149
event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
150
if (!event)
151
return -ENOMEM;
152
153
event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
154
event->dword[0] = MHI_CC_EV_DWORD0(code);
155
event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
156
157
ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
158
kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
159
160
return ret;
161
}
162
163
static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
164
{
165
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
166
struct device *dev = &mhi_cntrl->mhi_dev->dev;
167
struct mhi_result result = {};
168
struct mhi_ep_chan *mhi_chan;
169
struct mhi_ep_ring *ch_ring;
170
u32 tmp, ch_id;
171
int ret;
172
173
ch_id = MHI_TRE_GET_CMD_CHID(el);
174
175
/* Check if the channel is supported by the controller */
176
if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
177
dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
178
return -ENODEV;
179
}
180
181
mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
182
ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
183
184
switch (MHI_TRE_GET_CMD_TYPE(el)) {
185
case MHI_PKT_TYPE_START_CHAN_CMD:
186
dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
187
188
mutex_lock(&mhi_chan->lock);
189
/* Initialize and configure the corresponding channel ring */
190
if (!ch_ring->started) {
191
ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
192
(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
193
if (ret) {
194
dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
195
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
196
MHI_EV_CC_UNDEFINED_ERR);
197
if (ret)
198
dev_err(dev, "Error sending completion event: %d\n", ret);
199
200
goto err_unlock;
201
}
202
203
mhi_chan->rd_offset = ch_ring->rd_offset;
204
}
205
206
/* Set channel state to RUNNING */
207
mhi_chan->state = MHI_CH_STATE_RUNNING;
208
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
209
tmp &= ~CHAN_CTX_CHSTATE_MASK;
210
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
211
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
212
213
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
214
if (ret) {
215
dev_err(dev, "Error sending command completion event (%u)\n",
216
MHI_EV_CC_SUCCESS);
217
goto err_unlock;
218
}
219
220
mutex_unlock(&mhi_chan->lock);
221
222
/*
223
* Create MHI device only during UL channel start. Since the MHI
224
* channels operate in a pair, we'll associate both UL and DL
225
* channels to the same device.
226
*
227
* We also need to check for mhi_dev != NULL because, the host
228
* will issue START_CHAN command during resume and we don't
229
* destroy the device during suspend.
230
*/
231
if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
232
ret = mhi_ep_create_device(mhi_cntrl, ch_id);
233
if (ret) {
234
dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
235
mhi_ep_handle_syserr(mhi_cntrl);
236
return ret;
237
}
238
}
239
240
/* Finally, enable DB for the channel */
241
mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
242
243
break;
244
case MHI_PKT_TYPE_STOP_CHAN_CMD:
245
dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
246
if (!ch_ring->started) {
247
dev_err(dev, "Channel (%u) not opened\n", ch_id);
248
return -ENODEV;
249
}
250
251
mutex_lock(&mhi_chan->lock);
252
/* Disable DB for the channel */
253
mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
254
255
/* Send channel disconnect status to client drivers */
256
if (mhi_chan->xfer_cb) {
257
result.transaction_status = -ENOTCONN;
258
result.bytes_xferd = 0;
259
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
260
}
261
262
/* Set channel state to STOP */
263
mhi_chan->state = MHI_CH_STATE_STOP;
264
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
265
tmp &= ~CHAN_CTX_CHSTATE_MASK;
266
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
267
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
268
269
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
270
if (ret) {
271
dev_err(dev, "Error sending command completion event (%u)\n",
272
MHI_EV_CC_SUCCESS);
273
goto err_unlock;
274
}
275
276
mutex_unlock(&mhi_chan->lock);
277
break;
278
case MHI_PKT_TYPE_RESET_CHAN_CMD:
279
dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
280
if (!ch_ring->started) {
281
dev_err(dev, "Channel (%u) not opened\n", ch_id);
282
return -ENODEV;
283
}
284
285
mutex_lock(&mhi_chan->lock);
286
/* Stop and reset the transfer ring */
287
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
288
289
/* Send channel disconnect status to client driver */
290
if (mhi_chan->xfer_cb) {
291
result.transaction_status = -ENOTCONN;
292
result.bytes_xferd = 0;
293
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
294
}
295
296
/* Set channel state to DISABLED */
297
mhi_chan->state = MHI_CH_STATE_DISABLED;
298
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
299
tmp &= ~CHAN_CTX_CHSTATE_MASK;
300
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
301
mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
302
303
ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
304
if (ret) {
305
dev_err(dev, "Error sending command completion event (%u)\n",
306
MHI_EV_CC_SUCCESS);
307
goto err_unlock;
308
}
309
310
mutex_unlock(&mhi_chan->lock);
311
break;
312
default:
313
dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
314
MHI_TRE_GET_CMD_TYPE(el), ch_id);
315
return -EINVAL;
316
}
317
318
return 0;
319
320
err_unlock:
321
mutex_unlock(&mhi_chan->lock);
322
323
return ret;
324
}
325
326
bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
327
{
328
struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
329
mhi_dev->ul_chan;
330
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
331
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
332
333
return !!(mhi_chan->rd_offset == ring->wr_offset);
334
}
335
EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
336
337
static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
338
{
339
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
340
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
341
struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
342
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
343
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
344
struct mhi_result result = {};
345
int ret;
346
347
if (mhi_chan->xfer_cb) {
348
result.buf_addr = buf_info->cb_buf;
349
result.dir = mhi_chan->dir;
350
result.bytes_xferd = buf_info->size;
351
352
mhi_chan->xfer_cb(mhi_dev, &result);
353
}
354
355
/*
356
* The host will split the data packet into multiple TREs if it can't fit
357
* the packet in a single TRE. In that case, CHAIN flag will be set by the
358
* host for all TREs except the last one.
