Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bus/mvebu-mbus.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Address map functions for Marvell EBU SoCs (Kirkwood, Armada
4
* 370/XP, Dove, Orion5x and MV78xx0)
5
*
6
* The Marvell EBU SoCs have a configurable physical address space:
7
* the physical address at which certain devices (PCIe, NOR, NAND,
8
* etc.) sit can be configured. The configuration takes place through
9
* two sets of registers:
10
*
11
* - One to configure the access of the CPU to the devices. Depending
12
* on the families, there are between 8 and 20 configurable windows,
13
* each can be use to create a physical memory window that maps to a
14
* specific device. Devices are identified by a tuple (target,
15
* attribute).
16
*
17
* - One to configure the access to the CPU to the SDRAM. There are
18
* either 2 (for Dove) or 4 (for other families) windows to map the
19
* SDRAM into the physical address space.
20
*
21
* This driver:
22
*
23
* - Reads out the SDRAM address decoding windows at initialization
24
* time, and fills the mvebu_mbus_dram_info structure with these
25
* information. The exported function mv_mbus_dram_info() allow
26
* device drivers to get those information related to the SDRAM
27
* address decoding windows. This is because devices also have their
28
* own windows (configured through registers that are part of each
29
* device register space), and therefore the drivers for Marvell
30
* devices have to configure those device -> SDRAM windows to ensure
31
* that DMA works properly.
32
*
33
* - Provides an API for platform code or device drivers to
34
* dynamically add or remove address decoding windows for the CPU ->
35
* device accesses. This API is mvebu_mbus_add_window_by_id(),
36
* mvebu_mbus_add_window_remap_by_id() and
37
* mvebu_mbus_del_window().
38
*
39
* - Provides a debugfs interface in /sys/kernel/debug/mvebu-mbus/ to
40
* see the list of CPU -> SDRAM windows and their configuration
41
* (file 'sdram') and the list of CPU -> devices windows and their
42
* configuration (file 'devices').
43
*/
44
45
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47
#include <linux/kernel.h>
48
#include <linux/module.h>
49
#include <linux/init.h>
50
#include <linux/mbus.h>
51
#include <linux/io.h>
52
#include <linux/ioport.h>
53
#include <linux/of.h>
54
#include <linux/of_address.h>
55
#include <linux/debugfs.h>
56
#include <linux/log2.h>
57
#include <linux/memblock.h>
58
#include <linux/syscore_ops.h>
59
60
/*
61
* DDR target is the same on all platforms.
62
*/
63
#define TARGET_DDR 0
64
65
/*
66
* CPU Address Decode Windows registers
67
*/
68
#define WIN_CTRL_OFF 0x0000
69
#define WIN_CTRL_ENABLE BIT(0)
70
/* Only on HW I/O coherency capable platforms */
71
#define WIN_CTRL_SYNCBARRIER BIT(1)
72
#define WIN_CTRL_TGT_MASK 0xf0
73
#define WIN_CTRL_TGT_SHIFT 4
74
#define WIN_CTRL_ATTR_MASK 0xff00
75
#define WIN_CTRL_ATTR_SHIFT 8
76
#define WIN_CTRL_SIZE_MASK 0xffff0000
77
#define WIN_CTRL_SIZE_SHIFT 16
78
#define WIN_BASE_OFF 0x0004
79
#define WIN_BASE_LOW 0xffff0000
80
#define WIN_BASE_HIGH 0xf
81
#define WIN_REMAP_LO_OFF 0x0008
82
#define WIN_REMAP_LOW 0xffff0000
83
#define WIN_REMAP_HI_OFF 0x000c
84
85
#define UNIT_SYNC_BARRIER_OFF 0x84
86
#define UNIT_SYNC_BARRIER_ALL 0xFFFF
87
88
#define ATTR_HW_COHERENCY (0x1 << 4)
89
90
#define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
91
#define DDR_BASE_CS_HIGH_MASK 0xf
92
#define DDR_BASE_CS_LOW_MASK 0xff000000
93
#define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
94
#define DDR_SIZE_ENABLED BIT(0)
95
#define DDR_SIZE_CS_MASK 0x1c
96
#define DDR_SIZE_CS_SHIFT 2
97
#define DDR_SIZE_MASK 0xff000000
98
99
#define DOVE_DDR_BASE_CS_OFF(n) ((n) << 4)
100
101
/* Relative to mbusbridge_base */
102
#define MBUS_BRIDGE_CTRL_OFF 0x0
103
#define MBUS_BRIDGE_BASE_OFF 0x4
104
105
/* Maximum number of windows, for all known platforms */
106
#define MBUS_WINS_MAX 20
107
108
struct mvebu_mbus_state;
109
110
struct mvebu_mbus_soc_data {
111
unsigned int num_wins;
112
bool has_mbus_bridge;
113
unsigned int (*win_cfg_offset)(const int win);
114
unsigned int (*win_remap_offset)(const int win);
115
void (*setup_cpu_target)(struct mvebu_mbus_state *s);
116
int (*save_cpu_target)(struct mvebu_mbus_state *s,
117
u32 __iomem *store_addr);
118
int (*show_cpu_target)(struct mvebu_mbus_state *s,
119
struct seq_file *seq, void *v);
120
};
121
122
/*
123
* Used to store the state of one MBus window across suspend/resume.
124
*/
125
struct mvebu_mbus_win_data {
126
u32 ctrl;
127
u32 base;
128
u32 remap_lo;
129
u32 remap_hi;
130
};
131
132
struct mvebu_mbus_state {
133
void __iomem *mbuswins_base;
134
void __iomem *sdramwins_base;
135
void __iomem *mbusbridge_base;
136
phys_addr_t sdramwins_phys_base;
137
struct dentry *debugfs_root;
138
struct dentry *debugfs_sdram;
139
struct dentry *debugfs_devs;
140
struct resource pcie_mem_aperture;
141
struct resource pcie_io_aperture;
142
const struct mvebu_mbus_soc_data *soc;
143
int hw_io_coherency;
144
145
/* Used during suspend/resume */
146
u32 mbus_bridge_ctrl;
147
u32 mbus_bridge_base;
148
struct mvebu_mbus_win_data wins[MBUS_WINS_MAX];
149
};
150
151
static struct mvebu_mbus_state mbus_state;
152
153
/*
154
* We provide two variants of the mv_mbus_dram_info() function:
155
*
156
* - The normal one, where the described DRAM ranges may overlap with
157
* the I/O windows, but for which the DRAM ranges are guaranteed to
158
* have a power of two size. Such ranges are suitable for the DMA
159
* masters that only DMA between the RAM and the device, which is
160
* actually all devices except the crypto engines.
