Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-apple-nco.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only OR MIT
2
/*
3
* Driver for an SoC block (Numerically Controlled Oscillator)
4
* found on t8103 (M1) and other Apple chips
5
*
6
* Copyright (C) The Asahi Linux Contributors
7
*/
8
9
#include <linux/bits.h>
10
#include <linux/bitfield.h>
11
#include <linux/clk-provider.h>
12
#include <linux/io.h>
13
#include <linux/kernel.h>
14
#include <linux/math64.h>
15
#include <linux/module.h>
16
#include <linux/of.h>
17
#include <linux/platform_device.h>
18
#include <linux/spinlock.h>
19
20
#define NCO_CHANNEL_STRIDE 0x4000
21
#define NCO_CHANNEL_REGSIZE 20
22
23
#define REG_CTRL 0
24
#define CTRL_ENABLE BIT(31)
25
#define REG_DIV 4
26
#define DIV_FINE GENMASK(1, 0)
27
#define DIV_COARSE GENMASK(12, 2)
28
#define REG_INC1 8
29
#define REG_INC2 12
30
#define REG_ACCINIT 16
31
32
/*
33
* Theory of operation (postulated)
34
*
35
* The REG_DIV register indirectly expresses a base integer divisor, roughly
36
* corresponding to twice the desired ratio of input to output clock. This
37
* base divisor is adjusted on a cycle-by-cycle basis based on the state of a
38
* 32-bit phase accumulator to achieve a desired precise clock ratio over the
39
* long term.
40
*
41
* Specifically an output clock cycle is produced after (REG_DIV divisor)/2
42
* or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top
43
* bit of the 32-bit accumulator is set. The accumulator is incremented each
44
* produced output cycle, by the value from either REG_INC1 or REG_INC2, which
45
* of the two is selected depending again on the accumulator's current top bit.
46
*
47
* Because the NCO hardware implements counting of input clock cycles in part
48
* in a Galois linear-feedback shift register, the higher bits of divisor
49
* are programmed into REG_DIV by picking an appropriate LFSR state. See
50
* applnco_compute_tables/applnco_div_translate for details on this.
51
*/
52
53
#define LFSR_POLY 0xa01
54
#define LFSR_INIT 0x7ff
55
#define LFSR_LEN 11
56
#define LFSR_PERIOD ((1 << LFSR_LEN) - 1)
57
#define LFSR_TBLSIZE (1 << LFSR_LEN)
58
59
/* The minimal attainable coarse divisor (first value in table) */
60
#define COARSE_DIV_OFFSET 2
61
62
struct applnco_tables {
63
u16 fwd[LFSR_TBLSIZE];
64
u16 inv[LFSR_TBLSIZE];
65
};
66
67
struct applnco_channel {
68
void __iomem *base;
69
struct applnco_tables *tbl;
70
struct clk_hw hw;
71
72
spinlock_t lock;
73
};
74
75
#define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw)
76
77
static void applnco_enable_nolock(struct clk_hw *hw)
78
{
79
struct applnco_channel *chan = to_applnco_channel(hw);
80
u32 val;
81
82
val = readl_relaxed(chan->base + REG_CTRL);
83
writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL);
84
}
85
86
static void applnco_disable_nolock(struct clk_hw *hw)
87
{
88
struct applnco_channel *chan = to_applnco_channel(hw);
89
u32 val;
90
91
val = readl_relaxed(chan->base + REG_CTRL);
92
writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL);
93
}
94
95
static int applnco_is_enabled(struct clk_hw *hw)
96
{
97
struct applnco_channel *chan = to_applnco_channel(hw);
98
99
return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0;
100
}
101
102
static void applnco_compute_tables(struct applnco_tables *tbl)
103
{
104
int i;
105
u32 state = LFSR_INIT;
106
107
/*
108
* Go through the states of a Galois LFSR and build
109
* a coarse divisor translation table.