359
*/
360
if (buf_info->code != MHI_EV_CC_OVERFLOW) {
361
if (MHI_TRE_DATA_GET_CHAIN(el)) {
362
/*
363
* IEOB (Interrupt on End of Block) flag will be set by the host if
364
* it expects the completion event for all TREs of a TD.
365
*/
366
if (MHI_TRE_DATA_GET_IEOB(el)) {
367
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368
MHI_TRE_DATA_GET_LEN(el),
369
MHI_EV_CC_EOB);
370
if (ret < 0) {
371
dev_err(&mhi_chan->mhi_dev->dev,
372
"Error sending transfer compl. event\n");
373
goto err_free_tre_buf;
374
}
375
}
376
} else {
377
/*
378
* IEOT (Interrupt on End of Transfer) flag will be set by the host
379
* for the last TRE of the TD and expects the completion event for
380
* the same.
381
*/
382
if (MHI_TRE_DATA_GET_IEOT(el)) {
383
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
384
MHI_TRE_DATA_GET_LEN(el),
385
MHI_EV_CC_EOT);
386
if (ret < 0) {
387
dev_err(&mhi_chan->mhi_dev->dev,
388
"Error sending transfer compl. event\n");
389
goto err_free_tre_buf;
390
}
391
}
392
}
393
}
394
395
mhi_ep_ring_inc_index(ring);
396
397
err_free_tre_buf:
398
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
399
}
400
401
static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
402
struct mhi_ep_ring *ring)
403
{
404
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
405
struct device *dev = &mhi_cntrl->mhi_dev->dev;
406
size_t tr_len, read_offset, write_offset;
407
struct mhi_ep_buf_info buf_info = {};
408
u32 len = MHI_EP_DEFAULT_MTU;
409
struct mhi_ring_element *el;
410
bool tr_done = false;
411
void *buf_addr;
412
u32 buf_left;
413
int ret;
414
415
buf_left = len;
416
417
do {
418
/* Don't process the transfer ring if the channel is not in RUNNING state */
419
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
420
dev_err(dev, "Channel not available\n");
421
return -ENODEV;
422
}
423
424
el = &ring->ring_cache[mhi_chan->rd_offset];
425
426
/* Check if there is data pending to be read from previous read operation */
427
if (mhi_chan->tre_bytes_left) {
428
dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
429
tr_len = min(buf_left, mhi_chan->tre_bytes_left);
430
} else {
431
mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
432
mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
433
mhi_chan->tre_bytes_left = mhi_chan->tre_size;
434
435
tr_len = min(buf_left, mhi_chan->tre_size);
436
}
437
438
read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
439
write_offset = len - buf_left;
440
441
buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
442
if (!buf_addr)
443
return -ENOMEM;
444
445
buf_info.host_addr = mhi_chan->tre_loc + read_offset;
446
buf_info.dev_addr = buf_addr + write_offset;
447
buf_info.size = tr_len;
448
buf_info.cb = mhi_ep_read_completion;
449
buf_info.cb_buf = buf_addr;
450
buf_info.mhi_dev = mhi_chan->mhi_dev;
451
452
if (mhi_chan->tre_bytes_left - tr_len)
453
buf_info.code = MHI_EV_CC_OVERFLOW;
454
455
dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
456
ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
457
if (ret < 0) {
458
dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
459
goto err_free_buf_addr;
460
}
461
462
buf_left -= tr_len;
463
mhi_chan->tre_bytes_left -= tr_len;
464
465
if (!mhi_chan->tre_bytes_left) {
466
if (MHI_TRE_DATA_GET_IEOT(el))
467
tr_done = true;
468
469
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
470
}
471
} while (buf_left && !tr_done);
472
473
return 0;
474
475
err_free_buf_addr:
476
kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
477
478
return ret;
479
}
480
481
static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
482
{
483
struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
484
struct mhi_result result = {};
485
struct mhi_ep_chan *mhi_chan;
486
int ret;
487
488
mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
489
490
/*
491
* Bail out if transfer callback is not registered for the channel.
492
* This is most likely due to the client driver not loaded at this point.
493
*/
494
if (!mhi_chan->xfer_cb) {
495
dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
496
return -ENODEV;
497
}
498
499
if (ring->ch_id % 2) {
500
/* DL channel */
501
result.dir = mhi_chan->dir;
502
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
503
} else {
504
/* UL channel */
505
do {
506
ret = mhi_ep_read_channel(mhi_cntrl, ring);
507
if (ret < 0) {
508
dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
509
return ret;
510
}
511
512
/* Read until the ring becomes empty */
513
} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
514
}
515
516
return 0;
517
}
518
519
static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
520
{
521
struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
522
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
523
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
524
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
525
struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
526
struct device *dev = &mhi_dev->dev;
527
struct mhi_result result = {};
528
int ret;
529
530
if (mhi_chan->xfer_cb) {
531
result.buf_addr = buf_info->cb_buf;
532
result.dir = mhi_chan->dir;
533
result.bytes_xferd = buf_info->size;
534
535
mhi_chan->xfer_cb(mhi_dev, &result);
536
}
537
538
ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
539
buf_info->code);
540
if (ret) {
541
dev_err(dev, "Error sending transfer completion event\n");
542
return;
543
}
544
545
mhi_ep_ring_inc_index(ring);
546
}
547
548
/* TODO: Handle partially formed TDs */
549
int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
550
{
551
struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
552
struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
553
struct device *dev = &mhi_chan->mhi_dev->dev;
554
struct mhi_ep_buf_info buf_info = {};
555
struct mhi_ring_element *el;
556
u32 buf_left, read_offset;
557
struct mhi_ep_ring *ring;
558
size_t tr_len;
559
u32 tre_len;
560
int ret;
561
562
buf_left = skb->len;
563
ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
564
565
mutex_lock(&mhi_chan->lock);
566
567
do {
568
/* Don't process the transfer ring if the channel is not in RUNNING state */
569
if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
570
dev_err(dev, "Channel not available\n");
571
ret = -ENODEV;
572
goto err_exit;
573
}
574
575
if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
576
dev_err(dev, "TRE not available!\n");
577
ret = -ENOSPC;
578
goto err_exit;
579
}
580
581
el = &ring->ring_cache[mhi_chan->rd_offset];
582
tre_len = MHI_TRE_DATA_GET_LEN(el);
583
584
tr_len = min(buf_left, tre_len);
585
read_offset = skb->len - buf_left;
586
587
buf_info.dev_addr = skb->data + read_offset;
588
buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
589
buf_info.size = tr_len;
590
buf_info.cb = mhi_ep_skb_completion;
591
buf_info.cb_buf = skb;
592
buf_info.mhi_dev = mhi_dev;
593
594
/*
595
* For all TREs queued by the host for DL channel, only the EOT flag will be set.
