Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/random.c
26278 views
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2
/*
3
* Copyright (C) 2017-2024 Jason A. Donenfeld <[email protected]>. All Rights Reserved.
4
* Copyright Matt Mackall <[email protected]>, 2003, 2004, 2005
5
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6
*
7
* This driver produces cryptographically secure pseudorandom data. It is divided
8
* into roughly six sections, each with a section header:
9
*
10
* - Initialization and readiness waiting.
11
* - Fast key erasure RNG, the "crng".
12
* - Entropy accumulation and extraction routines.
13
* - Entropy collection routines.
14
* - Userspace reader/writer interfaces.
15
* - Sysctl interface.
16
*
17
* The high level overview is that there is one input pool, into which
18
* various pieces of data are hashed. Prior to initialization, some of that
19
* data is then "credited" as having a certain number of bits of entropy.
20
* When enough bits of entropy are available, the hash is finalized and
21
* handed as a key to a stream cipher that expands it indefinitely for
22
* various consumers. This key is periodically refreshed as the various
23
* entropy collectors, described below, add data to the input pool.
24
*/
25
26
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28
#include <linux/utsname.h>
29
#include <linux/module.h>
30
#include <linux/kernel.h>
31
#include <linux/major.h>
32
#include <linux/string.h>
33
#include <linux/fcntl.h>
34
#include <linux/slab.h>
35
#include <linux/random.h>
36
#include <linux/poll.h>
37
#include <linux/init.h>
38
#include <linux/fs.h>
39
#include <linux/blkdev.h>
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50
#include <linux/syscalls.h>
51
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <linux/sched/isolation.h>
57
#include <crypto/chacha.h>
58
#include <crypto/blake2s.h>
59
#ifdef CONFIG_VDSO_GETRANDOM
60
#include <vdso/getrandom.h>
61
#include <vdso/datapage.h>
62
#include <vdso/vsyscall.h>
63
#endif
64
#include <asm/archrandom.h>
65
#include <asm/processor.h>
66
#include <asm/irq.h>
67
#include <asm/irq_regs.h>
68
#include <asm/io.h>
69
70
/*********************************************************************
71
*
72
* Initialization and readiness waiting.
73
*
74
* Much of the RNG infrastructure is devoted to various dependencies
75
* being able to wait until the RNG has collected enough entropy and
76
* is ready for safe consumption.
77
*
78
*********************************************************************/
79
80
/*
81
* crng_init is protected by base_crng->lock, and only increases
82
* its value (from empty->early->ready).
83
*/
84
static enum {
85
CRNG_EMPTY = 0, /* Little to no entropy collected */
86
CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
87
CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
88
} crng_init __read_mostly = CRNG_EMPTY;
89
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
90
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91
/* Various types of waiters for crng_init->CRNG_READY transition. */
92
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
93
static struct fasync_struct *fasync;
94
static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
95
96
/* Control how we warn userspace. */
97
static struct ratelimit_state urandom_warning =
98
RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
99
static int ratelimit_disable __read_mostly =
100
IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
101
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
102
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
103
104
/*
105
* Returns whether or not the input pool has been seeded and thus guaranteed
106
* to supply cryptographically secure random numbers. This applies to: the
107
* /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108
* u16,u32,u64,long} family of functions.
109
*
110
* Returns: true if the input pool has been seeded.
111
* false if the input pool has not been seeded.
112
*/
113
bool rng_is_initialized(void)
114
{
115
return crng_ready();
116
}
117
EXPORT_SYMBOL(rng_is_initialized);
118
119
static void __cold crng_set_ready(struct work_struct *work)
120
{
121
static_branch_enable(&crng_is_ready);
122
}
123
124
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125
static void try_to_generate_entropy(void);
126
127
/*
128
* Wait for the input pool to be seeded and thus guaranteed to supply
129
* cryptographically secure random numbers. This applies to: the /dev/urandom
130
* device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131
* long} family of functions. Using any of these functions without first
132
* calling this function forfeits the guarantee of security.
133
*
134
* Returns: 0 if the input pool has been seeded.
135
* -ERESTARTSYS if the function was interrupted by a signal.
136
*/
137
int wait_for_random_bytes(void)
138
{
139
while (!crng_ready()) {
140
int ret;
141
142
try_to_generate_entropy();
143
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
144
if (ret)
145
return ret > 0 ? 0 : ret;
146
}
147
return 0;
148
}
149
EXPORT_SYMBOL(wait_for_random_bytes);
150
151
/*
152
* Add a callback function that will be invoked when the crng is initialised,
153
* or immediately if it already has been. Only use this is you are absolutely
154
* sure it is required. Most users should instead be able to test
155
* `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
156
*/
157
int __cold execute_with_initialized_rng(struct notifier_block *nb)
158
{
159
unsigned long flags;
160
int ret = 0;
161
162
spin_lock_irqsave(&random_ready_notifier.lock, flags);
163
if (crng_ready())
164
nb->notifier_call(nb, 0, NULL);
165
else
166
ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
167
spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
168
return ret;
169
}
170
171
#define warn_unseeded_randomness() \
172
if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174
__func__, (void *)_RET_IP_, crng_init)
175
176
177
/*********************************************************************
178
*
179
* Fast key erasure RNG, the "crng".
180
*
181
* These functions expand entropy from the entropy extractor into
182
* long streams for external consumption using the "fast key erasure"
183
* RNG described at <https://blog.cr.yp.to/20170723-random.html>.
184
*
185
* There are a few exported interfaces for use by other drivers:
186
*
187
* void get_random_bytes(void *buf, size_t len)
188
* u8 get_random_u8()
189
* u16 get_random_u16()
190
* u32 get_random_u32()
191
* u32 get_random_u32_below(u32 ceil)
192
* u32 get_random_u32_above(u32 floor)
193
* u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194
* u64 get_random_u64()
195
* unsigned long get_random_long()
196
*
197
* These interfaces will return the requested number of random bytes
198
* into the given buffer or as a return value. This is equivalent to
199
* a read from /dev/urandom. The u8, u16, u32, u64, long family of
200
* functions may be higher performance for one-off random integers,
201
* because they do a bit of buffering and do not invoke reseeding
202
* until the buffer is emptied.
203
*
204
*********************************************************************/
205
206
enum {
207
CRNG_RESEED_START_INTERVAL = HZ,
208
CRNG_RESEED_INTERVAL = 60 * HZ
209
};
210
211
static struct {
212
u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
213
unsigned long generation;
214
spinlock_t lock;
215
} base_crng = {
216
.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
217
};
218
219
struct crng {
220
u8 key[CHACHA_KEY_SIZE];
221
unsigned long generation;
222
local_lock_t lock;
223
};
224
225
static DEFINE_PER_CPU(struct crng, crngs) = {
226
.generation = ULONG_MAX,
227
.lock = INIT_LOCAL_LOCK(crngs.lock),
228
};
229
230
/*
231
* Return the interval until the next reseeding, which is normally
232
* CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233
* proportional to the uptime.
