Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/ipmi/ipmi_bt_sm.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* ipmi_bt_sm.c
4
*
5
* The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part
6
* of the driver architecture at http://sourceforge.net/projects/openipmi
7
*
8
* Author: Rocky Craig <[email protected]>
9
*/
10
11
#define DEBUG /* So dev_dbg() is always available. */
12
13
#include <linux/kernel.h> /* For printk. */
14
#include <linux/string.h>
15
#include <linux/module.h>
16
#include <linux/moduleparam.h>
17
#include <linux/ipmi_msgdefs.h> /* for completion codes */
18
#include "ipmi_si_sm.h"
19
20
#define BT_DEBUG_OFF 0 /* Used in production */
21
#define BT_DEBUG_ENABLE 1 /* Generic messages */
22
#define BT_DEBUG_MSG 2 /* Prints all request/response buffers */
23
#define BT_DEBUG_STATES 4 /* Verbose look at state changes */
24
/*
25
* BT_DEBUG_OFF must be zero to correspond to the default uninitialized
26
* value
27
*/
28
29
static int bt_debug; /* 0 == BT_DEBUG_OFF */
30
31
module_param(bt_debug, int, 0644);
32
MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
33
34
/*
35
* Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds,
36
* and 64 byte buffers. However, one HP implementation wants 255 bytes of
37
* buffer (with a documented message of 160 bytes) so go for the max.
38
* Since the Open IPMI architecture is single-message oriented at this
39
* stage, the queue depth of BT is of no concern.
40
*/
41
42
#define BT_NORMAL_TIMEOUT 5 /* seconds */
43
#define BT_NORMAL_RETRY_LIMIT 2
44
#define BT_RESET_DELAY 6 /* seconds after warm reset */
45
46
/*
47
* States are written in chronological order and usually cover
48
* multiple rows of the state table discussion in the IPMI spec.
49
*/
50
51
enum bt_states {
52
BT_STATE_IDLE = 0, /* Order is critical in this list */
53
BT_STATE_XACTION_START,
54
BT_STATE_WRITE_BYTES,
55
BT_STATE_WRITE_CONSUME,
56
BT_STATE_READ_WAIT,
57
BT_STATE_CLEAR_B2H,
58
BT_STATE_READ_BYTES,
59
BT_STATE_RESET1, /* These must come last */
60
BT_STATE_RESET2,
61
BT_STATE_RESET3,
62
BT_STATE_RESTART,
63
BT_STATE_PRINTME,
64
BT_STATE_LONG_BUSY /* BT doesn't get hosed :-) */
65
};
66
67
/*
68
* Macros seen at the end of state "case" blocks. They help with legibility
69
* and debugging.
70
*/
71
72
#define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; }
73
74
#define BT_SI_SM_RETURN(Y) { last_printed = BT_STATE_PRINTME; return Y; }
75
76
struct si_sm_data {
77
enum bt_states state;
78
unsigned char seq; /* BT sequence number */
79
struct si_sm_io *io;
80
unsigned char write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
81
int write_count;
82
unsigned char read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
83
int read_count;
84
int truncated;
85
long timeout; /* microseconds countdown */
86
int error_retries; /* end of "common" fields */
87
int nonzero_status; /* hung BMCs stay all 0 */
88
enum bt_states complete; /* to divert the state machine */
89
long BT_CAP_req2rsp;
90
int BT_CAP_retries; /* Recommended retries */
91
};
92
93
#define BT_CLR_WR_PTR 0x01 /* See IPMI 1.5 table 11.6.4 */
94
#define BT_CLR_RD_PTR 0x02
95
#define BT_H2B_ATN 0x04
96
#define BT_B2H_ATN 0x08
97
#define BT_SMS_ATN 0x10
98
#define BT_OEM0 0x20
99
#define BT_H_BUSY 0x40
100
#define BT_B_BUSY 0x80
101
102
/*
103
* Some bits are toggled on each write: write once to set it, once
104
* more to clear it; writing a zero does nothing. To absolutely
105
* clear it, check its state and write if set. This avoids the "get
106
* current then use as mask" scheme to modify one bit. Note that the
107
* variable "bt" is hardcoded into these macros.
108
*/
109
110
#define BT_STATUS bt->io->inputb(bt->io, 0)
111
#define BT_CONTROL(x) bt->io->outputb(bt->io, 0, x)
112
113
#define BMC2HOST bt->io->inputb(bt->io, 1)
114
#define HOST2BMC(x) bt->io->outputb(bt->io, 1, x)
115
116
#define BT_INTMASK_R bt->io->inputb(bt->io, 2)
117
#define BT_INTMASK_W(x) bt->io->outputb(bt->io, 2, x)
118
119
/*
120
* Convenience routines for debugging. These are not multi-open safe!
