Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/char/tpm/tpm2-sessions.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright (C) 2018 [email protected]
5
*
6
* Cryptographic helper routines for handling TPM2 sessions for
7
* authorization HMAC and request response encryption.
8
*
9
* The idea is to ensure that every TPM command is HMAC protected by a
10
* session, meaning in-flight tampering would be detected and in
11
* addition all sensitive inputs and responses should be encrypted.
12
*
13
* The basic way this works is to use a TPM feature called salted
14
* sessions where a random secret used in session construction is
15
* encrypted to the public part of a known TPM key. The problem is we
16
* have no known keys, so initially a primary Elliptic Curve key is
17
* derived from the NULL seed (we use EC because most TPMs generate
18
* these keys much faster than RSA ones). The curve used is NIST_P256
19
* because that's now mandated to be present in 'TCG TPM v2.0
20
* Provisioning Guidance'
21
*
22
* Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23
* be) session protected, so a clever Man in the Middle could return a
24
* public key they control to this command and from there intercept
25
* and decode all subsequent session based transactions. The kernel
26
* cannot mitigate this threat but, after boot, userspace can get
27
* proof this has not happened by asking the TPM to certify the NULL
28
* key. This certification would chain back to the TPM Endorsement
29
* Certificate and prove the NULL seed primary had not been tampered
30
* with and thus all sessions must have been cryptographically secure.
31
* To assist with this, the initial NULL seed public key name is made
32
* available in a sysfs file.
33
*
34
* Use of these functions:
35
*
36
* The design is all the crypto, hash and hmac gunk is confined in this
37
* file and never needs to be seen even by the kernel internal user. To
38
* the user there's an init function tpm2_sessions_init() that needs to
39
* be called once per TPM which generates the NULL seed primary key.
40
*
41
* These are the usage functions:
42
*
43
* tpm2_end_auth_session() kills the session and frees the resources.
44
* Under normal operation this function is done by
45
* tpm_buf_check_hmac_response(), so this is only to be used on
46
* error legs where the latter is not executed.
47
* tpm_buf_append_name() to add a handle to the buffer. This must be
48
* used in place of the usual tpm_buf_append_u32() for adding
49
* handles because handles have to be processed specially when
50
* calculating the HMAC. In particular, for NV, volatile and
51
* permanent objects you now need to provide the name.
52
* tpm_buf_append_hmac_session() which appends the hmac session to the
53
* buf in the same way tpm_buf_append_auth does().
54
* tpm_buf_fill_hmac_session() This calculates the correct hash and
55
* places it in the buffer. It must be called after the complete
56
* command buffer is finalized so it can fill in the correct HMAC
57
* based on the parameters.
58
* tpm_buf_check_hmac_response() which checks the session response in
59
* the buffer and calculates what it should be. If there's a
60
* mismatch it will log a warning and return an error. If
61
* tpm_buf_append_hmac_session() did not specify
62
* TPM_SA_CONTINUE_SESSION then the session will be closed (if it
63
* hasn't been consumed) and the auth structure freed.
64
*/
65
66
#include "tpm.h"
67
#include <linux/random.h>
68
#include <linux/scatterlist.h>
69
#include <linux/unaligned.h>
70
#include <crypto/kpp.h>
71
#include <crypto/ecdh.h>
72
#include <crypto/hash.h>
73
#include <crypto/hmac.h>
74
75
/* maximum number of names the TPM must remember for authorization */
76
#define AUTH_MAX_NAMES 3
77
78
#define AES_KEY_BYTES AES_KEYSIZE_128
79
#define AES_KEY_BITS (AES_KEY_BYTES*8)
80
81
/*
82
* This is the structure that carries all the auth information (like
83
* session handle, nonces, session key and auth) from use to use it is
84
* designed to be opaque to anything outside.
85
*/
86
struct tpm2_auth {
87
u32 handle;
88
/*
89
* This has two meanings: before tpm_buf_fill_hmac_session()
90
* it marks the offset in the buffer of the start of the
91
* sessions (i.e. after all the handles). Once the buffer has
92
* been filled it markes the session number of our auth
93
* session so we can find it again in the response buffer.
94
*
95
* The two cases are distinguished because the first offset
96
* must always be greater than TPM_HEADER_SIZE and the second
97
* must be less than or equal to 5.
98
*/
99
u32 session;
100
/*
101
* the size here is variable and set by the size of our_nonce
102
* which must be between 16 and the name hash length. we set
103
* the maximum sha256 size for the greatest protection
104
*/
105
u8 our_nonce[SHA256_DIGEST_SIZE];
106
u8 tpm_nonce[SHA256_DIGEST_SIZE];
107
/*
108
* the salt is only used across the session command/response
109
* after that it can be used as a scratch area
110
*/
111
union {
112
u8 salt[EC_PT_SZ];
113
/* scratch for key + IV */
114
u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
115
};
116
/*
117
* the session key and passphrase are the same size as the
118
* name digest (sha256 again). The session key is constant
119
* for the use of the session and the passphrase can change
120
* with every invocation.
121
*
122
* Note: these fields must be adjacent and in this order
123
* because several HMAC/KDF schemes use the combination of the
124
* session_key and passphrase.
