// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)1/*2* Copyright (C) 2017-2024 Jason A. Donenfeld <[email protected]>. All Rights Reserved.3* Copyright Matt Mackall <[email protected]>, 2003, 2004, 20054* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.5*6* This driver produces cryptographically secure pseudorandom data. It is divided7* into roughly six sections, each with a section header:8*9* - Initialization and readiness waiting.10* - Fast key erasure RNG, the "crng".11* - Entropy accumulation and extraction routines.12* - Entropy collection routines.13* - Userspace reader/writer interfaces.14* - Sysctl interface.15*16* The high level overview is that there is one input pool, into which17* various pieces of data are hashed. Prior to initialization, some of that18* data is then "credited" as having a certain number of bits of entropy.19* When enough bits of entropy are available, the hash is finalized and20* handed as a key to a stream cipher that expands it indefinitely for21* various consumers. This key is periodically refreshed as the various22* entropy collectors, described below, add data to the input pool.23*/2425#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt2627#include <linux/utsname.h>28#include <linux/module.h>29#include <linux/kernel.h>30#include <linux/major.h>31#include <linux/string.h>32#include <linux/fcntl.h>33#include <linux/slab.h>34#include <linux/random.h>35#include <linux/poll.h>36#include <linux/init.h>37#include <linux/fs.h>38#include <linux/blkdev.h>39#include <linux/interrupt.h>40#include <linux/mm.h>41#include <linux/nodemask.h>42#include <linux/spinlock.h>43#include <linux/kthread.h>44#include <linux/percpu.h>45#include <linux/ptrace.h>46#include <linux/workqueue.h>47#include <linux/irq.h>48#include <linux/ratelimit.h>49#include <linux/syscalls.h>50#include <linux/completion.h>51#include <linux/uuid.h>52#include <linux/uaccess.h>53#include <linux/suspend.h>54#include <linux/siphash.h>55#include <linux/sched/isolation.h>56#include <crypto/chacha.h>57#include <crypto/blake2s.h>58#ifdef CONFIG_VDSO_GETRANDOM59#include <vdso/getrandom.h>60#include <vdso/datapage.h>61#include <vdso/vsyscall.h>62#endif63#include <asm/archrandom.h>64#include <asm/processor.h>65#include <asm/irq.h>66#include <asm/irq_regs.h>67#include <asm/io.h>6869/*********************************************************************70*71* Initialization and readiness waiting.72*73* Much of the RNG infrastructure is devoted to various dependencies74* being able to wait until the RNG has collected enough entropy and75* is ready for safe consumption.76*77*********************************************************************/7879/*80* crng_init is protected by base_crng->lock, and only increases81* its value (from empty->early->ready).82*/83static enum {84CRNG_EMPTY = 0, /* Little to no entropy collected */85CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */86CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */87} crng_init __read_mostly = CRNG_EMPTY;88static DEFINE_STATIC_KEY_FALSE(crng_is_ready);89#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)90/* Various types of waiters for crng_init->CRNG_READY transition. */91static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);92static struct fasync_struct *fasync;93static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);9495/* Control how we warn userspace. */96static struct ratelimit_state urandom_warning =97RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);98static int ratelimit_disable __read_mostly =99IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);100module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);101MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");102103/*104* Returns whether or not the input pool has been seeded and thus guaranteed105* to supply cryptographically secure random numbers. This applies to: the106* /dev/urandom device, the get_random_bytes function, and the get_random_{u8,107* u16,u32,u64,long} family of functions.108*109* Returns: true if the input pool has been seeded.110* false if the input pool has not been seeded.111*/112bool rng_is_initialized(void)113{114return crng_ready();115}116EXPORT_SYMBOL(rng_is_initialized);117118static void __cold crng_set_ready(struct work_struct *work)119{120static_branch_enable(&crng_is_ready);121}122123/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */124static void try_to_generate_entropy(void);125126/*127* Wait for the input pool to be seeded and thus guaranteed to supply128* cryptographically secure random numbers. This applies to: the /dev/urandom129* device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,130* long} family of functions. Using any of these functions without first131* calling this function forfeits the guarantee of security.132*133* Returns: 0 if the input pool has been seeded.134* -ERESTARTSYS if the function was interrupted by a signal.135*/136int wait_for_random_bytes(void)137{138while (!crng_ready()) {139int ret;140141try_to_generate_entropy();142ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);143if (ret)144return ret > 0 ? 0 : ret;145}146return 0;147}148EXPORT_SYMBOL(wait_for_random_bytes);149150/*151* Add a callback function that will be invoked when the crng is initialised,152* or immediately if it already has been. Only use this is you are absolutely153* sure it is required. Most users should instead be able to test154* `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.155*/156int __cold execute_with_initialized_rng(struct notifier_block *nb)157{158unsigned long flags;159int ret = 0;160161spin_lock_irqsave(&random_ready_notifier.lock, flags);162if (crng_ready())163nb->notifier_call(nb, 0, NULL);164else165ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);166spin_unlock_irqrestore(&random_ready_notifier.lock, flags);167return ret;168}169170#define warn_unseeded_randomness() \171if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \172printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \173__func__, (void *)_RET_IP_, crng_init)174175176/*********************************************************************177*178* Fast key erasure RNG, the "crng".179*180* These functions expand entropy from the entropy extractor into181* long streams for external consumption using the "fast key erasure"182* RNG described at <https://blog.cr.yp.to/20170723-random.html>.183*184* There are a few exported interfaces for use by other drivers:185*186* void get_random_bytes(void *buf, size_t len)187* u8 get_random_u8()188* u16 get_random_u16()189* u32 get_random_u32()190* u32 get_random_u32_below(u32 ceil)191* u32 get_random_u32_above(u32 floor)192* u32 get_random_u32_inclusive(u32 floor, u32 ceil)193* u64 get_random_u64()194* unsigned long get_random_long()195*196* These interfaces will return the requested number of random bytes197* into the given buffer or as a return value. This is equivalent to198* a read from /dev/urandom. The u8, u16, u32, u64, long family of199* functions may be higher performance for one-off random integers,200* because they do a bit of buffering and do not invoke reseeding201* until the buffer is emptied.202*203*********************************************************************/204205enum {206CRNG_RESEED_START_INTERVAL = HZ,207CRNG_RESEED_INTERVAL = 60 * HZ208};209210static struct {211u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));212unsigned long generation;213spinlock_t lock;214} base_crng = {215.