Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/tpm/tpm2-sessions.c
50950 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright (C) 2018 [email protected]
5
*
6
* Cryptographic helper routines for handling TPM2 sessions for
7
* authorization HMAC and request response encryption.
8
*
9
* The idea is to ensure that every TPM command is HMAC protected by a
10
* session, meaning in-flight tampering would be detected and in
11
* addition all sensitive inputs and responses should be encrypted.
12
*
13
* The basic way this works is to use a TPM feature called salted
14
* sessions where a random secret used in session construction is
15
* encrypted to the public part of a known TPM key. The problem is we
16
* have no known keys, so initially a primary Elliptic Curve key is
17
* derived from the NULL seed (we use EC because most TPMs generate
18
* these keys much faster than RSA ones). The curve used is NIST_P256
19
* because that's now mandated to be present in 'TCG TPM v2.0
20
* Provisioning Guidance'
21
*
22
* Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23
* be) session protected, so a clever Man in the Middle could return a
24
* public key they control to this command and from there intercept
25
* and decode all subsequent session based transactions. The kernel
26
* cannot mitigate this threat but, after boot, userspace can get
27
* proof this has not happened by asking the TPM to certify the NULL
28
* key. This certification would chain back to the TPM Endorsement
29
* Certificate and prove the NULL seed primary had not been tampered
30
* with and thus all sessions must have been cryptographically secure.
31
* To assist with this, the initial NULL seed public key name is made
32
* available in a sysfs file.
33
*
34
* Use of these functions:
35
*
36
* The design is all the crypto, hash and hmac gunk is confined in this
37
* file and never needs to be seen even by the kernel internal user. To
38
* the user there's an init function tpm2_sessions_init() that needs to
39
* be called once per TPM which generates the NULL seed primary key.
40
*
41
* These are the usage functions:
42
*
43
* tpm2_end_auth_session() kills the session and frees the resources.
44
* Under normal operation this function is done by
45
* tpm_buf_check_hmac_response(), so this is only to be used on
46
* error legs where the latter is not executed.
47
* tpm_buf_append_name() to add a handle to the buffer. This must be
48
* used in place of the usual tpm_buf_append_u32() for adding
49
* handles because handles have to be processed specially when
50
* calculating the HMAC. In particular, for NV, volatile and
51
* permanent objects you now need to provide the name.
52
* tpm_buf_append_hmac_session() which appends the hmac session to the
53
* buf in the same way tpm_buf_append_auth does().
54
* tpm_buf_fill_hmac_session() This calculates the correct hash and
55
* places it in the buffer. It must be called after the complete
56
* command buffer is finalized so it can fill in the correct HMAC
57
* based on the parameters.
58
* tpm_buf_check_hmac_response() which checks the session response in
59
* the buffer and calculates what it should be. If there's a
60
* mismatch it will log a warning and return an error. If
61
* tpm_buf_append_hmac_session() did not specify
62
* TPM_SA_CONTINUE_SESSION then the session will be closed (if it
63
* hasn't been consumed) and the auth structure freed.
64
*/
65
66
#include "tpm.h"
67
#include <linux/random.h>
68
#include <linux/scatterlist.h>
69
#include <linux/unaligned.h>
70
#include <crypto/kpp.h>
71
#include <crypto/ecdh.h>
72
#include <crypto/sha2.h>
73
#include <crypto/utils.h>
74
75
/* maximum number of names the TPM must remember for authorization */
76
#define AUTH_MAX_NAMES 3
77
78
#define AES_KEY_BYTES AES_KEYSIZE_128
79
#define AES_KEY_BITS (AES_KEY_BYTES*8)
80
81
/*
82
* This is the structure that carries all the auth information (like
83
* session handle, nonces, session key and auth) from use to use it is
84
* designed to be opaque to anything outside.
85
*/
86
struct tpm2_auth {
87
u32 handle;
88
/*
89
* This has two meanings: before tpm_buf_fill_hmac_session()
90
* it marks the offset in the buffer of the start of the
91
* sessions (i.e. after all the handles). Once the buffer has
92
* been filled it markes the session number of our auth
93
* session so we can find it again in the response buffer.
94
*
95
* The two cases are distinguished because the first offset
96
* must always be greater than TPM_HEADER_SIZE and the second
97
* must be less than or equal to 5.
98
*/
99
u32 session;
100
/*
101
* the size here is variable and set by the size of our_nonce
102
* which must be between 16 and the name hash length. we set
103
* the maximum sha256 size for the greatest protection
104
*/
105
u8 our_nonce[SHA256_DIGEST_SIZE];
106
u8 tpm_nonce[SHA256_DIGEST_SIZE];
107
/*
108
* the salt is only used across the session command/response
109
* after that it can be used as a scratch area
110
*/
111
union {
112
u8 salt[EC_PT_SZ];
113
/* scratch for key + IV */
114
u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
115
};
116
/*
117
* the session key and passphrase are the same size as the
118
* name digest (sha256 again). The session key is constant
119
* for the use of the session and the passphrase can change
120
* with every invocation.
121
*
122
* Note: these fields must be adjacent and in this order
123
* because several HMAC/KDF schemes use the combination of the
124
* session_key and passphrase.