125
*/
126
u8 session_key[SHA256_DIGEST_SIZE];
127
u8 passphrase[SHA256_DIGEST_SIZE];
128
int passphrase_len;
129
struct crypto_aes_ctx aes_ctx;
130
/* saved session attributes: */
131
u8 attrs;
132
__be32 ordinal;
133
134
/*
135
* memory for three authorization handles. We know them by
136
* handle, but they are part of the session by name, which
137
* we must compute and remember
138
*/
139
u32 name_h[AUTH_MAX_NAMES];
140
u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
141
};
142
143
#ifdef CONFIG_TCG_TPM2_HMAC
144
/*
145
* Name Size based on TPM algorithm (assumes no hash bigger than 255)
146
*/
147
static u8 name_size(const u8 *name)
148
{
149
static u8 size_map[] = {
150
[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
151
[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
152
[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
153
[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
154
};
155
u16 alg = get_unaligned_be16(name);
156
return size_map[alg] + 2;
157
}
158
159
static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
160
{
161
struct tpm_header *head = (struct tpm_header *)buf->data;
162
off_t offset = TPM_HEADER_SIZE;
163
u32 tot_len = be32_to_cpu(head->length);
164
u32 val;
165
166
/* we're starting after the header so adjust the length */
167
tot_len -= TPM_HEADER_SIZE;
168
169
/* skip public */
170
val = tpm_buf_read_u16(buf, &offset);
171
if (val > tot_len)
172
return -EINVAL;
173
offset += val;
174
/* name */
175
val = tpm_buf_read_u16(buf, &offset);
176
if (val != name_size(&buf->data[offset]))
177
return -EINVAL;
178
memcpy(name, &buf->data[offset], val);
179
/* forget the rest */
180
return 0;
181
}
182
183
static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
184
{
185
struct tpm_buf buf;
186
int rc;
187
188
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
189
if (rc)
190
return rc;
191
192
tpm_buf_append_u32(&buf, handle);
193
rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
194
if (rc == TPM2_RC_SUCCESS)
195
rc = tpm2_parse_read_public(name, &buf);
196
197
tpm_buf_destroy(&buf);
198
199
return rc;
200
}
201
#endif /* CONFIG_TCG_TPM2_HMAC */
202
203
/**
204
* tpm_buf_append_name() - add a handle area to the buffer
205
* @chip: the TPM chip structure
206
* @buf: The buffer to be appended
207
* @handle: The handle to be appended
208
* @name: The name of the handle (may be NULL)
209
*
210
* In order to compute session HMACs, we need to know the names of the
211
* objects pointed to by the handles. For most objects, this is simply
212
* the actual 4 byte handle or an empty buf (in these cases @name
213
* should be NULL) but for volatile objects, permanent objects and NV
214
* areas, the name is defined as the hash (according to the name
215
* algorithm which should be set to sha256) of the public area to
216
* which the two byte algorithm id has been appended. For these
217
* objects, the @name pointer should point to this. If a name is
218
* required but @name is NULL, then TPM2_ReadPublic() will be called
219
* on the handle to obtain the name.
220
*
221
* As with most tpm_buf operations, success is assumed because failure
222
* will be caused by an incorrect programming model and indicated by a
223
* kernel message.
224
*/
225
void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
226
u32 handle, u8 *name)
227
{
228
#ifdef CONFIG_TCG_TPM2_HMAC
229
enum tpm2_mso_type mso = tpm2_handle_mso(handle);
230
struct tpm2_auth *auth;
231
int slot;
232
#endif
233
234
if (!tpm2_chip_auth(chip)) {
235
tpm_buf_append_handle(chip, buf, handle);
236
return;
237
}
238
239
#ifdef CONFIG_TCG_TPM2_HMAC
240
slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
241
if (slot >= AUTH_MAX_NAMES) {
242
dev_err(&chip->dev, "TPM: too many handles\n");
243
return;
244
}
245
auth = chip->auth;
246
WARN(auth->session != tpm_buf_length(buf),
247
"name added in wrong place\n");
248
tpm_buf_append_u32(buf, handle);
249
auth->session += 4;
250
251
if (mso == TPM2_MSO_PERSISTENT ||
252
mso == TPM2_MSO_VOLATILE ||
253
mso == TPM2_MSO_NVRAM) {
254
if (!name)
255
tpm2_read_public(chip, handle, auth->name[slot]);
256
} else {
257
if (name)
258
dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
259
}
260
261
auth->name_h[slot] = handle;
262
if (name)
263
memcpy(auth->name[slot], name, name_size(name));
264
#endif
265
}
266
EXPORT_SYMBOL_GPL(tpm_buf_append_name);
267
268
void tpm_buf_append_auth(struct tpm_chip *chip, struct tpm_buf *buf,
269
u8 attributes, u8 *passphrase, int passphrase_len)
270
{
271
/* offset tells us where the sessions area begins */
272
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
273
u32 len = 9 + passphrase_len;
274
275
if (tpm_buf_length(buf) != offset) {
276
/* not the first session so update the existing length */
277
len += get_unaligned_be32(&buf->data[offset]);
278
put_unaligned_be32(len, &buf->data[offset]);
279
} else {
280
tpm_buf_append_u32(buf, len);
281
}
282
/* auth handle */
283
tpm_buf_append_u32(buf, TPM2_RS_PW);
284
/* nonce */
285
tpm_buf_append_u16(buf, 0);
286
/* attributes */
287
tpm_buf_append_u8(buf, 0);
288
/* passphrase */
289
tpm_buf_append_u16(buf, passphrase_len);
290
tpm_buf_append(buf, passphrase, passphrase_len);
291
}
292
293
/**
294
* tpm_buf_append_hmac_session() - Append a TPM session element
295
* @chip: the TPM chip structure
296
* @buf: The buffer to be appended
297
* @attributes: The session attributes
298
* @passphrase: The session authority (NULL if none)
299
* @passphrase_len: The length of the session authority (0 if none)
300
*
301
* This fills in a session structure in the TPM command buffer, except
302
* for the HMAC which cannot be computed until the command buffer is
303
* complete. The type of session is controlled by the @attributes,
304
* the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
305
* session won't terminate after tpm_buf_check_hmac_response(),
306
* TPM2_SA_DECRYPT which means this buffers first parameter should be
307
* encrypted with a session key and TPM2_SA_ENCRYPT, which means the
308
* response buffer's first parameter needs to be decrypted (confusing,
309
* but the defines are written from the point of view of the TPM).
310
*
311
* Any session appended by this command must be finalized by calling
312
* tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
313
* and the TPM will reject the command.
314
*
315
* As with most tpm_buf operations, success is assumed because failure
316
* will be caused by an incorrect programming model and indicated by a
317
* kernel message.
