Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/bcm/clk-kona.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2013 Broadcom Corporation
4
* Copyright 2013 Linaro Limited
5
*/
6
7
#include "clk-kona.h"
8
9
#include <linux/delay.h>
10
#include <linux/io.h>
11
#include <linux/kernel.h>
12
#include <linux/clk-provider.h>
13
#include <linux/string_choices.h>
14
15
/*
16
* "Policies" affect the frequencies of bus clocks provided by a
17
* CCU. (I believe these polices are named "Deep Sleep", "Economy",
18
* "Normal", and "Turbo".) A lower policy number has lower power
19
* consumption, and policy 2 is the default.
20
*/
21
#define CCU_POLICY_COUNT 4
22
23
#define CCU_ACCESS_PASSWORD 0xA5A500
24
#define CLK_GATE_DELAY_LOOP 2000
25
26
/* Bitfield operations */
27
28
/* Produces a mask of set bits covering a range of a 32-bit value */
29
static inline u32 bitfield_mask(u32 shift, u32 width)
30
{
31
return ((1 << width) - 1) << shift;
32
}
33
34
/* Extract the value of a bitfield found within a given register value */
35
static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
36
{
37
return (reg_val & bitfield_mask(shift, width)) >> shift;
38
}
39
40
/* Replace the value of a bitfield found within a given register value */
41
static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
42
{
43
u32 mask = bitfield_mask(shift, width);
44
45
return (reg_val & ~mask) | (val << shift);
46
}
47
48
/* Divider and scaling helpers */
49
50
/* Convert a divider into the scaled divisor value it represents. */
51
static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
52
{
53
return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
54
}
55
56
/* The scaled minimum divisor representable by a divider */
57
static inline u64
58
scaled_div_min(struct bcm_clk_div *div)
59
{
60
if (divider_is_fixed(div))
61
return (u64)div->u.fixed;
62
63
return scaled_div_value(div, 0);
64
}
65
66
/* The scaled maximum divisor representable by a divider */
67
u64 scaled_div_max(struct bcm_clk_div *div)
68
{
69
u32 reg_div;
70
71
if (divider_is_fixed(div))
72
return (u64)div->u.fixed;
73
74
reg_div = ((u32)1 << div->u.s.width) - 1;
75
76
return scaled_div_value(div, reg_div);
77
}
78
79
/*
80
* Convert a scaled divisor into its divider representation as
81
* stored in a divider register field.
82
*/
83
static inline u32
84
divider(struct bcm_clk_div *div, u64 scaled_div)
85
{
86
BUG_ON(scaled_div < scaled_div_min(div));
87
BUG_ON(scaled_div > scaled_div_max(div));
88
89
return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
90
}
91
92
/* Return a rate scaled for use when dividing by a scaled divisor. */
93
static inline u64
94
scale_rate(struct bcm_clk_div *div, u32 rate)
95
{
96
if (divider_is_fixed(div))
97
return (u64)rate;
98
99
return (u64)rate << div->u.s.frac_width;
100
}
101
102
/* CCU access */
103
104
/* Read a 32-bit register value from a CCU's address space. */
105
static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
106
{
107
return readl(ccu->base + reg_offset);
108
}
109
110
/* Write a 32-bit register value into a CCU's address space. */
111
static inline void
112
__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
113
{
114
writel(reg_val, ccu->base + reg_offset);
115
}
116
117
static inline unsigned long ccu_lock(struct ccu_data *ccu)
118
{
119
unsigned long flags;
120
121
spin_lock_irqsave(&ccu->lock, flags);
122
123
return flags;
124
}
125
static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
126
{
127
spin_unlock_irqrestore(&ccu->lock, flags);
128
}
129
130
/*
131
* Enable/disable write access to CCU protected registers. The
132
* WR_ACCESS register for all CCUs is at offset 0.
133
*/
134
static inline void __ccu_write_enable(struct ccu_data *ccu)
135
{
136
if (ccu->write_enabled) {
137
pr_err("%s: access already enabled for %s\n", __func__,
138
ccu->name);
139
return;
140
}
141
ccu->write_enabled = true;
142
__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
143
}
144
145
static inline void __ccu_write_disable(struct ccu_data *ccu)
146
{
147
if (!ccu->write_enabled) {
148
pr_err("%s: access wasn't enabled for %s\n", __func__,
149
ccu->name);
150
return;
151
}
152
153
__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
154
ccu->write_enabled = false;
155
}
156
157
/*
158
* Poll a register in a CCU's address space, returning when the
159
* specified bit in that register's value is set (or clear). Delay
160
* a microsecond after each read of the register. Returns true if
161
* successful, or false if we gave up trying.
162
*
163
* Caller must ensure the CCU lock is held.
