Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/agp/isoch.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Setup routines for AGP 3.5 compliant bridges.
4
*/
5
6
#include <linux/list.h>
7
#include <linux/pci.h>
8
#include <linux/agp_backend.h>
9
#include <linux/module.h>
10
#include <linux/slab.h>
11
12
#include "agp.h"
13
14
/* Generic AGP 3.5 enabling routines */
15
16
struct agp_3_5_dev {
17
struct list_head list;
18
u8 capndx;
19
u32 maxbw;
20
struct pci_dev *dev;
21
};
22
23
static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24
{
25
struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26
struct list_head *pos;
27
28
list_for_each(pos, head) {
29
cur = list_entry(pos, struct agp_3_5_dev, list);
30
if (cur->maxbw > n->maxbw)
31
break;
32
}
33
list_add_tail(new, pos);
34
}
35
36
static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37
{
38
struct agp_3_5_dev *cur;
39
struct pci_dev *dev;
40
struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41
u32 nistat;
42
43
INIT_LIST_HEAD(head);
44
45
for (pos=start; pos!=head; ) {
46
cur = list_entry(pos, struct agp_3_5_dev, list);
47
dev = cur->dev;
48
49
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50
cur->maxbw = (nistat >> 16) & 0xff;
51
52
tmp = pos;
53
pos = pos->next;
54
agp_3_5_dev_list_insert(head, tmp);
55
}
56
}
57
58
/*
59
* Initialize all isochronous transfer parameters for an AGP 3.0
60
* node (i.e. a host bridge in combination with the adapters
61
* lying behind it...)
62
*/
63
64
static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65
struct agp_3_5_dev *dev_list, unsigned int ndevs)
66
{
67
/*
68
* Convenience structure to make the calculations clearer
69
* here. The field names come straight from the AGP 3.0 spec.
70
*/
71
struct isoch_data {
72
u32 maxbw;
73
u32 n;
74
u32 y;
75
u32 l;
76
u32 rq;
77
struct agp_3_5_dev *dev;
78
};
79
80
struct pci_dev *td = bridge->dev, *dev;
81
struct list_head *head = &dev_list->list, *pos;
82
struct agp_3_5_dev *cur;
83
struct isoch_data *master, target;
84
unsigned int cdev = 0;
85
u32 mnistat, tnistat, tstatus, mcmd;
86
u16 tnicmd, mnicmd;
87
u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88
u32 step, rem, rem_isoch, rem_async;
89
int ret = 0;
90
91
/*
92
* We'll work with an array of isoch_data's (one for each
93
* device in dev_list) throughout this function.
94
*/
95
master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
96
if (master == NULL) {
97
ret = -ENOMEM;
98
goto get_out;
99
}
100
101
/*
102
* Sort the device list by maxbw. We need to do this because the
103
* spec suggests that the devices with the smallest requirements
104
* have their resources allocated first, with all remaining resources
105
* falling to the device with the largest requirement.
106
*
107
* We don't exactly do this, we divide target resources by ndevs
108
* and split them amongst the AGP 3.0 devices. The remainder of such
109
* division operations are dropped on the last device, sort of like
110
* the spec mentions it should be done.
111
*
112
* We can't do this sort when we initially construct the dev_list
113
* because we don't know until this function whether isochronous
114
* transfers are enabled and consequently whether maxbw will mean
115
* anything.
116
*/
117
agp_3_5_dev_list_sort(dev_list, ndevs);
118
119
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121
122
/* Extract power-on defaults from the target */
123
target.maxbw = (tnistat >> 16) & 0xff;
124
target.n = (tnistat >> 8) & 0xff;
125
target.y = (tnistat >> 6) & 0x3;
126
target.l = (tnistat >> 3) & 0x7;
127
target.rq = (tstatus >> 24) & 0xff;
128
129
y_max = target.y;
130
131
/*
132
* Extract power-on defaults for each device in dev_list. Along
133
* the way, calculate the total isochronous bandwidth required
134
* by these devices and the largest requested payload size.
135
*/
136
list_for_each(pos, head) {
137
cur = list_entry(pos, struct agp_3_5_dev, list);
138
dev = cur->dev;
139
140
pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141
142
master[cdev].maxbw = (mnistat >> 16) & 0xff;
143
master[cdev].n = (mnistat >> 8) & 0xff;
144
master[cdev].y = (mnistat >> 6) & 0x3;
145
master[cdev].dev = cur;
146
147
tot_bw += master[cdev].maxbw;
148
y_max = max(y_max, master[cdev].y);
149
150
cdev++;
151
}
152
153
/* Check if this configuration has any chance of working */
154
if (tot_bw > target.maxbw) {
155
dev_err(&td->dev, "isochronous bandwidth required "
156
"by AGP 3.0 devices exceeds that which is supported by "
157
"the AGP 3.0 bridge!\n");
158
ret = -ENODEV;
159
goto free_and_exit;
160
}
161
162
target.y = y_max;
163
164
/*
165
* Write the calculated payload size into the target's NICMD
166
* register. Doing this directly effects the ISOCH_N value
167
* in the target's NISTAT register, so we need to do this now
168
* to get an accurate value for ISOCH_N later.
