Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/ipmi/ipmi_kcs_sm.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* ipmi_kcs_sm.c
4
*
5
* State machine for handling IPMI KCS interfaces.
6
*
7
* Author: MontaVista Software, Inc.
8
* Corey Minyard <[email protected]>
9
* [email protected]
10
*
11
* Copyright 2002 MontaVista Software Inc.
12
*/
13
14
/*
15
* This state machine is taken from the state machine in the IPMI spec,
16
* pretty much verbatim. If you have questions about the states, see
17
* that document.
18
*/
19
20
#define DEBUG /* So dev_dbg() is always available. */
21
22
#include <linux/kernel.h> /* For printk. */
23
#include <linux/module.h>
24
#include <linux/moduleparam.h>
25
#include <linux/string.h>
26
#include <linux/jiffies.h>
27
#include <linux/ipmi_msgdefs.h> /* for completion codes */
28
#include "ipmi_si_sm.h"
29
30
/* kcs_debug is a bit-field
31
* KCS_DEBUG_ENABLE - turned on for now
32
* KCS_DEBUG_MSG - commands and their responses
33
* KCS_DEBUG_STATES - state machine
34
*/
35
#define KCS_DEBUG_STATES 4
36
#define KCS_DEBUG_MSG 2
37
#define KCS_DEBUG_ENABLE 1
38
39
static int kcs_debug;
40
module_param(kcs_debug, int, 0644);
41
MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
42
43
/* The states the KCS driver may be in. */
44
enum kcs_states {
45
/* The KCS interface is currently doing nothing. */
46
KCS_IDLE,
47
48
/*
49
* We are starting an operation. The data is in the output
50
* buffer, but nothing has been done to the interface yet. This
51
* was added to the state machine in the spec to wait for the
52
* initial IBF.
53
*/
54
KCS_START_OP,
55
56
/* We have written a write cmd to the interface. */
57
KCS_WAIT_WRITE_START,
58
59
/* We are writing bytes to the interface. */
60
KCS_WAIT_WRITE,
61
62
/*
63
* We have written the write end cmd to the interface, and
64
* still need to write the last byte.
65
*/
66
KCS_WAIT_WRITE_END,
67
68
/* We are waiting to read data from the interface. */
69
KCS_WAIT_READ,
70
71
/*
72
* State to transition to the error handler, this was added to
73
* the state machine in the spec to be sure IBF was there.
74
*/
75
KCS_ERROR0,
76
77
/*
78
* First stage error handler, wait for the interface to
79
* respond.
80
*/
81
KCS_ERROR1,
82
83
/*
84
* The abort cmd has been written, wait for the interface to
85
* respond.
86
*/
87
KCS_ERROR2,
88
89
/*
90
* We wrote some data to the interface, wait for it to switch
91
* to read mode.
92
*/
93
KCS_ERROR3,
94
95
/* The hardware failed to follow the state machine. */
96
KCS_HOSED
97
};
98
99
#define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
100
#define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
101
102
/* Timeouts in microseconds. */
103
#define IBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
104
#define OBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
105
#define MAX_ERROR_RETRIES 10
106
#define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
107
108
struct si_sm_data {
109
enum kcs_states state;
110
struct si_sm_io *io;
111
unsigned char write_data[MAX_KCS_WRITE_SIZE];
112
int write_pos;
113
int write_count;
114
int orig_write_count;
115
unsigned char read_data[MAX_KCS_READ_SIZE];
116
int read_pos;
117
int truncated;
118
119
unsigned int error_retries;
120
long ibf_timeout;
121
long obf_timeout;
122
unsigned long error0_timeout;
123
};
124
125
static unsigned int init_kcs_data_with_state(struct si_sm_data *kcs,
126
struct si_sm_io *io, enum kcs_states state)
127
{
128
kcs->state = state;
129
kcs->io = io;
130
kcs->write_pos = 0;
131
kcs->write_count = 0;
132
kcs->orig_write_count = 0;
133
kcs->read_pos = 0;
134
kcs->error_retries = 0;
135
kcs->truncated = 0;
136
kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
137
kcs->obf_timeout = OBF_RETRY_TIMEOUT;
138
139
/* Reserve 2 I/O bytes. */
140
return 2;
141
}
142
143
static unsigned int init_kcs_data(struct si_sm_data *kcs,
144
struct si_sm_io *io)
145
{
146