318
*/
319
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
320
u8 attributes, u8 *passphrase,
321
int passphrase_len)
322
{
323
#ifdef CONFIG_TCG_TPM2_HMAC
324
u8 nonce[SHA256_DIGEST_SIZE];
325
struct tpm2_auth *auth;
326
u32 len;
327
#endif
328
329
if (!tpm2_chip_auth(chip)) {
330
tpm_buf_append_auth(chip, buf, attributes, passphrase,
331
passphrase_len);
332
return;
333
}
334
335
#ifdef CONFIG_TCG_TPM2_HMAC
336
/* The first write to /dev/tpm{rm0} will flush the session. */
337
attributes |= TPM2_SA_CONTINUE_SESSION;
338
339
/*
340
* The Architecture Guide requires us to strip trailing zeros
341
* before computing the HMAC
342
*/
343
while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
344
passphrase_len--;
345
346
auth = chip->auth;
347
auth->attrs = attributes;
348
auth->passphrase_len = passphrase_len;
349
if (passphrase_len)
350
memcpy(auth->passphrase, passphrase, passphrase_len);
351
352
if (auth->session != tpm_buf_length(buf)) {
353
/* we're not the first session */
354
len = get_unaligned_be32(&buf->data[auth->session]);
355
if (4 + len + auth->session != tpm_buf_length(buf)) {
356
WARN(1, "session length mismatch, cannot append");
357
return;
358
}
359
360
/* add our new session */
361
len += 9 + 2 * SHA256_DIGEST_SIZE;
362
put_unaligned_be32(len, &buf->data[auth->session]);
363
} else {
364
tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
365
}
366
367
/* random number for our nonce */
368
get_random_bytes(nonce, sizeof(nonce));
369
memcpy(auth->our_nonce, nonce, sizeof(nonce));
370
tpm_buf_append_u32(buf, auth->handle);
371
/* our new nonce */
372
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
373
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
374
tpm_buf_append_u8(buf, auth->attrs);
375
/* and put a placeholder for the hmac */
376
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
377
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
378
#endif
379
}
380
EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
381
382
#ifdef CONFIG_TCG_TPM2_HMAC
383
384
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
385
u32 *handle, u8 *name);
386
387
/*
388
* It turns out the crypto hmac(sha256) is hard for us to consume
389
* because it assumes a fixed key and the TPM seems to change the key
390
* on every operation, so we weld the hmac init and final functions in
391
* here to give it the same usage characteristics as a regular hash
392
*/
393
static void tpm2_hmac_init(struct sha256_ctx *sctx, u8 *key, u32 key_len)
394
{
395
u8 pad[SHA256_BLOCK_SIZE];
396
int i;
397
398
sha256_init(sctx);
399
for (i = 0; i < sizeof(pad); i++) {
400
if (i < key_len)
401
pad[i] = key[i];
402
else
403
pad[i] = 0;
404
pad[i] ^= HMAC_IPAD_VALUE;
405
}
406
sha256_update(sctx, pad, sizeof(pad));
407
}
408
409
static void tpm2_hmac_final(struct sha256_ctx *sctx, u8 *key, u32 key_len,
410
u8 *out)
411
{
412
u8 pad[SHA256_BLOCK_SIZE];
413
int i;
414
415
for (i = 0; i < sizeof(pad); i++) {
416
if (i < key_len)
417
pad[i] = key[i];
418
else
419
pad[i] = 0;
420
pad[i] ^= HMAC_OPAD_VALUE;
421
}
422
423
/* collect the final hash; use out as temporary storage */
424
sha256_final(sctx, out);
425
426
sha256_init(sctx);
427
sha256_update(sctx, pad, sizeof(pad));
428
sha256_update(sctx, out, SHA256_DIGEST_SIZE);
429
sha256_final(sctx, out);
430
}
431
432
/*
433
* assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
434
* otherwise standard tpm2_KDFa. Note output is in bytes not bits.
435
*/
436
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
437
u8 *v, u32 bytes, u8 *out)
438
{
439
u32 counter = 1;
440
const __be32 bits = cpu_to_be32(bytes * 8);
441
442
while (bytes > 0) {
443
struct sha256_ctx sctx;
444
__be32 c = cpu_to_be32(counter);
445
446
tpm2_hmac_init(&sctx, key, key_len);
447
sha256_update(&sctx, (u8 *)&c, sizeof(c));
448
sha256_update(&sctx, label, strlen(label)+1);
449
sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
450
sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
451
sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
452
tpm2_hmac_final(&sctx, key, key_len, out);
453
454
bytes -= SHA256_DIGEST_SIZE;
455
counter++;
456
out += SHA256_DIGEST_SIZE;
457
}
458
}
459
460
/*
461
* Somewhat of a bastardization of the real KDFe. We're assuming
462
* we're working with known point sizes for the input parameters and
463
* the hash algorithm is fixed at sha256. Because we know that the
464
* point size is 32 bytes like the hash size, there's no need to loop
465
* in this KDF.