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)216};217218struct crng {219u8 key[CHACHA_KEY_SIZE];220unsigned long generation;221local_lock_t lock;222};223224static DEFINE_PER_CPU(struct crng, crngs) = {225.generation = ULONG_MAX,226.lock = INIT_LOCAL_LOCK(crngs.lock),227};228229/*230* Return the interval until the next reseeding, which is normally231* CRNG_RESEED_INTERVAL, but during early boot, it is at an interval232* proportional to the uptime.233*/234static unsigned int crng_reseed_interval(void)235{236static bool early_boot = true;237238if (unlikely(READ_ONCE(early_boot))) {239time64_t uptime = ktime_get_seconds();240if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)241WRITE_ONCE(early_boot, false);242else243return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,244(unsigned int)uptime / 2 * HZ);245}246return CRNG_RESEED_INTERVAL;247}248249/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */250static void extract_entropy(void *buf, size_t len);251252/* This extracts a new crng key from the input pool. */253static void crng_reseed(struct work_struct *work)254{255static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);256unsigned long flags;257unsigned long next_gen;258u8 key[CHACHA_KEY_SIZE];259260/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */261if (likely(system_unbound_wq))262queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());263264extract_entropy(key, sizeof(key));265266/*267* We copy the new key into the base_crng, overwriting the old one,268* and update the generation counter. We avoid hitting ULONG_MAX,269* because the per-cpu crngs are initialized to ULONG_MAX, so this270* forces new CPUs that come online to always initialize.271*/272spin_lock_irqsave(&base_crng.lock, flags);273memcpy(base_crng.key, key, sizeof(base_crng.key));274next_gen = base_crng.generation + 1;275if (next_gen == ULONG_MAX)276++next_gen;277WRITE_ONCE(base_crng.generation, next_gen);278#ifdef CONFIG_VDSO_GETRANDOM279/* base_crng.generation's invalid value is ULONG_MAX, while280* vdso_k_rng_data->generation's invalid value is 0, so add one to the281* former to arrive at the latter. Use smp_store_release so that this282* is ordered with the write above to base_crng.generation. Pairs with283* the smp_rmb() before the syscall in the vDSO code.284*285* Cast to unsigned long for 32-bit architectures, since atomic 64-bit286* operations are not supported on those architectures. This is safe287* because base_crng.generation is a 32-bit value. On big-endian288* architectures it will be stored in the upper 32 bits, but that's okay289* because the vDSO side only checks whether the value changed, without290* actually using or interpreting the value.291*/292smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1);293#endif294if (!static_branch_likely(&crng_is_ready))295crng_init = CRNG_READY;296spin_unlock_irqrestore(&base_crng.lock, flags);297memzero_explicit(key, sizeof(key));298}299300/*301* This generates a ChaCha block using the provided key, and then302* immediately overwrites that key with half the block. It returns303* the resultant ChaCha state to the user, along with the second304* half of the block containing 32 bytes of random data that may305* be used; random_data_len may not be greater than 32.306*307* The returned ChaCha state contains within it a copy of the old308* key value, at index 4, so the state should always be zeroed out309* immediately after using in order to maintain forward secrecy.310* If the state cannot be erased in a timely manner, then it is311* safer to set the random_data parameter to &chacha_state->x[4]312* so that this function overwrites it before returning.313*/314static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],315struct chacha_state *chacha_state,316u8 *random_data, size_t random_data_len)317{318u8 first_block[CHACHA_BLOCK_SIZE];319320BUG_ON(random_data_len > 32);321322chacha_init_consts(chacha_state);323memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE);324memset(&chacha_state->x[12], 0, sizeof(u32) * 4);325chacha20_block(chacha_state, first_block);326327memcpy(key, first_block, CHACHA_KEY_SIZE);328memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);329memzero_explicit(first_block, sizeof(first_block));330}331332/*333* This function returns a ChaCha state that you may use for generating334* random data. It also returns up to 32 bytes on its own of random data335* that may be used; random_data_len may not be greater than 32.336*/337static void crng_make_state(struct chacha_state *chacha_state,338u8 *random_data, size_t random_data_len)339{340unsigned long flags;341struct crng *crng;342343BUG_ON(random_data_len > 32);344345/*346* For the fast path, we check whether we're ready, unlocked first, and347* then re-check once locked later. In the case where we're really not348* ready, we do fast key erasure with the base_crng directly, extracting349* when crng_init is CRNG_EMPTY.350*/351if (!crng_ready()) {352bool ready;353354spin_lock_irqsave(&base_crng.lock, flags);355ready = crng_ready();356if (!ready) {357if (crng_init == CRNG_EMPTY)358extract_entropy(base_crng.key, sizeof(base_crng.key));359crng_fast_key_erasure(base_crng.key, chacha_state,360random_data, random_data_len);361}362spin_unlock_irqrestore(&base_crng.lock, flags);363if (!ready)364return;365}366367local_lock_irqsave(&crngs.lock, flags);368crng = raw_cpu_ptr(&crngs);369370/*371* If our per-cpu crng is older than the base_crng, then it means372* somebody reseeded the base_crng. In that case, we do fast key373* erasure on the base_crng, and use its output as the new key374* for our per-cpu crng. This brings us up to date with base_crng.375*/376if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {377spin_lock(&base_crng.lock);378crng_fast_key_erasure(base_crng.key, chacha_state,379crng->key, sizeof(crng->key));380crng->generation = base_crng.generation;381spin_unlock(&base_crng.lock);382}383384/*385* Finally, when we've made it this far, our per-cpu crng has an up386* to date key, and we can do fast key erasure with it to produce387* some random data and a ChaCha state for the caller. All other388* branches of this