234
*/
235
static unsigned int crng_reseed_interval(void)
236
{
237
static bool early_boot = true;
238
239
if (unlikely(READ_ONCE(early_boot))) {
240
time64_t uptime = ktime_get_seconds();
241
if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
242
WRITE_ONCE(early_boot, false);
243
else
244
return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
245
(unsigned int)uptime / 2 * HZ);
246
}
247
return CRNG_RESEED_INTERVAL;
248
}
249
250
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251
static void extract_entropy(void *buf, size_t len);
252
253
/* This extracts a new crng key from the input pool. */
254
static void crng_reseed(struct work_struct *work)
255
{
256
static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
257
unsigned long flags;
258
unsigned long next_gen;
259
u8 key[CHACHA_KEY_SIZE];
260
261
/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262
if (likely(system_unbound_wq))
263
queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
264
265
extract_entropy(key, sizeof(key));
266
267
/*
268
* We copy the new key into the base_crng, overwriting the old one,
269
* and update the generation counter. We avoid hitting ULONG_MAX,
270
* because the per-cpu crngs are initialized to ULONG_MAX, so this
271
* forces new CPUs that come online to always initialize.
272
*/
273
spin_lock_irqsave(&base_crng.lock, flags);
274
memcpy(base_crng.key, key, sizeof(base_crng.key));
275
next_gen = base_crng.generation + 1;
276
if (next_gen == ULONG_MAX)
277
++next_gen;
278
WRITE_ONCE(base_crng.generation, next_gen);
279
#ifdef CONFIG_VDSO_GETRANDOM
280
/* base_crng.generation's invalid value is ULONG_MAX, while
281
* vdso_k_rng_data->generation's invalid value is 0, so add one to the
282
* former to arrive at the latter. Use smp_store_release so that this
283
* is ordered with the write above to base_crng.generation. Pairs with
284
* the smp_rmb() before the syscall in the vDSO code.
285
*
286
* Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287
* operations are not supported on those architectures. This is safe
288
* because base_crng.generation is a 32-bit value. On big-endian
289
* architectures it will be stored in the upper 32 bits, but that's okay
290
* because the vDSO side only checks whether the value changed, without
291
* actually using or interpreting the value.
292
*/
293
smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1);
294
#endif
295
if (!static_branch_likely(&crng_is_ready))
296
crng_init = CRNG_READY;
297
spin_unlock_irqrestore(&base_crng.lock, flags);
298
memzero_explicit(key, sizeof(key));
299
}
300
301
/*
302
* This generates a ChaCha block using the provided key, and then
303
* immediately overwrites that key with half the block. It returns
304
* the resultant ChaCha state to the user, along with the second
305
* half of the block containing 32 bytes of random data that may
306
* be used; random_data_len may not be greater than 32.
307
*
308
* The returned ChaCha state contains within it a copy of the old
309
* key value, at index 4, so the state should always be zeroed out
310
* immediately after using in order to maintain forward secrecy.
311
* If the state cannot be erased in a timely manner, then it is
312
* safer to set the random_data parameter to &chacha_state->x[4]
313
* so that this function overwrites it before returning.
314
*/
315
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
316
struct chacha_state *chacha_state,
317
u8 *random_data, size_t random_data_len)
318
{
319
u8 first_block[CHACHA_BLOCK_SIZE];
320
321
BUG_ON(random_data_len > 32);
322
323
chacha_init_consts(chacha_state);
324
memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE);
325
memset(&chacha_state->x[12], 0, sizeof(u32) * 4);
326
chacha20_block(chacha_state, first_block);
327
328
memcpy(key, first_block, CHACHA_KEY_SIZE);
329
memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
330
memzero_explicit(first_block, sizeof(first_block));
331
}
332
333
/*
334
* This function returns a ChaCha state that you may use for generating
335
* random data. It also returns up to 32 bytes on its own of random data
336
* that may be used; random_data_len may not be greater than 32.
337
*/
338
static void crng_make_state(struct chacha_state *chacha_state,
339
u8 *random_data, size_t random_data_len)
340
{
341
unsigned long flags;
342
struct crng *crng;
343
344
BUG_ON(random_data_len > 32);
345
346
/*
347
* For the fast path, we check whether we're ready, unlocked first, and
348
* then re-check once locked later. In the case where we're really not
349
* ready, we do fast key erasure with the base_crng directly, extracting
350
* when crng_init is CRNG_EMPTY.
351
*/
352
if (!crng_ready()) {
353
bool ready;
354
355
spin_lock_irqsave(&base_crng.lock, flags);
356
ready = crng_ready();
357
if (!ready) {
358
if (crng_init == CRNG_EMPTY)
359
extract_entropy(base_crng.key, sizeof(base_crng.key));
360
crng_fast_key_erasure(base_crng.key, chacha_state,
361
random_data, random_data_len);
362
}
363
spin_unlock_irqrestore(&base_crng.lock, flags);
364
if (!ready)
365
return;
366
}
367
368
local_lock_irqsave(&crngs.lock, flags);
369
crng = raw_cpu_ptr(&crngs);
370
371
/*
372
* If our per-cpu crng is older than the base_crng, then it means
373
* somebody reseeded the base_crng. In that case, we do fast key
374
* erasure on the base_crng, and use its output as the new key
375
* for our per-cpu crng. This brings us up to date with base_crng.
376
*/
377
if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
378
spin_lock(&base_crng.lock);
379
crng_fast_key_erasure(base_crng.key, chacha_state,
380
crng->key, sizeof(crng->key));
381
crng->generation = base_crng.generation;
382
spin_unlock(&base_crng.lock);
383
}
384
385
/*
386
* Finally, when we've made it this far, our per-cpu crng has an up
387
* to date key, and we can do fast key erasure with it to produce
388
* some random data and a ChaCha state for the caller. All other
389
* branches of this function are "unlikely", so most of the time we
390
* should wind up here immediately.
391
*/
392
crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
393
local_unlock_irqrestore(&crngs.lock, flags);
394
}
395
396
static void _get_random_bytes(void *buf, size_t len)
397
{
398
struct chacha_state chacha_state;
399
u8 tmp[CHACHA_BLOCK_SIZE];
400
size_t first_block_len;
401
402
if (!len)
403
return;
404
405
first_block_len = min_t(size_t, 32, len);
406
crng_make_state(&chacha_state, buf, first_block_len);
407
len -= first_block_len;
408
buf += first_block_len;
409
410
while (len) {
411
if (len < CHACHA_BLOCK_SIZE) {
412
chacha20_block(&chacha_state, tmp);
413
memcpy(buf, tmp, len);
414
memzero_explicit(tmp, sizeof(tmp));
415
break;
416
}
417
418
chacha20_block(&chacha_state, buf);
419
if (unlikely(chacha_state.x[12] == 0))
420
++chacha_state.x[13];
421
len -= CHACHA_BLOCK_SIZE;
422
buf += CHACHA_BLOCK_SIZE;
423
}
424
425
chacha_zeroize_state(&chacha_state);
426
}
427
428
/*
429
* This returns random bytes in arbitrary quantities. The quality of the
430
* random bytes is good as /dev/urandom. In order to ensure that the
431
* randomness provided by this function is okay, the function
432
* wait_for_random_bytes() should be called and return 0 at least once
433
* at any point prior.