466
*/
467
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
468
u8 *out)
469
{
470
struct sha256_ctx sctx;
471
/*
472
* this should be an iterative counter, but because we know
473
* we're only taking 32 bytes for the point using a sha256
474
* hash which is also 32 bytes, there's only one loop
475
*/
476
__be32 c = cpu_to_be32(1);
477
478
sha256_init(&sctx);
479
/* counter (BE) */
480
sha256_update(&sctx, (u8 *)&c, sizeof(c));
481
/* secret value */
482
sha256_update(&sctx, z, EC_PT_SZ);
483
/* string including trailing zero */
484
sha256_update(&sctx, str, strlen(str)+1);
485
sha256_update(&sctx, pt_u, EC_PT_SZ);
486
sha256_update(&sctx, pt_v, EC_PT_SZ);
487
sha256_final(&sctx, out);
488
}
489
490
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
491
struct tpm2_auth *auth)
492
{
493
struct crypto_kpp *kpp;
494
struct kpp_request *req;
495
struct scatterlist s[2], d[1];
496
struct ecdh p = {0};
497
u8 encoded_key[EC_PT_SZ], *x, *y;
498
unsigned int buf_len;
499
500
/* secret is two sized points */
501
tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
502
/*
503
* we cheat here and append uninitialized data to form
504
* the points. All we care about is getting the two
505
* co-ordinate pointers, which will be used to overwrite
506
* the uninitialized data
507
*/
508
tpm_buf_append_u16(buf, EC_PT_SZ);
509
x = &buf->data[tpm_buf_length(buf)];
510
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
511
tpm_buf_append_u16(buf, EC_PT_SZ);
512
y = &buf->data[tpm_buf_length(buf)];
513
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
514
sg_init_table(s, 2);
515
sg_set_buf(&s[0], x, EC_PT_SZ);
516
sg_set_buf(&s[1], y, EC_PT_SZ);
517
518
kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
519
if (IS_ERR(kpp)) {
520
dev_err(&chip->dev, "crypto ecdh allocation failed\n");
521
return;
522
}
523
524
buf_len = crypto_ecdh_key_len(&p);
525
if (sizeof(encoded_key) < buf_len) {
526
dev_err(&chip->dev, "salt buffer too small needs %d\n",
527
buf_len);
528
goto out;
529
}
530
crypto_ecdh_encode_key(encoded_key, buf_len, &p);
531
/* this generates a random private key */
532
crypto_kpp_set_secret(kpp, encoded_key, buf_len);
533
534
/* salt is now the public point of this private key */
535
req = kpp_request_alloc(kpp, GFP_KERNEL);
536
if (!req)
537
goto out;
538
kpp_request_set_input(req, NULL, 0);
539
kpp_request_set_output(req, s, EC_PT_SZ*2);
540
crypto_kpp_generate_public_key(req);
541
/*
542
* we're not done: now we have to compute the shared secret
543
* which is our private key multiplied by the tpm_key public
544
* point, we actually only take the x point and discard the y
545
* point and feed it through KDFe to get the final secret salt
546
*/
547
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
548
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
549
kpp_request_set_input(req, s, EC_PT_SZ*2);
550
sg_init_one(d, auth->salt, EC_PT_SZ);
551
kpp_request_set_output(req, d, EC_PT_SZ);
552
crypto_kpp_compute_shared_secret(req);
553
kpp_request_free(req);
554
555
/*
556
* pass the shared secret through KDFe for salt. Note salt
557
* area is used both for input shared secret and output salt.
558
* This works because KDFe fully consumes the secret before it
559
* writes the salt
560
*/
561
tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
562
563
out:
564
crypto_free_kpp(kpp);
565
}
566
567
/**
568
* tpm_buf_fill_hmac_session() - finalize the session HMAC
569
* @chip: the TPM chip structure
570
* @buf: The buffer to be appended
571
*
572
* This command must not be called until all of the parameters have
573
* been appended to @buf otherwise the computed HMAC will be
574
* incorrect.
575
*
576
* This function computes and fills in the session HMAC using the
577
* session key and, if TPM2_SA_DECRYPT was specified, computes the
578
* encryption key and encrypts the first parameter of the command
579
* buffer with it.
580
*
581
* As with most tpm_buf operations, success is assumed because failure
582
* will be caused by an incorrect programming model and indicated by a
583
* kernel message.
584
*/
585
void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
586
{
587
u32 cc, handles, val;
588
struct tpm2_auth *auth = chip->auth;
589
int i;
590
struct tpm_header *head = (struct tpm_header *)buf->data;
591
off_t offset_s = TPM_HEADER_SIZE, offset_p;
592
u8 *hmac = NULL;
593
u32 attrs;
594
u8 cphash[SHA256_DIGEST_SIZE];
595
struct sha256_ctx sctx;
596
597
if (!auth)
598
return;
599
600
/* save the command code in BE format */
601
auth->ordinal = head->ordinal;
602
603
cc = be32_to_cpu(head->ordinal);
604
605
i = tpm2_find_cc(chip, cc);
606
if (i < 0) {
607
dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
608
return;
609
}
610
attrs = chip->cc_attrs_tbl[i];
611
612
handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
613
614
/*
615
* just check the names, it's easy to make mistakes. This
616
* would happen if someone added a handle via
617
* tpm_buf_append_u32() instead of tpm_buf_append_name()
618
*/
619
for (i = 0; i < handles; i++) {
620
u32 handle = tpm_buf_read_u32(buf, &offset_s);
621
622
if (auth->name_h[i] != handle) {
623
dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
624
i);
625
return;
626
}
627
}
628
/* point offset_s to the start of the sessions */
629
val = tpm_buf_read_u32(buf, &offset_s);
630
/* point offset_p to the start of the parameters */
631
offset_p = offset_s + val;
632
for (i = 1; offset_s < offset_p; i++) {
633
u32 handle = tpm_buf_read_u32(buf, &offset_s);
634
u16 len;
635
u8 a;
636
637
/* nonce (already in auth) */
638
len = tpm_buf_read_u16(buf, &offset_s);
639
offset_s += len;
640
641
a = tpm_buf_read_u8(buf, &offset_s);
642
643
len = tpm_buf_read_u16(buf, &offset_s);
644
if (handle == auth->handle && auth->attrs == a) {
645
hmac = &buf->data[offset_s];
646
/*
647
* save our session number so we know which
648
* session in the response belongs to us
649
*/
650
auth->session = i;
651
}
652
653
offset_s += len;
654
}
655
if (offset_s != offset_p) {
656
dev_err(&chip->dev, "TPM session length is incorrect\n");
657
return;
658
}
659
if (!hmac) {
660
dev_err(&chip->dev, "TPM could not find HMAC session\n");
661
return;
662
}
663
664
/* encrypt before HMAC */
665
if (auth->attrs & TPM2_SA_DECRYPT) {
666
u16 len;
667
668
/* need key and IV */
669
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
670
+ auth->passphrase_len, "CFB", auth->our_nonce,
671
auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
672
auth->scratch);
673
674
len = tpm_buf_read_u16(buf, &offset_p);
675
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
676
aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
677
