Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/bcm/clk-kona.h
26282 views
1
/* SPDX-License-Identifier: GPL-2.0-only */
2
/*
3
* Copyright (C) 2013 Broadcom Corporation
4
* Copyright 2013 Linaro Limited
5
*/
6
7
#ifndef _CLK_KONA_H
8
#define _CLK_KONA_H
9
10
#include <linux/kernel.h>
11
#include <linux/list.h>
12
#include <linux/spinlock.h>
13
#include <linux/slab.h>
14
#include <linux/device.h>
15
#include <linux/of.h>
16
#include <linux/clk-provider.h>
17
18
#define BILLION 1000000000
19
20
/* The common clock framework uses u8 to represent a parent index */
21
#define PARENT_COUNT_MAX ((u32)U8_MAX)
22
23
#define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */
24
#define BAD_CLK_NAME ((const char *)-1)
25
26
#define BAD_SCALED_DIV_VALUE U64_MAX
27
28
/*
29
* Utility macros for object flag management. If possible, flags
30
* should be defined such that 0 is the desired default value.
31
*/
32
#define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag
33
#define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag))
34
#define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag)))
35
#define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag))
36
#define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag)))
37
38
/* CCU field state tests */
39
40
#define ccu_policy_exists(ccu_policy) ((ccu_policy)->enable.offset != 0)
41
42
/* Clock field state tests */
43
44
#define policy_exists(policy) ((policy)->offset != 0)
45
46
#define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS)
47
#define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED)
48
#define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW)
49
#define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW)
50
#define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED)
51
#define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE)
52
53
#define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED)
54
55
#define hyst_exists(hyst) ((hyst)->offset != 0)
56
57
#define divider_exists(div) FLAG_TEST(div, DIV, EXISTS)
58
#define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED)
59
#define divider_has_fraction(div) (!divider_is_fixed(div) && \
60
(div)->u.s.frac_width > 0)
61
62
#define selector_exists(sel) ((sel)->width != 0)
63
#define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS)
64
65
#define policy_lvm_en_exists(enable) ((enable)->offset != 0)
66
#define policy_ctl_exists(control) ((control)->offset != 0)
67
68
/* Clock type, used to tell common block what it's part of */
69
enum bcm_clk_type {
70
bcm_clk_none, /* undefined clock type */
71
bcm_clk_bus,
72
bcm_clk_core,
73
bcm_clk_peri
74
};
75
76
/*
77
* CCU policy control for clocks. Clocks can be enabled or disabled
78
* based on the CCU policy in effect. One bit in each policy mask
79
* register (one per CCU policy) represents whether the clock is
80
* enabled when that policy is effect or not. The CCU policy engine
81
* must be stopped to update these bits, and must be restarted again
82
* afterward.
83
*/
84
struct bcm_clk_policy {
85
u32 offset; /* first policy mask register offset */
86
u32 bit; /* bit used in all mask registers */
87
};
88
89
/* Policy initialization macro */
90
91
#define POLICY(_offset, _bit) \
92
{ \
93
.offset = (_offset), \
94
.bit = (_bit), \
95
}
96
97
/*
98
* Gating control and status is managed by a 32-bit gate register.
99
*
100
* There are several types of gating available:
101
* - (no gate)
102
* A clock with no gate is assumed to be always enabled.
103
* - hardware-only gating (auto-gating)
104
* Enabling or disabling clocks with this type of gate is
105
* managed automatically by the hardware. Such clocks can be
106
* considered by the software to be enabled. The current status
107
* of auto-gated clocks can be read from the gate status bit.
108
* - software-only gating
109
* Auto-gating is not available for this type of clock.
110
* Instead, software manages whether it's enabled by setting or
111
* clearing the enable bit. The current gate status of a gate
112
* under software control can be read from the gate status bit.
113
* To ensure a change to the gating status is complete, the
114
* status bit can be polled to verify that the gate has entered
115
* the desired state.
116
* - selectable hardware or software gating
117
* Gating for this type of clock can be configured to be either
118
* under software or hardware control. Which type is in use is
119
* determined by the hw_sw_sel bit of the gate register.