434
*/
435
void get_random_bytes(void *buf, size_t len)
436
{
437
warn_unseeded_randomness();
438
_get_random_bytes(buf, len);
439
}
440
EXPORT_SYMBOL(get_random_bytes);
441
442
static ssize_t get_random_bytes_user(struct iov_iter *iter)
443
{
444
struct chacha_state chacha_state;
445
u8 block[CHACHA_BLOCK_SIZE];
446
size_t ret = 0, copied;
447
448
if (unlikely(!iov_iter_count(iter)))
449
return 0;
450
451
/*
452
* Immediately overwrite the ChaCha key at index 4 with random
453
* bytes, in case userspace causes copy_to_iter() below to sleep
454
* forever, so that we still retain forward secrecy in that case.
455
*/
456
crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4],
457
CHACHA_KEY_SIZE);
458
/*
459
* However, if we're doing a read of len <= 32, we don't need to
460
* use chacha_state after, so we can simply return those bytes to
461
* the user directly.
462
*/
463
if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
464
ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter);
465
goto out_zero_chacha;
466
}
467
468
for (;;) {
469
chacha20_block(&chacha_state, block);
470
if (unlikely(chacha_state.x[12] == 0))
471
++chacha_state.x[13];
472
473
copied = copy_to_iter(block, sizeof(block), iter);
474
ret += copied;
475
if (!iov_iter_count(iter) || copied != sizeof(block))
476
break;
477
478
BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
479
if (ret % PAGE_SIZE == 0) {
480
if (signal_pending(current))
481
break;
482
cond_resched();
483
}
484
}
485
486
memzero_explicit(block, sizeof(block));
487
out_zero_chacha:
488
chacha_zeroize_state(&chacha_state);
489
return ret ? ret : -EFAULT;
490
}
491
492
/*
493
* Batched entropy returns random integers. The quality of the random
494
* number is good as /dev/urandom. In order to ensure that the randomness
495
* provided by this function is okay, the function wait_for_random_bytes()
496
* should be called and return 0 at least once at any point prior.
497
*/
498
499
#define DEFINE_BATCHED_ENTROPY(type) \
500
struct batch_ ##type { \
501
/* \
502
* We make this 1.5x a ChaCha block, so that we get the \
503
* remaining 32 bytes from fast key erasure, plus one full \
504
* block from the detached ChaCha state. We can increase \
505
* the size of this later if needed so long as we keep the \
506
* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
507
*/ \
508
type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
509
local_lock_t lock; \
510
unsigned long generation; \
511
unsigned int position; \
512
}; \
513
\
514
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
515
.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
516
.position = UINT_MAX \
517
}; \
518
\
519
type get_random_ ##type(void) \
520
{ \
521
type ret; \
522
unsigned long flags; \
523
struct batch_ ##type *batch; \
524
unsigned long next_gen; \
525
\
526
warn_unseeded_randomness(); \
527
\
528
if (!crng_ready()) { \
529
_get_random_bytes(&ret, sizeof(ret)); \
530
return ret; \
531
} \
532
\
533
local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
534
batch = raw_cpu_ptr(&batched_entropy_##type); \
535
\
536
next_gen = READ_ONCE(base_crng.generation); \
537
if (batch->position >= ARRAY_SIZE(batch->entropy) || \
538
next_gen != batch->generation) { \
539
_get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
540
batch->position = 0; \
541
batch->generation = next_gen; \
542
} \
543
\
544
ret = batch->entropy[batch->position]; \
545
batch->entropy[batch->position] = 0; \
546
++batch->position; \
547
local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
548
return ret; \
549
} \
550
EXPORT_SYMBOL(get_random_ ##type);
551
552
DEFINE_BATCHED_ENTROPY(u8)
553
DEFINE_BATCHED_ENTROPY(u16)
554
DEFINE_BATCHED_ENTROPY(u32)
555
DEFINE_BATCHED_ENTROPY(u64)
556
557
u32 __get_random_u32_below(u32 ceil)
558
{
559
/*
560
* This is the slow path for variable ceil. It is still fast, most of
561
* the time, by doing traditional reciprocal multiplication and
562
* opportunistically comparing the lower half to ceil itself, before
563
* falling back to computing a larger bound, and then rejecting samples
564
* whose lower half would indicate a range indivisible by ceil. The use
565
* of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
566
* in 32-bits.
567
*/
568
u32 rand = get_random_u32();
569
u64 mult;
570
571
/*
572
* This function is technically undefined for ceil == 0, and in fact
573
* for the non-underscored constant version in the header, we build bug
574
* on that. But for the non-constant case, it's convenient to have that
575
* evaluate to being a straight call to get_random_u32(), so that
576
* get_random_u32_inclusive() can work over its whole range without
577
* undefined behavior.
578
*/
579
if (unlikely(!ceil))
580
return rand;
581
582
mult = (u64)ceil * rand;
583
if (unlikely((u32)mult < ceil)) {
584
u32 bound = -ceil % ceil;
585
while (unlikely((u32)mult < bound))
586
mult = (u64)ceil * get_random_u32();
587
}
588
return mult >> 32;
589
}
590
EXPORT_SYMBOL(__get_random_u32_below);
591
592
#ifdef CONFIG_SMP
593
/*
594
* This function is called when the CPU is coming up, with entry
595
* CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
596
*/
597
int __cold random_prepare_cpu(unsigned int cpu)
598
{
599
/*
600
* When the cpu comes back online, immediately invalidate both
601
* the per-cpu crng and all batches, so that we serve fresh
602
* randomness.
603
*/
604
per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
605
per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
606
per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
607
per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
608
per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
609
return 0;
610
}
611
#endif
612
613
614
/**********************************************************************
615
*
616
* Entropy accumulation and extraction routines.
617
*
618
* Callers may add entropy via:
619
*
620
* static void mix_pool_bytes(const void *buf, size_t len)
621
*
622
* After which, if added entropy should be credited:
623
*
624
* static void credit_init_bits(size_t bits)
625
*
626
* Finally, extract entropy via:
627
*
628
* static void extract_entropy(void *buf, size_t len)
629
*
630
**********************************************************************/
631
632
enum {
633
POOL_BITS = BLAKE2S_HASH_SIZE * 8,
634
POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
635
POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
636
};
637
638
static struct {
639
struct blake2s_state hash;
640
spinlock_t lock;
641
unsigned int init_bits;
642
} input_pool = {
643
.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
644
BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
645
BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
646
.hash.outlen = BLAKE2S_HASH_SIZE,
647
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
648
};
649
650
static void _mix_pool_bytes(const void *buf, size_t len)
651
{
652
blake2s_update(&input_pool.hash, buf, len);
653
}
654
655
/*
656
* This function adds bytes into the input pool. It does not
657
* update the initialization bit counter; the caller should call
658
* credit_init_bits if this is appropriate.