125
*/
126
u8 session_key[SHA256_DIGEST_SIZE];
127
u8 passphrase[SHA256_DIGEST_SIZE];
128
int passphrase_len;
129
struct aes_enckey aes_key;
130
/* saved session attributes: */
131
u8 attrs;
132
__be32 ordinal;
133
134
/*
135
* memory for three authorization handles. We know them by
136
* handle, but they are part of the session by name, which
137
* we must compute and remember
138
*/
139
u32 name_h[AUTH_MAX_NAMES];
140
u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
141
};
142
143
#ifdef CONFIG_TCG_TPM2_HMAC
144
/*
145
* Name Size based on TPM algorithm (assumes no hash bigger than 255)
146
*/
147
static int name_size(const u8 *name)
148
{
149
u16 hash_alg = get_unaligned_be16(name);
150
151
switch (hash_alg) {
152
case TPM_ALG_SHA1:
153
return SHA1_DIGEST_SIZE + 2;
154
case TPM_ALG_SHA256:
155
return SHA256_DIGEST_SIZE + 2;
156
case TPM_ALG_SHA384:
157
return SHA384_DIGEST_SIZE + 2;
158
case TPM_ALG_SHA512:
159
return SHA512_DIGEST_SIZE + 2;
160
default:
161
pr_warn("tpm: unsupported name algorithm: 0x%04x\n", hash_alg);
162
return -EINVAL;
163
}
164
}
165
166
static int tpm2_read_public(struct tpm_chip *chip, u32 handle, void *name)
167
{
168
u32 mso = tpm2_handle_mso(handle);
169
off_t offset = TPM_HEADER_SIZE;
170
int rc, name_size_alg;
171
struct tpm_buf buf;
172
173
if (mso != TPM2_MSO_PERSISTENT && mso != TPM2_MSO_VOLATILE &&
174
mso != TPM2_MSO_NVRAM) {
175
memcpy(name, &handle, sizeof(u32));
176
return sizeof(u32);
177
}
178
179
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
180
if (rc)
181
return rc;
182
183
tpm_buf_append_u32(&buf, handle);
184
185
rc = tpm_transmit_cmd(chip, &buf, 0, "TPM2_ReadPublic");
186
if (rc) {
187
tpm_buf_destroy(&buf);
188
return tpm_ret_to_err(rc);
189
}
190
191
/* Skip TPMT_PUBLIC: */
192
offset += tpm_buf_read_u16(&buf, &offset);
193
194
/*
195
* Ensure space for the length field of TPM2B_NAME and hashAlg field of
196
* TPMT_HA (the extra four bytes).
197
*/
198
if (offset + 4 > tpm_buf_length(&buf)) {
199
tpm_buf_destroy(&buf);
200
return -EIO;
201
}
202
203
rc = tpm_buf_read_u16(&buf, &offset);
204
name_size_alg = name_size(&buf.data[offset]);
205
206
if (name_size_alg < 0)
207
return name_size_alg;
208
209
if (rc != name_size_alg) {
210
tpm_buf_destroy(&buf);
211
return -EIO;
212
}
213
214
if (offset + rc > tpm_buf_length(&buf)) {
215
tpm_buf_destroy(&buf);
216
return -EIO;
217
}
218
219
memcpy(name, &buf.data[offset], rc);
220
return name_size_alg;
221
}
222
#endif /* CONFIG_TCG_TPM2_HMAC */
223
224
/**
225
* tpm_buf_append_name() - add a handle area to the buffer
226
* @chip: the TPM chip structure
227
* @buf: The buffer to be appended
228
* @handle: The handle to be appended
229
* @name: The name of the handle (may be NULL)
230
*
231
* In order to compute session HMACs, we need to know the names of the
232
* objects pointed to by the handles. For most objects, this is simply
233
* the actual 4 byte handle or an empty buf (in these cases @name
234
* should be NULL) but for volatile objects, permanent objects and NV
235
* areas, the name is defined as the hash (according to the name
236
* algorithm which should be set to sha256) of the public area to
237
* which the two byte algorithm id has been appended. For these
238
* objects, the @name pointer should point to this. If a name is
239
* required but @name is NULL, then TPM2_ReadPublic() will be called
240
* on the handle to obtain the name.
241
*
242
* As with most tpm_buf operations, success is assumed because failure
243
* will be caused by an incorrect programming model and indicated by a
244
* kernel message.
245
*
246
* Ends the authorization session on failure.
247
*/
248
int tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
249
u32 handle, u8 *name)
250
{
251
#ifdef CONFIG_TCG_TPM2_HMAC
252
enum tpm2_mso_type mso = tpm2_handle_mso(handle);
253
struct tpm2_auth *auth;
254
u16 name_size_alg;
255
int slot;
256
int ret;
257
#endif
258
259
if (!tpm2_chip_auth(chip)) {
260
tpm_buf_append_handle(chip, buf, handle);
261
return 0;
262
}
263
264
#ifdef CONFIG_TCG_TPM2_HMAC
265
slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
266
if (slot >= AUTH_MAX_NAMES) {
267
dev_err(&chip->dev, "too many handles\n");
268
ret = -EIO;
269
goto err;
270
}
271
auth = chip->auth;
272
if (auth->session != tpm_buf_length(buf)) {
273
dev_err(&chip->dev, "session state malformed");
274
ret = -EIO;
275
goto err;
276
}
277
tpm_buf_append_u32(buf, handle);
278
auth->session += 4;
279
280
if (mso == TPM2_MSO_PERSISTENT ||
281
mso == TPM2_MSO_VOLATILE ||
282
mso == TPM2_MSO_NVRAM) {
283
if (!name) {
284
ret = tpm2_read_public(chip, handle, auth->name[slot]);
285
if (ret < 0)
286
goto err;
287
288
name_size_alg = ret;
289
}
290
} else {
291
if (name) {
292
dev_err(&chip->dev, "handle 0x%08x does not use a name\n",
293
handle);
294
ret = -EIO;
295
goto err;
296
}
297
}
298
299
auth->name_h[slot] = handle;
300
if (name)
301
memcpy(auth->name[slot], name, name_size_alg);
302
#endif
303
return 0;
304
305
#ifdef CONFIG_TCG_TPM2_HMAC
306
err:
307
tpm2_end_auth_session(chip);
308
return tpm_ret_to_err(ret);
309
#endif
310
}
311
EXPORT_SYMBOL_GPL(tpm_buf_append_name);
312
313
void tpm_buf_append_auth(struct tpm_chip *chip, struct tpm_buf *buf,
314
u8 *passphrase, int passphrase_len)
315
{
316
/* offset tells us where the sessions area begins */
317
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
318
u32 len = 9 + passphrase_len;
319
320
if (tpm_buf_length(buf) != offset) {
321
/* not the first session so update the existing length */
322
len += get_unaligned_be32(&buf->data[offset]);
323
put_unaligned_be32(len, &buf->data[offset]);
324
} else {
325
tpm_buf_append_u32(buf, len);
326
}
327
/* auth handle */
328
tpm_buf_append_u32(buf, TPM2_RS_PW);
329
/* nonce */
330
tpm_buf_append_u16(buf, 0);
331
/* attributes */
332
tpm_buf_append_u8(buf, 0);
333
/* passphrase */
334
tpm_buf_append_u16(buf, passphrase_len);
335
tpm_buf_append(buf, passphrase, passphrase_len);
336
}
337
338
/**
339
* tpm_buf_append_hmac_session() - Append a TPM session element
340
* @chip: the TPM chip structure
341
* @buf: The buffer to be appended
342
* @attributes: The session attributes
343
* @passphrase: The session authority (NULL if none)
344
* @passphrase_len: The length of the session authority (0 if none)
345
*
346
* This fills in a session structure in the TPM command buffer, except
347
* for the HMAC which cannot be computed until the command buffer is
348
* complete. The type of session is controlled by the @attributes,
349
* the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
350
* session won't terminate after tpm_buf_check_hmac_response(),
351
* TPM2_SA_DECRYPT which means this buffers first parameter should be
352
* encrypted with a session key and TPM2_SA_ENCRYPT, which means the
353
* response buffer's first parameter needs to be decrypted (confusing,
354
* but the defines are written from the point of view of the TPM).