return init_kcs_data_with_state(kcs, io, KCS_IDLE);
147
}
148
149
static inline unsigned char read_status(struct si_sm_data *kcs)
150
{
151
return kcs->io->inputb(kcs->io, 1);
152
}
153
154
static inline unsigned char read_data(struct si_sm_data *kcs)
155
{
156
return kcs->io->inputb(kcs->io, 0);
157
}
158
159
static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
160
{
161
kcs->io->outputb(kcs->io, 1, data);
162
}
163
164
static inline void write_data(struct si_sm_data *kcs, unsigned char data)
165
{
166
kcs->io->outputb(kcs->io, 0, data);
167
}
168
169
/* Control codes. */
170
#define KCS_GET_STATUS_ABORT 0x60
171
#define KCS_WRITE_START 0x61
172
#define KCS_WRITE_END 0x62
173
#define KCS_READ_BYTE 0x68
174
175
/* Status bits. */
176
#define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
177
#define KCS_IDLE_STATE 0
178
#define KCS_READ_STATE 1
179
#define KCS_WRITE_STATE 2
180
#define KCS_ERROR_STATE 3
181
#define GET_STATUS_ATN(status) ((status) & 0x04)
182
#define GET_STATUS_IBF(status) ((status) & 0x02)
183
#define GET_STATUS_OBF(status) ((status) & 0x01)
184
185
186
static inline void write_next_byte(struct si_sm_data *kcs)
187
{
188
write_data(kcs, kcs->write_data[kcs->write_pos]);
189
(kcs->write_pos)++;
190
(kcs->write_count)--;
191
}
192
193
static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
194
{
195
(kcs->error_retries)++;
196
if (kcs->error_retries > MAX_ERROR_RETRIES) {
197
if (kcs_debug & KCS_DEBUG_ENABLE)
198
dev_dbg(kcs->io->dev, "ipmi_kcs_sm: kcs hosed: %s\n",
199
reason);
200
kcs->state = KCS_HOSED;
201
} else {
202
kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
203
kcs->state = KCS_ERROR0;
204
}
205
}
206
207
static inline void read_next_byte(struct si_sm_data *kcs)
208
{
209
if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
210
/* Throw the data away and mark it truncated. */
211
read_data(kcs);
212
kcs->truncated = 1;
213
} else {
214
kcs->read_data[kcs->read_pos] = read_data(kcs);
215
(kcs->read_pos)++;
216
}
217
write_data(kcs, KCS_READ_BYTE);
218
}
219
220
static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
221
long time)
222
{
223
if (GET_STATUS_IBF(status)) {
224
kcs->ibf_timeout -= time;
225
if (kcs->ibf_timeout < 0) {
226
start_error_recovery(kcs, "IBF not ready in time");
227
kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
228
return 1;
229
}
230
return 0;
231
}
232
kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
233
return 1;
234
}
235
236
static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
237
long time)
238
{
239
if (!GET_STATUS_OBF(status)) {
240
kcs->obf_timeout -= time;
241
if (kcs->obf_timeout < 0) {
242
kcs->obf_timeout = OBF_RETRY_TIMEOUT;
243
start_error_recovery(kcs, "OBF not ready in time");
244
return 1;
245
}
246
return 0;
247
}
248
kcs->obf_timeout = OBF_RETRY_TIMEOUT;
249
return 1;
250
}
251
252
static void clear_obf(struct si_sm_data *kcs, unsigned char status)
253
{
254
if (GET_STATUS_OBF(status))
255
read_data(kcs);
256
}
257
258
static void restart_kcs_transaction(struct si_sm_data *kcs)
259
{
260
kcs->write_count = kcs->orig_write_count;
261
kcs->write_pos = 0;
262
kcs->read_pos = 0;
263
kcs->state = KCS_WAIT_WRITE_START;
264
kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
265
kcs->obf_timeout = OBF_RETRY_TIMEOUT;
266
write_cmd(kcs, KCS_WRITE_START);
267
}
268
269
static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
270
unsigned int size)
271
{
272
unsigned int i;
273
274
if (size < 2)
275
return IPMI_REQ_LEN_INVALID_ERR;
276
if (size > MAX_KCS_WRITE_SIZE)
277
return IPMI_REQ_LEN_EXCEEDED_ERR;
278
279
if (kcs->state != KCS_IDLE) {
280
dev_warn(kcs->io->dev, "KCS in invalid state %d\n", kcs->state);
281
return IPMI_NOT_IN_MY_STATE_ERR;
282
}
283
284
if (kcs_debug & KCS_DEBUG_MSG) {
285
dev_dbg(kcs->io->dev, "%s -", __func__);
286
for (i = 0; i < size; i++)
287
pr_cont(" %02x", data[i]);
288
pr_cont("\n");
289
}
290
kcs->error_retries = 0;