659
*/
660
static void mix_pool_bytes(const void *buf, size_t len)
661
{
662
unsigned long flags;
663
664
spin_lock_irqsave(&input_pool.lock, flags);
665
_mix_pool_bytes(buf, len);
666
spin_unlock_irqrestore(&input_pool.lock, flags);
667
}
668
669
/*
670
* This is an HKDF-like construction for using the hashed collected entropy
671
* as a PRF key, that's then expanded block-by-block.
672
*/
673
static void extract_entropy(void *buf, size_t len)
674
{
675
unsigned long flags;
676
u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
677
struct {
678
unsigned long rdseed[32 / sizeof(long)];
679
size_t counter;
680
} block;
681
size_t i, longs;
682
683
for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
684
longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
685
if (longs) {
686
i += longs;
687
continue;
688
}
689
longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
690
if (longs) {
691
i += longs;
692
continue;
693
}
694
block.rdseed[i++] = random_get_entropy();
695
}
696
697
spin_lock_irqsave(&input_pool.lock, flags);
698
699
/* seed = HASHPRF(last_key, entropy_input) */
700
blake2s_final(&input_pool.hash, seed);
701
702
/* next_key = HASHPRF(seed, RDSEED || 0) */
703
block.counter = 0;
704
blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
705
blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
706
707
spin_unlock_irqrestore(&input_pool.lock, flags);
708
memzero_explicit(next_key, sizeof(next_key));
709
710
while (len) {
711
i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
712
/* output = HASHPRF(seed, RDSEED || ++counter) */
713
++block.counter;
714
blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
715
len -= i;
716
buf += i;
717
}
718
719
memzero_explicit(seed, sizeof(seed));
720
memzero_explicit(&block, sizeof(block));
721
}
722
723
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
724
725
static void __cold _credit_init_bits(size_t bits)
726
{
727
static DECLARE_WORK(set_ready, crng_set_ready);
728
unsigned int new, orig, add;
729
unsigned long flags;
730
int m;
731
732
if (!bits)
733
return;
734
735
add = min_t(size_t, bits, POOL_BITS);
736
737
orig = READ_ONCE(input_pool.init_bits);
738
do {
739
new = min_t(unsigned int, POOL_BITS, orig + add);
740
} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
741
742
if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
743
crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
744
if (static_key_initialized && system_unbound_wq)
745
queue_work(system_unbound_wq, &set_ready);
746
atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
747
#ifdef CONFIG_VDSO_GETRANDOM
748
WRITE_ONCE(vdso_k_rng_data->is_ready, true);
749
#endif
750
wake_up_interruptible(&crng_init_wait);
751
kill_fasync(&fasync, SIGIO, POLL_IN);
752
pr_notice("crng init done\n");
753
m = ratelimit_state_get_miss(&urandom_warning);
754
if (m)
755
pr_notice("%d urandom warning(s) missed due to ratelimiting\n", m);
756
} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
757
spin_lock_irqsave(&base_crng.lock, flags);
758
/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
759
if (crng_init == CRNG_EMPTY) {
760
extract_entropy(base_crng.key, sizeof(base_crng.key));
761
crng_init = CRNG_EARLY;
762
}
763
spin_unlock_irqrestore(&base_crng.lock, flags);
764
}
765
}
766
767
768
/**********************************************************************
769
*
770
* Entropy collection routines.
771
*
772
* The following exported functions are used for pushing entropy into
773
* the above entropy accumulation routines:
774
*
775
* void add_device_randomness(const void *buf, size_t len);
776
* void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
777
* void add_bootloader_randomness(const void *buf, size_t len);
778
* void add_vmfork_randomness(const void *unique_vm_id, size_t len);
779
* void add_interrupt_randomness(int irq);
780
* void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
781
* void add_disk_randomness(struct gendisk *disk);
782
*
783
* add_device_randomness() adds data to the input pool that
784
* is likely to differ between two devices (or possibly even per boot).
785
* This would be things like MAC addresses or serial numbers, or the
786
* read-out of the RTC. This does *not* credit any actual entropy to
787
* the pool, but it initializes the pool to different values for devices
788
* that might otherwise be identical and have very little entropy
789
* available to them (particularly common in the embedded world).
790
*
791
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
792
* entropy as specified by the caller. If the entropy pool is full it will
793
* block until more entropy is needed.
794
*
795
* add_bootloader_randomness() is called by bootloader drivers, such as EFI
796
* and device tree, and credits its input depending on whether or not the
797
* command line option 'random.trust_bootloader'.
798
*
799
* add_vmfork_randomness() adds a unique (but not necessarily secret) ID
800
* representing the current instance of a VM to the pool, without crediting,
801
* and then force-reseeds the crng so that it takes effect immediately.
802
*
803
* add_interrupt_randomness() uses the interrupt timing as random
804
* inputs to the entropy pool. Using the cycle counters and the irq source
805
* as inputs, it feeds the input pool roughly once a second or after 64
806
* interrupts, crediting 1 bit of entropy for whichever comes first.
807
*
808
* add_input_randomness() uses the input layer interrupt timing, as well
809
* as the event type information from the hardware.
810
*
811
* add_disk_randomness() uses what amounts to the seek time of block
812
* layer request events, on a per-disk_devt basis, as input to the
813
* entropy pool. Note that high-speed solid state drives with very low
814
* seek times do not make for good sources of entropy, as their seek
815
* times are usually fairly consistent.
816
*
817
* The last two routines try to estimate how many bits of entropy
818
* to credit. They do this by keeping track of the first and second
819
* order deltas of the event timings.
820
*
821
**********************************************************************/
822
823
static bool trust_cpu __initdata = true;
824
static bool trust_bootloader __initdata = true;
825
static int __init parse_trust_cpu(char *arg)
826
{
827
return kstrtobool(arg, &trust_cpu);
828
}
829
static int __init parse_trust_bootloader(char *arg)
830
{
831
return kstrtobool(arg, &trust_bootloader);
832
}
833
early_param("random.trust_cpu", parse_trust_cpu);
834
early_param("random.trust_bootloader", parse_trust_bootloader);
835
836
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
837
{
838
unsigned long flags, entropy = random_get_entropy();
839
840
/*
841
* Encode a representation of how long the system has been suspended,
842
* in a way that is distinct from prior system suspends.
