Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/bcm/clk-bcm2835.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* Copyright (C) 2010,2015 Broadcom
4
* Copyright (C) 2012 Stephen Warren
5
*/
6
7
/**
8
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9
*
10
* The clock tree on the 2835 has several levels. There's a root
11
* oscillator running at 19.2Mhz. After the oscillator there are 5
12
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13
* and "HDMI displays". Those 5 PLLs each can divide their output to
14
* produce up to 4 channels. Finally, there is the level of clocks to
15
* be consumed by other hardware components (like "H264" or "HDMI
16
* state machine"), which divide off of some subset of the PLL
17
* channels.
18
*
19
* All of the clocks in the tree are exposed in the DT, because the DT
20
* may want to make assignments of the final layer of clocks to the
21
* PLL channels, and some components of the hardware will actually
22
* skip layers of the tree (for example, the pixel clock comes
23
* directly from the PLLH PIX channel without using a CM_*CTL clock
24
* generator).
25
*/
26
27
#include <linux/clk-provider.h>
28
#include <linux/clkdev.h>
29
#include <linux/clk.h>
30
#include <linux/debugfs.h>
31
#include <linux/delay.h>
32
#include <linux/io.h>
33
#include <linux/math.h>
34
#include <linux/module.h>
35
#include <linux/of.h>
36
#include <linux/platform_device.h>
37
#include <linux/slab.h>
38
#include <dt-bindings/clock/bcm2835.h>
39
40
#define CM_PASSWORD 0x5a000000
41
42
#define CM_GNRICCTL 0x000
43
#define CM_GNRICDIV 0x004
44
# define CM_DIV_FRAC_BITS 12
45
# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46
47
#define CM_VPUCTL 0x008
48
#define CM_VPUDIV 0x00c
49
#define CM_SYSCTL 0x010
50
#define CM_SYSDIV 0x014
51
#define CM_PERIACTL 0x018
52
#define CM_PERIADIV 0x01c
53
#define CM_PERIICTL 0x020
54
#define CM_PERIIDIV 0x024
55
#define CM_H264CTL 0x028
56
#define CM_H264DIV 0x02c
57
#define CM_ISPCTL 0x030
58
#define CM_ISPDIV 0x034
59
#define CM_V3DCTL 0x038
60
#define CM_V3DDIV 0x03c
61
#define CM_CAM0CTL 0x040
62
#define CM_CAM0DIV 0x044
63
#define CM_CAM1CTL 0x048
64
#define CM_CAM1DIV 0x04c
65
#define CM_CCP2CTL 0x050
66
#define CM_CCP2DIV 0x054
67
#define CM_DSI0ECTL 0x058
68
#define CM_DSI0EDIV 0x05c
69
#define CM_DSI0PCTL 0x060
70
#define CM_DSI0PDIV 0x064
71
#define CM_DPICTL 0x068
72
#define CM_DPIDIV 0x06c
73
#define CM_GP0CTL 0x070
74
#define CM_GP0DIV 0x074
75
#define CM_GP1CTL 0x078
76
#define CM_GP1DIV 0x07c
77
#define CM_GP2CTL 0x080
78
#define CM_GP2DIV 0x084
79
#define CM_HSMCTL 0x088
80
#define CM_HSMDIV 0x08c
81
#define CM_OTPCTL 0x090
82
#define CM_OTPDIV 0x094
83
#define CM_PCMCTL 0x098
84
#define CM_PCMDIV 0x09c
85
#define CM_PWMCTL 0x0a0
86
#define CM_PWMDIV 0x0a4
87
#define CM_SLIMCTL 0x0a8
88
#define CM_SLIMDIV 0x0ac
89
#define CM_SMICTL 0x0b0
90
#define CM_SMIDIV 0x0b4
91
/* no definition for 0x0b8 and 0x0bc */
92
#define CM_TCNTCTL 0x0c0
93
# define CM_TCNT_SRC1_SHIFT 12
94
#define CM_TCNTCNT 0x0c4
95
#define CM_TECCTL 0x0c8
96
#define CM_TECDIV 0x0cc
97
#define CM_TD0CTL 0x0d0
98
#define CM_TD0DIV 0x0d4
99
#define CM_TD1CTL 0x0d8
100
#define CM_TD1DIV 0x0dc
101
#define CM_TSENSCTL 0x0e0
102
#define CM_TSENSDIV 0x0e4
103
#define CM_TIMERCTL 0x0e8
104
#define CM_TIMERDIV 0x0ec
105
#define CM_UARTCTL 0x0f0
106
#define CM_UARTDIV 0x0f4
107
#define CM_VECCTL 0x0f8
108
#define CM_VECDIV 0x0fc
109
#define CM_PULSECTL 0x190
110
#define CM_PULSEDIV 0x194
111
#define CM_SDCCTL 0x1a8
112
#define CM_SDCDIV 0x1ac
113
#define CM_ARMCTL 0x1b0
114
#define CM_AVEOCTL 0x1b8
115
#define CM_AVEODIV 0x1bc
116
#define CM_EMMCCTL 0x1c0
117
#define CM_EMMCDIV 0x1c4
118
#define CM_EMMC2CTL 0x1d0
119
#define CM_EMMC2DIV 0x1d4
120
121
/* General bits for the CM_*CTL regs */
122
# define CM_ENABLE BIT(4)
123
# define CM_KILL BIT(5)
124
# define CM_GATE_BIT 6
125
# define CM_GATE BIT(CM_GATE_BIT)
126
# define CM_BUSY BIT(7)
127
# define CM_BUSYD BIT(8)
128
# define CM_FRAC BIT(9)
129
# define CM_SRC_SHIFT 0
130
# define CM_SRC_BITS 4
131
# define CM_SRC_MASK 0xf
132
# define CM_SRC_GND 0
133
# define CM_SRC_OSC 1
134
# define CM_SRC_TESTDEBUG0 2
135
# define CM_SRC_TESTDEBUG1 3
136
# define CM_SRC_PLLA_CORE 4
137
# define CM_SRC_PLLA_PER 4
138
# define CM_SRC_PLLC_CORE0 5
139
# define CM_SRC_PLLC_PER 5
140
# define CM_SRC_PLLC_CORE1 8
141
# define CM_SRC_PLLD_CORE 6
142
# define CM_SRC_PLLD_PER 6
143
# define CM_SRC_PLLH_AUX 7
144
# define CM_SRC_PLLC_CORE1 8
145
# define CM_SRC_PLLC_CORE2 9
146
147
#define CM_OSCCOUNT 0x100
148
149
#define CM_PLLA 0x104
150
# define CM_PLL_ANARST BIT(8)
151
# define CM_PLLA_HOLDPER BIT(7)
152
# define CM_PLLA_LOADPER BIT(6)
153
# define CM_PLLA_HOLDCORE BIT(5)
154
# define CM_PLLA_LOADCORE BIT(4)
155
# define CM_PLLA_HOLDCCP2 BIT(3)
156
# define CM_PLLA_LOADCCP2 BIT(2)
157
# define CM_PLLA_HOLDDSI0 BIT(1)
158
# define CM_PLLA_LOADDSI0 BIT(0)
159
160
#define CM_PLLC 0x108
161
# define CM_PLLC_HOLDPER BIT(7)
162
# define CM_PLLC_LOADPER BIT(6)
163
# define CM_PLLC_HOLDCORE2 BIT(5)
164
# define CM_PLLC_LOADCORE2 BIT(4)
165
# define CM_PLLC_HOLDCORE1 BIT(3)
166
# define CM_PLLC_LOADCORE1 BIT(2)
167
# define CM_PLLC_HOLDCORE0 BIT(1)
168
# define CM_PLLC_LOADCORE0 BIT(0)
169
170
#define CM_PLLD 0x10c
171
# define CM_PLLD_HOLDPER BIT(7)
172
# define CM_PLLD_LOADPER BIT(6)
173
# define CM_PLLD_HOLDCORE BIT(5)
174
# define CM_PLLD_LOADCORE BIT(4)
175
# define CM_PLLD_HOLDDSI1 BIT(3)
176
# define CM_PLLD_LOADDSI1 BIT(2)
177
# define CM_PLLD_HOLDDSI0 BIT(1)
178
# define CM_PLLD_LOADDSI0 BIT(0)
179
180
#define CM_PLLH 0x110
181
# define CM_PLLH_LOADRCAL BIT(2)
182
# define CM_PLLH_LOADAUX BIT(1)
183
# define CM_PLLH_LOADPIX BIT(0)
184
185
#define CM_LOCK 0x114
186
# define CM_LOCK_FLOCKH BIT(12)
187
# define CM_LOCK_FLOCKD BIT(11)
188
# define CM_LOCK_FLOCKC BIT(10)
189
# define CM_LOCK_FLOCKB BIT(9)
190
# define CM_LOCK_FLOCKA BIT(8)
191
192
#define CM_EVENT 0x118
193
#define CM_DSI1ECTL 0x158
194
#define CM_DSI1EDIV 0x15c
195
#define CM_DSI1PCTL 0x160
196
#define CM_DSI1PDIV 0x164
197
#define CM_DFTCTL 0x168
198
#define CM_DFTDIV 0x16c
199
200
#define CM_PLLB 0x170
201
# define CM_PLLB_HOLDARM BIT(1)
202
# define CM_PLLB_LOADARM BIT(0)
203
204
#define A2W_PLLA_CTRL 0x1100
205
#define A2W_PLLC_CTRL 0x1120
206
#define A2W_PLLD_CTRL 0x1140
207
#define A2W_PLLH_CTRL 0x1160
208
#define A2W_PLLB_CTRL 0x11e0
209
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
210
# define A2W_PLL_CTRL_PWRDN BIT(16)
211
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
212
# define A2W_PLL_CTRL_PDIV_SHIFT 12
213
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
214
# define A2W_PLL_CTRL_NDIV_SHIFT 0
215
216
#define A2W_PLLA_ANA0 0x1010
217
#define A2W_PLLC_ANA0 0x1030
218
#define A2W_PLLD_ANA0 0x1050
219
#define A2W_PLLH_ANA0 0x1070
220
#define A2W_PLLB_ANA0 0x10f0
221
222
#define A2W_PLL_KA_SHIFT 7
223
#define A2W_PLL_KA_MASK GENMASK(9, 7)
224
#define A2W_PLL_KI_SHIFT 19
225
#define A2W_PLL_KI_MASK GENMASK(21, 19)
226
#define A2W_PLL_KP_SHIFT 15
227
#define A2W_PLL_KP_MASK GENMASK(18, 15)
228
229
#define A2W_PLLH_KA_SHIFT 19
230
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
231
#define A2W_PLLH_KI_LOW_SHIFT 22
232
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
233
#define A2W_PLLH_KI_HIGH_SHIFT 0
234
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
235
#define A2W_PLLH_KP_SHIFT 1
236
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
237
238
#define A2W_XOSC_CTRL 0x1190
239
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
240
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
241
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