355
*
356
* Any session appended by this command must be finalized by calling
357
* tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
358
* and the TPM will reject the command.
359
*
360
* As with most tpm_buf operations, success is assumed because failure
361
* will be caused by an incorrect programming model and indicated by a
362
* kernel message.
363
*/
364
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
365
u8 attributes, u8 *passphrase,
366
int passphrase_len)
367
{
368
#ifdef CONFIG_TCG_TPM2_HMAC
369
u8 nonce[SHA256_DIGEST_SIZE];
370
struct tpm2_auth *auth;
371
u32 len;
372
#endif
373
374
if (!tpm2_chip_auth(chip)) {
375
tpm_buf_append_auth(chip, buf, passphrase, passphrase_len);
376
return;
377
}
378
379
#ifdef CONFIG_TCG_TPM2_HMAC
380
/* The first write to /dev/tpm{rm0} will flush the session. */
381
attributes |= TPM2_SA_CONTINUE_SESSION;
382
383
/*
384
* The Architecture Guide requires us to strip trailing zeros
385
* before computing the HMAC
386
*/
387
while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
388
passphrase_len--;
389
390
auth = chip->auth;
391
auth->attrs = attributes;
392
auth->passphrase_len = passphrase_len;
393
if (passphrase_len)
394
memcpy(auth->passphrase, passphrase, passphrase_len);
395
396
if (auth->session != tpm_buf_length(buf)) {
397
/* we're not the first session */
398
len = get_unaligned_be32(&buf->data[auth->session]);
399
if (4 + len + auth->session != tpm_buf_length(buf)) {
400
WARN(1, "session length mismatch, cannot append");
401
return;
402
}
403
404
/* add our new session */
405
len += 9 + 2 * SHA256_DIGEST_SIZE;
406
put_unaligned_be32(len, &buf->data[auth->session]);
407
} else {
408
tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
409
}
410
411
/* random number for our nonce */
412
get_random_bytes(nonce, sizeof(nonce));
413
memcpy(auth->our_nonce, nonce, sizeof(nonce));
414
tpm_buf_append_u32(buf, auth->handle);
415
/* our new nonce */
416
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
417
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
418
tpm_buf_append_u8(buf, auth->attrs);
419
/* and put a placeholder for the hmac */
420
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
421
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
422
#endif
423
}
424
EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
425
426
#ifdef CONFIG_TCG_TPM2_HMAC
427
428
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
429
u32 *handle, u8 *name);
430
431
/*
432
* assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
433
* otherwise standard tpm2_KDFa. Note output is in bytes not bits.
434
*/
435
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
436
u8 *v, u32 bytes, u8 *out)
437
{
438
u32 counter = 1;
439
const __be32 bits = cpu_to_be32(bytes * 8);
440
441
while (bytes > 0) {
442
struct hmac_sha256_ctx hctx;
443
__be32 c = cpu_to_be32(counter);
444
445
hmac_sha256_init_usingrawkey(&hctx, key, key_len);
446
hmac_sha256_update(&hctx, (u8 *)&c, sizeof(c));
447
hmac_sha256_update(&hctx, label, strlen(label) + 1);
448
hmac_sha256_update(&hctx, u, SHA256_DIGEST_SIZE);
449
hmac_sha256_update(&hctx, v, SHA256_DIGEST_SIZE);
450
hmac_sha256_update(&hctx, (u8 *)&bits, sizeof(bits));
451
hmac_sha256_final(&hctx, out);
452
453
bytes -= SHA256_DIGEST_SIZE;
454
counter++;
455
out += SHA256_DIGEST_SIZE;
456
}
457
}
458
459
/*
460
* Somewhat of a bastardization of the real KDFe. We're assuming
461
* we're working with known point sizes for the input parameters and
462
* the hash algorithm is fixed at sha256. Because we know that the
463
* point size is 32 bytes like the hash size, there's no need to loop
464
* in this KDF.