843
*/
844
ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
845
846
spin_lock_irqsave(&input_pool.lock, flags);
847
_mix_pool_bytes(&action, sizeof(action));
848
_mix_pool_bytes(stamps, sizeof(stamps));
849
_mix_pool_bytes(&entropy, sizeof(entropy));
850
spin_unlock_irqrestore(&input_pool.lock, flags);
851
852
if (crng_ready() && (action == PM_RESTORE_PREPARE ||
853
(action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
854
!IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
855
crng_reseed(NULL);
856
pr_notice("crng reseeded on system resumption\n");
857
}
858
return 0;
859
}
860
861
static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
862
863
/*
864
* This is called extremely early, before time keeping functionality is
865
* available, but arch randomness is. Interrupts are not yet enabled.
866
*/
867
void __init random_init_early(const char *command_line)
868
{
869
unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
870
size_t i, longs, arch_bits;
871
872
#if defined(LATENT_ENTROPY_PLUGIN)
873
static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
874
_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
875
#endif
876
877
for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
878
longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
879
if (longs) {
880
_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
881
i += longs;
882
continue;
883
}
884
longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
885
if (longs) {
886
_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
887
i += longs;
888
continue;
889
}
890
arch_bits -= sizeof(*entropy) * 8;
891
++i;
892
}
893
894
_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
895
_mix_pool_bytes(command_line, strlen(command_line));
896
897
/* Reseed if already seeded by earlier phases. */
898
if (crng_ready())
899
crng_reseed(NULL);
900
else if (trust_cpu)
901
_credit_init_bits(arch_bits);
902
}
903
904
/*
905
* This is called a little bit after the prior function, and now there is
906
* access to timestamps counters. Interrupts are not yet enabled.
907
*/
908
void __init random_init(void)
909
{
910
unsigned long entropy = random_get_entropy();
911
ktime_t now = ktime_get_real();
912
913
_mix_pool_bytes(&now, sizeof(now));
914
_mix_pool_bytes(&entropy, sizeof(entropy));
915
add_latent_entropy();
916
917
/*
918
* If we were initialized by the cpu or bootloader before jump labels
919
* or workqueues are initialized, then we should enable the static
920
* branch here, where it's guaranteed that these have been initialized.
921
*/
922
if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
923
crng_set_ready(NULL);
924
925
/* Reseed if already seeded by earlier phases. */
926
if (crng_ready())
927
crng_reseed(NULL);
928
929
WARN_ON(register_pm_notifier(&pm_notifier));
930
931
WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
932
"entropy collection will consequently suffer.");
933
}
934
935
/*
936
* Add device- or boot-specific data to the input pool to help
937
* initialize it.
938
*
939
* None of this adds any entropy; it is meant to avoid the problem of
940
* the entropy pool having similar initial state across largely
941
* identical devices.
942
*/
943
void add_device_randomness(const void *buf, size_t len)
944
{
945
unsigned long entropy = random_get_entropy();
946
unsigned long flags;
947
948
spin_lock_irqsave(&input_pool.lock, flags);
949
_mix_pool_bytes(&entropy, sizeof(entropy));
950
_mix_pool_bytes(buf, len);
951
spin_unlock_irqrestore(&input_pool.lock, flags);
952
}
953
EXPORT_SYMBOL(add_device_randomness);
954
955
/*
956
* Interface for in-kernel drivers of true hardware RNGs. Those devices
957
* may produce endless random bits, so this function will sleep for
958
* some amount of time after, if the sleep_after parameter is true.
959
*/
960
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
961
{
962
mix_pool_bytes(buf, len);
963
credit_init_bits(entropy);
964
965
/*
966
* Throttle writing to once every reseed interval, unless we're not yet
967
* initialized or no entropy is credited.
968
*/
969
if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
970
schedule_timeout_interruptible(crng_reseed_interval());
971
}
972
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
973
974
/*
975
* Handle random seed passed by bootloader, and credit it depending
976
* on the command line option 'random.trust_bootloader'.
977
*/
978
void __init add_bootloader_randomness(const void *buf, size_t len)
979
{
980
mix_pool_bytes(buf, len);
981
if (trust_bootloader)
982
credit_init_bits(len * 8);
983
}
984
985
#if IS_ENABLED(CONFIG_VMGENID)
986
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
987
988
/*
989
* Handle a new unique VM ID, which is unique, not secret, so we
990
* don't credit it, but we do immediately force a reseed after so
991
* that it's used by the crng posthaste.
992
*/
993
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
994
{
995
add_device_randomness(unique_vm_id, len);
996
if (crng_ready()) {
997
crng_reseed(NULL);
998
pr_notice("crng reseeded due to virtual machine fork\n");
999
}
1000
blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1001
}
1002
#if IS_MODULE(CONFIG_VMGENID)
1003
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1004
#endif
1005
1006
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1007
{
1008
return blocking_notifier_chain_register(&vmfork_chain, nb);
1009
}
1010
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1011
1012
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1013
{
1014
return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1015
}
1016
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1017
#endif
1018
1019
struct fast_pool {
1020
unsigned long pool[4];
1021
unsigned long last;
1022
unsigned int count;
1023
struct timer_list mix;
1024
};
1025
1026
static void mix_interrupt_randomness(struct timer_list *work);
1027
1028
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1029
#ifdef CONFIG_64BIT
1030
#define FASTMIX_PERM SIPHASH_PERMUTATION
1031
.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1032
#else
1033
#define FASTMIX_PERM HSIPHASH_PERMUTATION
1034
.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1035
#endif
1036
.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1037
};
1038
1039
/*
1040
* This is [Half]SipHash-1-x, starting from an empty key. Because
1041
* the key is fixed, it assumes that its inputs are non-malicious,
1042
* and therefore this has no security on its own. s represents the
1043
* four-word SipHash state, while v represents a two-word input.
1044
*/
1045
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1046
{
1047
s[3] ^= v1;
1048
FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1049
s[0] ^= v1;
1050
s[3] ^= v2;
1051
FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1052
s[0] ^= v2;
1053
}
1054
1055
#ifdef CONFIG_SMP
1056
/*
1057
* This function is called when the CPU has just come online, with
1058
* entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1059
*/
1060
int __cold random_online_cpu(unsigned int cpu)
1061
{
1062
/*
1063
* During CPU shutdown and before CPU onlining, add_interrupt_
1064
* randomness() may schedule mix_interrupt_randomness(), and
1065
* set the MIX_INFLIGHT flag. However, because the worker can
1066
* be scheduled on a different CPU during this period, that
1067
* flag will never be cleared. For that reason, we zero out
1068
* the flag here, which runs just after workqueues are onlined
1069
* for the CPU again. This also has the effect of setting the
1070
* irq randomness count to zero so that new accumulated irqs
1071
* are fresh.
1072
*/
1073
per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1074
return 0;
1075
}
1076
#endif
1077
1078
static void mix_interrupt_randomness(struct timer_list *work)
1079
{
1080
struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1081
/*
1082
* The size of the copied stack pool is explicitly 2 longs so that we
1083
* only ever ingest half of the siphash output each time, retaining
1084
* the other half as the next "key" that carries over. The entropy is
1085
* supposed to be sufficiently dispersed between bits so on average
1086
* we don't wind up "losing" some.