164
*/
165
static inline bool
166
__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
167
{
168
unsigned int tries;
169
u32 bit_mask = 1 << bit;
170
171
for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
172
u32 val;
173
bool bit_val;
174
175
val = __ccu_read(ccu, reg_offset);
176
bit_val = (val & bit_mask) != 0;
177
if (bit_val == want)
178
return true;
179
udelay(1);
180
}
181
pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
182
ccu->name, reg_offset, bit, want ? "set" : "clear");
183
184
return false;
185
}
186
187
/* Policy operations */
188
189
static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
190
{
191
struct bcm_policy_ctl *control = &ccu->policy.control;
192
u32 offset;
193
u32 go_bit;
194
u32 mask;
195
bool ret;
196
197
/* If we don't need to control policy for this CCU, we're done. */
198
if (!policy_ctl_exists(control))
199
return true;
200
201
offset = control->offset;
202
go_bit = control->go_bit;
203
204
/* Ensure we're not busy before we start */
205
ret = __ccu_wait_bit(ccu, offset, go_bit, false);
206
if (!ret) {
207
pr_err("%s: ccu %s policy engine wouldn't go idle\n",
208
__func__, ccu->name);
209
return false;
210
}
211
212
/*
213
* If it's a synchronous request, we'll wait for the voltage
214
* and frequency of the active load to stabilize before
215
* returning. To do this we select the active load by
216
* setting the ATL bit.
217
*
218
* An asynchronous request instead ramps the voltage in the
219
* background, and when that process stabilizes, the target
220
* load is copied to the active load and the CCU frequency
221
* is switched. We do this by selecting the target load
222
* (ATL bit clear) and setting the request auto-copy (AC bit
223
* set).
224
*
225
* Note, we do NOT read-modify-write this register.
226
*/
227
mask = (u32)1 << go_bit;
228
if (sync)
229
mask |= 1 << control->atl_bit;
230
else
231
mask |= 1 << control->ac_bit;
232
__ccu_write(ccu, offset, mask);
233
234
/* Wait for indication that operation is complete. */
235
ret = __ccu_wait_bit(ccu, offset, go_bit, false);
236
if (!ret)
237
pr_err("%s: ccu %s policy engine never started\n",
238
__func__, ccu->name);
239
240
return ret;
241
}
242
243
static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
244
{
245
struct bcm_lvm_en *enable = &ccu->policy.enable;
246
u32 offset;
247
u32 enable_bit;
248
bool ret;
249
250
/* If we don't need to control policy for this CCU, we're done. */
251
if (!policy_lvm_en_exists(enable))
252
return true;
253
254
/* Ensure we're not busy before we start */
255
offset = enable->offset;
256
enable_bit = enable->bit;
257
ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
258
if (!ret) {
259
pr_err("%s: ccu %s policy engine already stopped\n",
260
__func__, ccu->name);
261
return false;
262
}
263
264
/* Now set the bit to stop the engine (NO read-modify-write) */
265
__ccu_write(ccu, offset, (u32)1 << enable_bit);
266
267
/* Wait for indication that it has stopped. */
268
ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
269
if (!ret)
270
pr_err("%s: ccu %s policy engine never stopped\n",
271
__func__, ccu->name);
272
273
return ret;
274
}
275
276
/*
277
* A CCU has four operating conditions ("policies"), and some clocks
278
* can be disabled or enabled based on which policy is currently in
279
* effect. Such clocks have a bit in a "policy mask" register for
280
* each policy indicating whether the clock is enabled for that
281
* policy or not. The bit position for a clock is the same for all
282
* four registers, and the 32-bit registers are at consecutive
283
* addresses.
284
*/
285
static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
286
{
287
u32 offset;
288
u32 mask;
289
int i;
290
bool ret;
291
292
if (!policy_exists(policy))
293
return true;
294
295
/*
296
* We need to stop the CCU policy engine to allow update
297
* of our policy bits.
298
*/
299
if (!__ccu_policy_engine_stop(ccu)) {
300
pr_err("%s: unable to stop CCU %s policy engine\n",
301
__func__, ccu->name);
302
return false;
303
}
304
305
/*
306
* For now, if a clock defines its policy bit we just mark
307
* it "enabled" for all four policies.