596
* If the packet doesn't fit into a single TRE, send the OVERFLOW event to
597
* the host so that the host can adjust the packet boundary to next TREs. Else send
598
* the EOT event to the host indicating the packet boundary.
599
*/
600
if (buf_left - tr_len)
601
buf_info.code = MHI_EV_CC_OVERFLOW;
602
else
603
buf_info.code = MHI_EV_CC_EOT;
604
605
dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
606
ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
607
if (ret < 0) {
608
dev_err(dev, "Error writing to the channel\n");
609
goto err_exit;
610
}
611
612
buf_left -= tr_len;
613
614
/*
615
* Update the read offset cached in mhi_chan. Actual read offset
616
* will be updated by the completion handler.
617
*/
618
mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
619
} while (buf_left);
620
621
mutex_unlock(&mhi_chan->lock);
622
623
return 0;
624
625
err_exit:
626
mutex_unlock(&mhi_chan->lock);
627
628
return ret;
629
}
630
EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
631
632
static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
633
{
634
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
635
struct device *dev = &mhi_cntrl->mhi_dev->dev;
636
int ret;
637
638
/* Update the number of event rings (NER) programmed by the host */
639
mhi_ep_mmio_update_ner(mhi_cntrl);
640
641
dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
642
mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
643
644
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
645
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
646
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
647
648
/* Get the channel context base pointer from host */
649
mhi_ep_mmio_get_chc_base(mhi_cntrl);
650
651
/* Allocate and map memory for caching host channel context */
652
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
653
&mhi_cntrl->ch_ctx_cache_phys,
654
(void __iomem **) &mhi_cntrl->ch_ctx_cache,
655
ch_ctx_host_size);
656
if (ret) {
657
dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
658
return ret;
659
}
660
661
/* Get the event context base pointer from host */
662
mhi_ep_mmio_get_erc_base(mhi_cntrl);
663
664
/* Allocate and map memory for caching host event context */
665
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
666
&mhi_cntrl->ev_ctx_cache_phys,
667
(void __iomem **) &mhi_cntrl->ev_ctx_cache,
668
ev_ctx_host_size);
669
if (ret) {
670
dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
671
goto err_ch_ctx;
672
}
673
674
/* Get the command context base pointer from host */
675
mhi_ep_mmio_get_crc_base(mhi_cntrl);
676
677
/* Allocate and map memory for caching host command context */
678
ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
679
&mhi_cntrl->cmd_ctx_cache_phys,
680
(void __iomem **) &mhi_cntrl->cmd_ctx_cache,
681
cmd_ctx_host_size);
682
if (ret) {
683
dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
684
goto err_ev_ctx;
685
}
686
687
/* Initialize command ring */
688
ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
689
(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
690
if (ret) {
691
dev_err(dev, "Failed to start the command ring\n");
692
goto err_cmd_ctx;
693
}
694
695
return ret;
696
697
err_cmd_ctx:
698
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
699
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
700
701
err_ev_ctx:
702
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
703
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
704
705
err_ch_ctx:
706
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
707
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
708
709
return ret;
710
}
711
712
static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
713
{
714
size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
715
716
ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
717
ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
718
cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
719
720
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
721
(void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
722
723
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
724
(void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
725
726
mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
727
(void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
728
}
729
730
static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
731
{
732
/*
733
* Doorbell interrupts are enabled when the corresponding channel gets started.
734
* Enabling all interrupts here triggers spurious irqs as some of the interrupts
735
* associated with hw channels always get triggered.
736
*/
737
mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
738
mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
739
}
740
741
static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
742
{
743
struct device *dev = &mhi_cntrl->mhi_dev->dev;
744
enum mhi_state state;
745
bool mhi_reset;
746
u32 count = 0;
747
int ret;
748
749
/* Wait for Host to set the M0 state */
750
do {
751
msleep(M0_WAIT_DELAY_MS);
752
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
753
if (mhi_reset) {
754
/* Clear the MHI reset if host is in reset state */
755
mhi_ep_mmio_clear_reset(mhi_cntrl);
756
dev_info(dev, "Detected Host reset while waiting for M0\n");
757
}
758
count++;
759
} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
760
761
if (state != MHI_STATE_M0) {
762
dev_err(dev, "Host failed to enter M0\n");
763
return -ETIMEDOUT;
764
}
765
766
ret = mhi_ep_cache_host_cfg(mhi_cntrl);
767
if (ret) {
768
dev_err(dev, "Failed to cache host config\n");
769
return ret;
770
}
771
772
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
773
774
/* Enable all interrupts now */
775
mhi_ep_enable_int(mhi_cntrl);
776
777
return 0;
778
}
779
780
static void mhi_ep_cmd_ring_worker(struct work_struct *work)
781
{
782
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
783
struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
784
struct device *dev = &mhi_cntrl->mhi_dev->dev;
785
struct mhi_ring_element *el;
786
int ret;
787
788
/* Update the write offset for the ring */
789
ret = mhi_ep_update_wr_offset(ring);
790
if (ret) {
791
dev_err(dev, "Error updating write offset for ring\n");
792
return;
793
}
794
795
/* Sanity check to make sure there are elements in the ring */
796
if (ring->rd_offset == ring->wr_offset)
797
return;
798
799
/*
800
* Process command ring element till write offset. In case of an error, just try to
801
* process next element.