120
*/
121
struct bcm_clk_gate {
122
u32 offset; /* gate register offset */
123
u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */
124
u32 en_bit; /* 0: disable; 1: enable */
125
u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */
126
u32 flags; /* BCM_CLK_GATE_FLAGS_* below */
127
};
128
129
/*
130
* Gate flags:
131
* HW means this gate can be auto-gated
132
* SW means the state of this gate can be software controlled
133
* NO_DISABLE means this gate is (only) enabled if under software control
134
* SW_MANAGED means the status of this gate is under software control
135
* ENABLED means this software-managed gate is *supposed* to be enabled
136
*/
137
#define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */
138
#define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */
139
#define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */
140
#define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */
141
#define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */
142
#define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */
143
144
/*
145
* Gate initialization macros.
146
*
147
* Any gate initially under software control will be enabled.
148
*/
149
150
/* A hardware/software gate initially under software control */
151
#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
152
{ \
153
.offset = (_offset), \
154
.status_bit = (_status_bit), \
155
.en_bit = (_en_bit), \
156
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
157
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
158
FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \
159
FLAG(GATE, EXISTS), \
160
}
161
162
/* A hardware/software gate initially under hardware control */
163
#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
164
{ \
165
.offset = (_offset), \
166
.status_bit = (_status_bit), \
167
.en_bit = (_en_bit), \
168
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
169
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
170
FLAG(GATE, EXISTS), \
171
}
172
173
/* A hardware-or-enabled gate (enabled if not under hardware control) */
174
#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
175
{ \
176
.offset = (_offset), \
177
.status_bit = (_status_bit), \
178
.en_bit = (_en_bit), \
179
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
180
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
181
FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \
182
}
183
184
/* A software-only gate */
185
#define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \
186
{ \
187
.offset = (_offset), \
188
.status_bit = (_status_bit), \
189
.en_bit = (_en_bit), \
190
.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \
191
FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \
192
}
193
194
/* A hardware-only gate */
195
#define HW_ONLY_GATE(_offset, _status_bit) \
196
{ \
197
.offset = (_offset), \
198
.status_bit = (_status_bit), \
199
.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \
200
}
201
202
/* Gate hysteresis for clocks */
203
struct bcm_clk_hyst {
204
u32 offset; /* hyst register offset (normally CLKGATE) */
205
u32 en_bit; /* bit used to enable hysteresis */
206
u32 val_bit; /* if enabled: 0 = low delay; 1 = high delay */
207
};
208
209
/* Hysteresis initialization macro */
210
211
#define HYST(_offset, _en_bit, _val_bit) \
212
{ \
213
.offset = (_offset), \
214
.en_bit = (_en_bit), \
215
.val_bit = (_val_bit), \
216
}
217
218
/*
219
* Each clock can have zero, one, or two dividers which change the
220
* output rate of the clock. Each divider can be either fixed or
221
* variable. If there are two dividers, they are the "pre-divider"
222
* and the "regular" or "downstream" divider. If there is only one,
223
* there is no pre-divider.
224
*
225
* A fixed divider is any non-zero (positive) value, and it
226
* indicates how the input rate is affected by the divider.
227
*
228
* The value of a variable divider is maintained in a sub-field of a
229
* 32-bit divider register. The position of the field in the
230
* register is defined by its offset and width. The value recorded
231
* in this field is always 1 less than the value it represents.
232
*
233
* In addition, a variable divider can indicate that some subset
234
* of its bits represent a "fractional" part of the divider. Such
235
* bits comprise the low-order portion of the divider field, and can
236
* be viewed as representing the portion of the divider that lies to
237
* the right of the decimal point. Most variable dividers have zero
238
* fractional bits. Variable dividers with non-zero fraction width
239
* still record a value 1 less than the value they represent; the
240
* added 1 does *not* affect the low-order bit in this case, it
241
* affects the bits above the fractional part only. (Often in this
242
* code a divider field value is distinguished from the value it
243
* represents by referring to the latter as a "divisor".)
244
*
245
* In order to avoid dealing with fractions, divider arithmetic is
246
* performed using "scaled" values. A scaled value is one that's
247
* been left-shifted by the fractional width of a divider. Dividing
248
* a scaled value by a scaled divisor produces the desired quotient
249
* without loss of precision and without any other special handling
250
* for fractions.
251
*
252
* The recorded value of a variable divider can be modified. To
253
* modify either divider (or both), a clock must be enabled (i.e.,
254
* using its gate). In addition, a trigger register (described
255
* below) must be used to commit the change, and polled to verify
256
* the change is complete.