242
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
243
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
244
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
245
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
246
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247
248
#define A2W_PLLA_FRAC 0x1200
249
#define A2W_PLLC_FRAC 0x1220
250
#define A2W_PLLD_FRAC 0x1240
251
#define A2W_PLLH_FRAC 0x1260
252
#define A2W_PLLB_FRAC 0x12e0
253
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
254
# define A2W_PLL_FRAC_BITS 20
255
256
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
257
#define A2W_PLL_DIV_BITS 8
258
#define A2W_PLL_DIV_SHIFT 0
259
260
#define A2W_PLLA_DSI0 0x1300
261
#define A2W_PLLA_CORE 0x1400
262
#define A2W_PLLA_PER 0x1500
263
#define A2W_PLLA_CCP2 0x1600
264
265
#define A2W_PLLC_CORE2 0x1320
266
#define A2W_PLLC_CORE1 0x1420
267
#define A2W_PLLC_PER 0x1520
268
#define A2W_PLLC_CORE0 0x1620
269
270
#define A2W_PLLD_DSI0 0x1340
271
#define A2W_PLLD_CORE 0x1440
272
#define A2W_PLLD_PER 0x1540
273
#define A2W_PLLD_DSI1 0x1640
274
275
#define A2W_PLLH_AUX 0x1360
276
#define A2W_PLLH_RCAL 0x1460
277
#define A2W_PLLH_PIX 0x1560
278
#define A2W_PLLH_STS 0x1660
279
280
#define A2W_PLLH_CTRLR 0x1960
281
#define A2W_PLLH_FRACR 0x1a60
282
#define A2W_PLLH_AUXR 0x1b60
283
#define A2W_PLLH_RCALR 0x1c60
284
#define A2W_PLLH_PIXR 0x1d60
285
#define A2W_PLLH_STSR 0x1e60
286
287
#define A2W_PLLB_ARM 0x13e0
288
#define A2W_PLLB_SP0 0x14e0
289
#define A2W_PLLB_SP1 0x15e0
290
#define A2W_PLLB_SP2 0x16e0
291
292
#define LOCK_TIMEOUT_NS 100000000
293
#define BCM2835_MAX_FB_RATE 1750000000u
294
295
#define SOC_BCM2835 BIT(0)
296
#define SOC_BCM2711 BIT(1)
297
#define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
298
299
/*
300
* Names of clocks used within the driver that need to be replaced
301
* with an external parent's name. This array is in the order that
302
* the clocks node in the DT references external clocks.
303
*/
304
static const char *const cprman_parent_names[] = {
305
"xosc",
306
"dsi0_byte",
307
"dsi0_ddr2",
308
"dsi0_ddr",
309
"dsi1_byte",
310
"dsi1_ddr2",
311
"dsi1_ddr",
312
};
313
314
struct bcm2835_cprman {
315
struct device *dev;
316
void __iomem *regs;
317
spinlock_t regs_lock; /* spinlock for all clocks */
318
unsigned int soc;
319
320
/*
321
* Real names of cprman clock parents looked up through
322
* of_clk_get_parent_name(), which will be used in the
323
* parent_names[] arrays for clock registration.
324
*/
325
const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326
327
/* Must be last */
328
struct clk_hw_onecell_data onecell;
329
};
330
331
struct cprman_plat_data {
332
unsigned int soc;
333
};
334
335
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336
{
337
writel(CM_PASSWORD | val, cprman->regs + reg);
338
}
339
340
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341
{
342
return readl(cprman->regs + reg);
343
}
344
345
/* Does a cycle of measuring a clock through the TCNT clock, which may
346
* source from many other clocks in the system.
347
*/
348
static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349
u32 tcnt_mux)
350
{
351
u32 osccount = 19200; /* 1ms */
352
u32 count;
353
ktime_t timeout;
354
355
spin_lock(&cprman->regs_lock);
356
357
cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358
359
cprman_write(cprman, CM_TCNTCTL,
360
(tcnt_mux & CM_SRC_MASK) |
361
(tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362
363
cprman_write(cprman, CM_OSCCOUNT, osccount);
364
365
/* do a kind delay at the start */
366
mdelay(1);
367
368
/* Finish off whatever is left of OSCCOUNT */
369
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370
while (cprman_read(cprman, CM_OSCCOUNT)) {
371
if (ktime_after(ktime_get(), timeout)) {
372
dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373
count = 0;
374
goto out;
375
}
376
cpu_relax();
377
}
378
379
/* Wait for BUSY to clear. */
380
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381
while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382
if (ktime_after(ktime_get(), timeout)) {
383
dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384
count = 0;
385
goto out;
386
}
387
cpu_relax();
388
}
389
390
count = cprman_read(cprman, CM_TCNTCNT);
391
392
cprman_write(cprman, CM_TCNTCTL, 0);
393
394
out:
395
spin_unlock(&cprman->regs_lock);
396
397
return count * 1000;
398
}
399
400
static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401
const struct debugfs_reg32 *regs,
402
size_t nregs, struct dentry *dentry)
403
{
404
struct debugfs_regset32 *regset;
405
406
regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407
if (!regset)
408
return;
409
410
regset->regs = regs;
411
regset->nregs = nregs;
412
regset->base = cprman->regs + base;
413
414
debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415
}
416
417
struct bcm2835_pll_data {
418
const char *name;
419
u32 cm_ctrl_reg;
420
u32 a2w_ctrl_reg;
421
u32 frac_reg;
422
u32 ana_reg_base;
423
u32 reference_enable_mask;
424
/* Bit in CM_LOCK to indicate when the PLL has locked. */
425
u32 lock_mask;
426
u32 flags;
427
428
const struct bcm2835_pll_ana_bits *ana;
429
430
unsigned long min_rate;
431
unsigned long max_rate;
432
/*
433
* Highest rate for the VCO before we have to use the
434
* pre-divide-by-2.
435
*/
436
unsigned long max_fb_rate;
437
};
438
439
struct bcm2835_pll_ana_bits {
440
u32 mask0;
441
u32 set0;
442
u32 mask1;
443
u32 set1;
444
u32 mask3;
445
u32 set3;
446
u32 fb_prediv_mask;
447
};
448
449
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450
.mask0 = 0,
451
.set0 = 0,
452
.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454
.mask3 = A2W_PLL_KA_MASK,
455
.set3 = (2 << A2W_PLL_KA_SHIFT),
456
.fb_prediv_mask = BIT(14),
457
};
458
459
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460
.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462
.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463
.set1 = (6 << A2W_PLLH_KP_SHIFT),
464
.mask3 = 0,
465
.set3 = 0,
466
.fb_prediv_mask = BIT(11),
467
};
468
469
struct bcm2835_pll_divider_data {
470
const char *name;
471
const char *source_pll;
472
473
u32 cm_reg;
474
u32 a2w_reg;
475
476
u32 load_mask;
477
u32 hold_mask;
478
u32 fixed_divider;
479
u32 flags;
480
};
481
482
struct bcm2835_clock_data {
483
const char *name;
484
485
const char *const *parents;
486
int num_mux_parents;
487
488
/* Bitmap encoding which parents accept rate change propagation. */
489
unsigned int set_rate_parent;
490
491
u32 ctl_reg;
492
u32 div_reg;
493
494
/* Number of integer bits in the divider */
495
u32 int_bits;
496
/* Number of fractional bits in the divider */
497
u32 frac_bits;
498
499
u32 flags;
500
501
bool is_vpu_clock;
502
bool is_mash_clock;
503
bool low_jitter;
504
505
u32 tcnt_mux;
506
507
bool round_up;
508
};
509
510
struct bcm2835_gate_data {
511
const char *name;
512
const char *parent;
513
514
u32 ctl_reg;
515
};
516
517
struct bcm2835_pll {
518
struct clk_hw hw;
519
struct bcm2835_cprman *cprman;
520
const struct bcm2835_pll_data *data;
521
};
522
523
static int bcm2835_pll_is_on(struct clk_hw *hw)
524
{
525
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526
struct bcm2835_cprman *cprman = pll->cprman;
527
const struct bcm2835_pll_data *data = pll->data;
528
529
return cprman_read(cprman, data->a2w_ctrl_reg) &
530
A2W_PLL_CTRL_PRST_DISABLE;
531
}
532
533
static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534
const struct bcm2835_pll_data *data)
535
{
536
/*
537
* On BCM2711 there isn't a pre-divisor available in the PLL feedback
538
* loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539
* for to for VCO RANGE bits.