308
*/
309
offset = policy->offset;
310
mask = (u32)1 << policy->bit;
311
for (i = 0; i < CCU_POLICY_COUNT; i++) {
312
u32 reg_val;
313
314
reg_val = __ccu_read(ccu, offset);
315
reg_val |= mask;
316
__ccu_write(ccu, offset, reg_val);
317
offset += sizeof(u32);
318
}
319
320
/* We're done updating; fire up the policy engine again. */
321
ret = __ccu_policy_engine_start(ccu, true);
322
if (!ret)
323
pr_err("%s: unable to restart CCU %s policy engine\n",
324
__func__, ccu->name);
325
326
return ret;
327
}
328
329
/* Gate operations */
330
331
/* Determine whether a clock is gated. CCU lock must be held. */
332
static bool
333
__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
334
{
335
u32 bit_mask;
336
u32 reg_val;
337
338
/* If there is no gate we can assume it's enabled. */
339
if (!gate_exists(gate))
340
return true;
341
342
bit_mask = 1 << gate->status_bit;
343
reg_val = __ccu_read(ccu, gate->offset);
344
345
return (reg_val & bit_mask) != 0;
346
}
347
348
/* Determine whether a clock is gated. */
349
static bool
350
is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
351
{
352
long flags;
353
bool ret;
354
355
/* Avoid taking the lock if we can */
356
if (!gate_exists(gate))
357
return true;
358
359
flags = ccu_lock(ccu);
360
ret = __is_clk_gate_enabled(ccu, gate);
361
ccu_unlock(ccu, flags);
362
363
return ret;
364
}
365
366
/*
367
* Commit our desired gate state to the hardware.
368
* Returns true if successful, false otherwise.
369
*/
370
static bool
371
__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
372
{
373
u32 reg_val;
374
u32 mask;
375
bool enabled = false;
376
377
BUG_ON(!gate_exists(gate));
378
if (!gate_is_sw_controllable(gate))
379
return true; /* Nothing we can change */
380
381
reg_val = __ccu_read(ccu, gate->offset);
382
383
/* For a hardware/software gate, set which is in control */
384
if (gate_is_hw_controllable(gate)) {
385
mask = (u32)1 << gate->hw_sw_sel_bit;
386
if (gate_is_sw_managed(gate))
387
reg_val |= mask;
388
else
389
reg_val &= ~mask;
390
}
391
392
/*
393
* If software is in control, enable or disable the gate.
394
* If hardware is, clear the enabled bit for good measure.
395
* If a software controlled gate can't be disabled, we're
396
* required to write a 0 into the enable bit (but the gate
397
* will be enabled).
398
*/
399
mask = (u32)1 << gate->en_bit;
400
if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
401
!gate_is_no_disable(gate))
402
reg_val |= mask;
403
else
404
reg_val &= ~mask;
405
406
__ccu_write(ccu, gate->offset, reg_val);
407
408
/* For a hardware controlled gate, we're done */
409
if (!gate_is_sw_managed(gate))
410
return true;
411
412
/* Otherwise wait for the gate to be in desired state */
413
return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
414
}
415
416
/*
417
* Initialize a gate. Our desired state (hardware/software select,
418
* and if software, its enable state) is committed to hardware
419
* without the usual checks to see if it's already set up that way.
420
* Returns true if successful, false otherwise.
421
*/
422
static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
423
{
424
if (!gate_exists(gate))
425
return true;
426
return __gate_commit(ccu, gate);
427
}
428
429
/*
430
* Set a gate to enabled or disabled state. Does nothing if the
431
* gate is not currently under software control, or if it is already
432
* in the requested state. Returns true if successful, false
433
* otherwise. CCU lock must be held.
434
*/
435
static bool
436
__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
437
{
438
bool ret;
439
440
if (!gate_exists(gate) || !gate_is_sw_managed(gate))
441
return true; /* Nothing to do */
442
443
if (!enable && gate_is_no_disable(gate)) {
444
pr_warn("%s: invalid gate disable request (ignoring)\n",
445
__func__);
446
return true;
447
}
448
449
if (enable == gate_is_enabled(gate))
450
return true; /* No change */
451
452
gate_flip_enabled(gate);
453
ret = __gate_commit(ccu, gate);
454
if (!ret)
455
gate_flip_enabled(gate); /* Revert the change */
456
457
return ret;
458
}
459
460
/* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
461
static int clk_gate(struct ccu_data *ccu, const char *name,
462
struct bcm_clk_gate *gate, bool enable)
463
{
464
unsigned long flags;
465
bool success;
466
467
/*
468
* Avoid taking the lock if we can. We quietly ignore
469
* requests to change state that don't make sense.
470
*/
471
if (!gate_exists(gate) || !gate_is_sw_managed(gate))
472
return 0;
473
if (!enable && gate_is_no_disable(gate))
474
return 0;
475
476
flags = ccu_lock(ccu);
477
__ccu_write_enable(ccu);
478
479
success = __clk_gate(ccu, gate, enable);
480
481
__ccu_write_disable(ccu);
482
ccu_unlock(ccu, flags);
483
484
if (success)
485
return 0;
486
487
pr_err("%s: failed to %s gate for %s\n", __func__,
488
str_enable_disable(enable), name);
489
490
return -EIO;
491
}
492
493
/* Hysteresis operations */
494
495
/*
496
* If a clock gate requires a turn-off delay it will have
497
* "hysteresis" register bits defined. The first, if set, enables
498
* the delay; and if enabled, the second bit determines whether the
499
* delay is "low" or "high" (1 means high). For now, if it's
500
* defined for a clock, we set it.