&buf->data[offset_p], len,
678
auth->scratch + AES_KEY_BYTES);
679
/* reset p to beginning of parameters for HMAC */
680
offset_p -= 2;
681
}
682
683
sha256_init(&sctx);
684
/* ordinal is already BE */
685
sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
686
/* add the handle names */
687
for (i = 0; i < handles; i++) {
688
enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
689
690
if (mso == TPM2_MSO_PERSISTENT ||
691
mso == TPM2_MSO_VOLATILE ||
692
mso == TPM2_MSO_NVRAM) {
693
sha256_update(&sctx, auth->name[i],
694
name_size(auth->name[i]));
695
} else {
696
__be32 h = cpu_to_be32(auth->name_h[i]);
697
698
sha256_update(&sctx, (u8 *)&h, 4);
699
}
700
}
701
if (offset_s != tpm_buf_length(buf))
702
sha256_update(&sctx, &buf->data[offset_s],
703
tpm_buf_length(buf) - offset_s);
704
sha256_final(&sctx, cphash);
705
706
/* now calculate the hmac */
707
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
708
+ auth->passphrase_len);
709
sha256_update(&sctx, cphash, sizeof(cphash));
710
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
711
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
712
sha256_update(&sctx, &auth->attrs, 1);
713
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
714
+ auth->passphrase_len, hmac);
715
}
716
EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
717
718
/**
719
* tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
720
* @chip: the TPM chip structure
721
* @buf: the original command buffer (which now contains the response)
722
* @rc: the return code from tpm_transmit_cmd
723
*
724
* If @rc is non zero, @buf may not contain an actual return, so @rc
725
* is passed through as the return and the session cleaned up and
726
* de-allocated if required (this is required if
727
* TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
728
*
729
* If @rc is zero, the response HMAC is computed against the returned
730
* @buf and matched to the TPM one in the session area. If there is a
731
* mismatch, an error is logged and -EINVAL returned.
732
*
733
* The reason for this is that the command issue and HMAC check
734
* sequence should look like:
735
*
736
* rc = tpm_transmit_cmd(...);
737
* rc = tpm_buf_check_hmac_response(&buf, auth, rc);
738
* if (rc)
739
* ...
740
*
741
* Which is easily layered into the current contrl flow.
742
*
743
* Returns: 0 on success or an error.
744
*/
745
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
746
int rc)
747
{
748
struct tpm_header *head = (struct tpm_header *)buf->data;
749
struct tpm2_auth *auth = chip->auth;
750
off_t offset_s, offset_p;
751
u8 rphash[SHA256_DIGEST_SIZE];
752
u32 attrs, cc;
753
struct sha256_ctx sctx;
754
u16 tag = be16_to_cpu(head->tag);
755
int parm_len, len, i, handles;
756
757
if (!auth)
758
return rc;
759
760
cc = be32_to_cpu(auth->ordinal);
761
762
if (auth->session >= TPM_HEADER_SIZE) {
763
WARN(1, "tpm session not filled correctly\n");
764
goto out;
765
}
766
767
if (rc != 0)
768
/* pass non success rc through and close the session */
769
goto out;
770
771
rc = -EINVAL;
772
if (tag != TPM2_ST_SESSIONS) {
773
dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
774
goto out;
775
}
776
777
i = tpm2_find_cc(chip, cc);
778
if (i < 0)
779
goto out;
780
attrs = chip->cc_attrs_tbl[i];
781
handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
782
783
/* point to area beyond handles */
784
offset_s = TPM_HEADER_SIZE + handles * 4;
785
parm_len = tpm_buf_read_u32(buf, &offset_s);
786
offset_p = offset_s;
787
offset_s += parm_len;
788
/* skip over any sessions before ours */
789
for (i = 0; i < auth->session - 1; i++) {
790
len = tpm_buf_read_u16(buf, &offset_s);
791
offset_s += len + 1;
792
len = tpm_buf_read_u16(buf, &offset_s);
793
offset_s += len;
794
}
795
/* TPM nonce */
796
len = tpm_buf_read_u16(buf, &offset_s);
797
if (offset_s + len > tpm_buf_length(buf))
798
goto out;
799
if (len != SHA256_DIGEST_SIZE)
800
goto out;
801
memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
802
offset_s += len;
803
attrs = tpm_buf_read_u8(buf, &offset_s);
804
len = tpm_buf_read_u16(buf, &offset_s);
805
if (offset_s + len != tpm_buf_length(buf))
806
goto out;
807
if (len != SHA256_DIGEST_SIZE)
808
goto out;
809
/*
810
* offset_s points to the HMAC. now calculate comparison, beginning
811
* with rphash
812
*/
813
sha256_init(&sctx);
814
/* yes, I know this is now zero, but it's what the standard says */
815
sha256_update(&sctx, (u8 *)&head->return_code,
816
sizeof(head->return_code));
817
/* ordinal is already BE */
818
sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
819
sha256_update(&sctx, &buf->data[offset_p], parm_len);
820
sha256_final(&sctx, rphash);
821
822
/* now calculate the hmac */
823
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
824
+ auth->passphrase_len);
825
sha256_update(&sctx, rphash, sizeof(rphash));
826
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
827
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
828
sha256_update(&sctx, &auth->attrs, 1);
829
/* we're done with the rphash, so put our idea of the hmac there */
830
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
831
+ auth->passphrase_len, rphash);
832
if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
833
rc = 0;
834
} else {
835
dev_err(&chip->dev, "TPM: HMAC check failed\n");
836
goto out;
837
}
838
839
/* now do response decryption */
840
if (auth->attrs & TPM2_SA_ENCRYPT) {
841
/* need key and IV */
842
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
843
+ auth->passphrase_len, "CFB", auth->tpm_nonce,
844
auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
845
auth->scratch);
846
847
len = tpm_buf_read_u16(buf, &offset_p);
848
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
849
aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
850
&buf->data[offset_p], len,
851
auth->scratch + AES_KEY_BYTES);
852
}
853
854
out:
855
if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
856
if (rc)
857
/* manually close the session if it wasn't consumed */
858
tpm2_flush_context(chip, auth->handle);
859
860
kfree_sensitive(auth);
861
chip->auth = NULL;
862
} else {
863
/* reset for next use */
864
auth->session = TPM_HEADER_SIZE;
865
}
866
867
return rc;
868
}
869
EXPORT_SYMBOL(tpm_buf_check_hmac_response);
870
871
/**
872
* tpm2_end_auth_session() - kill the allocated auth session
873
* @chip: the TPM chip structure
874
*
875
* ends the session started by tpm2_start_auth_session and frees all
876
* the resources. Under normal conditions,
877
* tpm_buf_check_hmac_response() will correctly end the session if
878
* required, so this function is only for use in error legs that will
879
* bypass the normal invocation of tpm_buf_check_hmac_response().