540
*/
541
if (cprman->soc & SOC_BCM2711)
542
return 0;
543
544
return data->ana->fb_prediv_mask;
545
}
546
547
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548
unsigned long parent_rate,
549
u32 *ndiv, u32 *fdiv)
550
{
551
u64 div;
552
553
div = (u64)rate << A2W_PLL_FRAC_BITS;
554
do_div(div, parent_rate);
555
556
*ndiv = div >> A2W_PLL_FRAC_BITS;
557
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558
}
559
560
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561
u32 ndiv, u32 fdiv, u32 pdiv)
562
{
563
u64 rate;
564
565
if (pdiv == 0)
566
return 0;
567
568
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569
do_div(rate, pdiv);
570
return rate >> A2W_PLL_FRAC_BITS;
571
}
572
573
static int bcm2835_pll_determine_rate(struct clk_hw *hw,
574
struct clk_rate_request *req)
575
{
576
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577
const struct bcm2835_pll_data *data = pll->data;
578
u32 ndiv, fdiv;
579
580
req->rate = clamp(req->rate, data->min_rate, data->max_rate);
581
582
bcm2835_pll_choose_ndiv_and_fdiv(req->rate, req->best_parent_rate,
583
&ndiv, &fdiv);
584
585
req->rate = bcm2835_pll_rate_from_divisors(req->best_parent_rate,
586
ndiv, fdiv,
587
1);
588
589
return 0;
590
}
591
592
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
593
unsigned long parent_rate)
594
{
595
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
596
struct bcm2835_cprman *cprman = pll->cprman;
597
const struct bcm2835_pll_data *data = pll->data;
598
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
599
u32 ndiv, pdiv, fdiv;
600
bool using_prediv;
601
602
if (parent_rate == 0)
603
return 0;
604
605
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
606
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
607
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
608
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
609
bcm2835_pll_get_prediv_mask(cprman, data);
610
611
if (using_prediv) {
612
ndiv *= 2;
613
fdiv *= 2;
614
}
615
616
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
617
}
618
619
static void bcm2835_pll_off(struct clk_hw *hw)
620
{
621
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
622
struct bcm2835_cprman *cprman = pll->cprman;
623
const struct bcm2835_pll_data *data = pll->data;
624
625
spin_lock(&cprman->regs_lock);
626
cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
627
cprman_write(cprman, data->a2w_ctrl_reg,
628
cprman_read(cprman, data->a2w_ctrl_reg) |
629
A2W_PLL_CTRL_PWRDN);
630
spin_unlock(&cprman->regs_lock);
631
}
632
633
static int bcm2835_pll_on(struct clk_hw *hw)
634
{
635
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
636
struct bcm2835_cprman *cprman = pll->cprman;
637
const struct bcm2835_pll_data *data = pll->data;
638
ktime_t timeout;
639
640
cprman_write(cprman, data->a2w_ctrl_reg,
641
cprman_read(cprman, data->a2w_ctrl_reg) &
642
~A2W_PLL_CTRL_PWRDN);
643
644
/* Take the PLL out of reset. */
645
spin_lock(&cprman->regs_lock);
646
cprman_write(cprman, data->cm_ctrl_reg,
647
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
648
spin_unlock(&cprman->regs_lock);
649
650
/* Wait for the PLL to lock. */
651
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
652
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
653
if (ktime_after(ktime_get(), timeout)) {
654
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
655
clk_hw_get_name(hw));
656
return -ETIMEDOUT;
657
}
658
659
cpu_relax();
660
}
661
662
cprman_write(cprman, data->a2w_ctrl_reg,
663
cprman_read(cprman, data->a2w_ctrl_reg) |
664
A2W_PLL_CTRL_PRST_DISABLE);
665
666
return 0;
667
}
668
669
static void
670
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
671
{
672
int i;
673
674
/*
675
* ANA register setup is done as a series of writes to
676
* ANA3-ANA0, in that order. This lets us write all 4
677
* registers as a single cycle of the serdes interface (taking
678
* 100 xosc clocks), whereas if we were to update ana0, 1, and
679
* 3 individually through their partial-write registers, each
680
* would be their own serdes cycle.
681
*/
682
for (i = 3; i >= 0; i--)
683
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
684
}
685
686
static int bcm2835_pll_set_rate(struct clk_hw *hw,
687
unsigned long rate, unsigned long parent_rate)
688
{
689
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
690
struct bcm2835_cprman *cprman = pll->cprman;
691
const struct bcm2835_pll_data *data = pll->data;
692
u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
693
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
694
u32 ndiv, fdiv, a2w_ctl;
695
u32 ana[4];
696
int i;
697
698
if (rate > data->max_fb_rate) {
699
use_fb_prediv = true;
700
rate /= 2;
701
} else {
702
use_fb_prediv = false;
703
}
704
705
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
706
707
for (i = 3; i >= 0; i--)
708
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
709
710
was_using_prediv = ana[1] & prediv_mask;
711
712
ana[0] &= ~data->ana->mask0;
713
ana[0] |= data->ana->set0;
714
ana[1] &= ~data->ana->mask1;
715
ana[1] |= data->ana->set1;
716
ana[3] &= ~data->ana->mask3;
717
ana[3] |= data->ana->set3;
718
719
if (was_using_prediv && !use_fb_prediv) {
720
ana[1] &= ~prediv_mask;
721
do_ana_setup_first = true;
722
} else if (!was_using_prediv && use_fb_prediv) {
723
ana[1] |= prediv_mask;
724
do_ana_setup_first = false;
725
} else {
726
do_ana_setup_first = true;
727
}
728
729
/* Unmask the reference clock from the oscillator. */
730
spin_lock(&cprman->regs_lock);
731
cprman_write(cprman, A2W_XOSC_CTRL,
732
cprman_read(cprman, A2W_XOSC_CTRL) |
733
data->reference_enable_mask);
734
spin_unlock(&cprman->regs_lock);
735
736
if (do_ana_setup_first)
737
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
738
739
/* Set the PLL multiplier from the oscillator. */
740
cprman_write(cprman, data->frac_reg, fdiv);
741
742
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
743
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
744
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
745
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
746
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
747
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
748
749
if (!do_ana_setup_first)
750
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
751
752
return 0;
753
}
754
755
static void bcm2835_pll_debug_init(struct clk_hw *hw,
756
struct dentry *dentry)
757
{
758
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
759
struct bcm2835_cprman *cprman = pll->cprman;
760
const struct bcm2835_pll_data *data = pll->data;
761
struct debugfs_reg32 *regs;
762
763
regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
764
if (!regs)
765
return;
766
767
regs[0].name = "cm_ctrl";
768
regs[0].offset = data->cm_ctrl_reg;
769
regs[1].name = "a2w_ctrl";
770
regs[1].offset = data->a2w_ctrl_reg;
771
regs[2].name = "frac";
772
regs[2].offset = data->frac_reg;
773
regs[3].name = "ana0";
774
regs[3].offset = data->ana_reg_base + 0 * 4;
775
regs[4].name = "ana1";
776
regs[4].offset = data->ana_reg_base + 1 * 4;
777
regs[5].name = "ana2";
778
regs[5].offset = data->ana_reg_base + 2 * 4;
779
regs[6].name = "ana3";
780
regs[6].offset = data->ana_reg_base + 3 * 4;
781
782
bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
783
}
784
785
static const struct clk_ops bcm2835_pll_clk_ops = {
786
.is_prepared = bcm2835_pll_is_on,
787
.prepare = bcm2835_pll_on,
788
.unprepare = bcm2835_pll_off,
789
.recalc_rate = bcm2835_pll_get_rate,
790
.set_rate = bcm2835_pll_set_rate,
791
.determine_rate = bcm2835_pll_determine_rate,
792
.debug_init = bcm2835_pll_debug_init,
793
};
794
795
struct bcm2835_pll_divider {
796
struct clk_divider div;
797
struct bcm2835_cprman *cprman;
798
const struct bcm2835_pll_divider_data *data;
799
};
800
801
static struct bcm2835_pll_divider *
802
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
803
{
804
return container_of(hw, struct bcm2835_pll_divider, div.hw);
805
}
806
807
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
808
{
809
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
810
struct bcm2835_cprman *cprman = divider->cprman;
811
const struct bcm2835_pll_divider_data *data = divider->data;
812
813
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
814
}
815
816
static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
817
struct clk_rate_request *req)
818
{
819
return clk_divider_ops.determine_rate(hw, req);
820
}
821
822
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823
unsigned long parent_rate)
824
{
825
return clk_divider_ops.recalc_rate(hw, parent_rate);
826
}
827
828
static void bcm2835_pll_divider_off(struct clk_hw *hw)
829
{
830
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831
struct bcm2835_cprman *cprman = divider->cprman;
832
const struct bcm2835_pll_divider_data *data = divider->data;
833
834
spin_lock(&cprman->regs_lock);
835
cprman_write(cprman, data->cm_reg,
836
(cprman_read(cprman, data->cm_reg) &
837
~data->load_mask) | data->hold_mask);
838
cprman_write(cprman, data->a2w_reg,
839
cprman_read(cprman, data->a2w_reg) |
840
A2W_PLL_CHANNEL_DISABLE);
841
spin_unlock(&cprman->regs_lock);
842
}
843
844
static int bcm2835_pll_divider_on(struct clk_hw *hw)
845
{
846
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847
struct bcm2835_cprman *cprman = divider->cprman;
848
const struct bcm2835_pll_divider_data *data = divider->data;
849
850
spin_lock(&cprman->regs_lock);
851
cprman_write(cprman, data->a2w_reg,
852
cprman_read(cprman, data->a2w_reg) &
853
~A2W_PLL_CHANNEL_DISABLE);
854
855
cprman_write(cprman, data->cm_reg,
856
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
857
spin_unlock(&cprman->regs_lock);
858
859
return 0;
860
}
861
862
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863
unsigned long rate,
864
unsigned long parent_rate)
865
{
866
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867
struct bcm2835_cprman *cprman = divider->cprman;
868
const struct bcm2835_pll_divider_data *data = divider->data;
869
u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
870
871
div = DIV_ROUND_UP_ULL(parent_rate, rate);
872
873
div = min(div, max_div);
874
if (div == max_div)
875
div = 0;
876
877
cprman_write(cprman, data->a2w_reg, div);
878
cm = cprman_read(cprman, data->cm_reg);
879
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881
882
return 0;
883
}
884
885
static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886
struct dentry *dentry)
887
{
888
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889
struct bcm2835_cprman *cprman = divider->cprman;
890
const struct bcm2835_pll_divider_data *data = divider->data;
891
struct debugfs_reg32 *regs;
892
893
regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
894
if (!regs)
895
return;
896
897
regs[0].name = "cm";
898
regs[0].offset = data->cm_reg;
899
regs[1].name = "a2w";
900
regs[1].offset = data->a2w_reg;
901
902
bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903
}
904
905
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906
.is_prepared = bcm2835_pll_divider_is_on,
907
.prepare = bcm2835_pll_divider_on,
908
.unprepare = bcm2835_pll_divider_off,
909
.recalc_rate = bcm2835_pll_divider_get_rate,
910
.set_rate = bcm2835_pll_divider_set_rate,
911
.determine_rate = bcm2835_pll_divider_determine_rate,
912
.debug_init = bcm2835_pll_divider_debug_init,
913
};
914
915
/*
916
* The CM dividers do fixed-point division, so we can't use the
917
* generic integer divider code like the PLL dividers do (and we can't
918
* fake it by having some fixed shifts preceding it in the clock tree,
919
* because we'd run out of bits in a 32-bit unsigned long).