465
*/
466
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
467
u8 *out)
468
{
469
struct sha256_ctx sctx;
470
/*
471
* this should be an iterative counter, but because we know
472
* we're only taking 32 bytes for the point using a sha256
473
* hash which is also 32 bytes, there's only one loop
474
*/
475
__be32 c = cpu_to_be32(1);
476
477
sha256_init(&sctx);
478
/* counter (BE) */
479
sha256_update(&sctx, (u8 *)&c, sizeof(c));
480
/* secret value */
481
sha256_update(&sctx, z, EC_PT_SZ);
482
/* string including trailing zero */
483
sha256_update(&sctx, str, strlen(str)+1);
484
sha256_update(&sctx, pt_u, EC_PT_SZ);
485
sha256_update(&sctx, pt_v, EC_PT_SZ);
486
sha256_final(&sctx, out);
487
}
488
489
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
490
struct tpm2_auth *auth)
491
{
492
struct crypto_kpp *kpp;
493
struct kpp_request *req;
494
struct scatterlist s[2], d[1];
495
struct ecdh p = {0};
496
u8 encoded_key[EC_PT_SZ], *x, *y;
497
unsigned int buf_len;
498
499
/* secret is two sized points */
500
tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
501
/*
502
* we cheat here and append uninitialized data to form
503
* the points. All we care about is getting the two
504
* co-ordinate pointers, which will be used to overwrite
505
* the uninitialized data
506
*/
507
tpm_buf_append_u16(buf, EC_PT_SZ);
508
x = &buf->data[tpm_buf_length(buf)];
509
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
510
tpm_buf_append_u16(buf, EC_PT_SZ);
511
y = &buf->data[tpm_buf_length(buf)];
512
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
513
sg_init_table(s, 2);
514
sg_set_buf(&s[0], x, EC_PT_SZ);
515
sg_set_buf(&s[1], y, EC_PT_SZ);
516
517
kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
518
if (IS_ERR(kpp)) {
519
dev_err(&chip->dev, "crypto ecdh allocation failed\n");
520
return;
521
}
522
523
buf_len = crypto_ecdh_key_len(&p);
524
if (sizeof(encoded_key) < buf_len) {
525
dev_err(&chip->dev, "salt buffer too small needs %d\n",
526
buf_len);
527
goto out;
528
}
529
crypto_ecdh_encode_key(encoded_key, buf_len, &p);
530
/* this generates a random private key */
531
crypto_kpp_set_secret(kpp, encoded_key, buf_len);
532
533
/* salt is now the public point of this private key */
534
req = kpp_request_alloc(kpp, GFP_KERNEL);
535
if (!req)
536
goto out;
537
kpp_request_set_input(req, NULL, 0);
538
kpp_request_set_output(req, s, EC_PT_SZ*2);
539
crypto_kpp_generate_public_key(req);
540
/*
541
* we're not done: now we have to compute the shared secret
542
* which is our private key multiplied by the tpm_key public
543
* point, we actually only take the x point and discard the y
544
* point and feed it through KDFe to get the final secret salt
545
*/
546
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
547
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
548
kpp_request_set_input(req, s, EC_PT_SZ*2);
549
sg_init_one(d, auth->salt, EC_PT_SZ);
550
kpp_request_set_output(req, d, EC_PT_SZ);
551
crypto_kpp_compute_shared_secret(req);
552
kpp_request_free(req);
553
554
/*
555
* pass the shared secret through KDFe for salt. Note salt
556
* area is used both for input shared secret and output salt.
557
* This works because KDFe fully consumes the secret before it
558
* writes the salt
559
*/
560
tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
561
562
out:
563
crypto_free_kpp(kpp);
564
}
565
566
/**
567
* tpm_buf_fill_hmac_session() - finalize the session HMAC
568
* @chip: the TPM chip structure
569
* @buf: The buffer to be appended
570
*
571
* This command must not be called until all of the parameters have
572
* been appended to @buf otherwise the computed HMAC will be
573
* incorrect.
574
*
575
* This function computes and fills in the session HMAC using the
576
* session key and, if TPM2_SA_DECRYPT was specified, computes the
577
* encryption key and encrypts the first parameter of the command
578
* buffer with it.
579
*
580
* Ends the authorization session on failure.
581
*/
582
int tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
583
{
584
u32 cc, handles, val;
585
struct tpm2_auth *auth = chip->auth;
586
int i;
587
struct tpm_header *head = (struct tpm_header *)buf->data;
588
off_t offset_s = TPM_HEADER_SIZE, offset_p;
589
u8 *hmac = NULL;
590
u32 attrs;
591
u8 cphash[SHA256_DIGEST_SIZE];
592
struct sha256_ctx sctx;
593
struct hmac_sha256_ctx hctx;
594
int ret;
595
596
if (!auth) {
597
ret = -EIO;
598
goto err;
599
}
600
601
/* save the command code in BE format */
602
auth->ordinal = head->ordinal;
603
604
cc = be32_to_cpu(head->ordinal);
605
606
i = tpm2_find_cc(chip, cc);
607
if (i < 0) {
608
dev_err(&chip->dev, "command 0x%08x not found\n", cc);
609
ret = -EIO;
610
goto err;
611
}
612
613
attrs = chip->cc_attrs_tbl[i];
614
615
handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
616
617
/*
618
* just check the names, it's easy to make mistakes. This
619
* would happen if someone added a handle via
620
* tpm_buf_append_u32() instead of tpm_buf_append_name()
621
*/
622
for (i = 0; i < handles; i++) {
623
u32 handle = tpm_buf_read_u32(buf, &offset_s);
624
625
if (auth->name_h[i] != handle) {
626
dev_err(&chip->dev, "invalid handle 0x%08x\n", handle);
627
ret = -EIO;
628
goto err;
629
}
630
}
631
/* point offset_s to the start of the sessions */
632
val = tpm_buf_read_u32(buf, &offset_s);
633
/* point offset_p to the start of the parameters */
634
offset_p = offset_s + val;
635
for (i = 1; offset_s < offset_p; i++) {
636
u32 handle = tpm_buf_read_u32(buf, &offset_s);
637
u16 len;
638
u8 a;
639
640
/* nonce (already in auth) */
641
len = tpm_buf_read_u16(buf, &offset_s);
642
offset_s += len;
643
644
a = tpm_buf_read_u8(buf, &offset_s);
645
646
len = tpm_buf_read_u16(buf, &offset_s);
647
if (handle == auth->handle && auth->attrs == a) {
648
hmac = &buf->data[offset_s];
649
/*
650
* save our session number so we know which
651
* session in the response belongs to us
652
*/
653
auth->session = i;
654
}
655
656
offset_s += len;
657
}
658
if (offset_s != offset_p) {
659
dev_err(&chip->dev, "session length is incorrect\n");
660
ret = -EIO;
661
goto err;
662
}
663
if (!hmac) {
664
dev_err(&chip->dev, "could not find HMAC session\n");
665
ret = -EIO;
666
goto err;
667
}
668
669
/* encrypt before HMAC */
670
if (auth->attrs & TPM2_SA_DECRYPT) {
671
u16 len;
672
673
/* need key and IV */
674
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
675
+ auth->passphrase_len, "CFB", auth->our_nonce,
676
auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
677
auth->scratch);
678
679
len = tpm_buf_read_u16(buf, &offset_p);
680
aes_prepareenckey(&auth->aes_key, auth->scratch, AES_KEY_BYTES);
681
aescfb_encrypt(&auth->aes_key, &buf->data[offset_p],
682
&buf->data[offset_p], len,
683
auth->scratch + AES_KEY_BYTES);
684
/* reset p to beginning of parameters for HMAC */