501
*/
502
static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
503
{
504
u32 offset;
505
u32 reg_val;
506
u32 mask;
507
508
if (!hyst_exists(hyst))
509
return true;
510
511
offset = hyst->offset;
512
mask = (u32)1 << hyst->en_bit;
513
mask |= (u32)1 << hyst->val_bit;
514
515
reg_val = __ccu_read(ccu, offset);
516
reg_val |= mask;
517
__ccu_write(ccu, offset, reg_val);
518
519
return true;
520
}
521
522
/* Trigger operations */
523
524
/*
525
* Caller must ensure CCU lock is held and access is enabled.
526
* Returns true if successful, false otherwise.
527
*/
528
static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
529
{
530
/* Trigger the clock and wait for it to finish */
531
__ccu_write(ccu, trig->offset, 1 << trig->bit);
532
533
return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
534
}
535
536
/* Divider operations */
537
538
/* Read a divider value and return the scaled divisor it represents. */
539
static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
540
{
541
unsigned long flags;
542
u32 reg_val;
543
u32 reg_div;
544
545
if (divider_is_fixed(div))
546
return (u64)div->u.fixed;
547
548
flags = ccu_lock(ccu);
549
reg_val = __ccu_read(ccu, div->u.s.offset);
550
ccu_unlock(ccu, flags);
551
552
/* Extract the full divider field from the register value */
553
reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
554
555
/* Return the scaled divisor value it represents */
556
return scaled_div_value(div, reg_div);
557
}
558
559
/*
560
* Convert a divider's scaled divisor value into its recorded form
561
* and commit it into the hardware divider register.
562
*
563
* Returns 0 on success. Returns -EINVAL for invalid arguments.
564
* Returns -ENXIO if gating failed, and -EIO if a trigger failed.
565
*/
566
static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
567
struct bcm_clk_div *div, struct bcm_clk_trig *trig)
568
{
569
bool enabled;
570
u32 reg_div;
571
u32 reg_val;
572
int ret = 0;
573
574
BUG_ON(divider_is_fixed(div));
575
576
/*
577
* If we're just initializing the divider, and no initial
578
* state was defined in the device tree, we just find out
579
* what its current value is rather than updating it.
580
*/
581
if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
582
reg_val = __ccu_read(ccu, div->u.s.offset);
583
reg_div = bitfield_extract(reg_val, div->u.s.shift,
584
div->u.s.width);
585
div->u.s.scaled_div = scaled_div_value(div, reg_div);
586
587
return 0;
588
}
589
590
/* Convert the scaled divisor to the value we need to record */
591
reg_div = divider(div, div->u.s.scaled_div);
592
593
/* Clock needs to be enabled before changing the rate */
594
enabled = __is_clk_gate_enabled(ccu, gate);
595
if (!enabled && !__clk_gate(ccu, gate, true)) {
596
ret = -ENXIO;
597
goto out;
598
}
599
600
/* Replace the divider value and record the result */
601
reg_val = __ccu_read(ccu, div->u.s.offset);
602
reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
603
reg_div);
604
__ccu_write(ccu, div->u.s.offset, reg_val);
605
606
/* If the trigger fails we still want to disable the gate */
607
if (!__clk_trigger(ccu, trig))
608
ret = -EIO;
609
610
/* Disable the clock again if it was disabled to begin with */
611
if (!enabled && !__clk_gate(ccu, gate, false))
612
ret = ret ? ret : -ENXIO; /* return first error */
613
out:
614
return ret;
615
}
616
617
/*
618
* Initialize a divider by committing our desired state to hardware
619
* without the usual checks to see if it's already set up that way.
620
* Returns true if successful, false otherwise.
621
*/
622
static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
623
struct bcm_clk_div *div, struct bcm_clk_trig *trig)
624
{
625
if (!divider_exists(div) || divider_is_fixed(div))
626
return true;
627
return !__div_commit(ccu, gate, div, trig);
628
}
629
630
static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
631
struct bcm_clk_div *div, struct bcm_clk_trig *trig,
632
u64 scaled_div)
633
{
634
unsigned long flags;
635
u64 previous;
636
int ret;
637
638
BUG_ON(divider_is_fixed(div));
639
640
previous = div->u.s.scaled_div;
641
if (previous == scaled_div)
642
return 0; /* No change */
643
644
div->u.s.scaled_div = scaled_div;
645
646
flags = ccu_lock(ccu);
647
__ccu_write_enable(ccu);
648
649
ret = __div_commit(ccu, gate, div, trig);
650
651
__ccu_write_disable(ccu);
652
ccu_unlock(ccu, flags);
653
654
if (ret)
655
div->u.s.scaled_div = previous; /* Revert the change */
656
657
return ret;
658
659
}
660
661
/* Common clock rate helpers */
662
663
/*
664
* Implement the common clock framework recalc_rate method, taking
665
* into account a divider and an optional pre-divider. The
666
* pre-divider register pointer may be NULL.