257
*/
258
struct bcm_clk_div {
259
union {
260
struct { /* variable divider */
261
u32 offset; /* divider register offset */
262
u32 shift; /* field shift */
263
u32 width; /* field width */
264
u32 frac_width; /* field fraction width */
265
266
u64 scaled_div; /* scaled divider value */
267
} s;
268
u32 fixed; /* non-zero fixed divider value */
269
} u;
270
u32 flags; /* BCM_CLK_DIV_FLAGS_* below */
271
};
272
273
/*
274
* Divider flags:
275
* EXISTS means this divider exists
276
* FIXED means it is a fixed-rate divider
277
*/
278
#define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */
279
#define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */
280
281
/* Divider initialization macros */
282
283
/* A fixed (non-zero) divider */
284
#define FIXED_DIVIDER(_value) \
285
{ \
286
.u.fixed = (_value), \
287
.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \
288
}
289
290
/* A divider with an integral divisor */
291
#define DIVIDER(_offset, _shift, _width) \
292
{ \
293
.u.s.offset = (_offset), \
294
.u.s.shift = (_shift), \
295
.u.s.width = (_width), \
296
.u.s.scaled_div = BAD_SCALED_DIV_VALUE, \
297
.flags = FLAG(DIV, EXISTS), \
298
}
299
300
/* A divider whose divisor has an integer and fractional part */
301
#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \
302
{ \
303
.u.s.offset = (_offset), \
304
.u.s.shift = (_shift), \
305
.u.s.width = (_width), \
306
.u.s.frac_width = (_frac_width), \
307
.u.s.scaled_div = BAD_SCALED_DIV_VALUE, \
308
.flags = FLAG(DIV, EXISTS), \
309
}
310
311
/*
312
* Clocks may have multiple "parent" clocks. If there is more than
313
* one, a selector must be specified to define which of the parent
314
* clocks is currently in use. The selected clock is indicated in a
315
* sub-field of a 32-bit selector register. The range of
316
* representable selector values typically exceeds the number of
317
* available parent clocks. Occasionally the reset value of a
318
* selector field is explicitly set to a (specific) value that does
319
* not correspond to a defined input clock.
320
*
321
* We register all known parent clocks with the common clock code
322
* using a packed array (i.e., no empty slots) of (parent) clock
323
* names, and refer to them later using indexes into that array.
324
* We maintain an array of selector values indexed by common clock
325
* index values in order to map between these common clock indexes
326
* and the selector values used by the hardware.
327
*
328
* Like dividers, a selector can be modified, but to do so a clock
329
* must be enabled, and a trigger must be used to commit the change.
330
*/
331
struct bcm_clk_sel {
332
u32 offset; /* selector register offset */
333
u32 shift; /* field shift */
334
u32 width; /* field width */
335
336
u32 parent_count; /* number of entries in parent_sel[] */
337
u32 *parent_sel; /* array of parent selector values */
338
u8 clk_index; /* current selected index in parent_sel[] */
339
};
340
341
/* Selector initialization macro */
342
#define SELECTOR(_offset, _shift, _width) \
343
{ \
344
.offset = (_offset), \
345
.shift = (_shift), \
346
.width = (_width), \
347
.clk_index = BAD_CLK_INDEX, \
348
}
349
350
/*
351
* Making changes to a variable divider or a selector for a clock
352
* requires the use of a trigger. A trigger is defined by a single
353
* bit within a register. To signal a change, a 1 is written into
354
* that bit. To determine when the change has been completed, that
355
* trigger bit is polled; the read value will be 1 while the change
356
* is in progress, and 0 when it is complete.
357
*
358
* Occasionally a clock will have more than one trigger. In this
359
* case, the "pre-trigger" will be used when changing a clock's
360
* selector and/or its pre-divider.