920
*/
921
struct bcm2835_clock {
922
struct clk_hw hw;
923
struct bcm2835_cprman *cprman;
924
const struct bcm2835_clock_data *data;
925
};
926
927
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928
{
929
return container_of(hw, struct bcm2835_clock, hw);
930
}
931
932
static int bcm2835_clock_is_on(struct clk_hw *hw)
933
{
934
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935
struct bcm2835_cprman *cprman = clock->cprman;
936
const struct bcm2835_clock_data *data = clock->data;
937
938
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939
}
940
941
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942
unsigned long rate,
943
unsigned long parent_rate)
944
{
945
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
946
const struct bcm2835_clock_data *data = clock->data;
947
u32 unused_frac_mask =
948
GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
949
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
950
u32 div, mindiv, maxdiv;
951
952
do_div(temp, rate);
953
div = temp;
954
div &= ~unused_frac_mask;
955
956
/* different clamping limits apply for a mash clock */
957
if (data->is_mash_clock) {
958
/* clamp to min divider of 2 */
959
mindiv = 2 << CM_DIV_FRAC_BITS;
960
/* clamp to the highest possible integer divider */
961
maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
962
} else {
963
/* clamp to min divider of 1 */
964
mindiv = 1 << CM_DIV_FRAC_BITS;
965
/* clamp to the highest possible fractional divider */
966
maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
967
CM_DIV_FRAC_BITS - data->frac_bits);
968
}
969
970
/* apply the clamping limits */
971
div = max_t(u32, div, mindiv);
972
div = min_t(u32, div, maxdiv);
973
974
return div;
975
}
976
977
static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
978
unsigned long parent_rate,
979
u32 div)
980
{
981
const struct bcm2835_clock_data *data = clock->data;
982
u64 temp;
983
984
if (data->int_bits == 0 && data->frac_bits == 0)
985
return parent_rate;
986
987
/*
988
* The divisor is a 12.12 fixed point field, but only some of
989
* the bits are populated in any given clock.
990
*/
991
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
992
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
993
994
if (div == 0)
995
return 0;
996
997
temp = (u64)parent_rate << data->frac_bits;
998
999
do_div(temp, div);
1000
1001
return temp;
1002
}
1003
1004
static unsigned long bcm2835_round_rate(unsigned long rate)
1005
{
1006
unsigned long scaler;
1007
unsigned long limit;
1008
1009
limit = rate / 100000;
1010
1011
scaler = 1;
1012
while (scaler < limit)
1013
scaler *= 10;
1014
1015
/*
1016
* If increasing a clock by less than 0.1% changes it
1017
* from ..999.. to ..000.., round up.
1018
*/
1019
if ((rate + scaler - 1) / scaler % 1000 == 0)
1020
rate = roundup(rate, scaler);
1021
1022
return rate;
1023
}
1024
1025
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1026
unsigned long parent_rate)
1027
{
1028
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1029
struct bcm2835_cprman *cprman = clock->cprman;
1030
const struct bcm2835_clock_data *data = clock->data;
1031
unsigned long rate;
1032
u32 div;
1033
1034
if (data->int_bits == 0 && data->frac_bits == 0)
1035
return parent_rate;
1036
1037
div = cprman_read(cprman, data->div_reg);
1038
1039
rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1040
1041
if (data->round_up)
1042
rate = bcm2835_round_rate(rate);
1043
1044
return rate;
1045
}
1046
1047
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1048
{
1049
struct bcm2835_cprman *cprman = clock->cprman;
1050
const struct bcm2835_clock_data *data = clock->data;
1051
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1052
1053
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1054
if (ktime_after(ktime_get(), timeout)) {
1055
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1056
clk_hw_get_name(&clock->hw));
1057
return;
1058
}
1059
cpu_relax();
1060
}
1061
}
1062
1063
static void bcm2835_clock_off(struct clk_hw *hw)
1064
{
1065
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1066
struct bcm2835_cprman *cprman = clock->cprman;
1067
const struct bcm2835_clock_data *data = clock->data;
1068
1069
spin_lock(&cprman->regs_lock);
1070
cprman_write(cprman, data->ctl_reg,
1071
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1072
spin_unlock(&cprman->regs_lock);
1073
1074
/* BUSY will remain high until the divider completes its cycle. */
1075
bcm2835_clock_wait_busy(clock);
1076
}
1077
1078
static int bcm2835_clock_on(struct clk_hw *hw)
1079
{
1080
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1081
struct bcm2835_cprman *cprman = clock->cprman;
1082
const struct bcm2835_clock_data *data = clock->data;
1083
1084
spin_lock(&cprman->regs_lock);
1085
cprman_write(cprman, data->ctl_reg,
1086
cprman_read(cprman, data->ctl_reg) |
1087
CM_ENABLE |
1088
CM_GATE);
1089
spin_unlock(&cprman->regs_lock);
1090
1091
/* Debug code to measure the clock once it's turned on to see
1092
* if it's ticking at the rate we expect.
1093
*/
1094
if (data->tcnt_mux && false) {
1095
dev_info(cprman->dev,
1096
"clk %s: rate %ld, measure %ld\n",
1097
data->name,
1098
clk_hw_get_rate(hw),
1099
bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1100
}
1101
1102
return 0;
1103
}
1104
1105
static int bcm2835_clock_set_rate(struct clk_hw *hw,
1106
unsigned long rate, unsigned long parent_rate)
1107
{
1108
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1109
struct bcm2835_cprman *cprman = clock->cprman;
1110
const struct bcm2835_clock_data *data = clock->data;
1111
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1112
u32 ctl;
1113
1114
spin_lock(&cprman->regs_lock);
1115
1116
/*
1117
* Setting up frac support
1118
*
1119
* In principle it is recommended to stop/start the clock first,
1120
* but as we set CLK_SET_RATE_GATE during registration of the
1121
* clock this requirement should be take care of by the
1122
* clk-framework.
1123
*/
1124
ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1125
ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1126
cprman_write(cprman, data->ctl_reg, ctl);
1127
1128
cprman_write(cprman, data->div_reg, div);
1129
1130
spin_unlock(&cprman->regs_lock);
1131
1132
return 0;
1133
}
1134
1135
static bool
1136
bcm2835_clk_is_pllc(struct clk_hw *hw)
1137
{
1138
if (!hw)
1139
return false;
1140
1141
return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1142
}
1143
1144
static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1145
int parent_idx,
1146
unsigned long rate,
1147
u32 *div,
1148
unsigned long *prate,
1149
unsigned long *avgrate)
1150
{
1151
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1152
struct bcm2835_cprman *cprman = clock->cprman;
1153
const struct bcm2835_clock_data *data = clock->data;
1154
unsigned long best_rate = 0;
1155
u32 curdiv, mindiv, maxdiv;
1156
struct clk_hw *parent;
1157
1158
parent = clk_hw_get_parent_by_index(hw, parent_idx);
1159
1160
if (!(BIT(parent_idx) & data->set_rate_parent)) {
1161
*prate = clk_hw_get_rate(parent);
1162
*div = bcm2835_clock_choose_div(hw, rate, *prate);
1163
1164
*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1165
1166
if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1167
unsigned long high, low;
1168
u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1169
1170
high = bcm2835_clock_rate_from_divisor(clock, *prate,
1171
int_div);
1172
int_div += CM_DIV_FRAC_MASK + 1;
1173
low = bcm2835_clock_rate_from_divisor(clock, *prate,
1174
int_div);
1175
1176
/*
1177
* Return a value which is the maximum deviation
1178
* below the ideal rate, for use as a metric.