function are "unlikely", so most of the time we389* should wind up here immediately.390*/391crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);392local_unlock_irqrestore(&crngs.lock, flags);393}394395static void _get_random_bytes(void *buf, size_t len)396{397struct chacha_state chacha_state;398u8 tmp[CHACHA_BLOCK_SIZE];399size_t first_block_len;400401if (!len)402return;403404first_block_len = min_t(size_t, 32, len);405crng_make_state(&chacha_state, buf, first_block_len);406len -= first_block_len;407buf += first_block_len;408409while (len) {410if (len < CHACHA_BLOCK_SIZE) {411chacha20_block(&chacha_state, tmp);412memcpy(buf, tmp, len);413memzero_explicit(tmp, sizeof(tmp));414break;415}416417chacha20_block(&chacha_state, buf);418if (unlikely(chacha_state.x[12] == 0))419++chacha_state.x[13];420len -= CHACHA_BLOCK_SIZE;421buf += CHACHA_BLOCK_SIZE;422}423424chacha_zeroize_state(&chacha_state);425}426427/*428* This returns random bytes in arbitrary quantities. The quality of the429* random bytes is good as /dev/urandom. In order to ensure that the430* randomness provided by this function is okay, the function431* wait_for_random_bytes() should be called and return 0 at least once432* at any point prior.433*/434void get_random_bytes(void *buf, size_t len)435{436warn_unseeded_randomness();437_get_random_bytes(buf, len);438}439EXPORT_SYMBOL(get_random_bytes);440441static ssize_t get_random_bytes_user(struct iov_iter *iter)442{443struct chacha_state chacha_state;444u8 block[CHACHA_BLOCK_SIZE];445size_t ret = 0, copied;446447if (unlikely(!iov_iter_count(iter)))448return 0;449450/*451* Immediately overwrite the ChaCha key at index 4 with random452* bytes, in case userspace causes copy_to_iter() below to sleep453* forever, so that we still retain forward secrecy in that case.454*/455crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4],456CHACHA_KEY_SIZE);457/*458* However, if we're doing a read of len <= 32, we don't need to459* use chacha_state after, so we can simply return those bytes to460* the user directly.461*/462if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {463ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter);464goto out_zero_chacha;465}466467for (;;) {468chacha20_block(&chacha_state, block);469if (unlikely(chacha_state.x[12] == 0))470++chacha_state.x[13];471472copied = copy_to_iter(block, sizeof(block), iter);473ret += copied;474if (!iov_iter_count(iter) || copied != sizeof(block))475break;476477BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);478if (ret % PAGE_SIZE == 0) {479if (signal_pending(current))480break;481cond_resched();482}483}484485memzero_explicit(block, sizeof(block));486out_zero_chacha:487chacha_zeroize_state(&chacha_state);488return ret ? ret : -EFAULT;489}490491/*492* Batched entropy returns random integers. The quality of the random493* number is good as /dev/urandom. In order to ensure that the randomness494* provided by this function is okay, the function wait_for_random_bytes()495* should be called and return 0 at least once at any point prior.496*/497498#define DEFINE_BATCHED_ENTROPY(type) \499struct batch_ ##type { \500/* \501* We make this 1.5x a ChaCha block, so that we get the \502* remaining 32 bytes from fast key erasure, plus one full \503* block from the detached ChaCha state. We can increase \504* the size of this later if needed so long as we keep the \505* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \506*/ \507type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \508local_lock_t lock; \509unsigned long generation; \510unsigned int position; \511}; \512\513static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \514.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \515.position = UINT_MAX \516}; \517\518type get_random_ ##type(void) \519{ \520type ret; \521unsigned long flags; \522struct batch_ ##type *batch; \523unsigned long next_gen; \524\525warn_unseeded_randomness(); \526\527if (!crng_ready()) { \528_get_random_bytes(&ret, sizeof(ret)); \529return ret; \530} \531\532local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \533batch = raw_cpu_ptr(&batched_entropy_##type); \534\535next_gen = READ_ONCE(base_crng.generation); \536if (batch->position >= ARRAY_SIZE(batch->entropy) || \537next_gen != batch->generation) { \538_get_random_bytes(batch->entropy, sizeof(batch->entropy)); \539batch->position = 0; \540batch->generation = next_gen; \541} \542\543ret = batch->entropy[batch->position]; \544batch->entropy[batch->position] = 0; \545++batch->position; \546local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \547return ret; \548} \549EXPORT_SYMBOL(get_random_ ##type);550551DEFINE_BATCHED_ENTROPY(u8)552DEFINE_BATCHED_ENTROPY(u16)553DEFINE_BATCHED_ENTROPY(u32)554DEFINE_BATCHED_ENTROPY(u64)555556u32 __get_random_u32_below(u32 ceil)557{558/*559* This is the slow path for variable ceil. It is still fast, most of560* the time, by doing traditional reciprocal multiplication and561* opportunistically comparing the lower half to ceil itself, before562* falling back to computing a larger bound, and then rejecting samples563* whose lower half would indicate a range indivisible by ceil. The use564* of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable565* in 32-bits.566*/567u32 rand = get_random_u32();568u64 mult;569570/*571* This function is technically undefined for ceil == 0, and in fact572* for the non-underscored constant version in the header, we build bug573* on that. But for the non-constant case, it's convenient to have that574* evaluate to being a straight call to get_random_u32(), so that575* get_random_u32_inclusive() can work over its whole range without576* undefined behavior.577*/578if (unlikely(!ceil))579return rand;580581mult = (u64)ceil * rand;582if (unlikely((u32)mult < ceil)) {583u32 bound = -ceil % ceil;584while (unlikely((u32)mult < bound))585mult = (u64)ceil * get_random_u32();586}587return mult >> 32;588}589EXPORT_SYMBOL(__get_random_u32_below);590591#ifdef CONFIG_SMP592/*593* This function is called when the CPU is coming up, with entry594* CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.595*/596int __cold random_prepare_cpu(unsigned int cpu)597{598/*599* When the cpu comes back online, immediately invalidate both600* the per-cpu crng and all batches, so that we serve fresh601* randomness.602*/603per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;604per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;605per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;606per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;607per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;608return 0;609}610#endif611612613/**********************************************************************614*615* Entropy accumulation and extraction routines.616*617* Callers may add entropy via:618*619* static void mix_pool_bytes(const void *buf, size_t len)620*621* After which, if added entropy should be credited:622*623* static void credit_init_bits(size_t bits)624*625* Finally, extract entropy via:626*627* static void extract_entropy(void *buf, size_t len)628*629**********************************************************************/630631enum {632POOL_BITS = BLAKE2S_HASH_SIZE * 8,633POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */634POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */635};636637static struct {638struct blake2s_state hash;639spinlock_t lock;640unsigned int init_bits;641} input_pool = {642.