121
* Note the macros have hardcoded variables in them.
122
*/
123
124
static char *state2txt(unsigned char state)
125
{
126
switch (state) {
127
case BT_STATE_IDLE: return("IDLE");
128
case BT_STATE_XACTION_START: return("XACTION");
129
case BT_STATE_WRITE_BYTES: return("WR_BYTES");
130
case BT_STATE_WRITE_CONSUME: return("WR_CONSUME");
131
case BT_STATE_READ_WAIT: return("RD_WAIT");
132
case BT_STATE_CLEAR_B2H: return("CLEAR_B2H");
133
case BT_STATE_READ_BYTES: return("RD_BYTES");
134
case BT_STATE_RESET1: return("RESET1");
135
case BT_STATE_RESET2: return("RESET2");
136
case BT_STATE_RESET3: return("RESET3");
137
case BT_STATE_RESTART: return("RESTART");
138
case BT_STATE_LONG_BUSY: return("LONG_BUSY");
139
}
140
return("BAD STATE");
141
}
142
#define STATE2TXT state2txt(bt->state)
143
144
static char *status2txt(unsigned char status)
145
{
146
/*
147
* This cannot be called by two threads at the same time and
148
* the buffer is always consumed immediately, so the static is
149
* safe to use.
150
*/
151
static char buf[40];
152
153
strcpy(buf, "[ ");
154
if (status & BT_B_BUSY)
155
strcat(buf, "B_BUSY ");
156
if (status & BT_H_BUSY)
157
strcat(buf, "H_BUSY ");
158
if (status & BT_OEM0)
159
strcat(buf, "OEM0 ");
160
if (status & BT_SMS_ATN)
161
strcat(buf, "SMS ");
162
if (status & BT_B2H_ATN)
163
strcat(buf, "B2H ");
164
if (status & BT_H2B_ATN)
165
strcat(buf, "H2B ");
166
strcat(buf, "]");
167
return buf;
168
}
169
#define STATUS2TXT status2txt(status)
170
171
/* called externally at insmod time, and internally on cleanup */
172
173
static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io)
174
{
175
memset(bt, 0, sizeof(struct si_sm_data));
176
if (bt->io != io) {
177
/* external: one-time only things */
178
bt->io = io;
179
bt->seq = 0;
180
}
181
bt->state = BT_STATE_IDLE; /* start here */
182
bt->complete = BT_STATE_IDLE; /* end here */
183
bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC;
184
bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT;
185
return 3; /* We claim 3 bytes of space; ought to check SPMI table */
186
}
187
188
/* Jam a completion code (probably an error) into a response */
189
190
static void force_result(struct si_sm_data *bt, unsigned char completion_code)
191
{
192
bt->read_data[0] = 4; /* # following bytes */
193
bt->read_data[1] = bt->write_data[1] | 4; /* Odd NetFn/LUN */
194
bt->read_data[2] = bt->write_data[2]; /* seq (ignored) */
195
bt->read_data[3] = bt->write_data[3]; /* Command */
196
bt->read_data[4] = completion_code;
197
bt->read_count = 5;
198
}
199
200
/* The upper state machine starts here */
201
202
static int bt_start_transaction(struct si_sm_data *bt,
203
unsigned char *data,
204
unsigned int size)
205
{
206
unsigned int i;
207
208
if (size < 2)
209
return IPMI_REQ_LEN_INVALID_ERR;
210
if (size > IPMI_MAX_MSG_LENGTH)
211
return IPMI_REQ_LEN_EXCEEDED_ERR;
212
213
if (bt->state == BT_STATE_LONG_BUSY)
214
return IPMI_NODE_BUSY_ERR;
215
216
if (bt->state != BT_STATE_IDLE) {
217
dev_warn(bt->io->dev, "BT in invalid state %d\n", bt->state);
218
return IPMI_NOT_IN_MY_STATE_ERR;
219
}
220
221
if (bt_debug & BT_DEBUG_MSG) {
222
dev_dbg(bt->io->dev, "+++++++++++++++++ New command\n");
223
dev_dbg(bt->io->dev, "NetFn/LUN CMD [%d data]:", size - 2);
224
for (i = 0; i < size; i ++)
225
pr_cont(" %02x", data[i]);
226
pr_cont("\n");
227
}
228
bt->write_data[0] = size + 1; /* all data plus seq byte */
229
bt->write_data[1] = *data; /* NetFn/LUN */
230
bt->write_data[2] = bt->seq++;
231
memcpy(bt->write_data + 3, data + 1, size - 1);
232
bt->write_count = size + 2;
233
bt->error_retries = 0;
234
bt->nonzero_status = 0;
235
bt->truncated = 0;
236
bt->state = BT_STATE_XACTION_START;
237
bt->timeout = bt->BT_CAP_req2rsp;
238
force_result(bt, IPMI_ERR_UNSPECIFIED);
239
return 0;
240
}
241
242
/*
243
* After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE
244
* it calls this. Strip out the length and seq bytes.