802
*/
803
while (ring->rd_offset != ring->wr_offset) {
804
el = &ring->ring_cache[ring->rd_offset];
805
806
ret = mhi_ep_process_cmd_ring(ring, el);
807
if (ret && ret != -ENODEV)
808
dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
809
810
mhi_ep_ring_inc_index(ring);
811
}
812
}
813
814
static void mhi_ep_ch_ring_worker(struct work_struct *work)
815
{
816
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
817
struct device *dev = &mhi_cntrl->mhi_dev->dev;
818
struct mhi_ep_ring_item *itr, *tmp;
819
struct mhi_ep_ring *ring;
820
struct mhi_ep_chan *chan;
821
unsigned long flags;
822
LIST_HEAD(head);
823
int ret;
824
825
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
826
list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
827
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
828
829
/* Process each queued channel ring. In case of an error, just process next element. */
830
list_for_each_entry_safe(itr, tmp, &head, node) {
831
list_del(&itr->node);
832
ring = itr->ring;
833
834
chan = &mhi_cntrl->mhi_chan[ring->ch_id];
835
mutex_lock(&chan->lock);
836
837
/*
838
* The ring could've stopped while we waited to grab the (chan->lock), so do
839
* a sanity check before going further.
840
*/
841
if (!ring->started) {
842
mutex_unlock(&chan->lock);
843
kfree(itr);
844
continue;
845
}
846
847
/* Update the write offset for the ring */
848
ret = mhi_ep_update_wr_offset(ring);
849
if (ret) {
850
dev_err(dev, "Error updating write offset for ring\n");
851
mutex_unlock(&chan->lock);
852
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
853
continue;
854
}
855
856
/* Sanity check to make sure there are elements in the ring */
857
if (chan->rd_offset == ring->wr_offset) {
858
mutex_unlock(&chan->lock);
859
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
860
continue;
861
}
862
863
dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
864
ret = mhi_ep_process_ch_ring(ring);
865
if (ret) {
866
dev_err(dev, "Error processing ring for channel (%u): %d\n",
867
ring->ch_id, ret);
868
mutex_unlock(&chan->lock);
869
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
870
continue;
871
}
872
873
mutex_unlock(&chan->lock);
874
kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
875
}
876
}
877
878
static void mhi_ep_state_worker(struct work_struct *work)
879
{
880
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
881
struct device *dev = &mhi_cntrl->mhi_dev->dev;
882
struct mhi_ep_state_transition *itr, *tmp;
883
unsigned long flags;
884
LIST_HEAD(head);
885
int ret;
886
887
spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
888
list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
889
spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
890
891
list_for_each_entry_safe(itr, tmp, &head, node) {
892
list_del(&itr->node);
893
dev_dbg(dev, "Handling MHI state transition to %s\n",
894
mhi_state_str(itr->state));
895
896
switch (itr->state) {
897
case MHI_STATE_M0:
898
ret = mhi_ep_set_m0_state(mhi_cntrl);
899
if (ret)
900
dev_err(dev, "Failed to transition to M0 state\n");
901
break;
902
case MHI_STATE_M3:
903
ret = mhi_ep_set_m3_state(mhi_cntrl);
904
if (ret)
905
dev_err(dev, "Failed to transition to M3 state\n");
906
break;
907
default:
908
dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
909
break;
910
}
911
kfree(itr);
912
}
913
}
914
915
static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
916
u32 ch_idx)
917
{
918
struct mhi_ep_ring_item *item;
919
struct mhi_ep_ring *ring;
920
bool work = !!ch_int;
921
LIST_HEAD(head);
922
u32 i;
923
924
/* First add the ring items to a local list */
925
for_each_set_bit(i, &ch_int, 32) {
926
/* Channel index varies for each register: 0, 32, 64, 96 */
927
u32 ch_id = ch_idx + i;
928
929
ring = &mhi_cntrl->mhi_chan[ch_id].ring;
930
item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
931
if (!item)
932
return;
933
934
item->ring = ring;
935
list_add_tail(&item->node, &head);
936
}
937
938
/* Now, splice the local list into ch_db_list and queue the work item */
939
if (work) {
940
spin_lock(&mhi_cntrl->list_lock);
941
list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
942
spin_unlock(&mhi_cntrl->list_lock);
943
944
queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
945
}
946
}
947
948
/*
949
* Channel interrupt statuses are contained in 4 registers each of 32bit length.
950
* For checking all interrupts, we need to loop through each registers and then
951
* check for bits set.
952
*/
953
static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
954
{
955
u32 ch_int, ch_idx, i;
956
957
/* Bail out if there is no channel doorbell interrupt */
958
if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
959
return;
960
961
for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
962
ch_idx = i * MHI_MASK_CH_LEN;
963
964
/* Only process channel interrupt if the mask is enabled */
965
ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
966
if (ch_int) {
967
mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
968
mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
969
mhi_cntrl->chdb[i].status);
970
}
971
}
972
}
973
974
static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
975
enum mhi_state state)
976
{
977
struct mhi_ep_state_transition *item;
978
979
item = kzalloc(sizeof(*item), GFP_ATOMIC);
980
if (!item)
981
return;
982
983
item->state = state;
984
spin_lock(&mhi_cntrl->list_lock);
985
list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
986
spin_unlock(&mhi_cntrl->list_lock);
987
988
queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
989
}
990
991
/*
992
* Interrupt handler that services interrupts raised by the host writing to
993
* MHICTRL and Command ring doorbell (CRDB) registers for state change and
994
* channel interrupts.