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),643BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,644BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },645.hash.outlen = BLAKE2S_HASH_SIZE,646.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),647};648649static void _mix_pool_bytes(const void *buf, size_t len)650{651blake2s_update(&input_pool.hash, buf, len);652}653654/*655* This function adds bytes into the input pool. It does not656* update the initialization bit counter; the caller should call657* credit_init_bits if this is appropriate.658*/659static void mix_pool_bytes(const void *buf, size_t len)660{661unsigned long flags;662663spin_lock_irqsave(&input_pool.lock, flags);664_mix_pool_bytes(buf, len);665spin_unlock_irqrestore(&input_pool.lock, flags);666}667668/*669* This is an HKDF-like construction for using the hashed collected entropy670* as a PRF key, that's then expanded block-by-block.671*/672static void extract_entropy(void *buf, size_t len)673{674unsigned long flags;675u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];676struct {677unsigned long rdseed[32 / sizeof(long)];678size_t counter;679} block;680size_t i, longs;681682for (i = 0; i < ARRAY_SIZE(block.rdseed);) {683longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);684if (longs) {685i += longs;686continue;687}688longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);689if (longs) {690i += longs;691continue;692}693block.rdseed[i++] = random_get_entropy();694}695696spin_lock_irqsave(&input_pool.lock, flags);697698/* seed = HASHPRF(last_key, entropy_input) */699blake2s_final(&input_pool.hash, seed);700701/* next_key = HASHPRF(seed, RDSEED || 0) */702block.counter = 0;703blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));704blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));705706spin_unlock_irqrestore(&input_pool.lock, flags);707memzero_explicit(next_key, sizeof(next_key));708709while (len) {710i = min_t(size_t, len, BLAKE2S_HASH_SIZE);711/* output = HASHPRF(seed, RDSEED || ++counter) */712++block.counter;713blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));714len -= i;715buf += i;716}717718memzero_explicit(seed, sizeof(seed));719memzero_explicit(&block, sizeof(block));720}721722#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)723724static void __cold _credit_init_bits(size_t bits)725{726static DECLARE_WORK(set_ready, crng_set_ready);727unsigned int new, orig, add;728unsigned long flags;729int m;730731if (!bits)732return;733734add = min_t(size_t, bits, POOL_BITS);735736orig = READ_ONCE(input_pool.init_bits);737do {738new = min_t(unsigned int, POOL_BITS, orig + add);739} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));740741if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {742crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */743if (static_key_initialized && system_unbound_wq)744queue_work(system_unbound_wq, &set_ready);745atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);746#ifdef CONFIG_VDSO_GETRANDOM747WRITE_ONCE(vdso_k_rng_data->is_ready, true);748#endif749wake_up_interruptible(&crng_init_wait);750kill_fasync(&fasync, SIGIO, POLL_IN);751pr_notice("crng init done\n");752m = ratelimit_state_get_miss(&urandom_warning);753if (m)754pr_notice("%d urandom warning(s) missed due to ratelimiting\n", m);755} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {756spin_lock_irqsave(&base_crng.lock, flags);757/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */758if (crng_init == CRNG_EMPTY) {759extract_entropy(base_crng.key, sizeof(base_crng.key));760crng_init = CRNG_EARLY;761}762spin_unlock_irqrestore(&base_crng.lock, flags);763}764}765766767/**********************************************************************768*769* Entropy collection routines.770*771* The following exported functions are used for pushing entropy into772* the above entropy accumulation routines:773*774* void add_device_randomness(const void *buf, size_t len);775* void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);776* void add_bootloader_randomness(const void *buf, size_t len);777* void add_vmfork_randomness(const void *unique_vm_id, size_t len);778* void add_interrupt_randomness(int irq);779* void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);780* void add_disk_randomness(struct gendisk *disk);781*782* add_device_randomness() adds data to the input pool that783* is likely to differ between two devices (or possibly even per boot).784* This would be things like MAC addresses or serial numbers, or the785* read-out of the RTC. This does *not* credit any actual entropy to786* the pool, but it initializes the pool to different values for devices787* that might otherwise be identical and have very little entropy788* available to them (particularly common in the embedded world).789*790* add_hwgenerator_randomness() is for true hardware RNGs, and will credit791* entropy as specified by the caller. If the entropy pool is full it will792* block until more entropy is needed.793*794* add_bootloader_randomness() is called by bootloader drivers, such as EFI795* and device tree, and credits its input depending on whether or not the796* command line option 'random.trust_bootloader'.797*798* add_vmfork_randomness() adds a unique (but not necessarily secret) ID799* representing the current instance of a VM to the pool, without crediting,800* and then force-reseeds the crng so that it takes effect immediately.801*802* add_interrupt_randomness() uses the interrupt timing as random803* inputs to the entropy pool. Using the cycle counters and the irq source804* as inputs, it feeds the input pool roughly once a second or after 64805* interrupts, crediting 1 bit of entropy for whichever comes first.806*807* add_input_randomness() uses the input layer interrupt timing, as well808* as the event type information from the hardware.809*810* add_disk_randomness() uses what amounts to the seek time of block811* layer request events, on a per-disk_devt basis, as input to the812* entropy pool. Note that high-speed solid state drives with very low813* seek times do not make for good sources of entropy, as their seek814* times are usually fairly consistent.815*816* The