685
offset_p -= 2;
686
}
687
688
sha256_init(&sctx);
689
/* ordinal is already BE */
690
sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
691
/* add the handle names */
692
for (i = 0; i < handles; i++) {
693
enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
694
695
if (mso == TPM2_MSO_PERSISTENT ||
696
mso == TPM2_MSO_VOLATILE ||
697
mso == TPM2_MSO_NVRAM) {
698
ret = name_size(auth->name[i]);
699
if (ret < 0)
700
goto err;
701
702
sha256_update(&sctx, auth->name[i], ret);
703
} else {
704
__be32 h = cpu_to_be32(auth->name_h[i]);
705
706
sha256_update(&sctx, (u8 *)&h, 4);
707
}
708
}
709
if (offset_s != tpm_buf_length(buf))
710
sha256_update(&sctx, &buf->data[offset_s],
711
tpm_buf_length(buf) - offset_s);
712
sha256_final(&sctx, cphash);
713
714
/* now calculate the hmac */
715
hmac_sha256_init_usingrawkey(&hctx, auth->session_key,
716
sizeof(auth->session_key) +
717
auth->passphrase_len);
718
hmac_sha256_update(&hctx, cphash, sizeof(cphash));
719
hmac_sha256_update(&hctx, auth->our_nonce, sizeof(auth->our_nonce));
720
hmac_sha256_update(&hctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
721
hmac_sha256_update(&hctx, &auth->attrs, 1);
722
hmac_sha256_final(&hctx, hmac);
723
return 0;
724
725
err:
726
tpm2_end_auth_session(chip);
727
return ret;
728
}
729
EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
730
731
/**
732
* tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
733
* @chip: the TPM chip structure
734
* @buf: the original command buffer (which now contains the response)
735
* @rc: the return code from tpm_transmit_cmd
736
*
737
* If @rc is non zero, @buf may not contain an actual return, so @rc
738
* is passed through as the return and the session cleaned up and
739
* de-allocated if required (this is required if
740
* TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
741
*
742
* If @rc is zero, the response HMAC is computed against the returned
743
* @buf and matched to the TPM one in the session area. If there is a
744
* mismatch, an error is logged and -EINVAL returned.
745
*
746
* The reason for this is that the command issue and HMAC check
747
* sequence should look like:
748
*
749
* rc = tpm_transmit_cmd(...);
750
* rc = tpm_buf_check_hmac_response(&buf, auth, rc);
751
* if (rc)
752
* ...
753
*
754
* Which is easily layered into the current contrl flow.
755
*
756
* Returns: 0 on success or an error.
757
*/
758
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
759
int rc)
760
{
761
struct tpm_header *head = (struct tpm_header *)buf->data;
762
struct tpm2_auth *auth = chip->auth;
763
off_t offset_s, offset_p;
764
u8 rphash[SHA256_DIGEST_SIZE];
765
u32 attrs, cc;
766
struct sha256_ctx sctx;
767
struct hmac_sha256_ctx hctx;
768
u16 tag = be16_to_cpu(head->tag);
769
int parm_len, len, i, handles;
770
771
if (!auth)
772
return rc;
773
774
cc = be32_to_cpu(auth->ordinal);
775
776
if (auth->session >= TPM_HEADER_SIZE) {
777
WARN(1, "tpm session not filled correctly\n");
778
goto out;
779
}
780
781
if (rc != 0)
782
/* pass non success rc through and close the session */
783
goto out;
784
785
rc = -EINVAL;
786
if (tag != TPM2_ST_SESSIONS) {
787
dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
788
goto out;
789
}
790
791
i = tpm2_find_cc(chip, cc);
792
if (i < 0)
793
goto out;
794
attrs = chip->cc_attrs_tbl[i];
795
handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
796
797
/* point to area beyond handles */
798
offset_s = TPM_HEADER_SIZE + handles * 4;
799
parm_len = tpm_buf_read_u32(buf, &offset_s);
800
offset_p = offset_s;
801
offset_s += parm_len;
802
/* skip over any sessions before ours */
803
for (i = 0; i < auth->session - 1; i++) {
804
len = tpm_buf_read_u16(buf, &offset_s);
805
offset_s += len + 1;
806
len = tpm_buf_read_u16(buf, &offset_s);
807
offset_s += len;
808
}
809
/* TPM nonce */
810
len = tpm_buf_read_u16(buf, &offset_s);
811
if (offset_s + len > tpm_buf_length(buf))
812
goto out;
813
if (len != SHA256_DIGEST_SIZE)
814
goto out;
815
memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
816
offset_s += len;
817
attrs = tpm_buf_read_u8(buf, &offset_s);
818
len = tpm_buf_read_u16(buf, &offset_s);
819
if (offset_s + len != tpm_buf_length(buf))
820
goto out;
821
if (len != SHA256_DIGEST_SIZE)
822
goto out;
823
/*
824
* offset_s points to the HMAC. now calculate comparison, beginning
825
* with rphash
826
*/
827
sha256_init(&sctx);
828
/* yes, I know this is now zero, but it's what the standard says */
829
sha256_update(&sctx, (u8 *)&head->return_code,
830
sizeof(head->return_code));
831
/* ordinal is already BE */
832
sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
833
sha256_update(&sctx, &buf->data[offset_p], parm_len);
834
sha256_final(&sctx, rphash);
835
836
/* now calculate the hmac */
837
hmac_sha256_init_usingrawkey(&hctx, auth->session_key,
838
sizeof(auth->session_key) +
839
auth->passphrase_len);
840
hmac_sha256_update(&hctx, rphash, sizeof(rphash));
841
hmac_sha256_update(&hctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
842
hmac_sha256_update(&hctx, auth->our_nonce, sizeof(auth->our_nonce));
843
hmac_sha256_update(&hctx, &auth->attrs, 1);
844
/* we're done with the rphash, so put our idea of the hmac there */
845
hmac_sha256_final(&hctx, rphash);
846
if (crypto_memneq(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE)) {
847
dev_err(&chip->dev, "TPM: HMAC check failed\n");
848
goto out;
849
}
850
rc = 0;
851
852
/* now do response decryption */
853
if (auth->attrs & TPM2_SA_ENCRYPT) {
854
/* need key and IV */
855
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
856
+ auth->passphrase_len, "CFB", auth->tpm_nonce,
857
auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
858
auth->scratch);
859
860
len = tpm_buf_read_u16(buf, &offset_p);
861
aes_prepareenckey(&auth->aes_key, auth->scratch, AES_KEY_BYTES);
862
aescfb_decrypt(&auth->aes_key, &buf->data[offset_p],
863
&buf->data[offset_p], len,
864
auth->scratch + AES_KEY_BYTES);
865
}
866
867
out:
868
if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
869
if (rc)
870
/* manually close the session if it wasn't consumed */
871
tpm2_flush_context(chip, auth->handle);
872
873
kfree_sensitive(auth);
874
chip->auth = NULL;
875
} else {
876
/* reset for next use */
877
auth->session = TPM_HEADER_SIZE;
878
}
879
880
return rc;
881
}
882
EXPORT_SYMBOL(tpm_buf_check_hmac_response);
883
884
/**
885
* tpm2_end_auth_session() - kill the allocated auth session
886
* @chip: the TPM chip structure
887
*
888
* ends the session started by tpm2_start_auth_session and frees all
889
* the resources. Under normal conditions,
890
* tpm_buf_check_hmac_response() will correctly end the session if
891
* required, so this function is only for use in error legs that will
892
* bypass the normal invocation of tpm_buf_check_hmac_response().