161
*
162
* - The 'nooverlap' one, where the described DRAM ranges are
163
* guaranteed to not overlap with the I/O windows, but for which the
164
* DRAM ranges will not have power of two sizes. They will only be
165
* aligned on a 64 KB boundary, and have a size multiple of 64
166
* KB. Such ranges are suitable for the DMA masters that DMA between
167
* the crypto SRAM (which is mapped through an I/O window) and a
168
* device. This is the case for the crypto engines.
169
*/
170
171
static struct mbus_dram_target_info mvebu_mbus_dram_info;
172
static struct mbus_dram_target_info mvebu_mbus_dram_info_nooverlap;
173
174
const struct mbus_dram_target_info *mv_mbus_dram_info(void)
175
{
176
return &mvebu_mbus_dram_info;
177
}
178
EXPORT_SYMBOL_GPL(mv_mbus_dram_info);
179
180
const struct mbus_dram_target_info *mv_mbus_dram_info_nooverlap(void)
181
{
182
return &mvebu_mbus_dram_info_nooverlap;
183
}
184
EXPORT_SYMBOL_GPL(mv_mbus_dram_info_nooverlap);
185
186
/* Checks whether the given window has remap capability */
187
static bool mvebu_mbus_window_is_remappable(struct mvebu_mbus_state *mbus,
188
const int win)
189
{
190
return mbus->soc->win_remap_offset(win) != MVEBU_MBUS_NO_REMAP;
191
}
192
193
/*
194
* Functions to manipulate the address decoding windows
195
*/
196
197
static void mvebu_mbus_read_window(struct mvebu_mbus_state *mbus,
198
int win, int *enabled, u64 *base,
199
u32 *size, u8 *target, u8 *attr,
200
u64 *remap)
201
{
202
void __iomem *addr = mbus->mbuswins_base +
203
mbus->soc->win_cfg_offset(win);
204
u32 basereg = readl(addr + WIN_BASE_OFF);
205
u32 ctrlreg = readl(addr + WIN_CTRL_OFF);
206
207
if (!(ctrlreg & WIN_CTRL_ENABLE)) {
208
*enabled = 0;
209
return;
210
}
211
212
*enabled = 1;
213
*base = ((u64)basereg & WIN_BASE_HIGH) << 32;
214
*base |= (basereg & WIN_BASE_LOW);
215
*size = (ctrlreg | ~WIN_CTRL_SIZE_MASK) + 1;
216
217
if (target)
218
*target = (ctrlreg & WIN_CTRL_TGT_MASK) >> WIN_CTRL_TGT_SHIFT;
219
220
if (attr)
221
*attr = (ctrlreg & WIN_CTRL_ATTR_MASK) >> WIN_CTRL_ATTR_SHIFT;
222
223
if (remap) {
224
if (mvebu_mbus_window_is_remappable(mbus, win)) {
225
u32 remap_low, remap_hi;
226
void __iomem *addr_rmp = mbus->mbuswins_base +
227
mbus->soc->win_remap_offset(win);
228
remap_low = readl(addr_rmp + WIN_REMAP_LO_OFF);
229
remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF);
230
*remap = ((u64)remap_hi << 32) | remap_low;
231
} else
232
*remap = 0;
233
}
234
}
235
236
static void mvebu_mbus_disable_window(struct mvebu_mbus_state *mbus,
237
int win)
238
{
239
void __iomem *addr;
240
241
addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win);
242
writel(0, addr + WIN_BASE_OFF);
243
writel(0, addr + WIN_CTRL_OFF);
244
245
if (mvebu_mbus_window_is_remappable(mbus, win)) {
246
addr = mbus->mbuswins_base + mbus->soc->win_remap_offset(win);
247
writel(0, addr + WIN_REMAP_LO_OFF);
248
writel(0, addr + WIN_REMAP_HI_OFF);
249
}
250
}
251
252
/* Checks whether the given window number is available */
253
254
static int mvebu_mbus_window_is_free(struct mvebu_mbus_state *mbus,
255
const int win)
256
{
257
void __iomem *addr = mbus->mbuswins_base +
258
mbus->soc->win_cfg_offset(win);
259
u32 ctrl = readl(addr + WIN_CTRL_OFF);
260
261
return !(ctrl & WIN_CTRL_ENABLE);
262
}
263
264
/*
265
* Checks whether the given (base, base+size) area doesn't overlap an
266
* existing region
267
*/
268
static int mvebu_mbus_window_conflicts(struct mvebu_mbus_state *mbus,
269
phys_addr_t base, size_t size,
270
u8 target, u8 attr)
271
{
272
u64 end = (u64)base + size;
273
int win;
274
275
for (win = 0; win < mbus->soc->num_wins; win++) {
276
u64 wbase, wend;
277
u32 wsize;
278
u8 wtarget, wattr;
279
int enabled;
280
281
mvebu_mbus_read_window(mbus, win,
282
&enabled, &wbase, &wsize,
283
&wtarget, &wattr, NULL);
284
285
if (!enabled)
286
continue;
287
288
wend = wbase + wsize;
289
290
/*
291
* Check if the current window overlaps with the
292
* proposed physical range
293
*/
294
if ((u64)base < wend && end > wbase)
295
return 0;
296
}
297
298
return 1;
299
}
300
301
static int mvebu_mbus_find_window(struct mvebu_mbus_state *mbus,
302
phys_addr_t base, size_t size)
303
{
304
int win;
305
306
for (win = 0; win < mbus->soc->num_wins; win++) {
307
u64 wbase;
308
u32 wsize;
309
int enabled;
310
311
mvebu_mbus_read_window(mbus, win,
312
&enabled, &wbase, &wsize,
313
NULL, NULL, NULL);
314
315
if (!enabled)
316
continue;
317
318
if (base == wbase && size == wsize)
319
return win;
320
}
321
322
return -ENODEV;
323
}
324
325
static int mvebu_mbus_setup_window(struct mvebu_mbus_state *mbus,
326
int win, phys_addr_t base, size_t size,
327
phys_addr_t remap, u8 target,
328
u8 attr)
329
{
330
void __iomem *addr = mbus->mbuswins_base +
331
mbus->soc->win_cfg_offset(win);
332
u32 ctrl, remap_addr;
333
334
if (!is_power_of_2(size)) {
335
WARN(true, "Invalid MBus window size: 0x%zx\n", size);
336