last two routines try to estimate how many bits of entropy817* to credit. They do this by keeping track of the first and second818* order deltas of the event timings.819*820**********************************************************************/821822static bool trust_cpu __initdata = true;823static bool trust_bootloader __initdata = true;824static int __init parse_trust_cpu(char *arg)825{826return kstrtobool(arg, &trust_cpu);827}828static int __init parse_trust_bootloader(char *arg)829{830return kstrtobool(arg, &trust_bootloader);831}832early_param("random.trust_cpu", parse_trust_cpu);833early_param("random.trust_bootloader", parse_trust_bootloader);834835static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)836{837unsigned long flags, entropy = random_get_entropy();838839/*840* Encode a representation of how long the system has been suspended,841* in a way that is distinct from prior system suspends.842*/843ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };844845spin_lock_irqsave(&input_pool.lock, flags);846_mix_pool_bytes(&action, sizeof(action));847_mix_pool_bytes(stamps, sizeof(stamps));848_mix_pool_bytes(&entropy, sizeof(entropy));849spin_unlock_irqrestore(&input_pool.lock, flags);850851if (crng_ready() && (action == PM_RESTORE_PREPARE ||852(action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&853!IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {854crng_reseed(NULL);855pr_notice("crng reseeded on system resumption\n");856}857return 0;858}859860static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };861862/*863* This is called extremely early, before time keeping functionality is864* available, but arch randomness is. Interrupts are not yet enabled.865*/866void __init random_init_early(const char *command_line)867{868unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];869size_t i, longs, arch_bits;870871#if defined(LATENT_ENTROPY_PLUGIN)872static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;873_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));874#endif875876for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {877longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);878if (longs) {879_mix_pool_bytes(entropy, sizeof(*entropy) * longs);880i += longs;881continue;882}883longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);884if (longs) {885_mix_pool_bytes(entropy, sizeof(*entropy) * longs);886i += longs;887continue;888}889arch_bits -= sizeof(*entropy) * 8;890++i;891}892893_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));894_mix_pool_bytes(command_line, strlen(command_line));895896/* Reseed if already seeded by earlier phases. */897if (crng_ready())898crng_reseed(NULL);899else if (trust_cpu)900_credit_init_bits(arch_bits);901}902903/*904* This is called a little bit after the prior function, and now there is905* access to timestamps counters. Interrupts are not yet enabled.906*/907void __init random_init(void)908{909unsigned long entropy = random_get_entropy();910ktime_t now = ktime_get_real();911912_mix_pool_bytes(&now, sizeof(now));913_mix_pool_bytes(&entropy, sizeof(entropy));914add_latent_entropy();915916/*917* If we were initialized by the cpu or bootloader before jump labels918* or workqueues are initialized, then we should enable the static919* branch here, where it's guaranteed that these have been initialized.920*/921if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)922crng_set_ready(NULL);923924/* Reseed if already seeded by earlier phases. */925if (crng_ready())926crng_reseed(NULL);927928WARN_ON(register_pm_notifier(&pm_notifier));929930WARN(!entropy, "Missing cycle counter and fallback timer; RNG "931"entropy collection will consequently suffer.");932}933934/*935* Add device- or boot-specific data to the input pool to help936* initialize it.937*938* None of this adds any entropy; it is meant to avoid the problem of939* the entropy pool having similar initial state across largely940* identical devices.941*/942void add_device_randomness(const void *buf, size_t len)943{944unsigned long entropy = random_get_entropy();945unsigned long flags;946947spin_lock_irqsave(&input_pool.lock, flags);948_mix_pool_bytes(&entropy, sizeof(entropy));949_mix_pool_bytes(buf, len);950spin_unlock_irqrestore(&input_pool.lock, flags);951}952EXPORT_SYMBOL(add_device_randomness);953954/*955* Interface for in-kernel drivers of true hardware RNGs. Those devices956* may produce endless random bits, so this function will sleep for957* some amount of time after, if the sleep_after parameter is true.958*/959void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)960{961mix_pool_bytes(buf, len);962credit_init_bits(entropy);963964/*965* Throttle writing to once every reseed interval, unless we're not yet966* initialized or no entropy is credited.967*/968if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))969schedule_timeout_interruptible(crng_reseed_interval());970}971EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);972973/*974* Handle random seed passed by bootloader, and credit it depending975* on the command line option 'random.trust_bootloader'.976*/977void __init add_bootloader_randomness(const void *buf, size_t len)978{979mix_pool_bytes(buf, len);980if (trust_bootloader)981credit_init_bits(len * 8);982}983984#if IS_ENABLED(CONFIG_VMGENID)985static BLOCKING_NOTIFIER_HEAD(vmfork_chain);986987/*988* Handle a new unique VM ID, which is unique, not secret, so we989* don't credit it, but we do immediately force a reseed after so990* that it's used by the crng posthaste.991*/992void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)993{994add_device_randomness(unique_vm_id, len);995if (crng_ready()) {996crng_reseed(NULL);997pr_notice("crng reseeded due to virtual machine fork\n");998}999blocking_notifier_call_chain(&vmfork_chain, 0, NULL);1000}1001#if IS_MODULE(CONFIG_VMGENID)1002EXPORT_SYMBOL_GPL(add_vmfork_randomness);1003#endif10041005int __cold register_random_vmfork_notifier(struct notifier_block *nb)1006{1007return blocking_notifier_chain_register(&vmfork_chain, nb);1008}1009EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);10101011int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)1012{1013return blocking_notifier_chain_unregister(&vmfork_chain, nb);1014}1015EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);1016#endif10171018struct fast_pool {1019unsigned long pool[4];1020unsigned long last;1021unsigned int count;1022struct timer_list mix;1023};10241025static void mix_interrupt_randomness(struct timer_list *work);10261027static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {1028#ifdef CONFIG_64BIT1029#define FASTMIX_PERM SIPHASH_PERMUTATION1030.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },1031#else1032#define FASTMIX_PERM HSIPHASH_PERMUTATION1033.