361
*/
362
struct bcm_clk_trig {
363
u32 offset; /* trigger register offset */
364
u32 bit; /* trigger bit */
365
u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */
366
};
367
368
/*
369
* Trigger flags:
370
* EXISTS means this trigger exists
371
*/
372
#define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */
373
374
/* Trigger initialization macro */
375
#define TRIGGER(_offset, _bit) \
376
{ \
377
.offset = (_offset), \
378
.bit = (_bit), \
379
.flags = FLAG(TRIG, EXISTS), \
380
}
381
382
struct peri_clk_data {
383
struct bcm_clk_policy policy;
384
struct bcm_clk_gate gate;
385
struct bcm_clk_hyst hyst;
386
struct bcm_clk_trig pre_trig;
387
struct bcm_clk_div pre_div;
388
struct bcm_clk_trig trig;
389
struct bcm_clk_div div;
390
struct bcm_clk_sel sel;
391
const char *clocks[]; /* must be last; use CLOCKS() to declare */
392
};
393
#define CLOCKS(...) { __VA_ARGS__, NULL, }
394
#define NO_CLOCKS { NULL, } /* Must use of no parent clocks */
395
396
struct kona_clk {
397
struct clk_hw hw;
398
struct clk_init_data init_data; /* includes name of this clock */
399
struct ccu_data *ccu; /* ccu this clock is associated with */
400
enum bcm_clk_type type;
401
union {
402
void *data;
403
struct peri_clk_data *peri;
404
} u;
405
};
406
#define to_kona_clk(_hw) \
407
container_of(_hw, struct kona_clk, hw)
408
409
/* Initialization macro for an entry in a CCU's kona_clks[] array. */
410
#define KONA_CLK(_ccu_name, _clk_name, _type) \
411
{ \
412
.init_data = { \
413
.name = #_clk_name, \
414
.ops = &kona_ ## _type ## _clk_ops, \
415
}, \
416
.ccu = &_ccu_name ## _ccu_data, \
417
.type = bcm_clk_ ## _type, \
418
.u.data = &_clk_name ## _data, \
419
}
420
#define LAST_KONA_CLK { .type = bcm_clk_none }
421
422
/*
423
* CCU policy control. To enable software update of the policy
424
* tables the CCU policy engine must be stopped by setting the
425
* software update enable bit (LVM_EN). After an update the engine
426
* is restarted using the GO bit and either the GO_ATL or GO_AC bit.
427
*/
428
struct bcm_lvm_en {
429
u32 offset; /* LVM_EN register offset */
430
u32 bit; /* POLICY_CONFIG_EN bit in register */
431
};
432
433
/* Policy enable initialization macro */
434
#define CCU_LVM_EN(_offset, _bit) \
435
{ \
436
.offset = (_offset), \
437
.bit = (_bit), \
438
}
439
440
struct bcm_policy_ctl {
441
u32 offset; /* POLICY_CTL register offset */
442
u32 go_bit;
443
u32 atl_bit; /* GO, GO_ATL, and GO_AC bits */
444
u32 ac_bit;
445
};
446
447
/* Policy control initialization macro */
448
#define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit) \
449
{ \
450
.offset = (_offset), \
451
.go_bit = (_go_bit), \
452
.ac_bit = (_ac_bit), \
453
.atl_bit = (_atl_bit), \
454
}
455
456
struct ccu_policy {
457
struct bcm_lvm_en enable;
458
struct bcm_policy_ctl control;
459
};
460
461
/*
462
* Each CCU defines a mapped area of memory containing registers
463
* used to manage clocks implemented by the CCU. Access to memory
464
* within the CCU's space is serialized by a spinlock. Before any
465
* (other) address can be written, a special access "password" value
466
* must be written to its WR_ACCESS register (located at the base
467
* address of the range). We keep track of the name of each CCU as
468
* it is set up, and maintain them in a list.
469
*/
470
struct ccu_data {
471
void __iomem *base; /* base of mapped address space */
472
spinlock_t lock; /* serialization lock */
473
bool write_enabled; /* write access is currently enabled */
474
struct ccu_policy policy;
475
struct device_node *node;
476
size_t clk_num;
477
const char *name;
478
u32 range; /* byte range of address space */
479
struct kona_clk kona_clks[]; /* must be last */
480
};
481
482
/* Initialization for common fields in a Kona ccu_data structure */
483
#define KONA_CCU_COMMON(_prefix, _name, _ccuname) \
484
.name = #_name "_ccu", \
485
.lock = __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock), \
486
.clk_num = _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT
487
488
/* Exported globals */
489
490
extern struct clk_ops kona_peri_clk_ops;
491
492
/* Externally visible functions */
493
494
extern u64 scaled_div_max(struct bcm_clk_div *div);
495
496
extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
497
struct device_node *node);
498
extern bool __init kona_ccu_init(struct ccu_data *ccu);
499
500
#endif /* _CLK_KONA_H */
501
502