291
memcpy(kcs->write_data, data, size);
292
kcs->write_count = size;
293
kcs->orig_write_count = size;
294
kcs->write_pos = 0;
295
kcs->read_pos = 0;
296
kcs->state = KCS_START_OP;
297
kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
298
kcs->obf_timeout = OBF_RETRY_TIMEOUT;
299
return 0;
300
}
301
302
static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
303
unsigned int length)
304
{
305
if (length < kcs->read_pos) {
306
kcs->read_pos = length;
307
kcs->truncated = 1;
308
}
309
310
memcpy(data, kcs->read_data, kcs->read_pos);
311
312
if ((length >= 3) && (kcs->read_pos < 3)) {
313
/* Guarantee that we return at least 3 bytes, with an
314
error in the third byte if it is too short. */
315
data[2] = IPMI_ERR_UNSPECIFIED;
316
kcs->read_pos = 3;
317
}
318
if (kcs->truncated) {
319
/*
320
* Report a truncated error. We might overwrite
321
* another error, but that's too bad, the user needs
322
* to know it was truncated.
323
*/
324
data[2] = IPMI_ERR_MSG_TRUNCATED;
325
kcs->truncated = 0;
326
}
327
328
return kcs->read_pos;
329
}
330
331
/*
332
* This implements the state machine defined in the IPMI manual, see
333
* that for details on how this works. Divide that flowchart into
334
* sections delimited by "Wait for IBF" and this will become clear.
335
*/
336
static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
337
{
338
unsigned char status;
339
unsigned char state;
340
341
status = read_status(kcs);
342
343
if (kcs_debug & KCS_DEBUG_STATES)
344
dev_dbg(kcs->io->dev,
345
"KCS: State = %d, %x\n", kcs->state, status);
346
347
/* All states wait for ibf, so just do it here. */
348
if (!check_ibf(kcs, status, time))
349
return SI_SM_CALL_WITH_DELAY;
350
351
/* Just about everything looks at the KCS state, so grab that, too. */
352
state = GET_STATUS_STATE(status);
353
354
switch (kcs->state) {
355
case KCS_IDLE:
356
/* If there's and interrupt source, turn it off. */
357
clear_obf(kcs, status);
358
359
if (GET_STATUS_ATN(status))
360
return SI_SM_ATTN;
361
else
362
return SI_SM_IDLE;
363
364
case KCS_START_OP:
365
if (state != KCS_IDLE_STATE) {
366
start_error_recovery(kcs,
367
"State machine not idle at start");
368
break;
369
}
370
371
clear_obf(kcs, status);
372
write_cmd(kcs, KCS_WRITE_START);
373
kcs->state = KCS_WAIT_WRITE_START;
374
break;
375
376
case KCS_WAIT_WRITE_START:
377
if (state != KCS_WRITE_STATE) {
378
start_error_recovery(
379
kcs,
380
"Not in write state at write start");
381
break;
382
}
383
read_data(kcs);
384
if (kcs->write_count == 1) {
385
write_cmd(kcs, KCS_WRITE_END);
386
kcs->state = KCS_WAIT_WRITE_END;
387
} else {
388
write_next_byte(kcs);
389
kcs->state = KCS_WAIT_WRITE;
390
}
391
break;
392
393
case KCS_WAIT_WRITE:
394
if (state != KCS_WRITE_STATE) {
395
start_error_recovery(kcs,
396
"Not in write state for write");
397
break;
398
}
399
clear_obf(kcs, status);
400
if (kcs->write_count == 1) {
401
write_cmd(kcs, KCS_WRITE_END);
402
kcs->state = KCS_WAIT_WRITE_END;
403
} else {
404
write_next_byte(kcs);
405
}
406
break;
407
408
case KCS_WAIT_WRITE_END:
409
if (state != KCS_WRITE_STATE) {
410
start_error_recovery(kcs,
411
"Not in write state"
412
" for write end");
413
break;
414
}
415
clear_obf(kcs, status);
416
write_next_byte(kcs);
417
kcs->state = KCS_WAIT_READ;
418
break;
419
420
case KCS_WAIT_READ:
421
if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
422
start_error_recovery(
423
kcs,
424
"Not in read or idle in read state");
425
break;
426
}
427
428
if (state == KCS_READ_STATE) {
429
if (!check_obf(kcs, status, time))
430
return SI_SM_CALL_WITH_DELAY;
431
read_next_byte(kcs);
432
} else {
433
/*
434
* We don't implement this exactly like the state
435
* machine in the spec. Some broken hardware
436
* does not write the final dummy byte to the
437
* read register. Thus obf will never go high
438
* here. We just go straight to idle, and we
439
* handle clearing out obf in idle state if it
440
* happens to come in.