1179
*/
1180
return *avgrate - max(*avgrate - low, high - *avgrate);
1181
}
1182
return *avgrate;
1183
}
1184
1185
if (data->frac_bits)
1186
dev_warn(cprman->dev,
1187
"frac bits are not used when propagating rate change");
1188
1189
/* clamp to min divider of 2 if we're dealing with a mash clock */
1190
mindiv = data->is_mash_clock ? 2 : 1;
1191
maxdiv = BIT(data->int_bits) - 1;
1192
1193
/* TODO: Be smart, and only test a subset of the available divisors. */
1194
for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1195
unsigned long tmp_rate;
1196
1197
tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1198
tmp_rate /= curdiv;
1199
if (curdiv == mindiv ||
1200
(tmp_rate > best_rate && tmp_rate <= rate))
1201
best_rate = tmp_rate;
1202
1203
if (best_rate == rate)
1204
break;
1205
}
1206
1207
*div = curdiv << CM_DIV_FRAC_BITS;
1208
*prate = curdiv * best_rate;
1209
*avgrate = best_rate;
1210
1211
return best_rate;
1212
}
1213
1214
static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1215
struct clk_rate_request *req)
1216
{
1217
struct clk_hw *parent, *best_parent = NULL;
1218
bool current_parent_is_pllc;
1219
unsigned long rate, best_rate = 0;
1220
unsigned long prate, best_prate = 0;
1221
unsigned long avgrate, best_avgrate = 0;
1222
size_t i;
1223
u32 div;
1224
1225
current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1226
1227
/*
1228
* Select parent clock that results in the closest but lower rate
1229
*/
1230
for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1231
parent = clk_hw_get_parent_by_index(hw, i);
1232
if (!parent)
1233
continue;
1234
1235
/*
1236
* Don't choose a PLLC-derived clock as our parent
1237
* unless it had been manually set that way. PLLC's
1238
* frequency gets adjusted by the firmware due to
1239
* over-temp or under-voltage conditions, without
1240
* prior notification to our clock consumer.
1241
*/
1242
if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1243
continue;
1244
1245
rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1246
&div, &prate,
1247
&avgrate);
1248
if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1249
best_parent = parent;
1250
best_prate = prate;
1251
best_rate = rate;
1252
best_avgrate = avgrate;
1253
}
1254
}
1255
1256
if (!best_parent)
1257
return -EINVAL;
1258
1259
req->best_parent_hw = best_parent;
1260
req->best_parent_rate = best_prate;
1261
1262
req->rate = best_avgrate;
1263
1264
return 0;
1265
}
1266
1267
static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1268
{
1269
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1270
struct bcm2835_cprman *cprman = clock->cprman;
1271
const struct bcm2835_clock_data *data = clock->data;
1272
u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1273
1274
cprman_write(cprman, data->ctl_reg, src);
1275
return 0;
1276
}
1277
1278
static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1279
{
1280
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1281
struct bcm2835_cprman *cprman = clock->cprman;
1282
const struct bcm2835_clock_data *data = clock->data;
1283
u32 src = cprman_read(cprman, data->ctl_reg);
1284
1285
return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1286
}
1287
1288
static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1289
{
1290
.name = "ctl",
1291
.offset = 0,
1292
},
1293
{
1294
.name = "div",
1295
.offset = 4,
1296
},
1297
};
1298
1299
static void bcm2835_clock_debug_init(struct clk_hw *hw,
1300
struct dentry *dentry)
1301
{
1302
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1303
struct bcm2835_cprman *cprman = clock->cprman;
1304
const struct bcm2835_clock_data *data = clock->data;
1305
1306
bcm2835_debugfs_regset(cprman, data->ctl_reg,
1307
bcm2835_debugfs_clock_reg32,
1308
ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1309
dentry);
1310
}
1311
1312
static const struct clk_ops bcm2835_clock_clk_ops = {
1313
.is_prepared = bcm2835_clock_is_on,
1314
.prepare = bcm2835_clock_on,
1315
.unprepare = bcm2835_clock_off,
1316
.recalc_rate = bcm2835_clock_get_rate,
1317
.set_rate = bcm2835_clock_set_rate,
1318
.determine_rate = bcm2835_clock_determine_rate,
1319
.set_parent = bcm2835_clock_set_parent,
1320
.get_parent = bcm2835_clock_get_parent,
1321
.debug_init = bcm2835_clock_debug_init,
1322
};
1323
1324
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1325
{
1326
return true;
1327
}
1328
1329
/*
1330
* The VPU clock can never be disabled (it doesn't have an ENABLE
1331
* bit), so it gets its own set of clock ops.
1332
*/
1333
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1334
.is_prepared = bcm2835_vpu_clock_is_on,
1335
.recalc_rate = bcm2835_clock_get_rate,
1336
.set_rate = bcm2835_clock_set_rate,
1337
.determine_rate = bcm2835_clock_determine_rate,
1338
.set_parent = bcm2835_clock_set_parent,
1339
.get_parent = bcm2835_clock_get_parent,
1340
.debug_init = bcm2835_clock_debug_init,
1341
};
1342
1343
static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1344
const void *data)
1345
{
1346
const struct bcm2835_pll_data *pll_data = data;
1347
struct bcm2835_pll *pll;
1348
struct clk_init_data init;
1349
int ret;
1350
1351
memset(&init, 0, sizeof(init));
1352
1353
/* All of the PLLs derive from the external oscillator. */
1354
init.parent_names = &cprman->real_parent_names[0];
1355
init.num_parents = 1;
1356
init.name = pll_data->name;
1357
init.ops = &bcm2835_pll_clk_ops;
1358
init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1359
1360
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1361
if (!pll)
1362
return NULL;
1363
1364
pll->cprman = cprman;
1365
pll->data = pll_data;
1366
pll->hw.init = &init;
1367
1368
ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1369
if (ret) {
1370
kfree(pll);
1371
return NULL;
1372
}
1373
return &pll->hw;
1374
}
1375
1376
static struct clk_hw *
1377
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1378
const void *data)
1379
{
1380
const struct bcm2835_pll_divider_data *divider_data = data;
1381
struct bcm2835_pll_divider *divider;
1382
struct clk_init_data init;
1383
const char *divider_name;
1384
int ret;
1385
1386
if (divider_data->fixed_divider != 1) {
1387
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1388
"%s_prediv", divider_data->name);
1389
if (!divider_name)
1390
return NULL;
1391
} else {
1392
divider_name = divider_data->name;
1393
}
1394
1395
memset(&init, 0, sizeof(init));
1396
1397
init.parent_names = &divider_data->source_pll;
1398
init.num_parents = 1;
1399
init.name = divider_name;
1400
init.ops = &bcm2835_pll_divider_clk_ops;
1401
init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1402
1403
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1404
if (!divider)
1405
return NULL;
1406
1407
divider->div.reg = cprman->regs + divider_data->a2w_reg;
1408
divider->div.shift = A2W_PLL_DIV_SHIFT;
1409
divider->div.width = A2W_PLL_DIV_BITS;
1410
divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1411
divider->div.lock = &cprman->regs_lock;
1412
divider->div.hw.init = &init;
1413
divider->div.table = NULL;
1414
1415
divider->cprman = cprman;
1416
divider->data = divider_data;
1417
1418
ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1419
if (ret)
1420
return ERR_PTR(ret);
1421
1422
/*
1423
* PLLH's channels have a fixed divide by 10 afterwards, which
1424
* is what our consumers are actually using.
1425
*/
1426
if (divider_data->fixed_divider != 1) {
1427
return clk_hw_register_fixed_factor(cprman->dev,
1428
divider_data->name,
1429
divider_name,
1430
CLK_SET_RATE_PARENT,
1431
1,
1432
divider_data->fixed_divider);
1433
}
1434
1435
return &divider->div.hw;
1436
}
1437
1438
static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1439
const void *data)
1440
{
1441
const struct bcm2835_clock_data *clock_data = data;
1442
struct bcm2835_clock *clock;
1443
struct clk_init_data init;
1444
const char *parents[1 << CM_SRC_BITS];
1445
size_t i;
1446
int ret;
1447
1448
/*
1449
* Replace our strings referencing parent clocks with the
1450
* actual clock-output-name of the parent.
1451
*/
1452
for (i = 0; i < clock_data->num_mux_parents; i++) {
1453
parents[i] = clock_data->parents[i];
1454
1455
ret = match_string(cprman_parent_names,
1456
ARRAY_SIZE(cprman_parent_names),
1457
parents[i]);
1458
if (ret >= 0)
1459
parents[i] = cprman->real_parent_names[ret];
1460
}
1461
1462
memset(&init, 0, sizeof(init));
1463
init.parent_names = parents;
1464
init.num_parents = clock_data->num_mux_parents;
1465
init.name = clock_data->name;
1466
init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1467
1468
/*
1469
* Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1470
* rate changes on at least of the parents.
1471
*/
1472
if (clock_data->set_rate_parent)
1473
init.flags |= CLK_SET_RATE_PARENT;
1474
1475
if (clock_data->is_vpu_clock) {
1476
init.ops = &bcm2835_vpu_clock_clk_ops;
1477
} else {
1478
init.ops = &bcm2835_clock_clk_ops;
1479
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1480
1481
/* If the clock wasn't actually enabled at boot, it's not
1482
* critical.
1483
*/
1484
if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1485
init.flags &= ~CLK_IS_CRITICAL;
1486
}
1487
1488
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1489
if (!clock)
1490
return NULL;
1491
1492
clock->cprman = cprman;
1493
clock->data = clock_data;
1494
clock->hw.init = &init;
1495
1496
ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1497
if (ret)
1498
return ERR_PTR(ret);
1499
return &clock->hw;
1500
}
1501
1502
static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1503
const void *data)
1504
{
1505
const struct bcm2835_gate_data *gate_data = data;
1506
1507
return clk_hw_register_gate(cprman->dev, gate_data->name,
1508
gate_data->parent,
1509
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1510
cprman->regs + gate_data->ctl_reg,
1511
CM_GATE_BIT, 0, &cprman->regs_lock);
1512
}
1513
1514
struct bcm2835_clk_desc {
1515
struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1516
const void *data);
1517
unsigned int supported;
1518
const void *data;
1519
};
1520
1521
/* assignment helper macros for different clock types */
1522
#define _REGISTER(f, s, ...) { .clk_register = f, \
1523
.supported = s, \
1524
.data = __VA_ARGS__ }
1525
#define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1526
s, \
1527
&(struct bcm2835_pll_data) \
1528
{__VA_ARGS__})
1529
#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1530
s, \
1531
&(struct bcm2835_pll_divider_data) \
1532
{__VA_ARGS__})
1533
#define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1534
s, \
1535
&(struct bcm2835_clock_data) \
1536
{__VA_ARGS__})
1537
#define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1538
s, \
1539
&(struct bcm2835_gate_data) \
1540
{__VA_ARGS__})
1541
1542
/* parent mux arrays plus helper macros */
1543
1544
/* main oscillator parent mux */
1545
static const char *const bcm2835_clock_osc_parents[] = {
1546
"gnd",
1547
"xosc",
1548
"testdebug0",
1549
"testdebug1"
1550
};
1551
1552
#define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1553
s, \
1554
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1555
.parents = bcm2835_clock_osc_parents, \
1556
__VA_ARGS__)
1557
1558
/* main peripheral parent mux */
1559
static const char *const bcm2835_clock_per_parents[] = {
1560
"gnd",
1561
"xosc",
1562
"testdebug0",
1563
"testdebug1",
1564
"plla_per",
1565
"pllc_per",
1566
"plld_per",
1567
"pllh_aux",
1568
};
1569
1570
#define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1571
s, \
1572
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1573
.parents = bcm2835_clock_per_parents, \
1574
__VA_ARGS__)
1575
1576
/*
1577
* Restrict clock sources for the PCM peripheral to the oscillator and
1578
* PLLD_PER because other source may have varying rates or be switched
1579
* off.