169
*/
170
pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171
tnicmd &= ~(0x3 << 6);
172
tnicmd |= target.y << 6;
173
pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174
175
/* Reread the target's ISOCH_N */
176
pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177
target.n = (tnistat >> 8) & 0xff;
178
179
/* Calculate the minimum ISOCH_N needed by each master */
180
for (cdev=0; cdev<ndevs; cdev++) {
181
master[cdev].y = target.y;
182
master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183
184
tot_n += master[cdev].n;
185
}
186
187
/* Exit if the minimal ISOCH_N allocation among the masters is more
188
* than the target can handle. */
189
if (tot_n > target.n) {
190
dev_err(&td->dev, "number of isochronous "
191
"transactions per period required by AGP 3.0 devices "
192
"exceeds that which is supported by the AGP 3.0 "
193
"bridge!\n");
194
ret = -ENODEV;
195
goto free_and_exit;
196
}
197
198
/* Calculate left over ISOCH_N capability in the target. We'll give
199
* this to the hungriest device (as per the spec) */
200
rem = target.n - tot_n;
201
202
/*
203
* Calculate the minimum isochronous RQ depth needed by each master.
204
* Along the way, distribute the extra ISOCH_N capability calculated
205
* above.
206
*/
207
for (cdev=0; cdev<ndevs; cdev++) {
208
/*
209
* This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
210
* byte isochronous writes will be broken into 64B pieces.
211
* This means we need to budget more RQ depth to account for
212
* these kind of writes (each isochronous write is actually
213
* many writes on the AGP bus).
214
*/
215
master[cdev].rq = master[cdev].n;
216
if (master[cdev].y > 0x1)
217
master[cdev].rq *= (1 << (master[cdev].y - 1));
218
219
tot_rq += master[cdev].rq;
220
}
221
master[ndevs-1].n += rem;
222
223
/* Figure the number of isochronous and asynchronous RQ slots the
224
* target is providing. */
225
rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226
rq_async = target.rq - rq_isoch;
227
228
/* Exit if the minimal RQ needs of the masters exceeds what the target
229
* can provide. */
230
if (tot_rq > rq_isoch) {
231
dev_err(&td->dev, "number of request queue slots "
232
"required by the isochronous bandwidth requested by "
233
"AGP 3.0 devices exceeds the number provided by the "
234
"AGP 3.0 bridge!\n");
235
ret = -ENODEV;
236
goto free_and_exit;
237
}
238
239
/* Calculate asynchronous RQ capability in the target (per master) as
240
* well as the total number of leftover isochronous RQ slots. */
241
step = rq_async / ndevs;
242
rem_async = step + (rq_async % ndevs);
243
rem_isoch = rq_isoch - tot_rq;
244
245
/* Distribute the extra RQ slots calculated above and write our
246
* isochronous settings out to the actual devices. */
247
for (cdev=0; cdev<ndevs; cdev++) {
248
cur = master[cdev].dev;
249
dev = cur->dev;
250
251
master[cdev].rq += (cdev == ndevs - 1)
252
? (rem_async + rem_isoch) : step;
253
254
pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255
pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256
257
mnicmd &= ~(0xff << 8);
258
mnicmd &= ~(0x3 << 6);
259
mcmd &= ~(0xff << 24);
260
261
mnicmd |= master[cdev].n << 8;
262
mnicmd |= master[cdev].y << 6;
263
mcmd |= master[cdev].rq << 24;
264
265
pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266
pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267
}
268
269
free_and_exit:
270
kfree(master);
271
272
get_out:
273
return ret;
274
}
275
276
/*
277
* This function basically allocates request queue slots among the
278
* AGP 3.0 systems in nonisochronous nodes. The algorithm is
279
* pretty stupid, divide the total number of RQ slots provided by the
280
* target by ndevs. Distribute this many slots to each AGP 3.0 device,
281
* giving any left over slots to the last device in dev_list.
282
*/
283
static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284
struct agp_3_5_dev *dev_list, unsigned int ndevs)
285
{
286
struct agp_3_5_dev *cur;
287
struct list_head *head = &dev_list->list, *pos;
288
u32 tstatus, mcmd;
289
u32 trq, mrq, rem;
290
unsigned int cdev = 0;
291
292
pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293
294
trq = (tstatus >> 24) & 0xff;
295
mrq = trq / ndevs;
296
297
rem = mrq + (trq % ndevs);
298
299
for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300
cur = list_entry(pos, struct agp_3_5_dev, list);
301
302
pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303
mcmd &= ~(0xff << 24);
304
mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305
pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306
}
307
}
308
309
/*
310
* Fully configure and enable an AGP 3.0 host bridge and all the devices
311
* lying behind it.