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },1034#endif1035.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)1036};10371038/*1039* This is [Half]SipHash-1-x, starting from an empty key. Because1040* the key is fixed, it assumes that its inputs are non-malicious,1041* and therefore this has no security on its own. s represents the1042* four-word SipHash state, while v represents a two-word input.1043*/1044static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)1045{1046s[3] ^= v1;1047FASTMIX_PERM(s[0], s[1], s[2], s[3]);1048s[0] ^= v1;1049s[3] ^= v2;1050FASTMIX_PERM(s[0], s[1], s[2], s[3]);1051s[0] ^= v2;1052}10531054#ifdef CONFIG_SMP1055/*1056* This function is called when the CPU has just come online, with1057* entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.1058*/1059int __cold random_online_cpu(unsigned int cpu)1060{1061/*1062* During CPU shutdown and before CPU onlining, add_interrupt_1063* randomness() may schedule mix_interrupt_randomness(), and1064* set the MIX_INFLIGHT flag. However, because the worker can1065* be scheduled on a different CPU during this period, that1066* flag will never be cleared. For that reason, we zero out1067* the flag here, which runs just after workqueues are onlined1068* for the CPU again. This also has the effect of setting the1069* irq randomness count to zero so that new accumulated irqs1070* are fresh.1071*/1072per_cpu_ptr(&irq_randomness, cpu)->count = 0;1073return 0;1074}1075#endif10761077static void mix_interrupt_randomness(struct timer_list *work)1078{1079struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);1080/*1081* The size of the copied stack pool is explicitly 2 longs so that we1082* only ever ingest half of the siphash output each time, retaining1083* the other half as the next "key" that carries over. The entropy is1084* supposed to be sufficiently dispersed between bits so on average1085* we don't wind up "losing" some.1086*/1087unsigned long pool[2];1088unsigned int count;10891090/* Check to see if we're running on the wrong CPU due to hotplug. */1091local_irq_disable();1092if (fast_pool != this_cpu_ptr(&irq_randomness)) {1093local_irq_enable();1094return;1095}10961097/*1098* Copy the pool to the stack so that the mixer always has a1099* consistent view, before we reenable irqs again.1100*/1101memcpy(pool, fast_pool->pool, sizeof(pool));1102count = fast_pool->count;1103fast_pool->count = 0;1104fast_pool->last = jiffies;1105local_irq_enable();11061107mix_pool_bytes(pool, sizeof(pool));1108credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));11091110memzero_explicit(pool, sizeof(pool));1111}11121113void add_interrupt_randomness(int irq)1114{1115enum { MIX_INFLIGHT = 1U << 31 };1116unsigned long entropy = random_get_entropy();1117struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);1118struct pt_regs *regs = get_irq_regs();1119unsigned int new_count;11201121fast_mix(fast_pool->pool, entropy,1122(regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));1123new_count = ++fast_pool->count;11241125if (new_count & MIX_INFLIGHT)1126return;11271128if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))1129return;11301131fast_pool->count |= MIX_INFLIGHT;1132if (!timer_pending(&fast_pool->mix)) {1133fast_pool->mix.expires = jiffies;1134add_timer_on(&fast_pool->mix, raw_smp_processor_id());1135}1136}1137EXPORT_SYMBOL_GPL(add_interrupt_randomness);11381139/* There is one of these per entropy source */1140struct timer_rand_state {1141unsigned long last_time;1142long last_delta, last_delta2;1143};11441145/*1146* This function adds entropy to the entropy "pool" by using timing1147* delays. It uses the timer_rand_state structure to make an estimate1148* of how many bits of entropy this call has added to the pool. The1149* value "num" is also added to the pool; it should somehow describe1150* the type of event that just happened.1151*/1152static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)1153{1154unsigned long entropy = random_get_entropy(), now = jiffies, flags;1155long delta, delta2, delta3;1156unsigned int bits;11571158/*1159* If we're in a hard IRQ, add_interrupt_randomness() will be called1160* sometime after, so mix into the fast pool.1161*/1162if (in_hardirq()) {1163fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);1164} else {1165spin_lock_irqsave(&input_pool.lock, flags);1166_mix_pool_bytes(&entropy, sizeof(entropy));1167_mix_pool_bytes(&num, sizeof(num));1168spin_unlock_irqrestore(&input_pool.lock, flags);1169}11701171if (crng_ready())1172return;11731174/*1175* Calculate number of bits of randomness we probably added.1176* We take into account the first, second and third-order deltas1177* in order to make our estimate.1178*/1179delta = now - READ_ONCE(state->last_time);1180WRITE_ONCE(state->last_time, now);11811182delta2 = delta - READ_ONCE(state->last_delta);1183WRITE_ONCE(state->last_delta, delta);11841185delta3 = delta2 - READ_ONCE(state->last_delta2);1186WRITE_ONCE(state->last_delta2, delta2);11871188if (delta < 0)1189delta = -delta;1190if (delta2 < 0)1191delta2 = -delta2;1192if (delta3 < 0)1193delta3 = -delta3;1194if (delta > delta2)1195delta = delta2;1196if (delta > delta3)1197delta = delta3;11981199/*1200* delta is now minimum absolute delta. Round down by 1 bit1201* on general principles, and limit entropy estimate to 11 bits.1202*/1203bits = min(fls(delta >> 1), 11);12041205/*1206* As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()1207* will run after this, which uses a different crediting scheme of 1 bit1208* per every 64 interrupts. In order to let that function do accounting1209* close to the one in this function, we credit a full 64/64 bit per bit,1210* and then subtract one to account for the extra one added.1211*/1212if (in_hardirq())1213this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;1214else1215_credit_init_bits(bits);1216}12171218void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)1219{1220static unsigned char last_value;1221static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };12221223/* Ignore autorepeat and the like. */1224if (value == last_value)1225return;12261227last_value = value;1228add_timer_randomness(&input_timer_state,1229(type << 4) ^ code ^ (code >> 4) ^ value);1230}1231EXPORT_SYMBOL_GPL(add_input_randomness);12321233#ifdef CONFIG_BLOCK1234void add_disk_randomness(struct gendisk *disk)1235{1236if (!disk || !disk->random)1237return;1238/* First major is 1, so we get >= 0x200 here. */1239add_timer_randomness(disk->random, 0x100 + disk_devt(disk));1240}1241EXPORT_SYMBOL_GPL(add_disk_randomness);12421243void __cold rand_initialize_disk(struct gendisk *disk)1244{1245struct timer_rand_state *state;12461247/*1248* If kzalloc returns null, we just won't use that entropy1249* source.1250*/1251state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);1252if (state) {1253state->last_time = INITIAL_JIFFIES;1254disk->random = state;1255}1256}1257#endif12581259struct entropy_timer_state {1260unsigned long entropy;1261struct timer_list timer;1262atomic_t samples;1263unsigned int samples_per_bit;1264};12651266/*1267* Each time the timer fires, we expect that we got an unpredictable jump in1268* the cycle counter. Even if the timer is running on another CPU, the timer1269* activity will be touching the stack of the CPU that is generating entropy.1270*1271* Note that we don't re-arm the timer in the timer itself - we are happy to be1272* scheduled away, since that just makes the load more complex, but we do not1273* want the timer to keep ticking unless the entropy loop is running.1274*1275* So the re-arming always happens in the entropy loop itself.1276*/1277static void __cold entropy_timer(struct timer_list *timer)1278{1279struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);1280unsigned long entropy = random_get_entropy();12811282mix_pool_bytes(&entropy, sizeof(entropy));1283if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)1284credit_init_bits(1);1285}12861287/*1288* If we have an actual cycle counter, see if we can generate enough entropy1289* with timing noise.1290*/1291static void __cold try_to_generate_entropy(void)1292{1293enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };1294u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];1295struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);1296unsigned int i, num_different = 0;1297unsigned long last = random_get_entropy();1298int cpu = -1;12991300for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {1301stack->entropy = random_get_entropy();1302if (stack->entropy != last)1303++num_different;1304last = stack->entropy;1305}1306stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);1307if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)1308return;13091310atomic_set(&stack->samples, 0);1311timer_setup_on_stack(&stack->timer, entropy_timer, 0);1312while (!crng_ready() && !signal_pending(current)) {1313/*1314* Check !timer_pending() and then ensure that any previous callback has finished1315* executing by checking timer_delete_sync_try(), before queueing the next one.1316*/1317if (!timer_pending(&stack->timer) && timer_delete_sync_try(&stack->timer) >= 0) {1318struct cpumask timer_cpus;1319unsigned int num_cpus;13201321/*1322* Preemption must be disabled here, both to read the current CPU number1323* and to avoid scheduling a timer on a dead CPU.1324*/1325preempt_disable();13261327/* Only schedule callbacks on timer CPUs that are online. */1328cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);1329num_cpus = cpumask_weight(&timer_cpus);1330/* In very bizarre case of misconfiguration, fallback to all online. */1331if (unlikely(num_cpus == 0)) {1332timer_cpus = *cpu_online_mask;1333num_cpus = cpumask_weight(&timer_cpus);1334}13351336/* Basic CPU round-robin, which avoids the current CPU. */1337do {1338cpu = cpumask_next(cpu, &timer_cpus);1339if (cpu >= nr_cpu_ids)1340cpu = cpumask_first(&timer_cpus);1341} while (cpu == smp_processor_id() && num_cpus > 1);13421343/* Expiring the timer at `jiffies` means it's the next tick. */1344stack->timer.expires = jiffies;13451346add_timer_on(&stack->timer, cpu);13471348preempt_enable();1349}1350mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));1351schedule();1352stack->entropy = random_get_entropy();1353}1354mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));13551356timer_delete_sync(&stack->timer);1357timer_destroy_on_stack(&stack->timer);1358}135913601361/**********************************************************************1362*1363* Userspace reader/writer interfaces.1364*1365* getrandom(2) is the primary modern interface into the RNG and should1366* be used in preference to anything else.1367*1368* Reading from /dev/random has the same functionality as calling1369* getrandom(2) with flags=0. In earlier versions, however, it had1370* vastly different semantics and should therefore be avoided, to1371* prevent backwards compatibility issues.1372*1373* Reading from /dev/urandom has the same functionality as calling1374* getrandom(2) with flags=GRND_INSECURE. Because it does not block1375* waiting for the RNG to be ready, it should not be used.1376*1377* Writing to either /dev/random or /dev/urandom adds entropy to1378* the input pool but does not credit it.1379*1380* Polling on /dev/random indicates when the RNG is initialized, on1381* the read side, and when it wants new entropy, on the write side.1382*1383* Both /dev/random and /dev/urandom have the same set of ioctls for1384* adding entropy, getting the entropy count, zeroing the count, and1385* reseeding the crng.1386*1387**********************************************************************/13881389SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)1390{1391struct iov_iter iter;1392int ret;13931394if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))1395return -EINVAL;13961397/*1398* Requesting insecure and blocking randomness at the same time makes1399* no sense.1400*/1401if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))1402return -EINVAL;14031404if (!crng_ready() && !(flags & GRND_INSECURE)) {1405if (flags & GRND_NONBLOCK)1406return -EAGAIN;1407ret = wait_for_random_bytes();1408if (unlikely(ret))1409return ret;1410}14111412ret = import_ubuf(ITER_DEST, ubuf, len, &iter);1413if (unlikely(ret))1414return ret;1415return get_random_bytes_user(&iter);1416}14171418static __poll_t random_poll(struct file *file, poll_table *wait)1419{1420poll_wait(file, &crng_init_wait, wait);1421return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;1422}14231424static ssize_t write_pool_user(struct iov_iter *iter)1425{1426u8 block[BLAKE2S_BLOCK_SIZE];1427ssize_t ret = 0;1428size_t copied;14291430if (unlikely(!iov_iter_count(iter)))1431return 0;14321433for (;;) {1434copied = copy_from_iter(block, sizeof(block), iter);1435ret += copied;1436mix_pool_bytes(block, copied);1437if (!iov_iter_count(iter) || copied != sizeof(block))1438break;14391440BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);1441if (ret % PAGE_SIZE == 0) {1442if (signal_pending(current))1443break;1444cond_resched();1445}1446}14471448memzero_explicit(block, sizeof(block));1449return ret ? ret : -EFAULT;1450}14511452static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)1453{1454return write_pool_user(iter);1455}14561457static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)1458{1459static int maxwarn = 10;14601461/*1462* Opportunistically attempt to initialize the RNG on platforms that1463* have fast cycle counters, but don't (for now) require it to succeed.1464*/1465if (!crng_ready())1466try_to_generate_entropy();14671468if (!crng_ready()) {1469if (!ratelimit_disable && maxwarn <= 