1087
*/
1088
unsigned long pool[2];
1089
unsigned int count;
1090
1091
/* Check to see if we're running on the wrong CPU due to hotplug. */
1092
local_irq_disable();
1093
if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1094
local_irq_enable();
1095
return;
1096
}
1097
1098
/*
1099
* Copy the pool to the stack so that the mixer always has a
1100
* consistent view, before we reenable irqs again.
1101
*/
1102
memcpy(pool, fast_pool->pool, sizeof(pool));
1103
count = fast_pool->count;
1104
fast_pool->count = 0;
1105
fast_pool->last = jiffies;
1106
local_irq_enable();
1107
1108
mix_pool_bytes(pool, sizeof(pool));
1109
credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1110
1111
memzero_explicit(pool, sizeof(pool));
1112
}
1113
1114
void add_interrupt_randomness(int irq)
1115
{
1116
enum { MIX_INFLIGHT = 1U << 31 };
1117
unsigned long entropy = random_get_entropy();
1118
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1119
struct pt_regs *regs = get_irq_regs();
1120
unsigned int new_count;
1121
1122
fast_mix(fast_pool->pool, entropy,
1123
(regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1124
new_count = ++fast_pool->count;
1125
1126
if (new_count & MIX_INFLIGHT)
1127
return;
1128
1129
if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1130
return;
1131
1132
fast_pool->count |= MIX_INFLIGHT;
1133
if (!timer_pending(&fast_pool->mix)) {
1134
fast_pool->mix.expires = jiffies;
1135
add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1136
}
1137
}
1138
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1139
1140
/* There is one of these per entropy source */
1141
struct timer_rand_state {
1142
unsigned long last_time;
1143
long last_delta, last_delta2;
1144
};
1145
1146
/*
1147
* This function adds entropy to the entropy "pool" by using timing
1148
* delays. It uses the timer_rand_state structure to make an estimate
1149
* of how many bits of entropy this call has added to the pool. The
1150
* value "num" is also added to the pool; it should somehow describe
1151
* the type of event that just happened.
1152
*/
1153
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1154
{
1155
unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1156
long delta, delta2, delta3;
1157
unsigned int bits;
1158
1159
/*
1160
* If we're in a hard IRQ, add_interrupt_randomness() will be called
1161
* sometime after, so mix into the fast pool.
1162
*/
1163
if (in_hardirq()) {
1164
fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1165
} else {
1166
spin_lock_irqsave(&input_pool.lock, flags);
1167
_mix_pool_bytes(&entropy, sizeof(entropy));
1168
_mix_pool_bytes(&num, sizeof(num));
1169
spin_unlock_irqrestore(&input_pool.lock, flags);
1170
}
1171
1172
if (crng_ready())
1173
return;
1174
1175
/*
1176
* Calculate number of bits of randomness we probably added.
1177
* We take into account the first, second and third-order deltas
1178
* in order to make our estimate.
1179
*/
1180
delta = now - READ_ONCE(state->last_time);
1181
WRITE_ONCE(state->last_time, now);
1182
1183
delta2 = delta - READ_ONCE(state->last_delta);
1184
WRITE_ONCE(state->last_delta, delta);
1185
1186
delta3 = delta2 - READ_ONCE(state->last_delta2);
1187
WRITE_ONCE(state->last_delta2, delta2);
1188
1189
if (delta < 0)
1190
delta = -delta;
1191
if (delta2 < 0)
1192
delta2 = -delta2;
1193
if (delta3 < 0)
1194
delta3 = -delta3;
1195
if (delta > delta2)
1196
delta = delta2;
1197
if (delta > delta3)
1198
delta = delta3;
1199
1200
/*
1201
* delta is now minimum absolute delta. Round down by 1 bit
1202
* on general principles, and limit entropy estimate to 11 bits.
1203
*/
1204
bits = min(fls(delta >> 1), 11);
1205
1206
/*
1207
* As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1208
* will run after this, which uses a different crediting scheme of 1 bit
1209
* per every 64 interrupts. In order to let that function do accounting
1210
* close to the one in this function, we credit a full 64/64 bit per bit,
1211
* and then subtract one to account for the extra one added.
1212
*/
1213
if (in_hardirq())
1214
this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1215
else
1216
_credit_init_bits(bits);
1217
}
1218
1219
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1220
{
1221
static unsigned char last_value;
1222
static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1223
1224
/* Ignore autorepeat and the like. */
1225
if (value == last_value)
1226
return;
1227
1228
last_value = value;
1229
add_timer_randomness(&input_timer_state,
1230
(type << 4) ^ code ^ (code >> 4) ^ value);
1231
}
1232
EXPORT_SYMBOL_GPL(add_input_randomness);
1233
1234
#ifdef CONFIG_BLOCK
1235
void add_disk_randomness(struct gendisk *disk)
1236
{
1237
if (!disk || !disk->random)
1238
return;
1239
/* First major is 1, so we get >= 0x200 here. */
1240
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1241
}
1242
EXPORT_SYMBOL_GPL(add_disk_randomness);
1243
1244
void __cold rand_initialize_disk(struct gendisk *disk)
1245
{
1246
struct timer_rand_state *state;
1247
1248
/*
1249
* If kzalloc returns null, we just won't use that entropy
1250
* source.
1251
*/
1252
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1253
if (state) {
1254
state->last_time = INITIAL_JIFFIES;
1255
disk->random = state;
1256
}
1257
}
1258
#endif
1259
1260
struct entropy_timer_state {
1261
unsigned long entropy;
1262
struct timer_list timer;
1263
atomic_t samples;
1264
unsigned int samples_per_bit;
1265
};
1266
1267
/*
1268
* Each time the timer fires, we expect that we got an unpredictable jump in
1269
* the cycle counter. Even if the timer is running on another CPU, the timer
1270
* activity will be touching the stack of the CPU that is generating entropy.
1271
*
1272
* Note that we don't re-arm the timer in the timer itself - we are happy to be
1273
* scheduled away, since that just makes the load more complex, but we do not
1274
* want the timer to keep ticking unless the entropy loop is running.
1275
*
1276
* So the re-arming always happens in the entropy loop itself.
1277
*/
1278
static void __cold entropy_timer(struct timer_list *timer)
1279
{
1280
struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1281
unsigned long entropy = random_get_entropy();
1282
1283
mix_pool_bytes(&entropy, sizeof(entropy));
1284
if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1285
credit_init_bits(1);
1286
}
1287
1288
/*
1289
* If we have an actual cycle counter, see if we can generate enough entropy
1290
* with timing noise.