893
*/
894
void tpm2_end_auth_session(struct tpm_chip *chip)
895
{
896
struct tpm2_auth *auth = chip->auth;
897
898
if (!auth)
899
return;
900
901
tpm2_flush_context(chip, auth->handle);
902
kfree_sensitive(auth);
903
chip->auth = NULL;
904
}
905
EXPORT_SYMBOL(tpm2_end_auth_session);
906
907
static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
908
struct tpm_buf *buf)
909
{
910
struct tpm_header *head = (struct tpm_header *)buf->data;
911
u32 tot_len = be32_to_cpu(head->length);
912
off_t offset = TPM_HEADER_SIZE;
913
u32 val;
914
915
/* we're starting after the header so adjust the length */
916
tot_len -= TPM_HEADER_SIZE;
917
918
/* should have handle plus nonce */
919
if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
920
return -EINVAL;
921
922
auth->handle = tpm_buf_read_u32(buf, &offset);
923
val = tpm_buf_read_u16(buf, &offset);
924
if (val != sizeof(auth->tpm_nonce))
925
return -EINVAL;
926
memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
927
/* now compute the session key from the nonces */
928
tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
929
auth->our_nonce, sizeof(auth->session_key),
930
auth->session_key);
931
932
return 0;
933
}
934
935
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
936
{
937
unsigned int offset = 0; /* dummy offset for null seed context */
938
u8 name[SHA256_DIGEST_SIZE + 2];
939
u32 tmp_null_key;
940
int rc;
941
942
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
943
&tmp_null_key);
944
if (rc != -EINVAL) {
945
if (!rc)
946
*null_key = tmp_null_key;
947
goto err;
948
}
949
950
/* Try to re-create null key, given the integrity failure: */
951
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
952
if (rc)
953
goto err;
954
955
/* Return null key if the name has not been changed: */
956
if (!memcmp(name, chip->null_key_name, sizeof(name))) {
957
*null_key = tmp_null_key;
958
return 0;
959
}
960
961
/* Deduce from the name change TPM interference: */
962
dev_err(&chip->dev, "null key integrity check failed\n");
963
tpm2_flush_context(chip, tmp_null_key);
964
965
err:
966
if (rc) {
967
chip->flags |= TPM_CHIP_FLAG_DISABLE;
968
rc = -ENODEV;
969
}
970
return rc;
971
}
972
973
/**
974
* tpm2_start_auth_session() - Create an a HMAC authentication session
975
* @chip: A TPM chip
976
*
977
* Loads the ephemeral key (null seed), and starts an HMAC authenticated
978
* session. The null seed is flushed before the return.
979
*
980
* Returns zero on success, or a POSIX error code.
981
*/
982
int tpm2_start_auth_session(struct tpm_chip *chip)
983
{
984
struct tpm2_auth *auth;
985
struct tpm_buf buf;
986
u32 null_key;
987
int rc;
988
989
if (chip->auth) {
990
dev_dbg_once(&chip->dev, "auth session is active\n");
991
return 0;
992
}
993
994
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
995
if (!auth)
996
return -ENOMEM;
997
998
rc = tpm2_load_null(chip, &null_key);
999
if (rc)
1000
goto out;
1001
1002
auth->session = TPM_HEADER_SIZE;
1003
1004
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
1005
if (rc)
1006
goto out;
1007
1008
/* salt key handle */
1009
tpm_buf_append_u32(&buf, null_key);
1010
/* bind key handle */
1011
tpm_buf_append_u32(&buf, TPM2_RH_NULL);
1012
/* nonce caller */
1013
get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
1014
tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
1015
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
1016
1017
/* append encrypted salt and squirrel away unencrypted in auth */
1018
tpm_buf_append_salt(&buf, chip, auth);
1019
/* session type (HMAC, audit or policy) */
1020
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
1021
1022
/* symmetric encryption parameters */
1023
/* symmetric algorithm */
1024
tpm_buf_append_u16(&buf, TPM_ALG_AES);
1025
/* bits for symmetric algorithm */
1026
tpm_buf_append_u16(&buf, AES_KEY_BITS);
1027
/* symmetric algorithm mode (must be CFB) */
1028
tpm_buf_append_u16(&buf, TPM_ALG_CFB);
1029
/* hash algorithm for session */
1030
tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
1031
1032
rc = tpm_ret_to_err(tpm_transmit_cmd(chip, &buf, 0, "StartAuthSession"));
1033
tpm2_flush_context(chip, null_key);
1034
1035
if (rc == TPM2_RC_SUCCESS)
1036
rc = tpm2_parse_start_auth_session(auth, &buf);
1037
1038
tpm_buf_destroy(&buf);
1039
1040
if (rc == TPM2_RC_SUCCESS) {
1041
chip->auth = auth;
1042
return 0;
1043
}
1044
1045
out:
1046
kfree_sensitive(auth);
1047
return rc;
1048
}
1049
EXPORT_SYMBOL(tpm2_start_auth_session);
1050
1051
/*
1052
* A mask containing the object attributes for the kernel held null primary key
1053
* used in HMAC encryption. For more information on specific attributes look up
1054
* to "8.3 TPMA_OBJECT (Object Attributes)".