245
*/
246
247
static int bt_get_result(struct si_sm_data *bt,
248
unsigned char *data,
249
unsigned int length)
250
{
251
int i, msg_len;
252
253
msg_len = bt->read_count - 2; /* account for length & seq */
254
if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) {
255
force_result(bt, IPMI_ERR_UNSPECIFIED);
256
msg_len = 3;
257
}
258
data[0] = bt->read_data[1];
259
data[1] = bt->read_data[3];
260
if (length < msg_len || bt->truncated) {
261
data[2] = IPMI_ERR_MSG_TRUNCATED;
262
msg_len = 3;
263
} else
264
memcpy(data + 2, bt->read_data + 4, msg_len - 2);
265
266
if (bt_debug & BT_DEBUG_MSG) {
267
dev_dbg(bt->io->dev, "result %d bytes:", msg_len);
268
for (i = 0; i < msg_len; i++)
269
pr_cont(" %02x", data[i]);
270
pr_cont("\n");
271
}
272
return msg_len;
273
}
274
275
/* This bit's functionality is optional */
276
#define BT_BMC_HWRST 0x80
277
278
static void reset_flags(struct si_sm_data *bt)
279
{
280
if (bt_debug)
281
dev_dbg(bt->io->dev, "flag reset %s\n", status2txt(BT_STATUS));
282
if (BT_STATUS & BT_H_BUSY)
283
BT_CONTROL(BT_H_BUSY); /* force clear */
284
BT_CONTROL(BT_CLR_WR_PTR); /* always reset */
285
BT_CONTROL(BT_SMS_ATN); /* always clear */
286
BT_INTMASK_W(BT_BMC_HWRST);
287
}
288
289
/*
290
* Get rid of an unwanted/stale response. This should only be needed for
291
* BMCs that support multiple outstanding requests.
292
*/
293
294
static void drain_BMC2HOST(struct si_sm_data *bt)
295
{
296
int i, size;
297
298
if (!(BT_STATUS & BT_B2H_ATN)) /* Not signalling a response */
299
return;
300
301
BT_CONTROL(BT_H_BUSY); /* now set */
302
BT_CONTROL(BT_B2H_ATN); /* always clear */
303
BT_STATUS; /* pause */
304
BT_CONTROL(BT_B2H_ATN); /* some BMCs are stubborn */
305
BT_CONTROL(BT_CLR_RD_PTR); /* always reset */
306
if (bt_debug)
307
dev_dbg(bt->io->dev, "stale response %s; ",
308
status2txt(BT_STATUS));
309
size = BMC2HOST;
310
for (i = 0; i < size ; i++)
311
BMC2HOST;
312
BT_CONTROL(BT_H_BUSY); /* now clear */
313
if (bt_debug)
314
pr_cont("drained %d bytes\n", size + 1);
315
}
316
317
static inline void write_all_bytes(struct si_sm_data *bt)
318
{
319
int i;
320
321
if (bt_debug & BT_DEBUG_MSG) {
322
dev_dbg(bt->io->dev, "write %d bytes seq=0x%02X",
323
bt->write_count, bt->seq);
324
for (i = 0; i < bt->write_count; i++)
325
pr_cont(" %02x", bt->write_data[i]);
326
pr_cont("\n");
327
}
328
for (i = 0; i < bt->write_count; i++)
329
HOST2BMC(bt->write_data[i]);
330
}
331
332
static inline int read_all_bytes(struct si_sm_data *bt)
333
{
334
unsigned int i;
335
336
/*
337
* length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode.