995
*/
996
static irqreturn_t mhi_ep_irq(int irq, void *data)
997
{
998
struct mhi_ep_cntrl *mhi_cntrl = data;
999
struct device *dev = &mhi_cntrl->mhi_dev->dev;
1000
enum mhi_state state;
1001
u32 int_value;
1002
bool mhi_reset;
1003
1004
/* Acknowledge the ctrl interrupt */
1005
int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
1006
mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
1007
1008
/* Check for ctrl interrupt */
1009
if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
1010
dev_dbg(dev, "Processing ctrl interrupt\n");
1011
mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
1012
if (mhi_reset) {
1013
dev_info(dev, "Host triggered MHI reset!\n");
1014
disable_irq_nosync(mhi_cntrl->irq);
1015
schedule_work(&mhi_cntrl->reset_work);
1016
return IRQ_HANDLED;
1017
}
1018
1019
mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1020
}
1021
1022
/* Check for command doorbell interrupt */
1023
if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1024
dev_dbg(dev, "Processing command doorbell interrupt\n");
1025
queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1026
}
1027
1028
/* Check for channel interrupts */
1029
mhi_ep_check_channel_interrupt(mhi_cntrl);
1030
1031
return IRQ_HANDLED;
1032
}
1033
1034
static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1035
{
1036
struct mhi_ep_ring *ch_ring, *ev_ring;
1037
struct mhi_result result = {};
1038
struct mhi_ep_chan *mhi_chan;
1039
int i;
1040
1041
/* Stop all the channels */
1042
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1043
mhi_chan = &mhi_cntrl->mhi_chan[i];
1044
if (!mhi_chan->ring.started)
1045
continue;
1046
1047
mutex_lock(&mhi_chan->lock);
1048
/* Send channel disconnect status to client drivers */
1049
if (mhi_chan->xfer_cb) {
1050
result.transaction_status = -ENOTCONN;
1051
result.bytes_xferd = 0;
1052
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1053
}
1054
1055
mhi_chan->state = MHI_CH_STATE_DISABLED;
1056
mutex_unlock(&mhi_chan->lock);
1057
}
1058
1059
flush_workqueue(mhi_cntrl->wq);
1060
1061
/* Destroy devices associated with all channels */
1062
device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1063
1064
/* Stop and reset the transfer rings */
1065
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1066
mhi_chan = &mhi_cntrl->mhi_chan[i];
1067
if (!mhi_chan->ring.started)
1068
continue;
1069
1070
ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1071
mutex_lock(&mhi_chan->lock);
1072
mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1073
mutex_unlock(&mhi_chan->lock);
1074
}
1075
1076
/* Stop and reset the event rings */
1077
for (i = 0; i < mhi_cntrl->event_rings; i++) {
1078
ev_ring = &mhi_cntrl->mhi_event[i].ring;
1079
if (!ev_ring->started)
1080
continue;
1081
1082
mutex_lock(&mhi_cntrl->event_lock);
1083
mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1084
mutex_unlock(&mhi_cntrl->event_lock);
1085
}
1086
1087
/* Stop and reset the command ring */
1088
mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1089
1090
mhi_ep_free_host_cfg(mhi_cntrl);
1091
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1092
1093
mhi_cntrl->enabled = false;
1094
}
1095
1096
static void mhi_ep_reset_worker(struct work_struct *work)
1097
{
1098
struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1099
enum mhi_state cur_state;
1100
1101
mhi_ep_power_down(mhi_cntrl);
1102
1103
mutex_lock(&mhi_cntrl->state_lock);
1104
1105
/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1106
mhi_ep_mmio_reset(mhi_cntrl);
1107
cur_state = mhi_cntrl->mhi_state;
1108
1109
/*
1110
* Only proceed further if the reset is due to SYS_ERR. The host will
1111
* issue reset during shutdown also and we don't need to do re-init in
1112
* that case.
1113
*/
1114
if (cur_state == MHI_STATE_SYS_ERR)
1115
mhi_ep_power_up(mhi_cntrl);
1116
1117
mutex_unlock(&mhi_cntrl->state_lock);
1118
}
1119
1120
/*
1121
* We don't need to do anything special other than setting the MHI SYS_ERR
1122
* state. The host will reset all contexts and issue MHI RESET so that we
1123
* could also recover from error state.
1124
*/
1125
void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1126
{
1127
struct device *dev = &mhi_cntrl->mhi_dev->dev;
1128
int ret;
1129
1130
ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1131
if (ret)
1132
return;
1133
1134
/* Signal host that the device went to SYS_ERR state */
1135
ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1136
if (ret)
1137
dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1138
}
1139
1140
int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1141
{
1142
struct device *dev = &mhi_cntrl->mhi_dev->dev;
1143
int ret, i;
1144
1145
/*
1146
* Mask all interrupts until the state machine is ready. Interrupts will
1147
* be enabled later with mhi_ep_enable().