667
*/
668
static unsigned long clk_recalc_rate(struct ccu_data *ccu,
669
struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
670
unsigned long parent_rate)
671
{
672
u64 scaled_parent_rate;
673
u64 scaled_div;
674
u64 result;
675
676
if (!divider_exists(div))
677
return parent_rate;
678
679
if (parent_rate > (unsigned long)LONG_MAX)
680
return 0; /* actually this would be a caller bug */
681
682
/*
683
* If there is a pre-divider, divide the scaled parent rate
684
* by the pre-divider value first. In this case--to improve
685
* accuracy--scale the parent rate by *both* the pre-divider
686
* value and the divider before actually computing the
687
* result of the pre-divider.
688
*
689
* If there's only one divider, just scale the parent rate.
690
*/
691
if (pre_div && divider_exists(pre_div)) {
692
u64 scaled_rate;
693
694
scaled_rate = scale_rate(pre_div, parent_rate);
695
scaled_rate = scale_rate(div, scaled_rate);
696
scaled_div = divider_read_scaled(ccu, pre_div);
697
scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
698
scaled_div);
699
} else {
700
scaled_parent_rate = scale_rate(div, parent_rate);
701
}
702
703
/*
704
* Get the scaled divisor value, and divide the scaled
705
* parent rate by that to determine this clock's resulting
706
* rate.
707
*/
708
scaled_div = divider_read_scaled(ccu, div);
709
result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
710
711
return (unsigned long)result;
712
}
713
714
/*
715
* Compute the output rate produced when a given parent rate is fed
716
* into two dividers. The pre-divider can be NULL, and even if it's
717
* non-null it may be nonexistent. It's also OK for the divider to
718
* be nonexistent, and in that case the pre-divider is also ignored.
719
*
720
* If scaled_div is non-null, it is used to return the scaled divisor
721
* value used by the (downstream) divider to produce that rate.
722
*/
723
static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
724
struct bcm_clk_div *pre_div,
725
unsigned long rate, unsigned long parent_rate,
726
u64 *scaled_div)
727
{
728
u64 scaled_parent_rate;
729
u64 min_scaled_div;
730
u64 max_scaled_div;
731
u64 best_scaled_div;
732
u64 result;
733
734
BUG_ON(!divider_exists(div));
735
BUG_ON(!rate);
736
BUG_ON(parent_rate > (u64)LONG_MAX);
737
738
/*
739
* If there is a pre-divider, divide the scaled parent rate
740
* by the pre-divider value first. In this case--to improve
741
* accuracy--scale the parent rate by *both* the pre-divider
742
* value and the divider before actually computing the
743
* result of the pre-divider.
744
*
745
* If there's only one divider, just scale the parent rate.
746
*
747
* For simplicity we treat the pre-divider as fixed (for now).
748
*/
749
if (divider_exists(pre_div)) {
750
u64 scaled_rate;
751
u64 scaled_pre_div;
752
753
scaled_rate = scale_rate(pre_div, parent_rate);
754
scaled_rate = scale_rate(div, scaled_rate);
755
scaled_pre_div = divider_read_scaled(ccu, pre_div);
756
scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
757
scaled_pre_div);
758
} else {
759
scaled_parent_rate = scale_rate(div, parent_rate);
760
}
761
762
/*
763
* Compute the best possible divider and ensure it is in
764
* range. A fixed divider can't be changed, so just report
765
* the best we can do.
766
*/
767
if (!divider_is_fixed(div)) {
768
best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
769
rate);
770
min_scaled_div = scaled_div_min(div);
771
max_scaled_div = scaled_div_max(div);
772
if (best_scaled_div > max_scaled_div)
773
best_scaled_div = max_scaled_div;
774
else if (best_scaled_div < min_scaled_div)
775
best_scaled_div = min_scaled_div;
776
} else {
777
best_scaled_div = divider_read_scaled(ccu, div);
778
}
779
780
/* OK, figure out the resulting rate */
781
result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
782
783
if (scaled_div)
784
*scaled_div = best_scaled_div;
785
786
return (long)result;
787
}
788
789
/* Common clock parent helpers */
790
791
/*
792
* For a given parent selector (register field) value, find the
793
* index into a selector's parent_sel array that contains it.
794
* Returns the index, or BAD_CLK_INDEX if it's not found.