338
* Keep layout of first four bytes aligned with write_data[]
339
*/
340
341
bt->read_data[0] = BMC2HOST;
342
bt->read_count = bt->read_data[0];
343
344
if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) {
345
if (bt_debug & BT_DEBUG_MSG)
346
dev_dbg(bt->io->dev,
347
"bad raw rsp len=%d\n", bt->read_count);
348
bt->truncated = 1;
349
return 1; /* let next XACTION START clean it up */
350
}
351
for (i = 1; i <= bt->read_count; i++)
352
bt->read_data[i] = BMC2HOST;
353
bt->read_count++; /* Account internally for length byte */
354
355
if (bt_debug & BT_DEBUG_MSG) {
356
int max = bt->read_count;
357
358
dev_dbg(bt->io->dev,
359
"got %d bytes seq=0x%02X", max, bt->read_data[2]);
360
if (max > 16)
361
max = 16;
362
for (i = 0; i < max; i++)
363
pr_cont(" %02x", bt->read_data[i]);
364
pr_cont("%s\n", bt->read_count == max ? "" : " ...");
365
}
366
367
/* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */
368
if ((bt->read_data[3] == bt->write_data[3]) &&
369
(bt->read_data[2] == bt->write_data[2]) &&
370
((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8)))
371
return 1;
372
373
if (bt_debug & BT_DEBUG_MSG)
374
dev_dbg(bt->io->dev,
375
"IPMI BT: bad packet: want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n",
376
bt->write_data[1] | 0x04, bt->write_data[2],
377
bt->write_data[3],
378
bt->read_data[1], bt->read_data[2], bt->read_data[3]);
379
return 0;
380
}
381
382
/* Restart if retries are left, or return an error completion code */
383
384
static enum si_sm_result error_recovery(struct si_sm_data *bt,
385
unsigned char status,
386
unsigned char cCode)
387
{
388
char *reason;
389
390
bt->timeout = bt->BT_CAP_req2rsp;
391
392
switch (cCode) {
393
case IPMI_TIMEOUT_ERR:
394
reason = "timeout";
395
break;
396
default:
397
reason = "internal error";
398
break;
399
}
400
401
dev_warn(bt->io->dev, "IPMI BT: %s in %s %s ", /* open-ended line */
402
reason, STATE2TXT, STATUS2TXT);
403
404
/*
405
* Per the IPMI spec, retries are based on the sequence number
406
* known only to this module, so manage a restart here.
407
*/
408
(bt->error_retries)++;
409
if (bt->error_retries < bt->BT_CAP_retries) {
410
pr_cont("%d retries left\n",
411
bt->BT_CAP_retries - bt->error_retries);
412
bt->state = BT_STATE_RESTART;
413
return SI_SM_CALL_WITHOUT_DELAY;
414
}
415
416
dev_warn(bt->io->dev, "failed %d retries, sending error response\n",
417
bt->BT_CAP_retries);
418
if (!bt->nonzero_status)
419
dev_err(bt->io->dev, "stuck, try power cycle\n");
420
421
/* this is most likely during insmod */
422
else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) {
423
dev_warn(bt->io->dev, "BT reset (takes 5 secs)\n");
424
bt->state = BT_STATE_RESET1;
425
return SI_SM_CALL_WITHOUT_DELAY;
426
}
427
428
/*
429
* Concoct a useful error message, set up the next state, and
430
* be done with this sequence.
431
*/
432
433
bt->state = BT_STATE_IDLE;
434
switch (cCode) {
435
case IPMI_TIMEOUT_ERR:
436
if (status & BT_B_BUSY) {
437
cCode = IPMI_NODE_BUSY_ERR;
438
bt->state = BT_STATE_LONG_BUSY;
439
}
440
break;
441
default:
442
break;
443
}
444
force_result(bt, cCode);
445
return SI_SM_TRANSACTION_COMPLETE;
446
}
447
448
/* Check status and (usually) take action and change this state machine. */
449
450
static enum si_sm_result bt_event(struct si_sm_data *bt, long time)
451
{
452
unsigned char status;
453
static enum bt_states last_printed = BT_STATE_PRINTME;
454
int i;
455
456
status = BT_STATUS;
457
bt->nonzero_status |= status;
458
if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) {
459
dev_dbg(bt->io->dev, "BT: %s %s TO=%ld - %ld\n",
460
STATE2TXT,
461
STATUS2TXT,
462
bt->timeout,
463
time);
464
last_printed = bt->state;
465
}
466
467
/*
468
* Commands that time out may still (eventually) provide a response.