1148
*/
1149
mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1150
mhi_ep_mmio_init(mhi_cntrl);
1151
1152
mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
1153
sizeof(*mhi_cntrl->mhi_event),
1154
GFP_KERNEL);
1155
if (!mhi_cntrl->mhi_event)
1156
return -ENOMEM;
1157
1158
/* Initialize command, channel and event rings */
1159
mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1160
for (i = 0; i < mhi_cntrl->max_chan; i++)
1161
mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1162
for (i = 0; i < mhi_cntrl->event_rings; i++)
1163
mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1164
1165
mhi_cntrl->mhi_state = MHI_STATE_RESET;
1166
1167
/* Set AMSS EE before signaling ready state */
1168
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1169
1170
/* All set, notify the host that we are ready */
1171
ret = mhi_ep_set_ready_state(mhi_cntrl);
1172
if (ret)
1173
goto err_free_event;
1174
1175
dev_dbg(dev, "READY state notification sent to the host\n");
1176
1177
ret = mhi_ep_enable(mhi_cntrl);
1178
if (ret) {
1179
dev_err(dev, "Failed to enable MHI endpoint\n");
1180
goto err_free_event;
1181
}
1182
1183
enable_irq(mhi_cntrl->irq);
1184
mhi_cntrl->enabled = true;
1185
1186
return 0;
1187
1188
err_free_event:
1189
kfree(mhi_cntrl->mhi_event);
1190
1191
return ret;
1192
}
1193
EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1194
1195
void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1196
{
1197
if (mhi_cntrl->enabled) {
1198
mhi_ep_abort_transfer(mhi_cntrl);
1199
kfree(mhi_cntrl->mhi_event);
1200
disable_irq(mhi_cntrl->irq);
1201
}
1202
}
1203
EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1204
1205
void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1206
{
1207
struct mhi_ep_chan *mhi_chan;
1208
u32 tmp;
1209
int i;
1210
1211
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1212
mhi_chan = &mhi_cntrl->mhi_chan[i];
1213
1214
if (!mhi_chan->mhi_dev)
1215
continue;
1216
1217
mutex_lock(&mhi_chan->lock);
1218
/* Skip if the channel is not currently running */
1219
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1220
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1221
mutex_unlock(&mhi_chan->lock);
1222
continue;
1223
}
1224
1225
dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1226
/* Set channel state to SUSPENDED */
1227
mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1228
tmp &= ~CHAN_CTX_CHSTATE_MASK;
1229
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1230
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1231
mutex_unlock(&mhi_chan->lock);
1232
}
1233
}
1234
1235
void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1236
{
1237
struct mhi_ep_chan *mhi_chan;
1238
u32 tmp;
1239
int i;
1240
1241
for (i = 0; i < mhi_cntrl->max_chan; i++) {
1242
mhi_chan = &mhi_cntrl->mhi_chan[i];
1243
1244
if (!mhi_chan->mhi_dev)
1245
continue;
1246
1247
mutex_lock(&mhi_chan->lock);
1248
/* Skip if the channel is not currently suspended */
1249
tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1250
if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1251
mutex_unlock(&mhi_chan->lock);
1252
continue;
1253
}
1254
1255
dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1256
/* Set channel state to RUNNING */
1257
mhi_chan->state = MHI_CH_STATE_RUNNING;
1258
tmp &= ~CHAN_CTX_CHSTATE_MASK;
1259
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1260
mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1261
mutex_unlock(&mhi_chan->lock);
1262
}
1263
}
1264
1265
static void mhi_ep_release_device(struct device *dev)
1266
{
1267
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1268
1269
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1270
mhi_dev->mhi_cntrl->mhi_dev = NULL;
1271
1272
/*
1273
* We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1274
* devices for the channels will only get created in mhi_ep_create_device()
1275
* if the mhi_dev associated with it is NULL.
1276
*/
1277
if (mhi_dev->ul_chan)
1278
mhi_dev->ul_chan->mhi_dev = NULL;
1279
1280
if (mhi_dev->dl_chan)
1281
mhi_dev->dl_chan->mhi_dev = NULL;
1282
1283
kfree(mhi_dev);
1284
}
1285
1286
static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1287
enum mhi_device_type dev_type)
1288
{
1289
struct mhi_ep_device *mhi_dev;
1290
struct device *dev;
1291
1292
mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1293
if (!mhi_dev)
1294
return ERR_PTR(-ENOMEM);
1295
1296
dev = &mhi_dev->dev;
1297
device_initialize(dev);
1298
dev->bus = &mhi_ep_bus_type;
1299
dev->release = mhi_ep_release_device;
1300
1301
/* Controller device is always allocated first */
1302
if (dev_type == MHI_DEVICE_CONTROLLER)
1303
/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1304
dev->parent = mhi_cntrl->cntrl_dev;
1305
else
1306
/* for MHI client devices, parent is the MHI controller device */
1307
dev->parent = &mhi_cntrl->mhi_dev->dev;
1308
1309
mhi_dev->mhi_cntrl = mhi_cntrl;
1310
mhi_dev->dev_type = dev_type;
1311
1312
return mhi_dev;
1313
}
1314
1315
/*
1316
* MHI channels are always defined in pairs with UL as the even numbered
1317
* channel and DL as odd numbered one. This function gets UL channel (primary)
1318
* as the ch_id and always looks after the next entry in channel list for
1319
* the corresponding DL channel (secondary).
