Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/berlin/berlin2-avpll.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (c) 2014 Marvell Technology Group Ltd.
4
*
5
* Sebastian Hesselbarth <[email protected]>
6
* Alexandre Belloni <[email protected]>
7
*/
8
#include <linux/clk-provider.h>
9
#include <linux/io.h>
10
#include <linux/kernel.h>
11
#include <linux/of.h>
12
#include <linux/of_address.h>
13
#include <linux/slab.h>
14
15
#include "berlin2-avpll.h"
16
17
/*
18
* Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
19
* VCO with 8 channels each, channel 8 is the odd-one-out and does
20
* not provide mul/div.
21
*
22
* Unfortunately, its registers are not named but just numbered. To
23
* get in at least some kind of structure, we split each AVPLL into
24
* the VCOs and each channel into separate clock drivers.
25
*
26
* Also, here and there the VCO registers are a bit different with
27
* respect to bit shifts. Make sure to add a comment for those.
28
*/
29
#define NUM_CHANNELS 8
30
31
#define AVPLL_CTRL(x) ((x) * 0x4)
32
33
#define VCO_CTRL0 AVPLL_CTRL(0)
34
/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
35
#define VCO_RESET BIT(0)
36
#define VCO_POWERUP BIT(1)
37
#define VCO_INTERPOL_SHIFT 2
38
#define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
39
#define VCO_REG1V45_SEL_SHIFT 6
40
#define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
41
#define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
42
#define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
43
#define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
44
#define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
45
#define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
46
#define VCO_REG0V9_SEL_SHIFT 8
47
#define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
48
#define VCO_VTHCAL_SHIFT 12
49
#define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
50
#define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
51
#define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
52
#define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
53
#define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
54
#define VCO_VTHCAL_MASK VCO_VTHCAL(3)
55
#define VCO_KVCOEXT_SHIFT 14
56
#define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
57
#define VCO_KVCOEXT_ENABLE BIT(17)
58
#define VCO_V2IEXT_SHIFT 18
59
#define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
60
#define VCO_V2IEXT_ENABLE BIT(22)
61
#define VCO_SPEED_SHIFT 23
62
#define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
63
#define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
64
#define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
65
#define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
66
#define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
67
#define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
68
#define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
69
#define VCO_SPEED_2G22 VCO_SPEED(6)
70
#define VCO_SPEED_MASK VCO_SPEED(0x7)
71
#define VCO_CLKDET_ENABLE BIT(26)
72
#define VCO_CTRL1 AVPLL_CTRL(1)
73
#define VCO_REFDIV_SHIFT 0
74
#define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
75
#define VCO_REFDIV_1 VCO_REFDIV(0)
76
#define VCO_REFDIV_2 VCO_REFDIV(1)
77
#define VCO_REFDIV_4 VCO_REFDIV(2)
78
#define VCO_REFDIV_3 VCO_REFDIV(3)
79
#define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
80
#define VCO_FBDIV_SHIFT 6
81
#define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
82
#define VCO_FBDIV_MASK VCO_FBDIV(0xff)
83
#define VCO_ICP_SHIFT 14
84
/* PLL Charge Pump Current = 10uA * (x + 1) */
85
#define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
86
#define VCO_ICP_MASK VCO_ICP(0xf)
87
#define VCO_LOAD_CAP BIT(18)
88
#define VCO_CALIBRATION_START BIT(19)
89
#define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
90
#define VCO_FREQOFFSET_MASK 0x7ffff
91
#define VCO_CTRL10 AVPLL_CTRL(10)
92
#define VCO_POWERUP_CH1 BIT(20)
93
#define VCO_CTRL11 AVPLL_CTRL(11)
94
#define VCO_CTRL12 AVPLL_CTRL(12)
95
#define VCO_CTRL13 AVPLL_CTRL(13)
96
#define VCO_CTRL14 AVPLL_CTRL(14)
97
#define VCO_CTRL15 AVPLL_CTRL(15)
98
#define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
99
#define VCO_SYNC1_MASK 0x1ffff
100
#define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
101
#define VCO_SYNC2_MASK 0x1ffff
102
#define VCO_CTRL30 AVPLL_CTRL(30)
103
#define VCO_DPLL_CH1_ENABLE BIT(17)
104
105
struct berlin2_avpll_vco {
106
struct clk_hw hw;
107
void __iomem *base;
108
u8 flags;
109
};
110
111
#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
112
113
static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