795
*/
796
static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
797
{
798
u8 i;
799
800
BUG_ON(sel->parent_count > (u32)U8_MAX);
801
for (i = 0; i < sel->parent_count; i++)
802
if (sel->parent_sel[i] == parent_sel)
803
return i;
804
return BAD_CLK_INDEX;
805
}
806
807
/*
808
* Fetch the current value of the selector, and translate that into
809
* its corresponding index in the parent array we registered with
810
* the clock framework.
811
*
812
* Returns parent array index that corresponds with the value found,
813
* or BAD_CLK_INDEX if the found value is out of range.
814
*/
815
static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
816
{
817
unsigned long flags;
818
u32 reg_val;
819
u32 parent_sel;
820
u8 index;
821
822
/* If there's no selector, there's only one parent */
823
if (!selector_exists(sel))
824
return 0;
825
826
/* Get the value in the selector register */
827
flags = ccu_lock(ccu);
828
reg_val = __ccu_read(ccu, sel->offset);
829
ccu_unlock(ccu, flags);
830
831
parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
832
833
/* Look up that selector's parent array index and return it */
834
index = parent_index(sel, parent_sel);
835
if (index == BAD_CLK_INDEX)
836
pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
837
__func__, parent_sel, ccu->name, sel->offset);
838
839
return index;
840
}
841
842
/*
843
* Commit our desired selector value to the hardware.
844
*
845
* Returns 0 on success. Returns -EINVAL for invalid arguments.
846
* Returns -ENXIO if gating failed, and -EIO if a trigger failed.
847
*/
848
static int
849
__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
850
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
851
{
852
u32 parent_sel;
853
u32 reg_val;
854
bool enabled;
855
int ret = 0;
856
857
BUG_ON(!selector_exists(sel));
858
859
/*
860
* If we're just initializing the selector, and no initial
861
* state was defined in the device tree, we just find out
862
* what its current value is rather than updating it.
863
*/
864
if (sel->clk_index == BAD_CLK_INDEX) {
865
u8 index;
866
867
reg_val = __ccu_read(ccu, sel->offset);
868
parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
869
index = parent_index(sel, parent_sel);
870
if (index == BAD_CLK_INDEX)
871
return -EINVAL;
872
sel->clk_index = index;
873
874
return 0;
875
}
876
877
BUG_ON((u32)sel->clk_index >= sel->parent_count);
878
parent_sel = sel->parent_sel[sel->clk_index];
879
880
/* Clock needs to be enabled before changing the parent */
881
enabled = __is_clk_gate_enabled(ccu, gate);
882
if (!enabled && !__clk_gate(ccu, gate, true))
883
return -ENXIO;
884
885
/* Replace the selector value and record the result */
886
reg_val = __ccu_read(ccu, sel->offset);
887
reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
888
__ccu_write(ccu, sel->offset, reg_val);
889
890
/* If the trigger fails we still want to disable the gate */
891
if (!__clk_trigger(ccu, trig))
892
ret = -EIO;
893
894
/* Disable the clock again if it was disabled to begin with */
895
if (!enabled && !__clk_gate(ccu, gate, false))
896
ret = ret ? ret : -ENXIO; /* return first error */
897
898
return ret;
899
}
900
901
/*
902
* Initialize a selector by committing our desired state to hardware
903
* without the usual checks to see if it's already set up that way.
904
* Returns true if successful, false otherwise.
905
*/
906
static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
907
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
908
{
909
if (!selector_exists(sel))
910
return true;
911
return !__sel_commit(ccu, gate, sel, trig);
912
}
913
914
/*
915
* Write a new value into a selector register to switch to a
916
* different parent clock. Returns 0 on success, or an error code
917
* (from __sel_commit()) otherwise.