1320
*/
1321
static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1322
{
1323
struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1324
struct device *dev = mhi_cntrl->cntrl_dev;
1325
struct mhi_ep_device *mhi_dev;
1326
int ret;
1327
1328
/* Check if the channel name is same for both UL and DL */
1329
if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1330
dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1331
mhi_chan->name, mhi_chan[1].name);
1332
return -EINVAL;
1333
}
1334
1335
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1336
if (IS_ERR(mhi_dev))
1337
return PTR_ERR(mhi_dev);
1338
1339
/* Configure primary channel */
1340
mhi_dev->ul_chan = mhi_chan;
1341
get_device(&mhi_dev->dev);
1342
mhi_chan->mhi_dev = mhi_dev;
1343
1344
/* Configure secondary channel as well */
1345
mhi_chan++;
1346
mhi_dev->dl_chan = mhi_chan;
1347
get_device(&mhi_dev->dev);
1348
mhi_chan->mhi_dev = mhi_dev;
1349
1350
/* Channel name is same for both UL and DL */
1351
mhi_dev->name = mhi_chan->name;
1352
ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1353
dev_name(&mhi_cntrl->mhi_dev->dev),
1354
mhi_dev->name);
1355
if (ret) {
1356
put_device(&mhi_dev->dev);
1357
return ret;
1358
}
1359
1360
ret = device_add(&mhi_dev->dev);
1361
if (ret)
1362
put_device(&mhi_dev->dev);
1363
1364
return ret;
1365
}
1366
1367
static int mhi_ep_destroy_device(struct device *dev, void *data)
1368
{
1369
struct mhi_ep_device *mhi_dev;
1370
struct mhi_ep_cntrl *mhi_cntrl;
1371
struct mhi_ep_chan *ul_chan, *dl_chan;
1372
1373
if (dev->bus != &mhi_ep_bus_type)
1374
return 0;
1375
1376
mhi_dev = to_mhi_ep_device(dev);
1377
mhi_cntrl = mhi_dev->mhi_cntrl;
1378
1379
/* Only destroy devices created for channels */
1380
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1381
return 0;
1382
1383
ul_chan = mhi_dev->ul_chan;
1384
dl_chan = mhi_dev->dl_chan;
1385
1386
if (ul_chan)
1387
put_device(&ul_chan->mhi_dev->dev);
1388
1389
if (dl_chan)
1390
put_device(&dl_chan->mhi_dev->dev);
1391
1392
dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1393
mhi_dev->name);
1394
1395
/* Notify the client and remove the device from MHI bus */
1396
device_del(dev);
1397
put_device(dev);
1398
1399
return 0;
1400
}
1401
1402
static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1403
const struct mhi_ep_cntrl_config *config)
1404
{
1405
const struct mhi_ep_channel_config *ch_cfg;
1406
struct device *dev = mhi_cntrl->cntrl_dev;
1407
u32 chan, i;
1408
int ret = -EINVAL;
1409
1410
mhi_cntrl->max_chan = config->max_channels;
1411
1412
/*
1413
* Allocate max_channels supported by the MHI endpoint and populate
1414
* only the defined channels
1415
*/
1416
mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1417
GFP_KERNEL);
1418
if (!mhi_cntrl->mhi_chan)
1419
return -ENOMEM;
1420
1421
for (i = 0; i < config->num_channels; i++) {
1422
struct mhi_ep_chan *mhi_chan;
1423
1424
ch_cfg = &config->ch_cfg[i];
1425
1426
chan = ch_cfg->num;
1427
if (chan >= mhi_cntrl->max_chan) {
1428
dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1429
chan, mhi_cntrl->max_chan);
1430
goto error_chan_cfg;
1431
}
1432
1433
/* Bi-directional and direction less channels are not supported */
1434
if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1435
dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1436
ch_cfg->dir, chan);
1437
goto error_chan_cfg;
1438
}
1439
1440
mhi_chan = &mhi_cntrl->mhi_chan[chan];
1441
mhi_chan->name = ch_cfg->name;
1442
mhi_chan->chan = chan;
1443
mhi_chan->dir = ch_cfg->dir;
1444
mutex_init(&mhi_chan->lock);
1445
}
1446
1447
return 0;
1448
1449
error_chan_cfg:
1450
kfree(mhi_cntrl->mhi_chan);
1451
1452
return ret;
1453
}
1454
1455
/*
1456
* Allocate channel and command rings here. Event rings will be allocated
1457
* in mhi_ep_power_up() as the config comes from the host.
1458
*/
1459
int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1460
const struct mhi_ep_cntrl_config *config)
1461
{
1462
struct mhi_ep_device *mhi_dev;
1463
int ret;
1464
1465
if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1466
return -EINVAL;
1467
1468
if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
1469
!mhi_cntrl->read_async || !mhi_cntrl->write_async)
1470
return -EINVAL;
1471
1472
ret = mhi_ep_chan_init(mhi_cntrl, config);
1473
if (ret)
1474
return ret;
1475
1476
mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1477
if (!mhi_cntrl->mhi_cmd) {
1478
ret = -ENOMEM;
1479
goto err_free_ch;
1480
}
1481
1482
mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1483
sizeof(struct mhi_ring_element), 0,
1484
0, NULL);
1485
if (!mhi_cntrl->ev_ring_el_cache) {
1486
ret = -ENOMEM;
1487
goto err_free_cmd;
1488
}
1489
1490
mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1491
0, NULL);
1492
if (!mhi_cntrl->tre_buf_cache) {
1493
ret = -ENOMEM;
1494
goto err_destroy_ev_ring_el_cache;
1495
}
1496
1497
mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1498
sizeof(struct mhi_ep_ring_item), 0,
1499
0, NULL);
1500
if (!mhi_cntrl->ring_item_cache) {
1501
ret = -ENOMEM;
1502
goto err_destroy_tre_buf_cache;
1503
}
1504
1505
INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1506
INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1507
INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1508
INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1509
1510
mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1511
if (!mhi_cntrl->wq) {
1512
ret = -ENOMEM;
1513
goto err_destroy_ring_item_cache;
1514
}
1515
1516
INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1517
INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1518
spin_lock_init(&mhi_cntrl->list_lock);
1519
mutex_init(&mhi_cntrl->state_lock);
1520
mutex_init(&mhi_cntrl->event_lock);
1521
1522
/* Set MHI version and AMSS EE before enumeration */
1523
mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1524
mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1525
1526
/* Set controller index */
1527
ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1528
if (ret < 0)
1529
goto err_destroy_wq;
1530
1531
mhi_cntrl->index = ret;
1532
1533
irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1534
ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1535
"doorbell_irq", mhi_cntrl);
1536
if (ret) {
1537
dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1538
goto err_ida_free;
1539
}
1540
1541
/* Allocate the controller device */
1542
mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1543
if (IS_ERR(mhi_dev)) {
1544
dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1545
ret = PTR_ERR(mhi_dev);
1546
goto err_free_irq;
1547
}
1548
1549
ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1550
if (ret)
1551
goto err_put_dev;
1552
1553
mhi_dev->name = dev_name(&mhi_dev->dev);
1554
mhi_cntrl->mhi_dev = mhi_dev;
1555
1556
ret = device_add(&mhi_dev->dev);
1557
if (ret)
1558
goto err_put_dev;
1559
1560
dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1561
1562
return 0;
1563
1564
err_put_dev:
1565
put_device(&mhi_dev->dev);
1566
err_free_irq:
1567
free_irq(mhi_cntrl->irq, mhi_cntrl);
1568
err_ida_free:
1569
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1570
err_destroy_wq:
1571
destroy_workqueue(mhi_cntrl->wq);
1572
err_destroy_ring_item_cache:
1573
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1574
err_destroy_ev_ring_el_cache:
1575
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1576
err_destroy_tre_buf_cache:
1577
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1578
err_free_cmd:
1579
kfree(mhi_cntrl->mhi_cmd);
1580
err_free_ch:
1581
kfree(mhi_cntrl->mhi_chan);
1582
1583
return ret;
1584
}
1585
EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1586
1587
/*
1588
* It is expected that the controller drivers will power down the MHI EP stack
1589
* using "mhi_ep_power_down()" before calling this function to unregister themselves.