880
*/
881
void tpm2_end_auth_session(struct tpm_chip *chip)
882
{
883
struct tpm2_auth *auth = chip->auth;
884
885
if (!auth)
886
return;
887
888
tpm2_flush_context(chip, auth->handle);
889
kfree_sensitive(auth);
890
chip->auth = NULL;
891
}
892
EXPORT_SYMBOL(tpm2_end_auth_session);
893
894
static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
895
struct tpm_buf *buf)
896
{
897
struct tpm_header *head = (struct tpm_header *)buf->data;
898
u32 tot_len = be32_to_cpu(head->length);
899
off_t offset = TPM_HEADER_SIZE;
900
u32 val;
901
902
/* we're starting after the header so adjust the length */
903
tot_len -= TPM_HEADER_SIZE;
904
905
/* should have handle plus nonce */
906
if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
907
return -EINVAL;
908
909
auth->handle = tpm_buf_read_u32(buf, &offset);
910
val = tpm_buf_read_u16(buf, &offset);
911
if (val != sizeof(auth->tpm_nonce))
912
return -EINVAL;
913
memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
914
/* now compute the session key from the nonces */
915
tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
916
auth->our_nonce, sizeof(auth->session_key),
917
auth->session_key);
918
919
return 0;
920
}
921
922
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
923
{
924
unsigned int offset = 0; /* dummy offset for null seed context */
925
u8 name[SHA256_DIGEST_SIZE + 2];
926
u32 tmp_null_key;
927
int rc;
928
929
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
930
&tmp_null_key);
931
if (rc != -EINVAL) {
932
if (!rc)
933
*null_key = tmp_null_key;
934
goto err;
935
}
936
937
/* Try to re-create null key, given the integrity failure: */
938
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
939
if (rc)
940
goto err;
941
942
/* Return null key if the name has not been changed: */
943
if (!memcmp(name, chip->null_key_name, sizeof(name))) {
944
*null_key = tmp_null_key;
945
return 0;
946
}
947
948
/* Deduce from the name change TPM interference: */
949
dev_err(&chip->dev, "null key integrity check failed\n");
950
tpm2_flush_context(chip, tmp_null_key);
951
952
err:
953
if (rc) {
954
chip->flags |= TPM_CHIP_FLAG_DISABLE;
955
rc = -ENODEV;
956
}
957
return rc;
958
}
959
960
/**
961
* tpm2_start_auth_session() - Create an a HMAC authentication session
962
* @chip: A TPM chip
963
*
964
* Loads the ephemeral key (null seed), and starts an HMAC authenticated
965
* session. The null seed is flushed before the return.
966
*
967
* Returns zero on success, or a POSIX error code.
968
*/
969
int tpm2_start_auth_session(struct tpm_chip *chip)
970
{
971
struct tpm2_auth *auth;
972
struct tpm_buf buf;
973
u32 null_key;
974
int rc;
975
976
if (chip->auth) {
977
dev_dbg_once(&chip->dev, "auth session is active\n");
978
return 0;
979
}
980
981
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
982
if (!auth)
983
return -ENOMEM;
984
985
rc = tpm2_load_null(chip, &null_key);
986
if (rc)
987
goto out;
988
989
auth->session = TPM_HEADER_SIZE;
990
991
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
992
if (rc)
993
goto out;
994
995
/* salt key handle */
996
tpm_buf_append_u32(&buf, null_key);
997
/* bind key handle */
998
tpm_buf_append_u32(&buf, TPM2_RH_NULL);
999
/* nonce caller */
1000
get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
1001
tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
1002
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
1003
1004
/* append encrypted salt and squirrel away unencrypted in auth */
1005
tpm_buf_append_salt(&buf, chip, auth);
1006
/* session type (HMAC, audit or policy) */
1007
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
1008
1009
/* symmetric encryption parameters */
1010
/* symmetric algorithm */
1011
tpm_buf_append_u16(&buf, TPM_ALG_AES);
1012
/* bits for symmetric algorithm */
1013
tpm_buf_append_u16(&buf, AES_KEY_BITS);
1014
/* symmetric algorithm mode (must be CFB) */
1015
tpm_buf_append_u16(&buf, TPM_ALG_CFB);
1016
/* hash algorithm for session */
1017
tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
1018
1019
rc = tpm_ret_to_err(tpm_transmit_cmd(chip, &buf, 0, "StartAuthSession"));
1020
tpm2_flush_context(chip, null_key);
1021
1022
if (rc == TPM2_RC_SUCCESS)
1023
rc = tpm2_parse_start_auth_session(auth, &buf);
1024
1025
tpm_buf_destroy(&buf);
1026
1027
if (rc == TPM2_RC_SUCCESS) {
1028
chip->auth = auth;
1029
return 0;
1030
}
1031
1032
out:
1033
kfree_sensitive(auth);
1034
return rc;
1035
}
1036
EXPORT_SYMBOL(tpm2_start_auth_session);
1037
1038
/*
1039
* A mask containing the object attributes for the kernel held null primary key
1040
* used in HMAC encryption. For more information on specific attributes look up
1041
* to "8.3 TPMA_OBJECT (Object Attributes)".