1580
*
1581
* Prevent other sources from being selected by replacing their names in
1582
* the list of potential parents with dummy entries (entry index is
1583
* significant).
1584
*/
1585
static const char *const bcm2835_pcm_per_parents[] = {
1586
"-",
1587
"xosc",
1588
"-",
1589
"-",
1590
"-",
1591
"-",
1592
"plld_per",
1593
"-",
1594
};
1595
1596
#define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1597
s, \
1598
.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1599
.parents = bcm2835_pcm_per_parents, \
1600
__VA_ARGS__)
1601
1602
/* main vpu parent mux */
1603
static const char *const bcm2835_clock_vpu_parents[] = {
1604
"gnd",
1605
"xosc",
1606
"testdebug0",
1607
"testdebug1",
1608
"plla_core",
1609
"pllc_core0",
1610
"plld_core",
1611
"pllh_aux",
1612
"pllc_core1",
1613
"pllc_core2",
1614
};
1615
1616
#define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1617
s, \
1618
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1619
.parents = bcm2835_clock_vpu_parents, \
1620
__VA_ARGS__)
1621
1622
/*
1623
* DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1624
* analog PHY. The _inv variants are generated internally to cprman,
1625
* but we don't use them so they aren't hooked up.
1626
*/
1627
static const char *const bcm2835_clock_dsi0_parents[] = {
1628
"gnd",
1629
"xosc",
1630
"testdebug0",
1631
"testdebug1",
1632
"dsi0_ddr",
1633
"dsi0_ddr_inv",
1634
"dsi0_ddr2",
1635
"dsi0_ddr2_inv",
1636
"dsi0_byte",
1637
"dsi0_byte_inv",
1638
};
1639
1640
static const char *const bcm2835_clock_dsi1_parents[] = {
1641
"gnd",
1642
"xosc",
1643
"testdebug0",
1644
"testdebug1",
1645
"dsi1_ddr",
1646
"dsi1_ddr_inv",
1647
"dsi1_ddr2",
1648
"dsi1_ddr2_inv",
1649
"dsi1_byte",
1650
"dsi1_byte_inv",
1651
};
1652
1653
#define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1654
s, \
1655
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1656
.parents = bcm2835_clock_dsi0_parents, \
1657
__VA_ARGS__)
1658
1659
#define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1660
s, \
1661
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1662
.parents = bcm2835_clock_dsi1_parents, \
1663
__VA_ARGS__)
1664
1665
/*
1666
* the real definition of all the pll, pll_dividers and clocks
1667
* these make use of the above REGISTER_* macros
1668
*/
1669
static const struct bcm2835_clk_desc clk_desc_array[] = {
1670
/* the PLL + PLL dividers */
1671
1672
/*
1673
* PLLA is the auxiliary PLL, used to drive the CCP2
1674
* (Compact Camera Port 2) transmitter clock.
1675
*
1676
* It is in the PX LDO power domain, which is on when the
1677
* AUDIO domain is on.
1678
*/
1679
[BCM2835_PLLA] = REGISTER_PLL(
1680
SOC_ALL,
1681
.name = "plla",
1682
.cm_ctrl_reg = CM_PLLA,
1683
.a2w_ctrl_reg = A2W_PLLA_CTRL,
1684
.frac_reg = A2W_PLLA_FRAC,
1685
.ana_reg_base = A2W_PLLA_ANA0,
1686
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1687
.lock_mask = CM_LOCK_FLOCKA,
1688
1689
.ana = &bcm2835_ana_default,
1690
1691
.min_rate = 600000000u,
1692
.max_rate = 2400000000u,
1693
.max_fb_rate = BCM2835_MAX_FB_RATE),
1694
[BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1695
SOC_ALL,
1696
.name = "plla_core",
1697
.source_pll = "plla",
1698
.cm_reg = CM_PLLA,
1699
.a2w_reg = A2W_PLLA_CORE,
1700
.load_mask = CM_PLLA_LOADCORE,
1701
.hold_mask = CM_PLLA_HOLDCORE,
1702
.fixed_divider = 1,
1703
.flags = CLK_SET_RATE_PARENT),
1704
[BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1705
SOC_ALL,
1706
.name = "plla_per",
1707
.source_pll = "plla",
1708
.cm_reg = CM_PLLA,
1709
.a2w_reg = A2W_PLLA_PER,
1710
.load_mask = CM_PLLA_LOADPER,
1711
.hold_mask = CM_PLLA_HOLDPER,
1712
.fixed_divider = 1,
1713
.flags = CLK_SET_RATE_PARENT),
1714
[BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1715
SOC_ALL,
1716
.name = "plla_dsi0",
1717
.source_pll = "plla",
1718
.cm_reg = CM_PLLA,
1719
.a2w_reg = A2W_PLLA_DSI0,
1720
.load_mask = CM_PLLA_LOADDSI0,
1721
.hold_mask = CM_PLLA_HOLDDSI0,
1722
.fixed_divider = 1),
1723
[BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1724
SOC_ALL,
1725
.name = "plla_ccp2",
1726
.source_pll = "plla",
1727
.cm_reg = CM_PLLA,
1728
.a2w_reg = A2W_PLLA_CCP2,
1729
.load_mask = CM_PLLA_LOADCCP2,
1730
.hold_mask = CM_PLLA_HOLDCCP2,
1731
.fixed_divider = 1,
1732
.flags = CLK_SET_RATE_PARENT),
1733
1734
/* PLLB is used for the ARM's clock. */
1735
[BCM2835_PLLB] = REGISTER_PLL(
1736
SOC_ALL,
1737
.name = "pllb",
1738
.cm_ctrl_reg = CM_PLLB,
1739
.a2w_ctrl_reg = A2W_PLLB_CTRL,
1740
.frac_reg = A2W_PLLB_FRAC,
1741
.ana_reg_base = A2W_PLLB_ANA0,
1742
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1743
.lock_mask = CM_LOCK_FLOCKB,
1744
1745
.ana = &bcm2835_ana_default,
1746
1747
.min_rate = 600000000u,
1748
.max_rate = 3000000000u,
1749
.max_fb_rate = BCM2835_MAX_FB_RATE,
1750
.flags = CLK_GET_RATE_NOCACHE),
1751
[BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1752
SOC_ALL,
1753
.name = "pllb_arm",
1754
.source_pll = "pllb",
1755
.cm_reg = CM_PLLB,
1756
.a2w_reg = A2W_PLLB_ARM,
1757
.load_mask = CM_PLLB_LOADARM,
1758
.hold_mask = CM_PLLB_HOLDARM,
1759
.fixed_divider = 1,
1760
.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1761
1762
/*
1763
* PLLC is the core PLL, used to drive the core VPU clock.
1764
*
1765
* It is in the PX LDO power domain, which is on when the
1766
* AUDIO domain is on.
1767
*/
1768
[BCM2835_PLLC] = REGISTER_PLL(
1769
SOC_ALL,
1770
.name = "pllc",
1771
.cm_ctrl_reg = CM_PLLC,
1772
.a2w_ctrl_reg = A2W_PLLC_CTRL,
1773
.frac_reg = A2W_PLLC_FRAC,
1774
.ana_reg_base = A2W_PLLC_ANA0,
1775
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1776
.lock_mask = CM_LOCK_FLOCKC,
1777
1778
.ana = &bcm2835_ana_default,
1779
1780
.min_rate = 600000000u,
1781
.max_rate = 3000000000u,
1782
.max_fb_rate = BCM2835_MAX_FB_RATE),
1783
[BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1784
SOC_ALL,
1785
.name = "pllc_core0",
1786
.source_pll = "pllc",
1787
.cm_reg = CM_PLLC,
1788
.a2w_reg = A2W_PLLC_CORE0,
1789
.load_mask = CM_PLLC_LOADCORE0,
1790
.hold_mask = CM_PLLC_HOLDCORE0,
1791
.fixed_divider = 1,
1792
.flags = CLK_SET_RATE_PARENT),
1793
[BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1794
SOC_ALL,
1795
.name = "pllc_core1",
1796
.source_pll = "pllc",
1797
.cm_reg = CM_PLLC,
1798
.a2w_reg = A2W_PLLC_CORE1,
1799
.load_mask = CM_PLLC_LOADCORE1,
1800
.hold_mask = CM_PLLC_HOLDCORE1,
1801
.fixed_divider = 1,
1802
.flags = CLK_SET_RATE_PARENT),
1803
[BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1804
SOC_ALL,
1805
.name = "pllc_core2",
1806
.source_pll = "pllc",
1807
.cm_reg = CM_PLLC,
1808
.a2w_reg = A2W_PLLC_CORE2,
1809
.load_mask = CM_PLLC_LOADCORE2,
1810
.hold_mask = CM_PLLC_HOLDCORE2,
1811
.fixed_divider = 1,
1812
.flags = CLK_SET_RATE_PARENT),
1813
[BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1814
SOC_ALL,
1815
.name = "pllc_per",
1816
.source_pll = "pllc",
1817
.cm_reg = CM_PLLC,
1818
.a2w_reg = A2W_PLLC_PER,
1819
.load_mask = CM_PLLC_LOADPER,
1820
.hold_mask = CM_PLLC_HOLDPER,
1821
.fixed_divider = 1,
1822
.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1823
1824
/*
1825
* PLLD is the display PLL, used to drive DSI display panels.