114
{
115
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116
u32 reg;
117
118
reg = readl_relaxed(vco->base + VCO_CTRL0);
119
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120
reg >>= 4;
121
122
return !!(reg & VCO_POWERUP);
123
}
124
125
static int berlin2_avpll_vco_enable(struct clk_hw *hw)
126
{
127
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128
u32 reg;
129
130
reg = readl_relaxed(vco->base + VCO_CTRL0);
131
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132
reg |= VCO_POWERUP << 4;
133
else
134
reg |= VCO_POWERUP;
135
writel_relaxed(reg, vco->base + VCO_CTRL0);
136
137
return 0;
138
}
139
140
static void berlin2_avpll_vco_disable(struct clk_hw *hw)
141
{
142
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143
u32 reg;
144
145
reg = readl_relaxed(vco->base + VCO_CTRL0);
146
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147
reg &= ~(VCO_POWERUP << 4);
148
else
149
reg &= ~VCO_POWERUP;
150
writel_relaxed(reg, vco->base + VCO_CTRL0);
151
}
152
153
static u8 vco_refdiv[] = { 1, 2, 4, 3 };
154
155
static unsigned long
156
berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
157
{
158
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159
u32 reg, refdiv, fbdiv;
160
u64 freq = parent_rate;
161
162
/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163
reg = readl_relaxed(vco->base + VCO_CTRL1);
164
refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165
refdiv = vco_refdiv[refdiv];
166
fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167
freq *= fbdiv;
168
do_div(freq, refdiv);
169
170
return (unsigned long)freq;
171
}
172
173
static const struct clk_ops berlin2_avpll_vco_ops = {
174
.is_enabled = berlin2_avpll_vco_is_enabled,
175
.enable = berlin2_avpll_vco_enable,
176
.disable = berlin2_avpll_vco_disable,
177
.recalc_rate = berlin2_avpll_vco_recalc_rate,
178
};
179
180
int __init berlin2_avpll_vco_register(void __iomem *base,
181
const char *name, const char *parent_name,
182
u8 vco_flags, unsigned long flags)
183
{
184
struct berlin2_avpll_vco *vco;
185
struct clk_init_data init;
186
187
vco = kzalloc(sizeof(*vco), GFP_KERNEL);
188
if (!vco)
189
return -ENOMEM;
190
191
vco->base = base;
192
vco->flags = vco_flags;
193
vco->hw.init = &init;
194
init.name = name;
195
init.ops = &berlin2_avpll_vco_ops;
196
init.parent_names = &parent_name;
197
init.num_parents = 1;
198
init.flags = flags;
199
200
return clk_hw_register(NULL, &vco->hw);
201
}
202
203
struct berlin2_avpll_channel {
204
struct clk_hw hw;
205
void __iomem *base;
206
u8 flags;
207
u8 index;
208
};
209
210
#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
211
212
static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
213
{
214
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215
u32 reg;
216
217
if (ch->index == 7)
218
return 1;
219
220
reg = readl_relaxed(ch->base + VCO_CTRL10);
221
reg &= VCO_POWERUP_CH1 << ch->index;
222
223
return !!reg;
224
}
225
226
static int berlin2_avpll_channel_enable(struct clk_hw *hw)
227
{
228
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229
u32 reg;
230
231
reg = readl_relaxed(ch->base + VCO_CTRL10);
232
reg |= VCO_POWERUP_CH1 << ch->index;
233
writel_relaxed(reg, ch->base + VCO_CTRL10);
234
235
return 0;
236
}
237
238
static void berlin2_avpll_channel_disable(struct clk_hw *hw)
239
{
240
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241
u32 reg;
242
243
reg = readl_relaxed(ch->base + VCO_CTRL10);
244
reg &= ~(VCO_POWERUP_CH1 << ch->index);
245
writel_relaxed(reg, ch->base + VCO_CTRL10);
246
}
247
248
static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249
static const u8 div_av1[] = { 1, 2, 5, 5 };
250
251
static unsigned long
252
berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
253
{
254
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255
u32 reg, div_av2, div_av3, divider = 1;
256
u64 freq = parent_rate;
257
258
reg = readl_relaxed(ch->base + VCO_CTRL30);
259
if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260
goto skip_div;
261
262
/*
263
* Fch = (Fref * sync2) /
264
* (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
265
*/
266
267
reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268
/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269
if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270
reg >>= 4;
271
divider = reg & VCO_SYNC1_MASK;
272
273
reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274
freq *= reg & VCO_SYNC2_MASK;
275
276
/* Channel 8 has no dividers */
277
if (ch->index == 7)
278
goto skip_div;
279
280
/*
281
* HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282
* determine divider.