110
*/
111
for (i = LFSR_PERIOD; i > 0; i--) {
112
if (state & 1)
113
state = (state >> 1) ^ (LFSR_POLY >> 1);
114
else
115
state = (state >> 1);
116
tbl->fwd[i] = state;
117
tbl->inv[state] = i;
118
}
119
120
/* Zero value is special-cased */
121
tbl->fwd[0] = 0;
122
tbl->inv[0] = 0;
123
}
124
125
static bool applnco_div_out_of_range(unsigned int div)
126
{
127
unsigned int coarse = div / 4;
128
129
return coarse < COARSE_DIV_OFFSET ||
130
coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE;
131
}
132
133
static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div)
134
{
135
unsigned int coarse = div / 4;
136
137
if (WARN_ON(applnco_div_out_of_range(div)))
138
return 0;
139
140
return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) |
141
FIELD_PREP(DIV_FINE, div % 4);
142
}
143
144
static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval)
145
{
146
unsigned int coarse, fine;
147
148
coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET;
149
fine = FIELD_GET(DIV_FINE, regval);
150
151
return coarse * 4 + fine;
152
}
153
154
static int applnco_set_rate(struct clk_hw *hw, unsigned long rate,
155
unsigned long parent_rate)
156
{
157
struct applnco_channel *chan = to_applnco_channel(hw);
158
unsigned long flags;
159
u32 div, inc1, inc2;
160
bool was_enabled;
161
162
div = 2 * parent_rate / rate;
163
inc1 = 2 * parent_rate - div * rate;
164
inc2 = inc1 - rate;
165
166
if (applnco_div_out_of_range(div))
167
return -EINVAL;
168
169
div = applnco_div_translate(chan->tbl, div);
170
171
spin_lock_irqsave(&chan->lock, flags);
172
was_enabled = applnco_is_enabled(hw);
173
applnco_disable_nolock(hw);
174
175
writel_relaxed(div, chan->base + REG_DIV);
176
writel_relaxed(inc1, chan->base + REG_INC1);
177
writel_relaxed(inc2, chan->base + REG_INC2);
178
179
/* Presumably a neutral initial value for accumulator */
180
writel_relaxed(1 << 31, chan->base + REG_ACCINIT);
181
182
if (was_enabled)
183
applnco_enable_nolock(hw);
184
spin_unlock_irqrestore(&chan->lock, flags);
185
186
return 0;
187
}
188
189
static unsigned long applnco_recalc_rate(struct clk_hw *hw,
190
unsigned long parent_rate)
191
{
192
struct applnco_channel *chan = to_applnco_channel(hw);
193
u32 div, inc1, inc2, incbase;
194
195
div = applnco_div_translate_inv(chan->tbl,
196
readl_relaxed(chan->base + REG_DIV));
197
198
inc1 = readl_relaxed(chan->base + REG_INC1);
199
inc2 = readl_relaxed(chan->base + REG_INC2);
200
201
/*
202
* We don't support wraparound of accumulator
203
* nor the edge case of both increments being zero
204
*/
205
if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0))
206
return 0;
207
208
/* Scale both sides of division by incbase to maintain precision */
209
incbase = inc1 - inc2;
210
211
return div64_u64(((u64) parent_rate) * 2 * incbase,
212
((u64) div) * incbase + inc1);
213
}
214
215
static long applnco_round_rate(struct clk_hw *hw, unsigned long rate,
216
unsigned long *parent_rate)
217
{
218
unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1;
219
unsigned long hi = *parent_rate / COARSE_DIV_OFFSET;
220
221
return clamp(rate, lo, hi);
222
}
223
224
static int applnco_enable(struct clk_hw *hw)
225
{
226
struct applnco_channel *chan = to_applnco_channel(hw);
227
unsigned long flags;
228
229
spin_lock_irqsave(&chan->lock, flags);
230
applnco_enable_nolock(hw);
231
spin_unlock_irqrestore(&chan->lock, flags);
232
233
return 0;
234
}
235
236
static void applnco_disable(struct clk_hw *hw)
237
{
238
struct applnco_channel *chan = to_applnco_channel(hw);
239
unsigned long flags;
240
241
spin_lock_irqsave(&chan->lock, flags);
242
applnco_disable_nolock(hw);
243
spin_unlock_irqrestore(&chan->lock, flags);
244
}
245
246
static const struct clk_ops applnco_ops = {
247
.set_rate = applnco_set_rate,
248
.recalc_rate = applnco_recalc_rate,
249
.round_rate = applnco_round_rate,
250
.enable = applnco_enable,
251
.disable = applnco_disable,
252
.is_enabled = applnco_is_enabled,
253
};
254
255
static int applnco_probe(struct platform_device *pdev)
256
{
257
struct device_node *np = pdev->dev.of_node;
258
struct clk_parent_data pdata = { .index = 0 };
259
struct clk_init_data init;
260
struct clk_hw_onecell_data *onecell_data;
261
void __iomem *base;
262
struct resource *res;
263
struct applnco_tables *tbl;
264
unsigned int nchannels;
265
int ret, i;
266
267
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
268
if (IS_ERR(base))
269
return PTR_ERR(base);
270
271
if (resource_size(res) < NCO_CHANNEL_REGSIZE)
272
return -EINVAL;
273
nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE)
274
/ NCO_CHANNEL_STRIDE + 1;
275
276
onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws,
277
nchannels), GFP_KERNEL);
278
if (!onecell_data)
279
return -ENOMEM;
280
onecell_data->num = nchannels;
281
282
tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL);
283
if (!tbl)
284
return -ENOMEM;
285
applnco_compute_tables(tbl);
286
287
for (i = 0; i < nchannels; i++) {
288
struct applnco_channel *chan;
289
290
chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL);
291
if (!chan)
292
return -ENOMEM;
293
chan->base = base + NCO_CHANNEL_STRIDE * i;
294
chan->tbl = tbl;
295
spin_lock_init(&chan->lock);
296
297
memset(&init, 0, sizeof(init));
298
init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
299
"%s-%d", np->name, i);
300
if (!init.name)
301
return -ENOMEM;
302
303
init.ops = &applnco_ops;
304
init.parent_data = &pdata;
305
init.num_parents = 1;
306
init.flags = 0;
307
308
chan->hw.init = &init;
309
ret = devm_clk_hw_register(&pdev->dev, &chan->hw);
310
if (ret)
311
return ret;
312
313
onecell_data->hws[i] = &chan->hw;
314
}
315
316
return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get,
317
onecell_data);
318
}
319
320
static const struct of_device_id applnco_ids[] = {
321
{ .compatible = "apple,nco" },
322
{ }
323
};
324
MODULE_DEVICE_TABLE(of, applnco_ids);
325
326
static struct platform_driver applnco_driver = {
327
.driver = {
328
.name = "apple-nco",
329
.of_match_table = applnco_ids,
330
},
331
.probe = applnco_probe,
332
};
333
module_platform_driver(applnco_driver);
334
335
MODULE_AUTHOR("Martin Povišer <[email protected]>");
336
MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs");
337
MODULE_LICENSE("GPL");
338
339