918
*/
919
static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
920
struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
921
u8 index)
922
{
923
unsigned long flags;
924
u8 previous;
925
int ret;
926
927
previous = sel->clk_index;
928
if (previous == index)
929
return 0; /* No change */
930
931
sel->clk_index = index;
932
933
flags = ccu_lock(ccu);
934
__ccu_write_enable(ccu);
935
936
ret = __sel_commit(ccu, gate, sel, trig);
937
938
__ccu_write_disable(ccu);
939
ccu_unlock(ccu, flags);
940
941
if (ret)
942
sel->clk_index = previous; /* Revert the change */
943
944
return ret;
945
}
946
947
/* Clock operations */
948
949
static int kona_peri_clk_enable(struct clk_hw *hw)
950
{
951
struct kona_clk *bcm_clk = to_kona_clk(hw);
952
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
953
954
return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
955
}
956
957
static void kona_peri_clk_disable(struct clk_hw *hw)
958
{
959
struct kona_clk *bcm_clk = to_kona_clk(hw);
960
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
961
962
(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
963
}
964
965
static int kona_peri_clk_is_enabled(struct clk_hw *hw)
966
{
967
struct kona_clk *bcm_clk = to_kona_clk(hw);
968
struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
969
970
return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
971
}
972
973
static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
974
unsigned long parent_rate)
975
{
976
struct kona_clk *bcm_clk = to_kona_clk(hw);
977
struct peri_clk_data *data = bcm_clk->u.peri;
978
979
return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
980
parent_rate);
981
}
982
983
static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
984
unsigned long *parent_rate)
985
{
986
struct kona_clk *bcm_clk = to_kona_clk(hw);
987
struct bcm_clk_div *div = &bcm_clk->u.peri->div;
988
989
if (!divider_exists(div))
990
return clk_hw_get_rate(hw);
991
992
/* Quietly avoid a zero rate */
993
return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
994
rate ? rate : 1, *parent_rate, NULL);
995
}
996
997
static int kona_peri_clk_determine_rate(struct clk_hw *hw,
998
struct clk_rate_request *req)
999
{
1000
struct kona_clk *bcm_clk = to_kona_clk(hw);
1001
struct clk_hw *current_parent;
1002
unsigned long parent_rate;
1003
unsigned long best_delta;
1004
unsigned long best_rate;
1005
u32 parent_count;
1006
long rate;
1007
u32 which;
1008
1009
/*
1010
* If there is no other parent to choose, use the current one.
1011
* Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1012
*/
1013
WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1014
parent_count = (u32)bcm_clk->init_data.num_parents;
1015
if (parent_count < 2) {
1016
rate = kona_peri_clk_round_rate(hw, req->rate,
1017
&req->best_parent_rate);
1018
if (rate < 0)
1019
return rate;
1020
1021
req->rate = rate;
1022
return 0;
1023
}
1024
1025
/* Unless we can do better, stick with current parent */
1026
current_parent = clk_hw_get_parent(hw);
1027
parent_rate = clk_hw_get_rate(current_parent);
1028
best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1029
best_delta = abs(best_rate - req->rate);
1030
1031
/* Check whether any other parent clock can produce a better result */
1032
for (which = 0; which < parent_count; which++) {
1033
struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1034
unsigned long delta;
1035
unsigned long other_rate;
1036
1037
BUG_ON(!parent);
1038
if (parent == current_parent)
1039
continue;
1040
1041
/* We don't support CLK_SET_RATE_PARENT */
1042
parent_rate = clk_hw_get_rate(parent);
1043
other_rate = kona_peri_clk_round_rate(hw, req->rate,
1044
&parent_rate);
1045
delta = abs(other_rate - req->rate);
1046
if (delta < best_delta) {
1047
best_delta = delta;
1048
best_rate = other_rate;
1049
req->best_parent_hw = parent;
1050
req->best_parent_rate = parent_rate;
1051
}
1052
}
1053
1054
req->rate = best_rate;
1055
return 0;
1056
}
1057
1058
static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1059
{
1060
struct kona_clk *bcm_clk = to_kona_clk(hw);
1061
struct peri_clk_data *data = bcm_clk->u.peri;
1062
struct bcm_clk_sel *sel = &data->sel;
1063
struct bcm_clk_trig *trig;
1064
int ret;
1065
1066
BUG_ON(index >= sel->parent_count);
1067
1068
/* If there's only one parent we don't require a selector */
1069
if (!selector_exists(sel))
1070
return 0;
1071
1072
/*
1073
* The regular trigger is used by default, but if there's a
1074
* pre-trigger we want to use that instead.
1075
*/
1076
trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1077
: &data->trig;
1078
1079
ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1080
if (ret == -ENXIO) {
1081
pr_err("%s: gating failure for %s\n", __func__,
1082
bcm_clk->init_data.name);
1083
ret = -EIO; /* Don't proliferate weird errors */
1084
} else if (ret == -EIO) {
1085
pr_err("%s: %strigger failed for %s\n", __func__,
1086
trig == &data->pre_trig ? "pre-" : "",
1087
bcm_clk->init_data.name);
1088
}
1089
1090
return ret;
1091
}
1092
1093
static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1094
{
1095
struct kona_clk *bcm_clk = to_kona_clk(hw);
1096
struct peri_clk_data *data = bcm_clk->u.peri;
1097
u8 index;
1098
1099
index = selector_read_index(bcm_clk->ccu, &data->sel);
1100
1101
/* Not all callers would handle an out-of-range value gracefully */
1102
return index == BAD_CLK_INDEX ? 0 : index;
1103
}
1104
1105
static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1106
unsigned long parent_rate)
1107
{
1108
struct kona_clk *bcm_clk = to_kona_clk(hw);
1109
struct peri_clk_data *data = bcm_clk->u.peri;
1110
struct bcm_clk_div *div = &data->div;
1111
u64 scaled_div = 0;
1112
int ret;
1113
1114
if (parent_rate > (unsigned long)LONG_MAX)
1115
return -EINVAL;
1116
1117
if (rate == clk_hw_get_rate(hw))
1118
return 0;
1119
1120
if (!divider_exists(div))
1121
return rate == parent_rate ? 0 : -EINVAL;
1122
1123
/*
1124
* A fixed divider can't be changed. (Nor can a fixed
1125
* pre-divider be, but for now we never actually try to
1126
* change that.) Tolerate a request for a no-op change.