283
*/
284
reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285
reg = (reg >> (ch->index * 3));
286
if (reg & BIT(2))
287
divider *= div_hdmi[reg & 0x3];
288
289
/*
290
* AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291
* determine divider.
292
*/
293
if (ch->index == 0) {
294
reg = readl_relaxed(ch->base + VCO_CTRL11);
295
reg >>= 28;
296
} else {
297
reg = readl_relaxed(ch->base + VCO_CTRL12);
298
reg >>= (ch->index-1) * 3;
299
}
300
if (reg & BIT(2))
301
divider *= div_av1[reg & 0x3];
302
303
/*
304
* AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305
* zero is not a valid value.
306
*/
307
if (ch->index < 2) {
308
reg = readl_relaxed(ch->base + VCO_CTRL12);
309
reg >>= 18 + (ch->index * 7);
310
} else if (ch->index < 7) {
311
reg = readl_relaxed(ch->base + VCO_CTRL13);
312
reg >>= (ch->index - 2) * 7;
313
} else {
314
reg = readl_relaxed(ch->base + VCO_CTRL14);
315
}
316
div_av2 = reg & 0x7f;
317
if (div_av2)
318
divider *= div_av2;
319
320
/*
321
* AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322
* AV2/AV3 form a fractional divider, where only specific values for AV3
323
* are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
324
*/
325
if (ch->index < 6) {
326
reg = readl_relaxed(ch->base + VCO_CTRL14);
327
reg >>= 7 + (ch->index * 4);
328
} else {
329
reg = readl_relaxed(ch->base + VCO_CTRL15);
330
}
331
div_av3 = reg & 0xf;
332
if (div_av2 && div_av3)
333
freq *= 2;
334
335
skip_div:
336
do_div(freq, divider);
337
return (unsigned long)freq;
338
}
339
340
static const struct clk_ops berlin2_avpll_channel_ops = {
341
.is_enabled = berlin2_avpll_channel_is_enabled,
342
.enable = berlin2_avpll_channel_enable,
343
.disable = berlin2_avpll_channel_disable,
344
.recalc_rate = berlin2_avpll_channel_recalc_rate,
345
};
346
347
/*
348
* Another nice quirk:
349
* On some production SoCs, AVPLL channels are scrambled with respect
350
* to the channel numbering in the registers but still referenced by
351
* their original channel numbers. We deal with it by having a flag
352
* and a translation table for the index.
353
*/
354
static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
355
356
int __init berlin2_avpll_channel_register(void __iomem *base,
357
const char *name, u8 index, const char *parent_name,
358
u8 ch_flags, unsigned long flags)
359
{
360
struct berlin2_avpll_channel *ch;
361
struct clk_init_data init;
362
363
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
364
if (!ch)
365
return -ENOMEM;
366
367
ch->base = base;
368
if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369
ch->index = quirk_index[index];
370
else
371
ch->index = index;
372
373
ch->flags = ch_flags;
374
ch->hw.init = &init;
375
init.name = name;
376
init.ops = &berlin2_avpll_channel_ops;
377
init.parent_names = &parent_name;
378
init.num_parents = 1;
379
init.flags = flags;
380
381
return clk_hw_register(NULL, &ch->hw);
382
}
383
384