Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-aspeed.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0+
2
// Copyright IBM Corp
3
4
#define pr_fmt(fmt) "clk-aspeed: " fmt
5
6
#include <linux/mfd/syscon.h>
7
#include <linux/of.h>
8
#include <linux/of_address.h>
9
#include <linux/platform_device.h>
10
#include <linux/regmap.h>
11
#include <linux/slab.h>
12
13
#include <dt-bindings/clock/aspeed-clock.h>
14
15
#include "clk-aspeed.h"
16
17
#define ASPEED_NUM_CLKS 38
18
19
#define ASPEED_RESET2_OFFSET 32
20
21
#define ASPEED_RESET_CTRL 0x04
22
#define ASPEED_CLK_SELECTION 0x08
23
#define ASPEED_CLK_STOP_CTRL 0x0c
24
#define ASPEED_MPLL_PARAM 0x20
25
#define ASPEED_HPLL_PARAM 0x24
26
#define AST2500_HPLL_BYPASS_EN BIT(20)
27
#define AST2400_HPLL_PROGRAMMED BIT(18)
28
#define AST2400_HPLL_BYPASS_EN BIT(17)
29
#define ASPEED_MISC_CTRL 0x2c
30
#define UART_DIV13_EN BIT(12)
31
#define ASPEED_MAC_CLK_DLY 0x48
32
#define ASPEED_STRAP 0x70
33
#define CLKIN_25MHZ_EN BIT(23)
34
#define AST2400_CLK_SOURCE_SEL BIT(18)
35
#define ASPEED_CLK_SELECTION_2 0xd8
36
#define ASPEED_RESET_CTRL2 0xd4
37
38
/* Globally visible clocks */
39
static DEFINE_SPINLOCK(aspeed_clk_lock);
40
41
/* Keeps track of all clocks */
42
static struct clk_hw_onecell_data *aspeed_clk_data;
43
44
static void __iomem *scu_base;
45
46
/* TODO: ask Aspeed about the actual parent data */
47
static const struct aspeed_gate_data aspeed_gates[] = {
48
/* clk rst name parent flags */
49
[ASPEED_CLK_GATE_ECLK] = { 0, 6, "eclk-gate", "eclk", 0 }, /* Video Engine */
50
[ASPEED_CLK_GATE_GCLK] = { 1, 7, "gclk-gate", NULL, 0 }, /* 2D engine */
51
[ASPEED_CLK_GATE_MCLK] = { 2, -1, "mclk-gate", "mpll", CLK_IS_CRITICAL }, /* SDRAM */
52
[ASPEED_CLK_GATE_VCLK] = { 3, -1, "vclk-gate", NULL, 0 }, /* Video Capture */
53
[ASPEED_CLK_GATE_BCLK] = { 4, 8, "bclk-gate", "bclk", CLK_IS_CRITICAL }, /* PCIe/PCI */
54
[ASPEED_CLK_GATE_DCLK] = { 5, -1, "dclk-gate", NULL, CLK_IS_CRITICAL }, /* DAC */
55
[ASPEED_CLK_GATE_REFCLK] = { 6, -1, "refclk-gate", "clkin", CLK_IS_CRITICAL },
56
[ASPEED_CLK_GATE_USBPORT2CLK] = { 7, 3, "usb-port2-gate", NULL, 0 }, /* USB2.0 Host port 2 */
57
[ASPEED_CLK_GATE_LCLK] = { 8, 5, "lclk-gate", NULL, 0 }, /* LPC */
58
[ASPEED_CLK_GATE_USBUHCICLK] = { 9, 15, "usb-uhci-gate", NULL, 0 }, /* USB1.1 (requires port 2 enabled) */
59
[ASPEED_CLK_GATE_D1CLK] = { 10, 13, "d1clk-gate", NULL, 0 }, /* GFX CRT */
60
[ASPEED_CLK_GATE_YCLK] = { 13, 4, "yclk-gate", NULL, 0 }, /* HAC */
61
[ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate", NULL, 0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */
62
[ASPEED_CLK_GATE_UART1CLK] = { 15, -1, "uart1clk-gate", "uart", 0 }, /* UART1 */
63
[ASPEED_CLK_GATE_UART2CLK] = { 16, -1, "uart2clk-gate", "uart", 0 }, /* UART2 */
64
[ASPEED_CLK_GATE_UART5CLK] = { 17, -1, "uart5clk-gate", "uart", 0 }, /* UART5 */
65
[ASPEED_CLK_GATE_ESPICLK] = { 19, -1, "espiclk-gate", NULL, 0 }, /* eSPI */
66
[ASPEED_CLK_GATE_MAC1CLK] = { 20, 11, "mac1clk-gate", "mac", 0 }, /* MAC1 */
67
[ASPEED_CLK_GATE_MAC2CLK] = { 21, 12, "mac2clk-gate", "mac", 0 }, /* MAC2 */
68
[ASPEED_CLK_GATE_RSACLK] = { 24, -1, "rsaclk-gate", NULL, 0 }, /* RSA */
69
[ASPEED_CLK_GATE_UART3CLK] = { 25, -1, "uart3clk-gate", "uart", 0 }, /* UART3 */
70
[ASPEED_CLK_GATE_UART4CLK] = { 26, -1, "uart4clk-gate", "uart", 0 }, /* UART4 */
71
[ASPEED_CLK_GATE_SDCLK] = { 27, 16, "sdclk-gate", NULL, 0 }, /* SDIO/SD */
72
[ASPEED_CLK_GATE_LHCCLK] = { 28, -1, "lhclk-gate", "lhclk", 0 }, /* LPC master/LPC+ */
73
};
74
75
static const char * const eclk_parent_names[] = {
76
"mpll",
77
"hpll",
78
"dpll",
79
};
80
81
static const struct clk_div_table ast2500_eclk_div_table[] = {