1127
*/
1128
if (divider_is_fixed(&data->div))
1129
return rate == parent_rate ? 0 : -EINVAL;
1130
1131
/*
1132
* Get the scaled divisor value needed to achieve a clock
1133
* rate as close as possible to what was requested, given
1134
* the parent clock rate supplied.
1135
*/
1136
(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1137
rate ? rate : 1, parent_rate, &scaled_div);
1138
1139
/*
1140
* We aren't updating any pre-divider at this point, so
1141
* we'll use the regular trigger.
1142
*/
1143
ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1144
&data->trig, scaled_div);
1145
if (ret == -ENXIO) {
1146
pr_err("%s: gating failure for %s\n", __func__,
1147
bcm_clk->init_data.name);
1148
ret = -EIO; /* Don't proliferate weird errors */
1149
} else if (ret == -EIO) {
1150
pr_err("%s: trigger failed for %s\n", __func__,
1151
bcm_clk->init_data.name);
1152
}
1153
1154
return ret;
1155
}
1156
1157
struct clk_ops kona_peri_clk_ops = {
1158
.enable = kona_peri_clk_enable,
1159
.disable = kona_peri_clk_disable,
1160
.is_enabled = kona_peri_clk_is_enabled,
1161
.recalc_rate = kona_peri_clk_recalc_rate,
1162
.determine_rate = kona_peri_clk_determine_rate,
1163
.set_parent = kona_peri_clk_set_parent,
1164
.get_parent = kona_peri_clk_get_parent,
1165
.set_rate = kona_peri_clk_set_rate,
1166
};
1167
1168
/* Put a peripheral clock into its initial state */
1169
static bool __peri_clk_init(struct kona_clk *bcm_clk)
1170
{
1171
struct ccu_data *ccu = bcm_clk->ccu;
1172
struct peri_clk_data *peri = bcm_clk->u.peri;
1173
const char *name = bcm_clk->init_data.name;
1174
struct bcm_clk_trig *trig;
1175
1176
BUG_ON(bcm_clk->type != bcm_clk_peri);
1177
1178
if (!policy_init(ccu, &peri->policy)) {
1179
pr_err("%s: error initializing policy for %s\n",
1180
__func__, name);
1181
return false;
1182
}
1183
if (!gate_init(ccu, &peri->gate)) {
1184
pr_err("%s: error initializing gate for %s\n", __func__, name);
1185
return false;
1186
}
1187
if (!hyst_init(ccu, &peri->hyst)) {
1188
pr_err("%s: error initializing hyst for %s\n", __func__, name);
1189
return false;
1190
}
1191
if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1192
pr_err("%s: error initializing divider for %s\n", __func__,
1193
name);
1194
return false;
1195
}
1196
1197
/*
1198
* For the pre-divider and selector, the pre-trigger is used
1199
* if it's present, otherwise we just use the regular trigger.
1200
*/
1201
trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1202
: &peri->trig;
1203
1204
if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1205
pr_err("%s: error initializing pre-divider for %s\n", __func__,
1206
name);
1207
return false;
1208
}
1209
1210
if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1211
pr_err("%s: error initializing selector for %s\n", __func__,
1212
name);
1213
return false;
1214
}
1215
1216
return true;
1217
}
1218
1219
static bool __kona_clk_init(struct kona_clk *bcm_clk)
1220
{
1221
switch (bcm_clk->type) {
1222
case bcm_clk_peri:
1223
return __peri_clk_init(bcm_clk);
1224
default:
1225
BUG();
1226
}
1227
return false;
1228
}
1229
1230
/* Set a CCU and all its clocks into their desired initial state */
1231
bool __init kona_ccu_init(struct ccu_data *ccu)
1232
{
1233
unsigned long flags;
1234
unsigned int which;
1235
struct kona_clk *kona_clks = ccu->kona_clks;
1236
bool success = true;
1237
1238
flags = ccu_lock(ccu);
1239
__ccu_write_enable(ccu);
1240
1241
for (which = 0; which < ccu->clk_num; which++) {
1242
struct kona_clk *bcm_clk = &kona_clks[which];
1243
1244
if (!bcm_clk->ccu)
1245
continue;
1246
1247
success &= __kona_clk_init(bcm_clk);
1248
}
1249
1250
__ccu_write_disable(ccu);
1251
ccu_unlock(ccu, flags);
1252
return success;
1253
}
1254
1255