return -EINVAL;
337
}
338
339
if ((base & (phys_addr_t)(size - 1)) != 0) {
340
WARN(true, "Invalid MBus base/size: %pa len 0x%zx\n", &base,
341
size);
342
return -EINVAL;
343
}
344
345
ctrl = ((size - 1) & WIN_CTRL_SIZE_MASK) |
346
(attr << WIN_CTRL_ATTR_SHIFT) |
347
(target << WIN_CTRL_TGT_SHIFT) |
348
WIN_CTRL_ENABLE;
349
if (mbus->hw_io_coherency)
350
ctrl |= WIN_CTRL_SYNCBARRIER;
351
352
writel(base & WIN_BASE_LOW, addr + WIN_BASE_OFF);
353
writel(ctrl, addr + WIN_CTRL_OFF);
354
355
if (mvebu_mbus_window_is_remappable(mbus, win)) {
356
void __iomem *addr_rmp = mbus->mbuswins_base +
357
mbus->soc->win_remap_offset(win);
358
359
if (remap == MVEBU_MBUS_NO_REMAP)
360
remap_addr = base;
361
else
362
remap_addr = remap;
363
writel(remap_addr & WIN_REMAP_LOW, addr_rmp + WIN_REMAP_LO_OFF);
364
writel(0, addr_rmp + WIN_REMAP_HI_OFF);
365
}
366
367
return 0;
368
}
369
370
static int mvebu_mbus_alloc_window(struct mvebu_mbus_state *mbus,
371
phys_addr_t base, size_t size,
372
phys_addr_t remap, u8 target,
373
u8 attr)
374
{
375
int win;
376
377
if (remap == MVEBU_MBUS_NO_REMAP) {
378
for (win = 0; win < mbus->soc->num_wins; win++) {
379
if (mvebu_mbus_window_is_remappable(mbus, win))
380
continue;
381
382
if (mvebu_mbus_window_is_free(mbus, win))
383
return mvebu_mbus_setup_window(mbus, win, base,
384
size, remap,
385
target, attr);
386
}
387
}
388
389
for (win = 0; win < mbus->soc->num_wins; win++) {
390
/* Skip window if need remap but is not supported */
391
if ((remap != MVEBU_MBUS_NO_REMAP) &&
392
!mvebu_mbus_window_is_remappable(mbus, win))
393
continue;
394
395
if (mvebu_mbus_window_is_free(mbus, win))
396
return mvebu_mbus_setup_window(mbus, win, base, size,
397
remap, target, attr);
398
}
399
400
return -ENOMEM;
401
}
402
403
/*
404
* Debugfs debugging
405
*/
406
407
/* Common function used for Dove, Kirkwood, Armada 370/XP and Orion 5x */
408
static int mvebu_sdram_debug_show_orion(struct mvebu_mbus_state *mbus,
409
struct seq_file *seq, void *v)
410
{
411
int i;
412
413
for (i = 0; i < 4; i++) {
414
u32 basereg = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
415
u32 sizereg = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
416
u64 base;
417
u32 size;
418
419
if (!(sizereg & DDR_SIZE_ENABLED)) {
420
seq_printf(seq, "[%d] disabled\n", i);
421
continue;
422
}
423
424
base = ((u64)basereg & DDR_BASE_CS_HIGH_MASK) << 32;
425
base |= basereg & DDR_BASE_CS_LOW_MASK;
426
size = (sizereg | ~DDR_SIZE_MASK);
427
428
seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n",
429
i, (unsigned long long)base,
430
(unsigned long long)base + size + 1,
431
(sizereg & DDR_SIZE_CS_MASK) >> DDR_SIZE_CS_SHIFT);
432
}
433
434
return 0;
435
}
436
437
/* Special function for Dove */
438
static int mvebu_sdram_debug_show_dove(struct mvebu_mbus_state *mbus,
439
struct seq_file *seq, void *v)
440
{
441
int i;
442
443
for (i = 0; i < 2; i++) {
444
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
445
u64 base;
446
u32 size;
447
448
if (!(map & 1)) {
449
seq_printf(seq, "[%d] disabled\n", i);
450
continue;
451
}
452
453
base = map & 0xff800000;
454
size = 0x100000 << (((map & 0x000f0000) >> 16) - 4);
455
456
seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n",
457
i, (unsigned long long)base,
458
(unsigned long long)base + size, i);
459
}
460
461
return 0;
462
}
463
464
static int mvebu_sdram_debug_show(struct seq_file *seq, void *v)
465
{
466
struct mvebu_mbus_state *mbus = &mbus_state;
467
return mbus->soc->show_cpu_target(mbus, seq, v);
468
}
469
DEFINE_SHOW_ATTRIBUTE(mvebu_sdram_debug);
470
471
static int mvebu_devs_debug_show(struct seq_file *seq, void *v)
472
{
473
struct mvebu_mbus_state *mbus = &mbus_state;
474
int win;
475
476
for (win = 0; win < mbus->soc->num_wins; win++) {
477
u64 wbase, wremap;
478
u32 wsize;
479
u8 wtarget, wattr;
480
int enabled;
481
482
mvebu_mbus_read_window(mbus, win,
483
&enabled, &wbase, &wsize,
484
&wtarget, &wattr, &wremap);
485
486
if (!enabled) {
487
seq_printf(seq, "[%02d] disabled\n", win);
488
continue;
489
}
490
491
seq_printf(seq, "[%02d] %016llx - %016llx : %04x:%04x",
492
win, (unsigned long long)wbase,
493
(unsigned long long)(wbase + wsize), wtarget, wattr);
494
495
if (!is_power_of_2(wsize) ||
496
((wbase & (u64)(wsize - 1)) != 0))
497
seq_puts(seq, " (Invalid base/size!!)");
498
499
if (mvebu_mbus_window_is_remappable(mbus, win)) {
500
seq_printf(seq, " (remap %016llx)\n",
501
(unsigned long long)wremap);
502
} else
503
seq_printf(seq, "\n");
504
}
505
506
return 0;
507
}
508
DEFINE_SHOW_ATTRIBUTE(mvebu_devs_debug);
509
510
/*
511
* SoC-specific functions and definitions
512
*/
513
514
static unsigned int generic_mbus_win_cfg_offset(int win)
515
{
516
return win << 4;
517
}
518
519
static unsigned int armada_370_xp_mbus_win_cfg_offset(int win)
520
{
521
/* The register layout is a bit annoying and the below code
522
* tries to cope with it.