1042
*/
1043
#define TPM2_OA_NULL_KEY ( \
1044
TPM2_OA_NO_DA | \
1045
TPM2_OA_FIXED_TPM | \
1046
TPM2_OA_FIXED_PARENT | \
1047
TPM2_OA_SENSITIVE_DATA_ORIGIN | \
1048
TPM2_OA_USER_WITH_AUTH | \
1049
TPM2_OA_DECRYPT | \
1050
TPM2_OA_RESTRICTED)
1051
1052
/**
1053
* tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
1054
*
1055
* @chip: The TPM the primary was created under
1056
* @buf: The response buffer from the chip
1057
* @handle: pointer to be filled in with the return handle of the primary
1058
* @hierarchy: The hierarchy the primary was created for
1059
* @name: pointer to be filled in with the primary key name
1060
*
1061
* Return:
1062
* * 0 - OK
1063
* * -errno - A system error
1064
* * TPM_RC - A TPM error
1065
*/
1066
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
1067
u32 *handle, u32 hierarchy, u8 *name)
1068
{
1069
struct tpm_header *head = (struct tpm_header *)buf->data;
1070
off_t offset_r = TPM_HEADER_SIZE, offset_t;
1071
u16 len = TPM_HEADER_SIZE;
1072
u32 total_len = be32_to_cpu(head->length);
1073
u32 val, param_len, keyhandle;
1074
1075
keyhandle = tpm_buf_read_u32(buf, &offset_r);
1076
if (handle)
1077
*handle = keyhandle;
1078
else
1079
tpm2_flush_context(chip, keyhandle);
1080
1081
param_len = tpm_buf_read_u32(buf, &offset_r);
1082
/*
1083
* param_len doesn't include the header, but all the other
1084
* lengths and offsets do, so add it to parm len to make
1085
* the comparisons easier
1086
*/
1087
param_len += TPM_HEADER_SIZE;
1088
1089
if (param_len + 8 > total_len)
1090
return -EINVAL;
1091
len = tpm_buf_read_u16(buf, &offset_r);
1092
offset_t = offset_r;
1093
if (name) {
1094
/*
1095
* now we have the public area, compute the name of
1096
* the object
1097
*/
1098
put_unaligned_be16(TPM_ALG_SHA256, name);
1099
sha256(&buf->data[offset_r], len, name + 2);
1100
}
1101
1102
/* validate the public key */
1103
val = tpm_buf_read_u16(buf, &offset_t);
1104
1105
/* key type (must be what we asked for) */
1106
if (val != TPM_ALG_ECC)
1107
return -EINVAL;
1108
val = tpm_buf_read_u16(buf, &offset_t);
1109
1110
/* name algorithm */
1111
if (val != TPM_ALG_SHA256)
1112
return -EINVAL;
1113
val = tpm_buf_read_u32(buf, &offset_t);
1114
1115
/* object properties */
1116
if (val != TPM2_OA_NULL_KEY)
1117
return -EINVAL;
1118
1119
/* auth policy (empty) */
1120
val = tpm_buf_read_u16(buf, &offset_t);
1121
if (val != 0)
1122
return -EINVAL;
1123
1124
/* symmetric key parameters */
1125
val = tpm_buf_read_u16(buf, &offset_t);
1126
if (val != TPM_ALG_AES)
1127
return -EINVAL;
1128
1129
/* symmetric key length */
1130
val = tpm_buf_read_u16(buf, &offset_t);
1131
if (val != AES_KEY_BITS)
1132
return -EINVAL;
1133
1134
/* symmetric encryption scheme */
1135
val = tpm_buf_read_u16(buf, &offset_t);
1136
if (val != TPM_ALG_CFB)
1137
return -EINVAL;
1138
1139
/* signing scheme */
1140
val = tpm_buf_read_u16(buf, &offset_t);
1141
if (val != TPM_ALG_NULL)
1142
return -EINVAL;
1143
1144
/* ECC Curve */
1145
val = tpm_buf_read_u16(buf, &offset_t);
1146
if (val != TPM2_ECC_NIST_P256)
1147
return -EINVAL;
1148
1149
/* KDF Scheme */
1150
val = tpm_buf_read_u16(buf, &offset_t);
1151
if (val != TPM_ALG_NULL)
1152
return -EINVAL;
1153
1154
/* extract public key (x and y points) */
1155
val = tpm_buf_read_u16(buf, &offset_t);
1156
if (val != EC_PT_SZ)
1157
return -EINVAL;
1158
memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1159
offset_t += val;
1160
val = tpm_buf_read_u16(buf, &offset_t);
1161
if (val != EC_PT_SZ)
1162
return -EINVAL;
1163
memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1164
offset_t += val;
1165
1166
/* original length of the whole TPM2B */
1167
offset_r += len;
1168
1169
/* should have exactly consumed the TPM2B public structure */
1170
if (offset_t != offset_r)
1171
return -EINVAL;
1172
if (offset_r > param_len)
1173
return -EINVAL;
1174
1175
/* creation data (skip) */
1176
len = tpm_buf_read_u16(buf, &offset_r);
1177
offset_r += len;
1178
if (offset_r > param_len)
1179
return -EINVAL;
1180
1181
/* creation digest (must be sha256) */
1182
len = tpm_buf_read_u16(buf, &offset_r);
1183
offset_r += len;
1184
if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1185
return -EINVAL;
1186
1187
/* TPMT_TK_CREATION follows */
1188
/* tag, must be TPM_ST_CREATION (0x8021) */
1189
val = tpm_buf_read_u16(buf, &offset_r);
1190
if (val != TPM2_ST_CREATION || offset_r > param_len)
1191
return -EINVAL;
1192
1193
/* hierarchy */
1194
val = tpm_buf_read_u32(buf, &offset_r);
1195
if (val != hierarchy || offset_r > param_len)
1196
return -EINVAL;
1197
1198
/* the ticket digest HMAC (might not be sha256) */
1199
len = tpm_buf_read_u16(buf, &offset_r);
1200
offset_r += len;
1201
if (offset_r > param_len)
1202
return -EINVAL;
1203
1204
/*
1205
* finally we have the name, which is a sha256 digest plus a 2
1206
* byte algorithm type
1207
*/
1208
len = tpm_buf_read_u16(buf, &offset_r);
1209
if (offset_r + len != param_len + 8)
1210
return -EINVAL;
1211
if (len != SHA256_DIGEST_SIZE + 2)
1212
return -EINVAL;
1213
1214
if (memcmp(chip->null_key_name, &buf->data[offset_r],
1215
SHA256_DIGEST_SIZE + 2) != 0) {
1216
dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1217
return -EINVAL;
1218
}
1219
1220
return 0;
1221
}
1222
1223
/**
1224
* tpm2_create_primary() - create a primary key using a fixed P-256 template
1225
*
1226
* @chip: the TPM chip to create under
1227
* @hierarchy: The hierarchy handle to create under
1228
* @handle: The returned volatile handle on success
1229
* @name: The name of the returned key
1230
*
1231
* For platforms that might not have a persistent primary, this can be
1232
* used to create one quickly on the fly (it uses Elliptic Curve not
1233
* RSA, so even slow TPMs can create one fast). The template uses the
1234
* TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1235
* elliptic curve (the only current one all TPM2s are required to
1236
* have) a sha256 name hash and no policy.