1826
*
1827
* It is in the PX LDO power domain, which is on when the
1828
* AUDIO domain is on.
1829
*/
1830
[BCM2835_PLLD] = REGISTER_PLL(
1831
SOC_ALL,
1832
.name = "plld",
1833
.cm_ctrl_reg = CM_PLLD,
1834
.a2w_ctrl_reg = A2W_PLLD_CTRL,
1835
.frac_reg = A2W_PLLD_FRAC,
1836
.ana_reg_base = A2W_PLLD_ANA0,
1837
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1838
.lock_mask = CM_LOCK_FLOCKD,
1839
1840
.ana = &bcm2835_ana_default,
1841
1842
.min_rate = 600000000u,
1843
.max_rate = 2400000000u,
1844
.max_fb_rate = BCM2835_MAX_FB_RATE),
1845
[BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1846
SOC_ALL,
1847
.name = "plld_core",
1848
.source_pll = "plld",
1849
.cm_reg = CM_PLLD,
1850
.a2w_reg = A2W_PLLD_CORE,
1851
.load_mask = CM_PLLD_LOADCORE,
1852
.hold_mask = CM_PLLD_HOLDCORE,
1853
.fixed_divider = 1,
1854
.flags = CLK_SET_RATE_PARENT),
1855
/*
1856
* VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1857
* Otherwise this could cause firmware lookups. That's why we mark
1858
* it as critical.
1859
*/
1860
[BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1861
SOC_ALL,
1862
.name = "plld_per",
1863
.source_pll = "plld",
1864
.cm_reg = CM_PLLD,
1865
.a2w_reg = A2W_PLLD_PER,
1866
.load_mask = CM_PLLD_LOADPER,
1867
.hold_mask = CM_PLLD_HOLDPER,
1868
.fixed_divider = 1,
1869
.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1870
[BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1871
SOC_ALL,
1872
.name = "plld_dsi0",
1873
.source_pll = "plld",
1874
.cm_reg = CM_PLLD,
1875
.a2w_reg = A2W_PLLD_DSI0,
1876
.load_mask = CM_PLLD_LOADDSI0,
1877
.hold_mask = CM_PLLD_HOLDDSI0,
1878
.fixed_divider = 1),
1879
[BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1880
SOC_ALL,
1881
.name = "plld_dsi1",
1882
.source_pll = "plld",
1883
.cm_reg = CM_PLLD,
1884
.a2w_reg = A2W_PLLD_DSI1,
1885
.load_mask = CM_PLLD_LOADDSI1,
1886
.hold_mask = CM_PLLD_HOLDDSI1,
1887
.fixed_divider = 1),
1888
1889
/*
1890
* PLLH is used to supply the pixel clock or the AUX clock for the
1891
* TV encoder.
1892
*
1893
* It is in the HDMI power domain.
1894
*/
1895
[BCM2835_PLLH] = REGISTER_PLL(
1896
SOC_BCM2835,
1897
"pllh",
1898
.cm_ctrl_reg = CM_PLLH,
1899
.a2w_ctrl_reg = A2W_PLLH_CTRL,
1900
.frac_reg = A2W_PLLH_FRAC,
1901
.ana_reg_base = A2W_PLLH_ANA0,
1902
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1903
.lock_mask = CM_LOCK_FLOCKH,
1904
1905
.ana = &bcm2835_ana_pllh,
1906
1907
.min_rate = 600000000u,
1908
.max_rate = 3000000000u,
1909
.max_fb_rate = BCM2835_MAX_FB_RATE),
1910
[BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1911
SOC_BCM2835,
1912
.name = "pllh_rcal",
1913
.source_pll = "pllh",
1914
.cm_reg = CM_PLLH,
1915
.a2w_reg = A2W_PLLH_RCAL,
1916
.load_mask = CM_PLLH_LOADRCAL,
1917
.hold_mask = 0,
1918
.fixed_divider = 10,
1919
.flags = CLK_SET_RATE_PARENT),
1920
[BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1921
SOC_BCM2835,
1922
.name = "pllh_aux",
1923
.source_pll = "pllh",
1924
.cm_reg = CM_PLLH,
1925
.a2w_reg = A2W_PLLH_AUX,
1926
.load_mask = CM_PLLH_LOADAUX,
1927
.hold_mask = 0,
1928
.fixed_divider = 1,
1929
.flags = CLK_SET_RATE_PARENT),
1930
[BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1931
SOC_BCM2835,
1932
.name = "pllh_pix",
1933
.source_pll = "pllh",
1934
.cm_reg = CM_PLLH,
1935
.a2w_reg = A2W_PLLH_PIX,
1936
.load_mask = CM_PLLH_LOADPIX,
1937
.hold_mask = 0,
1938
.fixed_divider = 10,
1939
.flags = CLK_SET_RATE_PARENT),
1940
1941
/* the clocks */
1942
1943
/* clocks with oscillator parent mux */
1944
1945
/* One Time Programmable Memory clock. Maximum 10Mhz. */
1946
[BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1947
SOC_ALL,
1948
.name = "otp",
1949
.ctl_reg = CM_OTPCTL,
1950
.div_reg = CM_OTPDIV,
1951
.int_bits = 4,
1952
.frac_bits = 0,
1953
.tcnt_mux = 6),
1954
/*
1955
* Used for a 1Mhz clock for the system clocksource, and also used
1956
* bythe watchdog timer and the camera pulse generator.
1957
*/
1958
[BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1959
SOC_ALL,
1960
.name = "timer",
1961
.ctl_reg = CM_TIMERCTL,
1962
.div_reg = CM_TIMERDIV,
1963
.int_bits = 6,
1964
.frac_bits = 12),
1965
/*
1966
* Clock for the temperature sensor.
1967
* Generally run at 2Mhz, max 5Mhz.
1968
*/
1969
[BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1970
SOC_ALL,
1971
.name = "tsens",
1972
.ctl_reg = CM_TSENSCTL,
1973
.div_reg = CM_TSENSDIV,
1974
.int_bits = 5,
1975
.frac_bits = 0),
1976
[BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1977
SOC_ALL,
1978
.name = "tec",
1979
.ctl_reg = CM_TECCTL,
1980
.div_reg = CM_TECDIV,
1981
.int_bits = 6,
1982
.frac_bits = 0),
1983
1984
/* clocks with vpu parent mux */
1985
[BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1986
SOC_ALL,
1987
.name = "h264",
1988
.ctl_reg = CM_H264CTL,
1989
.div_reg = CM_H264DIV,
1990
.int_bits = 4,
1991
.frac_bits = 8,
1992
.tcnt_mux = 1),
1993
[BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1994
SOC_ALL,
1995
.name = "isp",
1996
.ctl_reg = CM_ISPCTL,
1997
.div_reg = CM_ISPDIV,
1998
.int_bits = 4,
1999
.frac_bits = 8,
2000
.tcnt_mux = 2),
2001
2002
/*
2003
* Secondary SDRAM clock. Used for low-voltage modes when the PLL
2004
* in the SDRAM controller can't be used.
2005
*/
2006
[BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
2007
SOC_ALL,
2008
.name = "sdram",
2009
.ctl_reg = CM_SDCCTL,
2010
.div_reg = CM_SDCDIV,
2011
.int_bits = 6,
2012
.frac_bits = 0,
2013
.tcnt_mux = 3),
2014
[BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
2015
SOC_ALL,
2016
.name = "v3d",
2017
.ctl_reg = CM_V3DCTL,
2018
.div_reg = CM_V3DDIV,
2019
.int_bits = 4,
2020
.frac_bits = 8,
2021
.tcnt_mux = 4),
2022
/*
2023
* VPU clock. This doesn't have an enable bit, since it drives
2024
* the bus for everything else, and is special so it doesn't need
2025
* to be gated for rate changes. It is also known as "clk_audio"
2026
* in various hardware documentation.