1055
*/
1056
#define TPM2_OA_NULL_KEY ( \
1057
TPM2_OA_NO_DA | \
1058
TPM2_OA_FIXED_TPM | \
1059
TPM2_OA_FIXED_PARENT | \
1060
TPM2_OA_SENSITIVE_DATA_ORIGIN | \
1061
TPM2_OA_USER_WITH_AUTH | \
1062
TPM2_OA_DECRYPT | \
1063
TPM2_OA_RESTRICTED)
1064
1065
/**
1066
* tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
1067
*
1068
* @chip: The TPM the primary was created under
1069
* @buf: The response buffer from the chip
1070
* @handle: pointer to be filled in with the return handle of the primary
1071
* @hierarchy: The hierarchy the primary was created for
1072
* @name: pointer to be filled in with the primary key name
1073
*
1074
* Return:
1075
* * 0 - OK
1076
* * -errno - A system error
1077
* * TPM_RC - A TPM error
1078
*/
1079
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
1080
u32 *handle, u32 hierarchy, u8 *name)
1081
{
1082
struct tpm_header *head = (struct tpm_header *)buf->data;
1083
off_t offset_r = TPM_HEADER_SIZE, offset_t;
1084
u16 len = TPM_HEADER_SIZE;
1085
u32 total_len = be32_to_cpu(head->length);
1086
u32 val, param_len, keyhandle;
1087
1088
keyhandle = tpm_buf_read_u32(buf, &offset_r);
1089
if (handle)
1090
*handle = keyhandle;
1091
else
1092
tpm2_flush_context(chip, keyhandle);
1093
1094
param_len = tpm_buf_read_u32(buf, &offset_r);
1095
/*
1096
* param_len doesn't include the header, but all the other
1097
* lengths and offsets do, so add it to parm len to make
1098
* the comparisons easier
1099
*/
1100
param_len += TPM_HEADER_SIZE;
1101
1102
if (param_len + 8 > total_len)
1103
return -EINVAL;
1104
len = tpm_buf_read_u16(buf, &offset_r);
1105
offset_t = offset_r;
1106
if (name) {
1107
/*
1108
* now we have the public area, compute the name of
1109
* the object
1110
*/
1111
put_unaligned_be16(TPM_ALG_SHA256, name);
1112
sha256(&buf->data[offset_r], len, name + 2);
1113
}
1114
1115
/* validate the public key */
1116
val = tpm_buf_read_u16(buf, &offset_t);
1117
1118
/* key type (must be what we asked for) */
1119
if (val != TPM_ALG_ECC)
1120
return -EINVAL;
1121
val = tpm_buf_read_u16(buf, &offset_t);
1122
1123
/* name algorithm */
1124
if (val != TPM_ALG_SHA256)
1125
return -EINVAL;
1126
val = tpm_buf_read_u32(buf, &offset_t);
1127
1128
/* object properties */
1129
if (val != TPM2_OA_NULL_KEY)
1130
return -EINVAL;
1131
1132
/* auth policy (empty) */
1133
val = tpm_buf_read_u16(buf, &offset_t);
1134
if (val != 0)
1135
return -EINVAL;
1136
1137
/* symmetric key parameters */
1138
val = tpm_buf_read_u16(buf, &offset_t);
1139
if (val != TPM_ALG_AES)
1140
return -EINVAL;
1141
1142
/* symmetric key length */
1143
val = tpm_buf_read_u16(buf, &offset_t);
1144
if (val != AES_KEY_BITS)
1145
return -EINVAL;
1146
1147
/* symmetric encryption scheme */
1148
val = tpm_buf_read_u16(buf, &offset_t);
1149
if (val != TPM_ALG_CFB)
1150
return -EINVAL;
1151
1152
/* signing scheme */
1153
val = tpm_buf_read_u16(buf, &offset_t);
1154
if (val != TPM_ALG_NULL)
1155
return -EINVAL;
1156
1157
/* ECC Curve */
1158
val = tpm_buf_read_u16(buf, &offset_t);
1159
if (val != TPM2_ECC_NIST_P256)
1160
return -EINVAL;
1161
1162
/* KDF Scheme */
1163
val = tpm_buf_read_u16(buf, &offset_t);
1164
if (val != TPM_ALG_NULL)
1165
return -EINVAL;
1166
1167
/* extract public key (x and y points) */
1168
val = tpm_buf_read_u16(buf, &offset_t);
1169
if (val != EC_PT_SZ)
1170
return -EINVAL;
1171
memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1172
offset_t += val;
1173
val = tpm_buf_read_u16(buf, &offset_t);
1174
if (val != EC_PT_SZ)
1175
return -EINVAL;
1176
memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1177
offset_t += val;
1178
1179
/* original length of the whole TPM2B */
1180
offset_r += len;
1181
1182
/* should have exactly consumed the TPM2B public structure */
1183
if (offset_t != offset_r)
1184
return -EINVAL;
1185
if (offset_r > param_len)
1186
return -EINVAL;
1187
1188
/* creation data (skip) */
1189
len = tpm_buf_read_u16(buf, &offset_r);
1190
offset_r += len;
1191
if (offset_r > param_len)
1192
return -EINVAL;
1193
1194
/* creation digest (must be sha256) */
1195
len = tpm_buf_read_u16(buf, &offset_r);
1196
offset_r += len;
1197
if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1198
return -EINVAL;
1199
1200
/* TPMT_TK_CREATION follows */
1201
/* tag, must be TPM_ST_CREATION (0x8021) */
1202
val = tpm_buf_read_u16(buf, &offset_r);
1203
if (val != TPM2_ST_CREATION || offset_r > param_len)
1204
return -EINVAL;
1205
1206
/* hierarchy */
1207
val = tpm_buf_read_u32(buf, &offset_r);
1208
if (val != hierarchy || offset_r > param_len)
1209
return -EINVAL;
1210
1211
/* the ticket digest HMAC (might not be sha256) */
1212
len = tpm_buf_read_u16(buf, &offset_r);
1213
offset_r += len;
1214
if (offset_r > param_len)
1215
return -EINVAL;
1216
1217
/*
1218
* finally we have the name, which is a sha256 digest plus a 2
1219
* byte algorithm type
1220
*/
1221
len = tpm_buf_read_u16(buf, &offset_r);
1222
if (offset_r + len != param_len + 8)
1223
return -EINVAL;
1224
if (len != SHA256_DIGEST_SIZE + 2)
1225
return -EINVAL;
1226
1227
if (memcmp(chip->null_key_name, &buf->data[offset_r],
1228
SHA256_DIGEST_SIZE + 2) != 0) {
1229
dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1230
return -EINVAL;
1231
}
1232
1233
return 0;
1234
}
1235
1236
/**
1237
* tpm2_create_primary() - create a primary key using a fixed P-256 template
1238
*
1239
* @chip: the TPM chip to create under
1240
* @hierarchy: The hierarchy handle to create under
1241
* @handle: The returned volatile handle on success
1242
* @name: The name of the returned key
1243
*
1244
* For platforms that might not have a persistent primary, this can be
1245
* used to create one quickly on the fly (it uses Elliptic Curve not
1246
* RSA, so even slow TPMs can create one fast). The template uses the
1247
* TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1248
* elliptic curve (the only current one all TPM2s are required to
1249
* have) a sha256 name hash and no policy.