1291
*/
1292
static void __cold try_to_generate_entropy(void)
1293
{
1294
enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1295
u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1296
struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1297
unsigned int i, num_different = 0;
1298
unsigned long last = random_get_entropy();
1299
int cpu = -1;
1300
1301
for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1302
stack->entropy = random_get_entropy();
1303
if (stack->entropy != last)
1304
++num_different;
1305
last = stack->entropy;
1306
}
1307
stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1308
if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1309
return;
1310
1311
atomic_set(&stack->samples, 0);
1312
timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1313
while (!crng_ready() && !signal_pending(current)) {
1314
/*
1315
* Check !timer_pending() and then ensure that any previous callback has finished
1316
* executing by checking timer_delete_sync_try(), before queueing the next one.
1317
*/
1318
if (!timer_pending(&stack->timer) && timer_delete_sync_try(&stack->timer) >= 0) {
1319
struct cpumask timer_cpus;
1320
unsigned int num_cpus;
1321
1322
/*
1323
* Preemption must be disabled here, both to read the current CPU number
1324
* and to avoid scheduling a timer on a dead CPU.
1325
*/
1326
preempt_disable();
1327
1328
/* Only schedule callbacks on timer CPUs that are online. */
1329
cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1330
num_cpus = cpumask_weight(&timer_cpus);
1331
/* In very bizarre case of misconfiguration, fallback to all online. */
1332
if (unlikely(num_cpus == 0)) {
1333
timer_cpus = *cpu_online_mask;
1334
num_cpus = cpumask_weight(&timer_cpus);
1335
}
1336
1337
/* Basic CPU round-robin, which avoids the current CPU. */
1338
do {
1339
cpu = cpumask_next(cpu, &timer_cpus);
1340
if (cpu >= nr_cpu_ids)
1341
cpu = cpumask_first(&timer_cpus);
1342
} while (cpu == smp_processor_id() && num_cpus > 1);
1343
1344
/* Expiring the timer at `jiffies` means it's the next tick. */
1345
stack->timer.expires = jiffies;
1346
1347
add_timer_on(&stack->timer, cpu);
1348
1349
preempt_enable();
1350
}
1351
mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1352
schedule();
1353
stack->entropy = random_get_entropy();
1354
}
1355
mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1356
1357
timer_delete_sync(&stack->timer);
1358
timer_destroy_on_stack(&stack->timer);
1359
}
1360
1361
1362
/**********************************************************************
1363
*
1364
* Userspace reader/writer interfaces.
1365
*
1366
* getrandom(2) is the primary modern interface into the RNG and should
1367
* be used in preference to anything else.
1368
*
1369
* Reading from /dev/random has the same functionality as calling
1370
* getrandom(2) with flags=0. In earlier versions, however, it had
1371
* vastly different semantics and should therefore be avoided, to
1372
* prevent backwards compatibility issues.
1373
*
1374
* Reading from /dev/urandom has the same functionality as calling
1375
* getrandom(2) with flags=GRND_INSECURE. Because it does not block
1376
* waiting for the RNG to be ready, it should not be used.
1377
*
1378
* Writing to either /dev/random or /dev/urandom adds entropy to
1379
* the input pool but does not credit it.
1380
*
1381
* Polling on /dev/random indicates when the RNG is initialized, on
1382
* the read side, and when it wants new entropy, on the write side.
1383
*
1384
* Both /dev/random and /dev/urandom have the same set of ioctls for
1385
* adding entropy, getting the entropy count, zeroing the count, and
1386
* reseeding the crng.
1387
*
1388
**********************************************************************/
1389
1390
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1391
{
1392
struct iov_iter iter;
1393
int ret;
1394
1395
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1396
return -EINVAL;
1397
1398
/*
1399
* Requesting insecure and blocking randomness at the same time makes
1400
* no sense.
1401
*/
1402
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1403
return -EINVAL;
1404
1405
if (!crng_ready() && !(flags & GRND_INSECURE)) {
1406
if (flags & GRND_NONBLOCK)
1407
return -EAGAIN;
1408
ret = wait_for_random_bytes();
1409
if (unlikely(ret))
1410
return ret;
1411
}
1412
1413
ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1414
if (unlikely(ret))
1415
return ret;
1416
return get_random_bytes_user(&iter);
1417
}
1418
1419
static __poll_t random_poll(struct file *file, poll_table *wait)
1420
{
1421
poll_wait(file, &crng_init_wait, wait);
1422
return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1423
}
1424
1425
static ssize_t write_pool_user(struct iov_iter *iter)
1426
{
1427
u8 block[BLAKE2S_BLOCK_SIZE];
1428
ssize_t ret = 0;
1429
size_t copied;
1430
1431
if (unlikely(!iov_iter_count(iter)))
1432
return 0;
1433
1434
for (;;) {
1435
copied = copy_from_iter(block, sizeof(block), iter);
1436
ret += copied;
1437
mix_pool_bytes(block, copied);
1438
if (!iov_iter_count(iter) || copied != sizeof(block))
1439
break;
1440
1441
BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1442
if (ret % PAGE_SIZE == 0) {
1443
if (signal_pending(current))
1444
break;
1445
cond_resched();
1446
}
1447
}
1448
1449
memzero_explicit(block, sizeof(block));
1450
return ret ? ret : -EFAULT;
1451
}
1452
1453
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1454
{
1455
return write_pool_user(iter);
1456
}
1457
1458
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1459
{
1460
static int maxwarn = 10;
1461
1462
/*
1463
* Opportunistically attempt to initialize the RNG on platforms that
1464
* have fast cycle counters, but don't (for now) require it to succeed.