523
* - At offset 0x0, there are the registers for the first 8
524
* windows, with 4 registers of 32 bits per window (ctrl,
525
* base, remap low, remap high)
526
* - Then at offset 0x80, there is a hole of 0x10 bytes for
527
* the internal registers base address and internal units
528
* sync barrier register.
529
* - Then at offset 0x90, there the registers for 12
530
* windows, with only 2 registers of 32 bits per window
531
* (ctrl, base).
532
*/
533
if (win < 8)
534
return win << 4;
535
else
536
return 0x90 + ((win - 8) << 3);
537
}
538
539
static unsigned int mv78xx0_mbus_win_cfg_offset(int win)
540
{
541
if (win < 8)
542
return win << 4;
543
else
544
return 0x900 + ((win - 8) << 4);
545
}
546
547
static unsigned int generic_mbus_win_remap_2_offset(int win)
548
{
549
if (win < 2)
550
return generic_mbus_win_cfg_offset(win);
551
else
552
return MVEBU_MBUS_NO_REMAP;
553
}
554
555
static unsigned int generic_mbus_win_remap_4_offset(int win)
556
{
557
if (win < 4)
558
return generic_mbus_win_cfg_offset(win);
559
else
560
return MVEBU_MBUS_NO_REMAP;
561
}
562
563
static unsigned int generic_mbus_win_remap_8_offset(int win)
564
{
565
if (win < 8)
566
return generic_mbus_win_cfg_offset(win);
567
else
568
return MVEBU_MBUS_NO_REMAP;
569
}
570
571
static unsigned int armada_xp_mbus_win_remap_offset(int win)
572
{
573
if (win < 8)
574
return generic_mbus_win_cfg_offset(win);
575
else if (win == 13)
576
return 0xF0 - WIN_REMAP_LO_OFF;
577
else
578
return MVEBU_MBUS_NO_REMAP;
579
}
580
581
/*
582
* Use the memblock information to find the MBus bridge hole in the
583
* physical address space.
584
*/
585
static void __init
586
mvebu_mbus_find_bridge_hole(uint64_t *start, uint64_t *end)
587
{
588
phys_addr_t reg_start, reg_end;
589
uint64_t i, s = 0;
590
591
for_each_mem_range(i, &reg_start, &reg_end) {
592
/*
593
* This part of the memory is above 4 GB, so we don't
594
* care for the MBus bridge hole.
595
*/
596
if ((u64)reg_start >= 0x100000000ULL)
597
continue;
598
599
/*
600
* The MBus bridge hole is at the end of the RAM under
601
* the 4 GB limit.
602
*/
603
if (reg_end > s)
604
s = reg_end;
605
}
606
607
*start = s;
608
*end = 0x100000000ULL;
609
}
610
611
/*
612
* This function fills in the mvebu_mbus_dram_info_nooverlap data
613
* structure, by looking at the mvebu_mbus_dram_info data, and
614
* removing the parts of it that overlap with I/O windows.
615
*/
616
static void __init
617
mvebu_mbus_setup_cpu_target_nooverlap(struct mvebu_mbus_state *mbus)
618
{
619
uint64_t mbus_bridge_base, mbus_bridge_end;
620
int cs_nooverlap = 0;
621
int i;
622
623
mvebu_mbus_find_bridge_hole(&mbus_bridge_base, &mbus_bridge_end);
624
625
for (i = 0; i < mvebu_mbus_dram_info.num_cs; i++) {
626
struct mbus_dram_window *w;
627
u64 base, size, end;
628
629
w = &mvebu_mbus_dram_info.cs[i];
630
base = w->base;
631
size = w->size;
632
end = base + size;
633
634
/*
635
* The CS is fully enclosed inside the MBus bridge
636
* area, so ignore it.
637
*/
638
if (base >= mbus_bridge_base && end <= mbus_bridge_end)
639
continue;
640
641
/*
642
* Beginning of CS overlaps with end of MBus, raise CS
643
* base address, and shrink its size.
644
*/
645
if (base >= mbus_bridge_base && end > mbus_bridge_end) {
646
size -= mbus_bridge_end - base;
647
base = mbus_bridge_end;
648
}
649
650
/*
651
* End of CS overlaps with beginning of MBus, shrink
652
* CS size.
653
*/
654
if (base < mbus_bridge_base && end > mbus_bridge_base)
655
size -= end - mbus_bridge_base;
656
657
w = &mvebu_mbus_dram_info_nooverlap.cs[cs_nooverlap++];
658
w->cs_index = i;
659
w->mbus_attr = 0xf & ~(1 << i);
660
if (mbus->hw_io_coherency)
661
w->mbus_attr |= ATTR_HW_COHERENCY;
662
w->base = base;
663
w->size = size;
664
}
665
666
mvebu_mbus_dram_info_nooverlap.mbus_dram_target_id = TARGET_DDR;
667
mvebu_mbus_dram_info_nooverlap.num_cs = cs_nooverlap;
668
}
669
670
static void __init
671
mvebu_mbus_default_setup_cpu_target(struct mvebu_mbus_state *mbus)
672
{
673
int i;
674
int cs;
675
676
mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
677
678
for (i = 0, cs = 0; i < 4; i++) {
679
u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
680
u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
681
682
/*
683
* We only take care of entries for which the chip
684
* select is enabled, and that don't have high base
685
* address bits set (devices can only access the first
686
* 32 bits of the memory).