469
* This stale response will get in the way of a new response so remove
470
* it if possible (hopefully during IDLE). Even if it comes up later
471
* it will be rejected by its (now-forgotten) seq number.
472
*/
473
474
if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) {
475
drain_BMC2HOST(bt);
476
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
477
}
478
479
if ((bt->state != BT_STATE_IDLE) &&
480
(bt->state < BT_STATE_PRINTME)) {
481
/* check timeout */
482
bt->timeout -= time;
483
if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1))
484
return error_recovery(bt,
485
status,
486
IPMI_TIMEOUT_ERR);
487
}
488
489
switch (bt->state) {
490
491
/*
492
* Idle state first checks for asynchronous messages from another
493
* channel, then does some opportunistic housekeeping.
494
*/
495
496
case BT_STATE_IDLE:
497
if (status & BT_SMS_ATN) {
498
BT_CONTROL(BT_SMS_ATN); /* clear it */
499
return SI_SM_ATTN;
500
}
501
502
if (status & BT_H_BUSY) /* clear a leftover H_BUSY */
503
BT_CONTROL(BT_H_BUSY);
504
505
BT_SI_SM_RETURN(SI_SM_IDLE);
506
507
case BT_STATE_XACTION_START:
508
if (status & (BT_B_BUSY | BT_H2B_ATN))
509
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
510
if (BT_STATUS & BT_H_BUSY)
511
BT_CONTROL(BT_H_BUSY); /* force clear */
512
BT_STATE_CHANGE(BT_STATE_WRITE_BYTES,
513
SI_SM_CALL_WITHOUT_DELAY);
514
515
case BT_STATE_WRITE_BYTES:
516
if (status & BT_H_BUSY)
517
BT_CONTROL(BT_H_BUSY); /* clear */
518
BT_CONTROL(BT_CLR_WR_PTR);
519
write_all_bytes(bt);
520
BT_CONTROL(BT_H2B_ATN); /* can clear too fast to catch */
521
BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME,
522
SI_SM_CALL_WITHOUT_DELAY);
523
524
case BT_STATE_WRITE_CONSUME:
525
if (status & (BT_B_BUSY | BT_H2B_ATN))
526
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
527
BT_STATE_CHANGE(BT_STATE_READ_WAIT,
528
SI_SM_CALL_WITHOUT_DELAY);
529
530
/* Spinning hard can suppress B2H_ATN and force a timeout */
531
532
case BT_STATE_READ_WAIT:
533
if (!(status & BT_B2H_ATN))
534
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
535
BT_CONTROL(BT_H_BUSY); /* set */
536
537
/*
538
* Uncached, ordered writes should just proceed serially but
539
* some BMCs don't clear B2H_ATN with one hit. Fast-path a
540
* workaround without too much penalty to the general case.
541
*/
542
543
BT_CONTROL(BT_B2H_ATN); /* clear it to ACK the BMC */
544
BT_STATE_CHANGE(BT_STATE_CLEAR_B2H,
545
SI_SM_CALL_WITHOUT_DELAY);
546
547
case BT_STATE_CLEAR_B2H:
548
if (status & BT_B2H_ATN) {
549
/* keep hitting it */
550
BT_CONTROL(BT_B2H_ATN);
551
BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
552
}
553
BT_STATE_CHANGE(BT_STATE_READ_BYTES,
554
SI_SM_CALL_WITHOUT_DELAY);
555
556
case BT_STATE_READ_BYTES:
557
if (!(status & BT_H_BUSY))
558
/* check in case of retry */
559
BT_CONTROL(BT_H_BUSY);
560
BT_CONTROL(BT_CLR_RD_PTR); /* start of BMC2HOST buffer */
561
i = read_all_bytes(bt); /* true == packet seq match */
562
BT_CONTROL(BT_H_BUSY); /* NOW clear */
563
if (!i) /* Not my message */
564
BT_STATE_CHANGE(BT_STATE_READ_WAIT,
565
SI_SM_CALL_WITHOUT_DELAY);
566
bt->state = bt->complete;
567
return bt->state == BT_STATE_IDLE ? /* where to next? */
568
SI_SM_TRANSACTION_COMPLETE : /* normal */
569
SI_SM_CALL_WITHOUT_DELAY; /* Startup magic */
570
571
case BT_STATE_LONG_BUSY: /* For example: after FW update */
572
if (!(status & BT_B_BUSY)) {
573
reset_flags(bt); /* next state is now IDLE */
574
bt_init_data(bt, bt->io);
575
}
576