441
*/
442
clear_obf(kcs, status);
443
kcs->orig_write_count = 0;
444
kcs->state = KCS_IDLE;
445
return SI_SM_TRANSACTION_COMPLETE;
446
}
447
break;
448
449
case KCS_ERROR0:
450
clear_obf(kcs, status);
451
status = read_status(kcs);
452
if (GET_STATUS_OBF(status))
453
/* controller isn't responding */
454
if (time_before(jiffies, kcs->error0_timeout))
455
return SI_SM_CALL_WITH_TICK_DELAY;
456
write_cmd(kcs, KCS_GET_STATUS_ABORT);
457
kcs->state = KCS_ERROR1;
458
break;
459
460
case KCS_ERROR1:
461
clear_obf(kcs, status);
462
write_data(kcs, 0);
463
kcs->state = KCS_ERROR2;
464
break;
465
466
case KCS_ERROR2:
467
if (state != KCS_READ_STATE) {
468
start_error_recovery(kcs,
469
"Not in read state for error2");
470
break;
471
}
472
if (!check_obf(kcs, status, time))
473
return SI_SM_CALL_WITH_DELAY;
474
475
clear_obf(kcs, status);
476
write_data(kcs, KCS_READ_BYTE);
477
kcs->state = KCS_ERROR3;
478
break;
479
480
case KCS_ERROR3:
481
if (state != KCS_IDLE_STATE) {
482
start_error_recovery(kcs,
483
"Not in idle state for error3");
484
break;
485
}
486
487
if (!check_obf(kcs, status, time))
488
return SI_SM_CALL_WITH_DELAY;
489
490
clear_obf(kcs, status);
491
if (kcs->orig_write_count) {
492
restart_kcs_transaction(kcs);
493
} else {
494
kcs->state = KCS_IDLE;
495
return SI_SM_TRANSACTION_COMPLETE;
496
}
497
break;
498
499
case KCS_HOSED:
500
break;
501
}
502
503
if (kcs->state == KCS_HOSED) {
504
init_kcs_data_with_state(kcs, kcs->io, KCS_ERROR0);
505
return SI_SM_HOSED;
506
}
507
508
return SI_SM_CALL_WITHOUT_DELAY;
509
}
510
511
static int kcs_size(void)
512
{
513
return sizeof(struct si_sm_data);
514
}
515
516
static int kcs_detect(struct si_sm_data *kcs)
517
{
518
/*
519
* It's impossible for the KCS status register to be all 1's,
520
* (assuming a properly functioning, self-initialized BMC)
521
* but that's what you get from reading a bogus address, so we
522
* test that first.
523
*/
524
if (read_status(kcs) == 0xff)
525
return 1;
526
527
return 0;
528
}
529
530
static void kcs_cleanup(struct si_sm_data *kcs)
531
{
532
}
533
534
const struct si_sm_handlers kcs_smi_handlers = {
535
.init_data = init_kcs_data,
536
.start_transaction = start_kcs_transaction,
537
.get_result = get_kcs_result,
538
.event = kcs_event,
539
.detect = kcs_detect,
540
.cleanup = kcs_cleanup,
541
.size = kcs_size,
542
};
543
544