687
*/
688
if ((size & DDR_SIZE_ENABLED) &&
689
!(base & DDR_BASE_CS_HIGH_MASK)) {
690
struct mbus_dram_window *w;
691
692
w = &mvebu_mbus_dram_info.cs[cs++];
693
w->cs_index = i;
694
w->mbus_attr = 0xf & ~(1 << i);
695
if (mbus->hw_io_coherency)
696
w->mbus_attr |= ATTR_HW_COHERENCY;
697
w->base = base & DDR_BASE_CS_LOW_MASK;
698
w->size = (u64)(size | ~DDR_SIZE_MASK) + 1;
699
}
700
}
701
mvebu_mbus_dram_info.num_cs = cs;
702
}
703
704
static int
705
mvebu_mbus_default_save_cpu_target(struct mvebu_mbus_state *mbus,
706
u32 __iomem *store_addr)
707
{
708
int i;
709
710
for (i = 0; i < 4; i++) {
711
u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
712
u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
713
714
writel(mbus->sdramwins_phys_base + DDR_BASE_CS_OFF(i),
715
store_addr++);
716
writel(base, store_addr++);
717
writel(mbus->sdramwins_phys_base + DDR_SIZE_CS_OFF(i),
718
store_addr++);
719
writel(size, store_addr++);
720
}
721
722
/* We've written 16 words to the store address */
723
return 16;
724
}
725
726
static void __init
727
mvebu_mbus_dove_setup_cpu_target(struct mvebu_mbus_state *mbus)
728
{
729
int i;
730
int cs;
731
732
mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
733
734
for (i = 0, cs = 0; i < 2; i++) {
735
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
736
737
/*
738
* Chip select enabled?
739
*/
740
if (map & 1) {
741
struct mbus_dram_window *w;
742
743
w = &mvebu_mbus_dram_info.cs[cs++];
744
w->cs_index = i;
745
w->mbus_attr = 0; /* CS address decoding done inside */
746
/* the DDR controller, no need to */
747
/* provide attributes */
748
w->base = map & 0xff800000;
749
w->size = 0x100000 << (((map & 0x000f0000) >> 16) - 4);
750
}
751
}
752
753
mvebu_mbus_dram_info.num_cs = cs;
754
}
755
756
static int
757
mvebu_mbus_dove_save_cpu_target(struct mvebu_mbus_state *mbus,
758
u32 __iomem *store_addr)
759
{
760
int i;
761
762
for (i = 0; i < 2; i++) {
763
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
764
765
writel(mbus->sdramwins_phys_base + DOVE_DDR_BASE_CS_OFF(i),
766
store_addr++);
767
writel(map, store_addr++);
768
}
769
770
/* We've written 4 words to the store address */
771
return 4;
772
}
773
774
int mvebu_mbus_save_cpu_target(u32 __iomem *store_addr)
775
{
776
return mbus_state.soc->save_cpu_target(&mbus_state, store_addr);
777
}
778
779
static const struct mvebu_mbus_soc_data armada_370_mbus_data = {
780
.num_wins = 20,
781
.has_mbus_bridge = true,
782
.win_cfg_offset = armada_370_xp_mbus_win_cfg_offset,
783
.win_remap_offset = generic_mbus_win_remap_8_offset,
784
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
785
.show_cpu_target = mvebu_sdram_debug_show_orion,
786
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
787
};
788
789
static const struct mvebu_mbus_soc_data armada_xp_mbus_data = {
790
.num_wins = 20,
791
.has_mbus_bridge = true,
792
.win_cfg_offset = armada_370_xp_mbus_win_cfg_offset,
793
.win_remap_offset = armada_xp_mbus_win_remap_offset,
794
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
795
.show_cpu_target = mvebu_sdram_debug_show_orion,
796
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
797
};
798
799
static const struct mvebu_mbus_soc_data kirkwood_mbus_data = {
800
.num_wins = 8,
801
.win_cfg_offset = generic_mbus_win_cfg_offset,
802
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
803
.win_remap_offset = generic_mbus_win_remap_4_offset,
804
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
805
.show_cpu_target = mvebu_sdram_debug_show_orion,
806
};
807
808
static const struct mvebu_mbus_soc_data dove_mbus_data = {
809
.num_wins = 8,
810
.win_cfg_offset = generic_mbus_win_cfg_offset,
811
.save_cpu_target = mvebu_mbus_dove_save_cpu_target,
812
.win_remap_offset = generic_mbus_win_remap_4_offset,
813
.setup_cpu_target = mvebu_mbus_dove_setup_cpu_target,
814
.show_cpu_target = mvebu_sdram_debug_show_dove,
815
};
816
817
/*
818
* Some variants of Orion5x have 4 remappable windows, some other have
819
* only two of them.