1250
*
1251
* Return:
1252
* * 0 - OK
1253
* * -errno - A system error
1254
* * TPM_RC - A TPM error
1255
*/
1256
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1257
u32 *handle, u8 *name)
1258
{
1259
int rc;
1260
struct tpm_buf buf;
1261
struct tpm_buf template;
1262
1263
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1264
if (rc)
1265
return rc;
1266
1267
rc = tpm_buf_init_sized(&template);
1268
if (rc) {
1269
tpm_buf_destroy(&buf);
1270
return rc;
1271
}
1272
1273
/*
1274
* create the template. Note: in order for userspace to
1275
* verify the security of the system, it will have to create
1276
* and certify this NULL primary, meaning all the template
1277
* parameters will have to be identical, so conform exactly to
1278
* the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1279
* key H template (H has zero size unique points)
1280
*/
1281
1282
/* key type */
1283
tpm_buf_append_u16(&template, TPM_ALG_ECC);
1284
1285
/* name algorithm */
1286
tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1287
1288
/* object properties */
1289
tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1290
1291
/* sauth policy (empty) */
1292
tpm_buf_append_u16(&template, 0);
1293
1294
/* BEGIN parameters: key specific; for ECC*/
1295
1296
/* symmetric algorithm */
1297
tpm_buf_append_u16(&template, TPM_ALG_AES);
1298
1299
/* bits for symmetric algorithm */
1300
tpm_buf_append_u16(&template, AES_KEY_BITS);
1301
1302
/* algorithm mode (must be CFB) */
1303
tpm_buf_append_u16(&template, TPM_ALG_CFB);
1304
1305
/* scheme (NULL means any scheme) */
1306
tpm_buf_append_u16(&template, TPM_ALG_NULL);
1307
1308
/* ECC Curve ID */
1309
tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1310
1311
/* KDF Scheme */
1312
tpm_buf_append_u16(&template, TPM_ALG_NULL);
1313
1314
/* unique: key specific; for ECC it is two zero size points */
1315
tpm_buf_append_u16(&template, 0);
1316
tpm_buf_append_u16(&template, 0);
1317
1318
/* END parameters */
1319
1320
/* primary handle */
1321
tpm_buf_append_u32(&buf, hierarchy);
1322
tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1323
1324
/* sensitive create size is 4 for two empty buffers */
1325
tpm_buf_append_u16(&buf, 4);
1326
1327
/* sensitive create auth data (empty) */
1328
tpm_buf_append_u16(&buf, 0);
1329
1330
/* sensitive create sensitive data (empty) */
1331
tpm_buf_append_u16(&buf, 0);
1332
1333
/* the public template */
1334
tpm_buf_append(&buf, template.data, template.length);
1335
tpm_buf_destroy(&template);
1336
1337
/* outside info (empty) */
1338
tpm_buf_append_u16(&buf, 0);
1339
1340
/* creation PCR (none) */
1341
tpm_buf_append_u32(&buf, 0);
1342
1343
rc = tpm_transmit_cmd(chip, &buf, 0,
1344
"attempting to create NULL primary");
1345
1346
if (rc == TPM2_RC_SUCCESS)
1347
rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1348
name);
1349
1350
tpm_buf_destroy(&buf);
1351
1352
return rc;
1353
}
1354
1355
static int tpm2_create_null_primary(struct tpm_chip *chip)
1356
{
1357
u32 null_key;
1358
int rc;
1359
1360
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1361
chip->null_key_name);
1362
1363
if (rc == TPM2_RC_SUCCESS) {
1364
unsigned int offset = 0; /* dummy offset for null key context */
1365
1366
rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1367
sizeof(chip->null_key_context), &offset);
1368
tpm2_flush_context(chip, null_key);
1369
}
1370
1371
return rc;
1372
}
1373
1374
/**
1375
* tpm2_sessions_init() - start of day initialization for the sessions code
1376
* @chip: TPM chip
1377
*
1378
* Derive and context save the null primary and allocate memory in the
1379
* struct tpm_chip for the authorizations.
1380
*
1381
* Return:
1382
* * 0 - OK
1383
* * -errno - A system error
1384
* * TPM_RC - A TPM error
1385
*/
1386
int tpm2_sessions_init(struct tpm_chip *chip)
1387
{
1388
int rc;
1389
1390
rc = tpm2_create_null_primary(chip);
1391
if (rc) {
1392
dev_err(&chip->dev, "null key creation failed with %d\n", rc);
1393
return rc;
1394
}
1395
1396
return rc;
1397
}
1398
#endif /* CONFIG_TCG_TPM2_HMAC */
1399
1400