return SI_SM_CALL_WITH_DELAY; /* No repeat printing */
577
578
case BT_STATE_RESET1:
579
reset_flags(bt);
580
drain_BMC2HOST(bt);
581
BT_STATE_CHANGE(BT_STATE_RESET2,
582
SI_SM_CALL_WITH_DELAY);
583
584
case BT_STATE_RESET2: /* Send a soft reset */
585
BT_CONTROL(BT_CLR_WR_PTR);
586
HOST2BMC(3); /* number of bytes following */
587
HOST2BMC(0x18); /* NetFn/LUN == Application, LUN 0 */
588
HOST2BMC(42); /* Sequence number */
589
HOST2BMC(3); /* Cmd == Soft reset */
590
BT_CONTROL(BT_H2B_ATN);
591
bt->timeout = BT_RESET_DELAY * USEC_PER_SEC;
592
BT_STATE_CHANGE(BT_STATE_RESET3,
593
SI_SM_CALL_WITH_DELAY);
594
595
case BT_STATE_RESET3: /* Hold off everything for a bit */
596
if (bt->timeout > 0)
597
return SI_SM_CALL_WITH_DELAY;
598
drain_BMC2HOST(bt);
599
BT_STATE_CHANGE(BT_STATE_RESTART,
600
SI_SM_CALL_WITH_DELAY);
601
602
case BT_STATE_RESTART: /* don't reset retries or seq! */
603
bt->read_count = 0;
604
bt->nonzero_status = 0;
605
bt->timeout = bt->BT_CAP_req2rsp;
606
BT_STATE_CHANGE(BT_STATE_XACTION_START,
607
SI_SM_CALL_WITH_DELAY);
608
609
default: /* should never occur */
610
return error_recovery(bt,
611
status,
612
IPMI_ERR_UNSPECIFIED);
613
}
614
return SI_SM_CALL_WITH_DELAY;
615
}
616
617
static int bt_detect(struct si_sm_data *bt)
618
{
619
unsigned char GetBT_CAP[] = { 0x18, 0x36 };
620
unsigned char BT_CAP[8];
621
enum si_sm_result smi_result;
622
int rv;
623
624
/*
625
* It's impossible for the BT status and interrupt registers to be
626
* all 1's, (assuming a properly functioning, self-initialized BMC)
627
* but that's what you get from reading a bogus address, so we
628
* test that first. The calling routine uses negative logic.
629
*/
630
631
if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF))
632
return 1;
633
reset_flags(bt);
634
635
/*
636
* Try getting the BT capabilities here.
637
*/
638
rv = bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP));
639
if (rv) {
640
dev_warn(bt->io->dev,
641
"Can't start capabilities transaction: %d\n", rv);
642
goto out_no_bt_cap;
643
}
644
645
smi_result = SI_SM_CALL_WITHOUT_DELAY;
646
for (;;) {
647
if (smi_result == SI_SM_CALL_WITH_DELAY ||
648
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
649
schedule_timeout_uninterruptible(1);
650
smi_result = bt_event(bt, jiffies_to_usecs(1));
651
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
652
smi_result = bt_event(bt, 0);
653
} else
654
break;
655
}
656
657
rv = bt_get_result(bt, BT_CAP, sizeof(BT_CAP));
658
bt_init_data(bt, bt->io);
659
if (rv < 8) {
660
dev_warn(bt->io->dev, "bt cap response too short: %d\n", rv);
661
goto out_no_bt_cap;
662
}
663
664
if (BT_CAP[2]) {
665
dev_warn(bt->io->dev, "Error fetching bt cap: %x\n", BT_CAP[2]);
666
out_no_bt_cap:
667
dev_warn(bt->io->dev, "using default values\n");
668
} else {
669
bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC;
670
bt->BT_CAP_retries = BT_CAP[7];
671
}
672
673
dev_info(bt->io->dev, "req2rsp=%ld secs retries=%d\n",
674
bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries);
675
676
return 0;
677
}
678
679
static void bt_cleanup(struct si_sm_data *bt)
680
{
681
}
682
683
static int bt_size(void)
684
{
685
return sizeof(struct si_sm_data);
686
}
687
688
const struct si_sm_handlers bt_smi_handlers = {
689
.init_data = bt_init_data,
690
.start_transaction = bt_start_transaction,
691
.get_result = bt_get_result,
692
.event = bt_event,
693
.detect = bt_detect,
694
.cleanup = bt_cleanup,
695
.size = bt_size,
696
};
697
698