1590
*/
1591
void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1592
{
1593
struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1594
1595
destroy_workqueue(mhi_cntrl->wq);
1596
1597
free_irq(mhi_cntrl->irq, mhi_cntrl);
1598
1599
kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1600
kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1601
kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1602
kfree(mhi_cntrl->mhi_cmd);
1603
kfree(mhi_cntrl->mhi_chan);
1604
1605
device_del(&mhi_dev->dev);
1606
put_device(&mhi_dev->dev);
1607
1608
ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1609
}
1610
EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1611
1612
static int mhi_ep_driver_probe(struct device *dev)
1613
{
1614
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1615
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1616
struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1617
struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1618
1619
ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1620
dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1621
1622
return mhi_drv->probe(mhi_dev, mhi_dev->id);
1623
}
1624
1625
static int mhi_ep_driver_remove(struct device *dev)
1626
{
1627
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1628
struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1629
struct mhi_result result = {};
1630
struct mhi_ep_chan *mhi_chan;
1631
int dir;
1632
1633
/* Skip if it is a controller device */
1634
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1635
return 0;
1636
1637
/* Disconnect the channels associated with the driver */
1638
for (dir = 0; dir < 2; dir++) {
1639
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1640
1641
if (!mhi_chan)
1642
continue;
1643
1644
mutex_lock(&mhi_chan->lock);
1645
/* Send channel disconnect status to the client driver */
1646
if (mhi_chan->xfer_cb) {
1647
result.transaction_status = -ENOTCONN;
1648
result.bytes_xferd = 0;
1649
mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1650
}
1651
1652
mhi_chan->state = MHI_CH_STATE_DISABLED;
1653
mhi_chan->xfer_cb = NULL;
1654
mutex_unlock(&mhi_chan->lock);
1655
}
1656
1657
/* Remove the client driver now */
1658
mhi_drv->remove(mhi_dev);
1659
1660
return 0;
1661
}
1662
1663
int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1664
{
1665
struct device_driver *driver = &mhi_drv->driver;
1666
1667
if (!mhi_drv->probe || !mhi_drv->remove)
1668
return -EINVAL;
1669
1670
/* Client drivers should have callbacks defined for both channels */
1671
if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1672
return -EINVAL;
1673
1674
driver->bus = &mhi_ep_bus_type;
1675
driver->owner = owner;
1676
driver->probe = mhi_ep_driver_probe;
1677
driver->remove = mhi_ep_driver_remove;
1678
1679
return driver_register(driver);
1680
}
1681
EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1682
1683
void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1684
{
1685
driver_unregister(&mhi_drv->driver);
1686
}
1687
EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1688
1689
static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1690
{
1691
const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1692
1693
return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1694
mhi_dev->name);
1695
}
1696
1697
static int mhi_ep_match(struct device *dev, const struct device_driver *drv)
1698
{
1699
struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1700
const struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1701
const struct mhi_device_id *id;
1702
1703
/*
1704
* If the device is a controller type then there is no client driver
1705
* associated with it
1706
*/
1707
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1708
return 0;
1709
1710
for (id = mhi_drv->id_table; id->chan[0]; id++)
1711
if (!strcmp(mhi_dev->name, id->chan)) {
1712
mhi_dev->id = id;
1713
return 1;
1714
}
1715
1716
return 0;
1717
};
1718
1719
struct bus_type mhi_ep_bus_type = {
1720
.name = "mhi_ep",
1721
.dev_name = "mhi_ep",
1722
.match = mhi_ep_match,
1723
.uevent = mhi_ep_uevent,
1724
};
1725
1726
static int __init mhi_ep_init(void)
1727
{
1728
return bus_register(&mhi_ep_bus_type);
1729
}
1730
1731
static void __exit mhi_ep_exit(void)
1732
{
1733
bus_unregister(&mhi_ep_bus_type);
1734
}
1735
1736
postcore_initcall(mhi_ep_init);
1737
module_exit(mhi_ep_exit);
1738
1739
MODULE_LICENSE("GPL v2");
1740
MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1741
MODULE_AUTHOR("Manivannan Sadhasivam <[email protected]>");
1742
1743