820
*/
821
static const struct mvebu_mbus_soc_data orion5x_4win_mbus_data = {
822
.num_wins = 8,
823
.win_cfg_offset = generic_mbus_win_cfg_offset,
824
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
825
.win_remap_offset = generic_mbus_win_remap_4_offset,
826
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
827
.show_cpu_target = mvebu_sdram_debug_show_orion,
828
};
829
830
static const struct mvebu_mbus_soc_data orion5x_2win_mbus_data = {
831
.num_wins = 8,
832
.win_cfg_offset = generic_mbus_win_cfg_offset,
833
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
834
.win_remap_offset = generic_mbus_win_remap_2_offset,
835
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
836
.show_cpu_target = mvebu_sdram_debug_show_orion,
837
};
838
839
static const struct mvebu_mbus_soc_data mv78xx0_mbus_data = {
840
.num_wins = 14,
841
.win_cfg_offset = mv78xx0_mbus_win_cfg_offset,
842
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
843
.win_remap_offset = generic_mbus_win_remap_8_offset,
844
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
845
.show_cpu_target = mvebu_sdram_debug_show_orion,
846
};
847
848
static const struct of_device_id of_mvebu_mbus_ids[] = {
849
{ .compatible = "marvell,armada370-mbus",
850
.data = &armada_370_mbus_data, },
851
{ .compatible = "marvell,armada375-mbus",
852
.data = &armada_xp_mbus_data, },
853
{ .compatible = "marvell,armada380-mbus",
854
.data = &armada_xp_mbus_data, },
855
{ .compatible = "marvell,armadaxp-mbus",
856
.data = &armada_xp_mbus_data, },
857
{ .compatible = "marvell,kirkwood-mbus",
858
.data = &kirkwood_mbus_data, },
859
{ .compatible = "marvell,dove-mbus",
860
.data = &dove_mbus_data, },
861
{ .compatible = "marvell,orion5x-88f5281-mbus",
862
.data = &orion5x_4win_mbus_data, },
863
{ .compatible = "marvell,orion5x-88f5182-mbus",
864
.data = &orion5x_2win_mbus_data, },
865
{ .compatible = "marvell,orion5x-88f5181-mbus",
866
.data = &orion5x_2win_mbus_data, },
867
{ .compatible = "marvell,orion5x-88f6183-mbus",
868
.data = &orion5x_4win_mbus_data, },
869
{ .compatible = "marvell,mv78xx0-mbus",
870
.data = &mv78xx0_mbus_data, },
871
{ },
872
};
873
874
/*
875
* Public API of the driver
876
*/
877
int mvebu_mbus_add_window_remap_by_id(unsigned int target,
878
unsigned int attribute,
879
phys_addr_t base, size_t size,
880
phys_addr_t remap)
881
{
882
struct mvebu_mbus_state *s = &mbus_state;
883
884
if (!mvebu_mbus_window_conflicts(s, base, size, target, attribute)) {
885
pr_err("cannot add window '%x:%x', conflicts with another window\n",
886
target, attribute);
887
return -EINVAL;
888
}
889
890
return mvebu_mbus_alloc_window(s, base, size, remap, target, attribute);
891
}
892
EXPORT_SYMBOL_GPL(mvebu_mbus_add_window_remap_by_id);
893
894
int mvebu_mbus_add_window_by_id(unsigned int target, unsigned int attribute,
895
phys_addr_t base, size_t size)
896
{
897
return mvebu_mbus_add_window_remap_by_id(target, attribute, base,
898
size, MVEBU_MBUS_NO_REMAP);
899
}
900
EXPORT_SYMBOL_GPL(mvebu_mbus_add_window_by_id);
901
902
int mvebu_mbus_del_window(phys_addr_t base, size_t size)
903
{
904
int win;
905
906
win = mvebu_mbus_find_window(&mbus_state, base, size);
907
if (win < 0)
908
return win;
909
910
mvebu_mbus_disable_window(&mbus_state, win);
911
return 0;
912
}
913
EXPORT_SYMBOL_GPL(mvebu_mbus_del_window);
914
915
void mvebu_mbus_get_pcie_mem_aperture(struct resource *res)
916
{
917
if (!res)
918
return;
919
*res = mbus_state.pcie_mem_aperture;
920
}
921
EXPORT_SYMBOL_GPL(mvebu_mbus_get_pcie_mem_aperture);
922
923
void mvebu_mbus_get_pcie_io_aperture(struct resource *res)
924
{
925
if (!res)
926
return;
927
*res = mbus_state.pcie_io_aperture;
928
}
929
EXPORT_SYMBOL_GPL(mvebu_mbus_get_pcie_io_aperture);
930
931
int mvebu_mbus_get_dram_win_info(phys_addr_t phyaddr, u8 *target, u8 *attr)
932
{
933
const struct mbus_dram_target_info *dram;
934
int i;
935
936
/* Get dram info */
937
dram = mv_mbus_dram_info();
938
if (!dram) {
939
pr_err("missing DRAM information\n");
940
return -ENODEV;
941
}
942
943
/* Try to find matching DRAM window for phyaddr */
944
for (i = 0; i < dram->num_cs; i++) {
945
const struct mbus_dram_window *cs = dram->cs + i;
946
947
if (cs->base <= phyaddr &&
948
phyaddr <= (cs->base + cs->size - 1)) {
949
*target = dram->mbus_dram_target_id;
950
*attr = cs->mbus_attr;
951
return 0;
952
}
953
}
954
955
pr_err("invalid dram address %pa\n", &phyaddr);
956
return -EINVAL;
957
}
958
EXPORT_SYMBOL_GPL(mvebu_mbus_get_dram_win_info);
959
960
int mvebu_mbus_get_io_win_info(phys_addr_t phyaddr, u32 *size, u8 *target,
961
u8 *attr)
962
{
963
int win;
964
965
for (win = 0; win < mbus_state.soc->num_wins; win++) {
966
u64 wbase;
967
int enabled;
968
969
mvebu_mbus_read_window(&mbus_state, win, &enabled, &wbase,
970
size, target, attr, NULL);
971
972
if (!enabled)
973
continue;
974
975
if (wbase <= phyaddr && phyaddr <= wbase + *size)
976
return win;
977
}
978
979
return -EINVAL;
980
}
981
EXPORT_SYMBOL_GPL(mvebu_mbus_get_io_win_info);
982
983
static __init int mvebu_mbus_debugfs_init(void)
984
{
985
struct mvebu_mbus_state *s = &mbus_state;
986
987
/*
988
* If no base has been initialized, doesn't make sense to
989
* register the debugfs entries. We may be on a multiplatform
990
* kernel that isn't running a Marvell EBU SoC.