1237
*
1238
* Return:
1239
* * 0 - OK
1240
* * -errno - A system error
1241
* * TPM_RC - A TPM error
1242
*/
1243
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1244
u32 *handle, u8 *name)
1245
{
1246
int rc;
1247
struct tpm_buf buf;
1248
struct tpm_buf template;
1249
1250
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1251
if (rc)
1252
return rc;
1253
1254
rc = tpm_buf_init_sized(&template);
1255
if (rc) {
1256
tpm_buf_destroy(&buf);
1257
return rc;
1258
}
1259
1260
/*
1261
* create the template. Note: in order for userspace to
1262
* verify the security of the system, it will have to create
1263
* and certify this NULL primary, meaning all the template
1264
* parameters will have to be identical, so conform exactly to
1265
* the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1266
* key H template (H has zero size unique points)
1267
*/
1268
1269
/* key type */
1270
tpm_buf_append_u16(&template, TPM_ALG_ECC);
1271
1272
/* name algorithm */
1273
tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1274
1275
/* object properties */
1276
tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1277
1278
/* sauth policy (empty) */
1279
tpm_buf_append_u16(&template, 0);
1280
1281
/* BEGIN parameters: key specific; for ECC*/
1282
1283
/* symmetric algorithm */
1284
tpm_buf_append_u16(&template, TPM_ALG_AES);
1285
1286
/* bits for symmetric algorithm */
1287
tpm_buf_append_u16(&template, AES_KEY_BITS);
1288
1289
/* algorithm mode (must be CFB) */
1290
tpm_buf_append_u16(&template, TPM_ALG_CFB);
1291
1292
/* scheme (NULL means any scheme) */
1293
tpm_buf_append_u16(&template, TPM_ALG_NULL);
1294
1295
/* ECC Curve ID */
1296
tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1297
1298
/* KDF Scheme */
1299
tpm_buf_append_u16(&template, TPM_ALG_NULL);
1300
1301
/* unique: key specific; for ECC it is two zero size points */
1302
tpm_buf_append_u16(&template, 0);
1303
tpm_buf_append_u16(&template, 0);
1304
1305
/* END parameters */
1306
1307
/* primary handle */
1308
tpm_buf_append_u32(&buf, hierarchy);
1309
tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1310
1311
/* sensitive create size is 4 for two empty buffers */
1312
tpm_buf_append_u16(&buf, 4);
1313
1314
/* sensitive create auth data (empty) */
1315
tpm_buf_append_u16(&buf, 0);
1316
1317
/* sensitive create sensitive data (empty) */
1318
tpm_buf_append_u16(&buf, 0);
1319
1320
/* the public template */
1321
tpm_buf_append(&buf, template.data, template.length);
1322
tpm_buf_destroy(&template);
1323
1324
/* outside info (empty) */
1325
tpm_buf_append_u16(&buf, 0);
1326
1327
/* creation PCR (none) */
1328
tpm_buf_append_u32(&buf, 0);
1329
1330
rc = tpm_transmit_cmd(chip, &buf, 0,
1331
"attempting to create NULL primary");
1332
1333
if (rc == TPM2_RC_SUCCESS)
1334
rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1335
name);
1336
1337
tpm_buf_destroy(&buf);
1338
1339
return rc;
1340
}
1341
1342
static int tpm2_create_null_primary(struct tpm_chip *chip)
1343
{
1344
u32 null_key;
1345
int rc;
1346
1347
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1348
chip->null_key_name);
1349
1350
if (rc == TPM2_RC_SUCCESS) {
1351
unsigned int offset = 0; /* dummy offset for null key context */
1352
1353
rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1354
sizeof(chip->null_key_context), &offset);
1355
tpm2_flush_context(chip, null_key);
1356
}
1357
1358
return rc;
1359
}
1360
1361
/**
1362
* tpm2_sessions_init() - start of day initialization for the sessions code
1363
* @chip: TPM chip
1364
*
1365
* Derive and context save the null primary and allocate memory in the
1366
* struct tpm_chip for the authorizations.
1367
*
1368
* Return:
1369
* * 0 - OK
1370
* * -errno - A system error
1371
* * TPM_RC - A TPM error
1372
*/
1373
int tpm2_sessions_init(struct tpm_chip *chip)
1374
{
1375
int rc;
1376
1377
rc = tpm2_create_null_primary(chip);
1378
if (rc) {
1379
dev_err(&chip->dev, "null key creation failed with %d\n", rc);
1380
return rc;
1381
}
1382
1383
return rc;
1384
}
1385
#endif /* CONFIG_TCG_TPM2_HMAC */
1386
1387