312
*/
313
int agp_3_5_enable(struct agp_bridge_data *bridge)
314
{
315
struct pci_dev *td = bridge->dev, *dev = NULL;
316
u8 mcapndx;
317
u32 isoch;
318
u32 tstatus, mstatus, ncapid;
319
u32 mmajor;
320
u16 mpstat;
321
struct agp_3_5_dev *dev_list, *cur;
322
struct list_head *head, *pos;
323
unsigned int ndevs = 0;
324
int ret = 0;
325
326
/* Extract some power-on defaults from the target */
327
pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328
isoch = (tstatus >> 17) & 0x1;
329
if (isoch == 0) /* isoch xfers not available, bail out. */
330
return -ENODEV;
331
332
/*
333
* Allocate a head for our AGP 3.5 device list
334
* (multiple AGP v3 devices are allowed behind a single bridge).
335
*/
336
if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337
ret = -ENOMEM;
338
goto get_out;
339
}
340
head = &dev_list->list;
341
INIT_LIST_HEAD(head);
342
343
/* Find all AGP devices, and add them to dev_list. */
344
for_each_pci_dev(dev) {
345
mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346
if (mcapndx == 0)
347
continue;
348
349
switch ((dev->class >>8) & 0xff00) {
350
case 0x0600: /* Bridge */
351
/* Skip bridges. We should call this function for each one. */
352
continue;
353
354
case 0x0001: /* Unclassified device */
355
/* Don't know what this is, but log it for investigation. */
356
if (mcapndx != 0) {
357
dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358
pci_name(dev),
359
dev->vendor, dev->device);
360
}
361
continue;
362
363
case 0x0300: /* Display controller */
364
case 0x0400: /* Multimedia controller */
365
if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366
ret = -ENOMEM;
367
goto free_and_exit;
368
}
369
cur->dev = dev;
370
371
pos = &cur->list;
372
list_add(pos, head);
373
ndevs++;
374
continue;
375
376
default:
377
continue;
378
}
379
}
380
381
/*
382
* Take an initial pass through the devices lying behind our host
383
* bridge. Make sure each one is actually an AGP 3.0 device, otherwise
384
* exit with an error message. Along the way store the AGP 3.0
385
* cap_ptr for each device
386
*/
387
list_for_each(pos, head) {
388
cur = list_entry(pos, struct agp_3_5_dev, list);
389
dev = cur->dev;
390
391
pci_read_config_word(dev, PCI_STATUS, &mpstat);
392
if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393
continue;
394
395
pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396
if (mcapndx != 0) {
397
do {
398
pci_read_config_dword(dev, mcapndx, &ncapid);
399
if ((ncapid & 0xff) != 2)
400
mcapndx = (ncapid >> 8) & 0xff;
401
}
402
while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403
}
404
405
if (mcapndx == 0) {
406
dev_err(&td->dev, "woah! Non-AGP device %s on "
407
"secondary bus of AGP 3.5 bridge!\n",
408
pci_name(dev));
409
ret = -ENODEV;
410
goto free_and_exit;
411
}
412
413
mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414
if (mmajor < 3) {
415
dev_err(&td->dev, "woah! AGP 2.0 device %s on "
416
"secondary bus of AGP 3.5 bridge operating "
417
"with AGP 3.0 electricals!\n", pci_name(dev));
418
ret = -ENODEV;
419
goto free_and_exit;
420
}
421
422
cur->capndx = mcapndx;
423
424
pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425
426
if (((mstatus >> 3) & 0x1) == 0) {
427
dev_err(&td->dev, "woah! AGP 3.x device %s not "
428
"operating in AGP 3.x mode on secondary bus "
429
"of AGP 3.5 bridge operating with AGP 3.0 "
430
"electricals!\n", pci_name(dev));
431
ret = -ENODEV;
432
goto free_and_exit;
433
}
434
}
435
436
/*
437
* Call functions to divide target resources amongst the AGP 3.0
438
* masters. This process is dramatically different depending on
439
* whether isochronous transfers are supported.
440
*/
441
if (isoch) {
442
ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443
if (ret) {
444
dev_info(&td->dev, "something bad happened setting "
445
"up isochronous xfers; falling back to "
446
"non-isochronous xfer mode\n");
447
} else {
448
goto free_and_exit;
449
}
450
}
451
agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452
453
free_and_exit:
454
/* Be sure to free the dev_list */
455
for (pos=head->next; pos!=head; ) {
456
cur = list_entry(pos, struct agp_3_5_dev, list);
457
458
pos = pos->next;
459
kfree(cur);
460
}
461
kfree(dev_list);
462
463
get_out:
464
return ret;
465
}
466
467