991
*/
992
if (!s->mbuswins_base)
993
return 0;
994
995
s->debugfs_root = debugfs_create_dir("mvebu-mbus", NULL);
996
if (s->debugfs_root) {
997
s->debugfs_sdram = debugfs_create_file("sdram", S_IRUGO,
998
s->debugfs_root, NULL,
999
&mvebu_sdram_debug_fops);
1000
s->debugfs_devs = debugfs_create_file("devices", S_IRUGO,
1001
s->debugfs_root, NULL,
1002
&mvebu_devs_debug_fops);
1003
}
1004
1005
return 0;
1006
}
1007
fs_initcall(mvebu_mbus_debugfs_init);
1008
1009
static int mvebu_mbus_suspend(void)
1010
{
1011
struct mvebu_mbus_state *s = &mbus_state;
1012
int win;
1013
1014
if (!s->mbusbridge_base)
1015
return -ENODEV;
1016
1017
for (win = 0; win < s->soc->num_wins; win++) {
1018
void __iomem *addr = s->mbuswins_base +
1019
s->soc->win_cfg_offset(win);
1020
void __iomem *addr_rmp;
1021
1022
s->wins[win].base = readl(addr + WIN_BASE_OFF);
1023
s->wins[win].ctrl = readl(addr + WIN_CTRL_OFF);
1024
1025
if (!mvebu_mbus_window_is_remappable(s, win))
1026
continue;
1027
1028
addr_rmp = s->mbuswins_base +
1029
s->soc->win_remap_offset(win);
1030
1031
s->wins[win].remap_lo = readl(addr_rmp + WIN_REMAP_LO_OFF);
1032
s->wins[win].remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF);
1033
}
1034
1035
s->mbus_bridge_ctrl = readl(s->mbusbridge_base +
1036
MBUS_BRIDGE_CTRL_OFF);
1037
s->mbus_bridge_base = readl(s->mbusbridge_base +
1038
MBUS_BRIDGE_BASE_OFF);
1039
1040
return 0;
1041
}
1042
1043
static void mvebu_mbus_resume(void)
1044
{
1045
struct mvebu_mbus_state *s = &mbus_state;
1046
int win;
1047
1048
writel(s->mbus_bridge_ctrl,
1049
s->mbusbridge_base + MBUS_BRIDGE_CTRL_OFF);
1050
writel(s->mbus_bridge_base,
1051
s->mbusbridge_base + MBUS_BRIDGE_BASE_OFF);
1052
1053
for (win = 0; win < s->soc->num_wins; win++) {
1054
void __iomem *addr = s->mbuswins_base +
1055
s->soc->win_cfg_offset(win);
1056
void __iomem *addr_rmp;
1057
1058
writel(s->wins[win].base, addr + WIN_BASE_OFF);
1059
writel(s->wins[win].ctrl, addr + WIN_CTRL_OFF);
1060
1061
if (!mvebu_mbus_window_is_remappable(s, win))
1062
continue;
1063
1064
addr_rmp = s->mbuswins_base +
1065
s->soc->win_remap_offset(win);
1066
1067
writel(s->wins[win].remap_lo, addr_rmp + WIN_REMAP_LO_OFF);
1068
writel(s->wins[win].remap_hi, addr_rmp + WIN_REMAP_HI_OFF);
1069
}
1070
}
1071
1072
static struct syscore_ops mvebu_mbus_syscore_ops = {
1073
.suspend = mvebu_mbus_suspend,
1074
.resume = mvebu_mbus_resume,
1075
};
1076
1077
static int __init mvebu_mbus_common_init(struct mvebu_mbus_state *mbus,
1078
phys_addr_t mbuswins_phys_base,
1079
size_t mbuswins_size,
1080
phys_addr_t sdramwins_phys_base,
1081
size_t sdramwins_size,
1082
phys_addr_t mbusbridge_phys_base,
1083
size_t mbusbridge_size,
1084
bool is_coherent)
1085
{
1086
int win;
1087
1088
mbus->mbuswins_base = ioremap(mbuswins_phys_base, mbuswins_size);
1089
if (!mbus->mbuswins_base)
1090
return -ENOMEM;
1091
1092
mbus->sdramwins_base = ioremap(sdramwins_phys_base, sdramwins_size);
1093
if (!mbus->sdramwins_base) {
1094
iounmap(mbus->mbuswins_base);
1095
return -ENOMEM;
1096
}
1097
1098
mbus->sdramwins_phys_base = sdramwins_phys_base;
1099
1100
if (mbusbridge_phys_base) {
1101
mbus->mbusbridge_base = ioremap(mbusbridge_phys_base,
1102
mbusbridge_size);
1103
if (!mbus->mbusbridge_base) {
1104
iounmap(mbus->sdramwins_base);
1105
iounmap(mbus->mbuswins_base);
1106
return -ENOMEM;
1107
}
1108
} else
1109
mbus->mbusbridge_base = NULL;
1110
1111
for (win = 0; win < mbus->soc->num_wins; win++)
1112
mvebu_mbus_disable_window(mbus, win);
1113
1114
mbus->soc->setup_cpu_target(mbus);
1115
mvebu_mbus_setup_cpu_target_nooverlap(mbus);
1116
1117
if (is_coherent)
1118
writel(UNIT_SYNC_BARRIER_ALL,
1119
mbus->mbuswins_base + UNIT_SYNC_BARRIER_OFF);
1120
1121
register_syscore_ops(&mvebu_mbus_syscore_ops);
1122
1123
return 0;
1124
}
1125
1126
int __init mvebu_mbus_init(const char *soc, phys_addr_t mbuswins_phys_base,
1127
size_t mbuswins_size,
1128
phys_addr_t sdramwins_phys_base,
1129
size_t sdramwins_size)
1130
{
1131
const struct of_device_id *of_id;
1132
1133
for (of_id = of_mvebu_mbus_ids; of_id->compatible[0]; of_id++)
1134
if (!strcmp(of_id->compatible, soc))
1135
break;
1136
1137
if (!of_id->compatible[0]) {
1138
pr_err("could not find a matching SoC family\n");
1139
return -ENODEV;
1140
}
1141
1142
mbus_state.soc = of_id->data;
1143
1144
return mvebu_mbus_common_init(&mbus_state,
1145
mbuswins_phys_base,
1146
mbuswins_size,
1147
sdramwins_phys_base,
1148
sdramwins_size, 0, 0, false);
1149
}
1150
1151
#ifdef CONFIG_OF
1152
/*
1153
* The window IDs in the ranges DT property have the following format:
1154
* - bits 28 to 31: MBus custom field
1155
* - bits 24 to 27: window target ID
1156
* - bits 16 to 23: window attribute ID
1157
* - bits 0 to 15: unused
1158
*/
1159
#define CUSTOM(id) (((id) & 0xF0000000) >> 24)
1160
#define TARGET(id) (((id) & 0x0F000000) >> 24)
1161
#define ATTR(id) (((id) & 0x00FF0000) >> 16)
1162
1163
static int __init mbus_dt_setup_win(struct mvebu_mbus_state *mbus,
1164
u32 base, u32 size,
1165
u8 target, u8 attr)
1166
{
1167
if (!mvebu_mbus_window_conflicts(mbus, base, size, target, attr)) {
1168
pr_err("cannot add window '%04x:%04x', conflicts with another window\n",
1169
target, attr);
1170
return -EBUSY;
1171
}
1172
1173
if (mvebu_mbus_alloc_window(mbus, base, size, MVEBU_MBUS_NO_REMAP,
1174
target, attr)) {
1175
pr_err("cannot add window '%04x:%04x', too many windows\n",
1176
target, attr);
1177
return -ENOMEM;
1178
}
1179
return 0;
1180
}
1181
1182
static int __init mbus_dt_setup(struct mvebu_mbus_state *mbus,
1183
struct device_node *np)
1184
{
1185
int ret;
1186
struct of_range_parser parser;
1187
struct of_range range;
1188
1189
ret = of_range_parser_init(&parser, np);
1190
if (ret < 0)
1191
return 0;
1192
1193
for_each_of_range(&parser, &range) {
1194
u32 windowid = upper_32_bits(range.bus_addr);
1195
u8 target, attr;
1196
1197
/*
1198
* An entry with a non-zero custom field do not
1199
* correspond to a static window, so skip it.