2027
*/
2028
[BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
2029
SOC_ALL,
2030
.name = "vpu",
2031
.ctl_reg = CM_VPUCTL,
2032
.div_reg = CM_VPUDIV,
2033
.int_bits = 12,
2034
.frac_bits = 8,
2035
.flags = CLK_IS_CRITICAL,
2036
.is_vpu_clock = true,
2037
.tcnt_mux = 5),
2038
2039
/* clocks with per parent mux */
2040
[BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
2041
SOC_ALL,
2042
.name = "aveo",
2043
.ctl_reg = CM_AVEOCTL,
2044
.div_reg = CM_AVEODIV,
2045
.int_bits = 4,
2046
.frac_bits = 0,
2047
.tcnt_mux = 38),
2048
[BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
2049
SOC_ALL,
2050
.name = "cam0",
2051
.ctl_reg = CM_CAM0CTL,
2052
.div_reg = CM_CAM0DIV,
2053
.int_bits = 4,
2054
.frac_bits = 8,
2055
.tcnt_mux = 14),
2056
[BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
2057
SOC_ALL,
2058
.name = "cam1",
2059
.ctl_reg = CM_CAM1CTL,
2060
.div_reg = CM_CAM1DIV,
2061
.int_bits = 4,
2062
.frac_bits = 8,
2063
.tcnt_mux = 15),
2064
[BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
2065
SOC_ALL,
2066
.name = "dft",
2067
.ctl_reg = CM_DFTCTL,
2068
.div_reg = CM_DFTDIV,
2069
.int_bits = 5,
2070
.frac_bits = 0),
2071
[BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
2072
SOC_ALL,
2073
.name = "dpi",
2074
.ctl_reg = CM_DPICTL,
2075
.div_reg = CM_DPIDIV,
2076
.int_bits = 4,
2077
.frac_bits = 8,
2078
.tcnt_mux = 17),
2079
2080
/* Arasan EMMC clock */
2081
[BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2082
SOC_ALL,
2083
.name = "emmc",
2084
.ctl_reg = CM_EMMCCTL,
2085
.div_reg = CM_EMMCDIV,
2086
.int_bits = 4,
2087
.frac_bits = 8,
2088
.tcnt_mux = 39),
2089
2090
/* EMMC2 clock (only available for BCM2711) */
2091
[BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK(
2092
SOC_BCM2711,
2093
.name = "emmc2",
2094
.ctl_reg = CM_EMMC2CTL,
2095
.div_reg = CM_EMMC2DIV,
2096
.int_bits = 4,
2097
.frac_bits = 8,
2098
.tcnt_mux = 42),
2099
2100
/* General purpose (GPIO) clocks */
2101
[BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2102
SOC_ALL,
2103
.name = "gp0",
2104
.ctl_reg = CM_GP0CTL,
2105
.div_reg = CM_GP0DIV,
2106
.int_bits = 12,
2107
.frac_bits = 12,
2108
.is_mash_clock = true,
2109
.tcnt_mux = 20),
2110
[BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2111
SOC_ALL,
2112
.name = "gp1",
2113
.ctl_reg = CM_GP1CTL,
2114
.div_reg = CM_GP1DIV,
2115
.int_bits = 12,
2116
.frac_bits = 12,
2117
.flags = CLK_IS_CRITICAL,
2118
.is_mash_clock = true,
2119
.tcnt_mux = 21),
2120
[BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2121
SOC_ALL,
2122
.name = "gp2",
2123
.ctl_reg = CM_GP2CTL,
2124
.div_reg = CM_GP2DIV,
2125
.int_bits = 12,
2126
.frac_bits = 12,
2127
.flags = CLK_IS_CRITICAL),
2128
2129
/* HDMI state machine */
2130
[BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2131
SOC_ALL,
2132
.name = "hsm",
2133
.ctl_reg = CM_HSMCTL,
2134
.div_reg = CM_HSMDIV,
2135
.int_bits = 4,
2136
.frac_bits = 8,
2137
.tcnt_mux = 22),
2138
[BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2139
SOC_ALL,
2140
.name = "pcm",
2141
.ctl_reg = CM_PCMCTL,
2142
.div_reg = CM_PCMDIV,
2143
.int_bits = 12,
2144
.frac_bits = 12,
2145
.is_mash_clock = true,
2146
.low_jitter = true,
2147
.tcnt_mux = 23),
2148
[BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2149
SOC_ALL,
2150
.name = "pwm",
2151
.ctl_reg = CM_PWMCTL,
2152
.div_reg = CM_PWMDIV,
2153
.int_bits = 12,
2154
.frac_bits = 12,
2155
.is_mash_clock = true,
2156
.tcnt_mux = 24),
2157
[BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2158
SOC_ALL,
2159
.name = "slim",
2160
.ctl_reg = CM_SLIMCTL,
2161
.div_reg = CM_SLIMDIV,
2162
.int_bits = 12,
2163
.frac_bits = 12,
2164
.is_mash_clock = true,
2165
.tcnt_mux = 25),
2166
[BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2167
SOC_ALL,
2168
.name = "smi",
2169
.ctl_reg = CM_SMICTL,
2170
.div_reg = CM_SMIDIV,
2171
.int_bits = 4,
2172
.frac_bits = 8,
2173
.tcnt_mux = 27),
2174
[BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2175
SOC_ALL,
2176
.name = "uart",
2177
.ctl_reg = CM_UARTCTL,
2178
.div_reg = CM_UARTDIV,
2179
.int_bits = 10,
2180
.frac_bits = 12,
2181
.tcnt_mux = 28,
2182
.round_up = true),
2183
2184
/* TV encoder clock. Only operating frequency is 108Mhz. */
2185
[BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2186
SOC_ALL,
2187
.name = "vec",
2188
.ctl_reg = CM_VECCTL,
2189
.div_reg = CM_VECDIV,
2190
.int_bits = 4,
2191
.frac_bits = 0,
2192
/*
2193
* Allow rate change propagation only on PLLH_AUX which is
2194
* assigned index 7 in the parent array.
2195
*/
2196
.set_rate_parent = BIT(7),
2197
.tcnt_mux = 29),
2198
2199
/* dsi clocks */
2200
[BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2201
SOC_ALL,
2202
.name = "dsi0e",
2203
.ctl_reg = CM_DSI0ECTL,
2204
.div_reg = CM_DSI0EDIV,
2205
.int_bits = 4,
2206
.frac_bits = 8,
2207
.tcnt_mux = 18),
2208
[BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2209
SOC_ALL,
2210
.name = "dsi1e",
2211
.ctl_reg = CM_DSI1ECTL,
2212
.div_reg = CM_DSI1EDIV,
2213
.int_bits = 4,
2214
.frac_bits = 8,
2215
.tcnt_mux = 19),
2216
[BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2217
SOC_ALL,
2218
.name = "dsi0p",
2219
.ctl_reg = CM_DSI0PCTL,
2220
.div_reg = CM_DSI0PDIV,
2221
.int_bits = 0,
2222
.frac_bits = 0,
2223
.tcnt_mux = 12),
2224
[BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2225
SOC_ALL,
2226
.name = "dsi1p",
2227
.ctl_reg = CM_DSI1PCTL,
2228
.div_reg = CM_DSI1PDIV,
2229
.int_bits = 0,
2230
.frac_bits = 0,
2231
.tcnt_mux = 13),
2232
2233
/* the gates */
2234
2235
/*
2236
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2237
* you have the debug bit set in the power manager, which we
2238
* don't bother exposing) are individual gates off of the
2239
* non-stop vpu clock.
2240
*/
2241
[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2242
SOC_ALL,
2243
.name = "peri_image",
2244
.parent = "vpu",
2245
.ctl_reg = CM_PERIICTL),
2246
};
2247
2248
/*
2249
* Permanently take a reference on the parent of the SDRAM clock.
2250
*
2251
* While the SDRAM is being driven by its dedicated PLL most of the
2252
* time, there is a little loop running in the firmware that
2253
* periodically switches the SDRAM to using our CM clock to do PVT
2254
* recalibration, with the assumption that the previously configured
2255
* SDRAM parent is still enabled and running.
2256
*/
2257
static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2258
{
2259
struct clk *parent = clk_get_parent(sdc);
2260
2261
if (IS_ERR(parent))
2262
return PTR_ERR(parent);
2263
2264
return clk_prepare_enable(parent);
2265
}
2266
2267
static int bcm2835_clk_probe(struct platform_device *pdev)
2268
{
2269
struct device *dev = &pdev->dev;
2270
struct clk_hw **hws;
2271
struct bcm2835_cprman *cprman;
2272
const struct bcm2835_clk_desc *desc;
2273
const size_t asize = ARRAY_SIZE(clk_desc_array);
2274
const struct cprman_plat_data *pdata;
2275
size_t i;
2276
int ret;
2277
2278
pdata = of_device_get_match_data(&pdev->dev);
2279
if (!pdata)
2280
return -ENODEV;
2281
2282
cprman = devm_kzalloc(dev,
2283
struct_size(cprman, onecell.hws, asize),
2284
GFP_KERNEL);
2285
if (!cprman)
2286
return -ENOMEM;
2287
2288
spin_lock_init(&cprman->regs_lock);
2289
cprman->dev = dev;
2290
cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2291
if (IS_ERR(cprman->regs))
2292
return PTR_ERR(cprman->regs);
2293
2294
memcpy(cprman->real_parent_names, cprman_parent_names,
2295
sizeof(cprman_parent_names));
2296
of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2297
ARRAY_SIZE(cprman_parent_names));
2298
2299
/*
2300
* Make sure the external oscillator has been registered.
2301
*
2302
* The other (DSI) clocks are not present on older device
2303
* trees, which we still need to support for backwards
2304
* compatibility.
2305
*/
2306
if (!cprman->real_parent_names[0])
2307
return -ENODEV;
2308
2309
platform_set_drvdata(pdev, cprman);
2310
2311
cprman->onecell.num = asize;
2312
cprman->soc = pdata->soc;
2313
hws = cprman->onecell.hws;
2314
2315
for (i = 0; i < asize; i++) {
2316
desc = &clk_desc_array[i];
2317
if (desc->clk_register && desc->data &&
2318
(desc->supported & pdata->soc)) {
2319
hws[i] = desc->clk_register(cprman, desc->data);
2320
}
2321
}
2322
2323
ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2324
if (ret)
2325
return ret;
2326
2327
return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2328
&cprman->onecell);
2329
}
2330
2331
static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2332
.soc = SOC_BCM2835,
2333
};
2334
2335
static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2336
.soc = SOC_BCM2711,
2337
};
2338
2339
static const struct of_device_id bcm2835_clk_of_match[] = {
2340
{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2341
{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2342
{}
2343
};
2344
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2345
2346
static struct platform_driver bcm2835_clk_driver = {
2347
.driver = {
2348
.name = "bcm2835-clk",
2349
.of_match_table = bcm2835_clk_of_match,
2350
},
2351
.probe = bcm2835_clk_probe,
2352
};
2353
2354
builtin_platform_driver(bcm2835_clk_driver);
2355
2356
MODULE_AUTHOR("Eric Anholt <[email protected]>");
2357
MODULE_DESCRIPTION("BCM2835 clock driver");
2358
2359