0)1470ratelimit_state_inc_miss(&urandom_warning);1471else if (ratelimit_disable || __ratelimit(&urandom_warning)) {1472--maxwarn;1473pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",1474current->comm, iov_iter_count(iter));1475}1476}14771478return get_random_bytes_user(iter);1479}14801481static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)1482{1483int ret;14841485if (!crng_ready() &&1486((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||1487(kiocb->ki_filp->f_flags & O_NONBLOCK)))1488return -EAGAIN;14891490ret = wait_for_random_bytes();1491if (ret != 0)1492return ret;1493return get_random_bytes_user(iter);1494}14951496static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)1497{1498int __user *p = (int __user *)arg;1499int ent_count;15001501switch (cmd) {1502case RNDGETENTCNT:1503/* Inherently racy, no point locking. */1504if (put_user(input_pool.init_bits, p))1505return -EFAULT;1506return 0;1507case RNDADDTOENTCNT:1508if (!capable(CAP_SYS_ADMIN))1509return -EPERM;1510if (get_user(ent_count, p))1511return -EFAULT;1512if (ent_count < 0)1513return -EINVAL;1514credit_init_bits(ent_count);1515return 0;1516case RNDADDENTROPY: {1517struct iov_iter iter;1518ssize_t ret;1519int len;15201521if (!capable(CAP_SYS_ADMIN))1522return -EPERM;1523if (get_user(ent_count, p++))1524return -EFAULT;1525if (ent_count < 0)1526return -EINVAL;1527if (get_user(len, p++))1528return -EFAULT;1529ret = import_ubuf(ITER_SOURCE, p, len, &iter);1530if (unlikely(ret))1531return ret;1532ret = write_pool_user(&iter);1533if (unlikely(ret < 0))1534return ret;1535/* Since we're crediting, enforce that it was all written into the pool. */1536if (unlikely(ret != len))1537return -EFAULT;1538credit_init_bits(ent_count);1539return 0;1540}1541case RNDZAPENTCNT:1542case RNDCLEARPOOL:1543/* No longer has any effect. */1544if (!capable(CAP_SYS_ADMIN))1545return -EPERM;1546return 0;1547case RNDRESEEDCRNG:1548if (!capable(CAP_SYS_ADMIN))1549return -EPERM;1550if (!crng_ready())1551return -ENODATA;1552crng_reseed(NULL);1553return 0;1554default:1555return -EINVAL;1556}1557}15581559static int random_fasync(int fd, struct file *filp, int on)1560{1561return fasync_helper(fd, filp, on, &fasync);1562}15631564const struct file_operations random_fops = {1565.read_iter = random_read_iter,1566.write_iter = random_write_iter,1567.poll = random_poll,1568.unlocked_ioctl = random_ioctl,1569.compat_ioctl = compat_ptr_ioctl,1570.fasync = random_fasync,1571.llseek = noop_llseek,1572.splice_read = copy_splice_read,1573.splice_write = iter_file_splice_write,1574};15751576const struct file_operations urandom_fops = {1577.read_iter = urandom_read_iter,1578.write_iter = random_write_iter,1579.unlocked_ioctl = random_ioctl,1580.compat_ioctl = compat_ptr_ioctl,1581.fasync = random_fasync,1582.llseek = noop_llseek,1583.splice_read = copy_splice_read,1584.splice_write = iter_file_splice_write,1585};158615871588/********************************************************************1589*1590* Sysctl interface.1591*1592* These are partly unused legacy knobs with dummy values to not break1593* userspace and partly still useful things. They are usually accessible1594* in /proc/sys/kernel/random/ and are as follows:1595*1596* - boot_id - a UUID representing the current boot.1597*1598* - uuid - a random UUID, different each time the file is read.1599*1600* - poolsize - the number of bits of entropy that the input pool can1601* hold, tied to the POOL_BITS constant.1602*1603* - entropy_avail - the number of bits of entropy currently in the1604* input pool. Always <= poolsize.1605*1606* - write_wakeup_threshold - the amount of entropy in the input pool1607* below which write polls to /dev/random will unblock, requesting1608* more entropy, tied to the POOL_READY_BITS constant. It is writable1609* to avoid breaking old userspaces, but writing to it does not1610* change any behavior of the RNG.1611*1612* - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.1613* It is writable to avoid breaking old userspaces, but writing1614* to it does not change any behavior of the RNG.1615*1616********************************************************************/16171618#ifdef CONFIG_SYSCTL16191620#include <linux/sysctl.h>16211622static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;1623static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;1624static int sysctl_poolsize = POOL_BITS;1625static u8 sysctl_bootid[UUID_SIZE];16261627/*1628* This function is used to return both the bootid UUID, and random1629* UUID. The difference is in whether table->data is NULL; if it is,1630* then a new UUID is generated and returned to the user.1631*/1632static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,1633size_t *lenp, loff_t *ppos)1634{1635u8 tmp_uuid[UUID_SIZE], *uuid;1636char uuid_string[UUID_STRING_LEN + 1];1637struct ctl_table fake_table = {1638.data = uuid_string,1639.maxlen = UUID_STRING_LEN1640};16411642if (write)1643return -EPERM;16441645uuid = table->data;1646if (!uuid) {1647uuid = tmp_uuid;1648generate_random_uuid(uuid);1649} else {1650static DEFINE_SPINLOCK(bootid_spinlock);16511652spin_lock(&bootid_spinlock);1653if (!uuid[8])1654generate_random_uuid(uuid);1655spin_unlock(&bootid_spinlock);1656}16571658snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);1659return proc_dostring(&fake_table, 0, buf, lenp, ppos);1660}16611662/* The same as proc_dointvec, but writes don't change anything. */1663static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,1664size_t *lenp, loff_t *ppos)1665{1666return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);1667}16681669static const struct ctl_table random_table[] = {1670{1671.procname = "poolsize",1672.data = &sysctl_poolsize,1673.maxlen = sizeof(int),1674.mode = 0444,1675.proc_handler = proc_dointvec,1676},1677{1678.procname = "entropy_avail",1679.data = &input_pool.init_bits,1680.maxlen = sizeof(int),1681.mode = 0444,1682.proc_handler = proc_dointvec,1683},1684{1685.procname = "write_wakeup_threshold",1686.data = &sysctl_random_write_wakeup_bits,1687.maxlen = sizeof(int),1688.mode = 0644,1689.proc_handler = proc_do_rointvec,1690},1691{1692.procname = "urandom_min_reseed_secs",1693.data = &sysctl_random_min_urandom_seed,1694.maxlen = sizeof(int),1695.mode = 0644,1696.proc_handler = proc_do_rointvec,1697},1698{1699.procname = "boot_id",1700.data = &sysctl_bootid,1701.mode = 0444,1702.proc_handler = proc_do_uuid,1703},1704{1705.procname = "uuid",1706.mode = 0444,1707.proc_handler = proc_do_uuid,1708},1709};17101711/*1712* random_init() is called before sysctl_init(),1713* so we cannot call register_sysctl_init() in random_init()1714*/1715static int __init random_sysctls_init(void)1716{1717register_sysctl_init("kernel/random", random_table);1718return 0;1719}1720device_initcall(random_sysctls_init);1721#endif172217231724