1200
*/
1201
if (CUSTOM(windowid))
1202
continue;
1203
1204
target = TARGET(windowid);
1205
attr = ATTR(windowid);
1206
1207
ret = mbus_dt_setup_win(mbus, range.cpu_addr, range.size, target, attr);
1208
if (ret < 0)
1209
return ret;
1210
}
1211
return 0;
1212
}
1213
1214
static void __init mvebu_mbus_get_pcie_resources(struct device_node *np,
1215
struct resource *mem,
1216
struct resource *io)
1217
{
1218
u32 reg[2];
1219
int ret;
1220
1221
/*
1222
* These are optional, so we make sure that resource_size(x) will
1223
* return 0.
1224
*/
1225
memset(mem, 0, sizeof(struct resource));
1226
mem->end = -1;
1227
memset(io, 0, sizeof(struct resource));
1228
io->end = -1;
1229
1230
ret = of_property_read_u32_array(np, "pcie-mem-aperture", reg, ARRAY_SIZE(reg));
1231
if (!ret) {
1232
mem->start = reg[0];
1233
mem->end = mem->start + reg[1] - 1;
1234
mem->flags = IORESOURCE_MEM;
1235
}
1236
1237
ret = of_property_read_u32_array(np, "pcie-io-aperture", reg, ARRAY_SIZE(reg));
1238
if (!ret) {
1239
io->start = reg[0];
1240
io->end = io->start + reg[1] - 1;
1241
io->flags = IORESOURCE_IO;
1242
}
1243
}
1244
1245
int __init mvebu_mbus_dt_init(bool is_coherent)
1246
{
1247
struct resource mbuswins_res, sdramwins_res, mbusbridge_res;
1248
struct device_node *np, *controller;
1249
const struct of_device_id *of_id;
1250
const __be32 *prop;
1251
int ret;
1252
1253
np = of_find_matching_node_and_match(NULL, of_mvebu_mbus_ids, &of_id);
1254
if (!np) {
1255
pr_err("could not find a matching SoC family\n");
1256
return -ENODEV;
1257
}
1258
1259
mbus_state.soc = of_id->data;
1260
1261
prop = of_get_property(np, "controller", NULL);
1262
if (!prop) {
1263
pr_err("required 'controller' property missing\n");
1264
return -EINVAL;
1265
}
1266
1267
controller = of_find_node_by_phandle(be32_to_cpup(prop));
1268
if (!controller) {
1269
pr_err("could not find an 'mbus-controller' node\n");
1270
return -ENODEV;
1271
}
1272
1273
if (of_address_to_resource(controller, 0, &mbuswins_res)) {
1274
pr_err("cannot get MBUS register address\n");
1275
return -EINVAL;
1276
}
1277
1278
if (of_address_to_resource(controller, 1, &sdramwins_res)) {
1279
pr_err("cannot get SDRAM register address\n");
1280
return -EINVAL;
1281
}
1282
1283
/*
1284
* Set the resource to 0 so that it can be left unmapped by
1285
* mvebu_mbus_common_init() if the DT doesn't carry the
1286
* necessary information. This is needed to preserve backward
1287
* compatibility.
1288
*/
1289
memset(&mbusbridge_res, 0, sizeof(mbusbridge_res));
1290
1291
if (mbus_state.soc->has_mbus_bridge) {
1292
if (of_address_to_resource(controller, 2, &mbusbridge_res))
1293
pr_warn(FW_WARN "deprecated mbus-mvebu Device Tree, suspend/resume will not work\n");
1294
}
1295
1296
mbus_state.hw_io_coherency = is_coherent;
1297
1298
/* Get optional pcie-{mem,io}-aperture properties */
1299
mvebu_mbus_get_pcie_resources(np, &mbus_state.pcie_mem_aperture,
1300
&mbus_state.pcie_io_aperture);
1301
1302
ret = mvebu_mbus_common_init(&mbus_state,
1303
mbuswins_res.start,
1304
resource_size(&mbuswins_res),
1305
sdramwins_res.start,
1306
resource_size(&sdramwins_res),
1307
mbusbridge_res.start,
1308
resource_size(&mbusbridge_res),
1309
is_coherent);
1310
if (ret)
1311
return ret;
1312
1313
/* Setup statically declared windows in the DT */
1314
return mbus_dt_setup(&mbus_state, np);
1315
}
1316
#endif
1317
1318