1465
*/
1466
if (!crng_ready())
1467
try_to_generate_entropy();
1468
1469
if (!crng_ready()) {
1470
if (!ratelimit_disable && maxwarn <= 0)
1471
ratelimit_state_inc_miss(&urandom_warning);
1472
else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1473
--maxwarn;
1474
pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1475
current->comm, iov_iter_count(iter));
1476
}
1477
}
1478
1479
return get_random_bytes_user(iter);
1480
}
1481
1482
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1483
{
1484
int ret;
1485
1486
if (!crng_ready() &&
1487
((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1488
(kiocb->ki_filp->f_flags & O_NONBLOCK)))
1489
return -EAGAIN;
1490
1491
ret = wait_for_random_bytes();
1492
if (ret != 0)
1493
return ret;
1494
return get_random_bytes_user(iter);
1495
}
1496
1497
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1498
{
1499
int __user *p = (int __user *)arg;
1500
int ent_count;
1501
1502
switch (cmd) {
1503
case RNDGETENTCNT:
1504
/* Inherently racy, no point locking. */
1505
if (put_user(input_pool.init_bits, p))
1506
return -EFAULT;
1507
return 0;
1508
case RNDADDTOENTCNT:
1509
if (!capable(CAP_SYS_ADMIN))
1510
return -EPERM;
1511
if (get_user(ent_count, p))
1512
return -EFAULT;
1513
if (ent_count < 0)
1514
return -EINVAL;
1515
credit_init_bits(ent_count);
1516
return 0;
1517
case RNDADDENTROPY: {
1518
struct iov_iter iter;
1519
ssize_t ret;
1520
int len;
1521
1522
if (!capable(CAP_SYS_ADMIN))
1523
return -EPERM;
1524
if (get_user(ent_count, p++))
1525
return -EFAULT;
1526
if (ent_count < 0)
1527
return -EINVAL;
1528
if (get_user(len, p++))
1529
return -EFAULT;
1530
ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1531
if (unlikely(ret))
1532
return ret;
1533
ret = write_pool_user(&iter);
1534
if (unlikely(ret < 0))
1535
return ret;
1536
/* Since we're crediting, enforce that it was all written into the pool. */
1537
if (unlikely(ret != len))
1538
return -EFAULT;
1539
credit_init_bits(ent_count);
1540
return 0;
1541
}
1542
case RNDZAPENTCNT:
1543
case RNDCLEARPOOL:
1544
/* No longer has any effect. */
1545
if (!capable(CAP_SYS_ADMIN))
1546
return -EPERM;
1547
return 0;
1548
case RNDRESEEDCRNG:
1549
if (!capable(CAP_SYS_ADMIN))
1550
return -EPERM;
1551
if (!crng_ready())
1552
return -ENODATA;
1553
crng_reseed(NULL);
1554
return 0;
1555
default:
1556
return -EINVAL;
1557
}
1558
}
1559
1560
static int random_fasync(int fd, struct file *filp, int on)
1561
{
1562
return fasync_helper(fd, filp, on, &fasync);
1563
}
1564
1565
const struct file_operations random_fops = {
1566
.read_iter = random_read_iter,
1567
.write_iter = random_write_iter,
1568
.poll = random_poll,
1569
.unlocked_ioctl = random_ioctl,
1570
.compat_ioctl = compat_ptr_ioctl,
1571
.fasync = random_fasync,
1572
.llseek = noop_llseek,
1573
.splice_read = copy_splice_read,
1574
.splice_write = iter_file_splice_write,
1575
};
1576
1577
const struct file_operations urandom_fops = {
1578
.read_iter = urandom_read_iter,
1579
.write_iter = random_write_iter,
1580
.unlocked_ioctl = random_ioctl,
1581
.compat_ioctl = compat_ptr_ioctl,
1582
.fasync = random_fasync,
1583
.llseek = noop_llseek,
1584
.splice_read = copy_splice_read,
1585
.splice_write = iter_file_splice_write,
1586
};
1587
1588
1589
/********************************************************************
1590
*
1591
* Sysctl interface.
1592
*
1593
* These are partly unused legacy knobs with dummy values to not break
1594
* userspace and partly still useful things. They are usually accessible
1595
* in /proc/sys/kernel/random/ and are as follows:
1596
*
1597
* - boot_id - a UUID representing the current boot.
1598
*
1599
* - uuid - a random UUID, different each time the file is read.
1600
*
1601
* - poolsize - the number of bits of entropy that the input pool can
1602
* hold, tied to the POOL_BITS constant.
1603
*
1604
* - entropy_avail - the number of bits of entropy currently in the
1605
* input pool. Always <= poolsize.
1606
*
1607
* - write_wakeup_threshold - the amount of entropy in the input pool
1608
* below which write polls to /dev/random will unblock, requesting
1609
* more entropy, tied to the POOL_READY_BITS constant. It is writable
1610
* to avoid breaking old userspaces, but writing to it does not
1611
* change any behavior of the RNG.
1612
*
1613
* - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1614
* It is writable to avoid breaking old userspaces, but writing
1615
* to it does not change any behavior of the RNG.
1616
*
1617
********************************************************************/
1618
1619
#ifdef CONFIG_SYSCTL
1620
1621
#include <linux/sysctl.h>
1622
1623
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1624
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1625
static int sysctl_poolsize = POOL_BITS;
1626
static u8 sysctl_bootid[UUID_SIZE];
1627
1628
/*
1629
* This function is used to return both the bootid UUID, and random
1630
* UUID. The difference is in whether table->data is NULL; if it is,
1631
* then a new UUID is generated and returned to the user.
1632
*/
1633
static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1634
size_t *lenp, loff_t *ppos)
1635
{
1636
u8 tmp_uuid[UUID_SIZE], *uuid;
1637
char uuid_string[UUID_STRING_LEN + 1];
1638
struct ctl_table fake_table = {
1639
.data = uuid_string,
1640
.maxlen = UUID_STRING_LEN
1641
};
1642
1643
if (write)
1644
return -EPERM;
1645
1646
uuid = table->data;
1647
if (!uuid) {
1648
uuid = tmp_uuid;
1649
generate_random_uuid(uuid);
1650
} else {
1651
static DEFINE_SPINLOCK(bootid_spinlock);
1652
1653
spin_lock(&bootid_spinlock);
1654
if (!uuid[8])
1655
generate_random_uuid(uuid);
1656
spin_unlock(&bootid_spinlock);
1657
}
1658
1659
snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1660
return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1661
}
1662
1663
/* The same as proc_dointvec, but writes don't change anything. */
1664
static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1665
size_t *lenp, loff_t *ppos)
1666
{
1667
return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1668
}
1669
1670
static const struct ctl_table random_table[] = {
1671
{
1672
.procname = "poolsize",
1673
.data = &sysctl_poolsize,
1674
.maxlen = sizeof(int),
1675
.mode = 0444,
1676
.proc_handler = proc_dointvec,
1677
},
1678
{
1679
.procname = "entropy_avail",
1680
.data = &input_pool.init_bits,
1681
.maxlen = sizeof(int),
1682
.mode = 0444,
1683
.proc_handler = proc_dointvec,
1684
},
1685
{
1686
.procname = "write_wakeup_threshold",
1687
.data = &sysctl_random_write_wakeup_bits,
1688
.maxlen = sizeof(int),
1689
.mode = 0644,
1690
.proc_handler = proc_do_rointvec,
1691
},
1692
{
1693
.procname = "urandom_min_reseed_secs",
1694
.data = &sysctl_random_min_urandom_seed,
1695
.maxlen = sizeof(int),
1696
.mode = 0644,
1697
.proc_handler = proc_do_rointvec,
1698
},
1699
{
1700
.procname = "boot_id",
1701
.data = &sysctl_bootid,
1702
.mode = 0444,
1703
.proc_handler = proc_do_uuid,
1704
},
1705
{
1706
.procname = "uuid",
1707
.mode = 0444,
1708
.proc_handler = proc_do_uuid,
1709
},
1710
};
1711
1712
/*
1713
* random_init() is called before sysctl_init(),
1714
* so we cannot call register_sysctl_init() in random_init()
1715
*/
1716
static int __init random_sysctls_init(void)
1717
{
1718
register_sysctl_init("kernel/random", random_table);
1719
return 0;
1720
}
1721
device_initcall(random_sysctls_init);
1722
#endif
1723
1724