82
{ 0x0, 2 },
83
{ 0x1, 2 },
84
{ 0x2, 3 },
85
{ 0x3, 4 },
86
{ 0x4, 5 },
87
{ 0x5, 6 },
88
{ 0x6, 7 },
89
{ 0x7, 8 },
90
{ 0 }
91
};
92
93
static const struct clk_div_table ast2500_mac_div_table[] = {
94
{ 0x0, 4 }, /* Yep, really. Aspeed confirmed this is correct */
95
{ 0x1, 4 },
96
{ 0x2, 6 },
97
{ 0x3, 8 },
98
{ 0x4, 10 },
99
{ 0x5, 12 },
100
{ 0x6, 14 },
101
{ 0x7, 16 },
102
{ 0 }
103
};
104
105
static const struct clk_div_table ast2400_div_table[] = {
106
{ 0x0, 2 },
107
{ 0x1, 4 },
108
{ 0x2, 6 },
109
{ 0x3, 8 },
110
{ 0x4, 10 },
111
{ 0x5, 12 },
112
{ 0x6, 14 },
113
{ 0x7, 16 },
114
{ 0 }
115
};
116
117
static const struct clk_div_table ast2500_div_table[] = {
118
{ 0x0, 4 },
119
{ 0x1, 8 },
120
{ 0x2, 12 },
121
{ 0x3, 16 },
122
{ 0x4, 20 },
123
{ 0x5, 24 },
124
{ 0x6, 28 },
125
{ 0x7, 32 },
126
{ 0 }
127
};
128
129
static struct clk_hw *aspeed_ast2400_calc_pll(const char *name, u32 val)
130
{
131
unsigned int mult, div;
132
133
if (val & AST2400_HPLL_BYPASS_EN) {
134
/* Pass through mode */
135
mult = div = 1;
136
} else {
137
/* F = 24Mhz * (2-OD) * [(N + 2) / (D + 1)] */
138
u32 n = (val >> 5) & 0x3f;
139
u32 od = (val >> 4) & 0x1;
140
u32 d = val & 0xf;
141
142
mult = (2 - od) * (n + 2);
143
div = d + 1;
144
}
145
return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
146
mult, div);
147
};
148
149
static struct clk_hw *aspeed_ast2500_calc_pll(const char *name, u32 val)
150
{
151
unsigned int mult, div;
152
153
if (val & AST2500_HPLL_BYPASS_EN) {
154
/* Pass through mode */
155
mult = div = 1;
156
} else {
157
/* F = clkin * [(M+1) / (N+1)] / (P + 1) */
158
u32 p = (val >> 13) & 0x3f;
159
u32 m = (val >> 5) & 0xff;
160
u32 n = val & 0x1f;
161
162
mult = (m + 1) / (n + 1);
163
div = p + 1;
164
}
165
166
return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
167
mult, div);
168
}
169
170
static const struct aspeed_clk_soc_data ast2500_data = {
171
.div_table = ast2500_div_table,
172
.eclk_div_table = ast2500_eclk_div_table,
173
.mac_div_table = ast2500_mac_div_table,
174
.calc_pll = aspeed_ast2500_calc_pll,
175
};
176
177
static const struct aspeed_clk_soc_data ast2400_data = {
178
.div_table = ast2400_div_table,
179
.eclk_div_table = ast2400_div_table,
180
.mac_div_table = ast2400_div_table,
181
.calc_pll = aspeed_ast2400_calc_pll,
182
};
183
184
static int aspeed_clk_is_enabled(struct clk_hw *hw)
185
{
186
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
187
u32 clk = BIT(gate->clock_idx);
188
u32 rst = BIT(gate->reset_idx);
189
u32 enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
190
u32 reg;
191
192
/*
193
* If the IP is in reset, treat the clock as not enabled,
194
* this happens with some clocks such as the USB one when
195
* coming from cold reset. Without this, aspeed_clk_enable()
196
* will fail to lift the reset.
197
*/
198
if (gate->reset_idx >= 0) {
199
regmap_read(gate->map, ASPEED_RESET_CTRL, &reg);
200
if (reg & rst)
201
return 0;
202
}
203
204
regmap_read(gate->map, ASPEED_CLK_STOP_CTRL, &reg);
205
206
return ((reg & clk) == enval) ? 1 : 0;
207
}
208
209
static int aspeed_clk_enable(struct clk_hw *hw)
210
{
211
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
212
unsigned long flags;
213
u32 clk = BIT(gate->clock_idx);
214
u32 rst = BIT(gate->reset_idx);
215
u32 enval;
216
217
spin_lock_irqsave(gate->lock, flags);
218
219
if (aspeed_clk_is_enabled(hw)) {
220
spin_unlock_irqrestore(gate->lock, flags);
221
return 0;
222
}
223
224
if (gate->reset_idx >= 0) {
225
/* Put IP in reset */
226
regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, rst);
227
228
/* Delay 100us */
229
udelay(100);
230
}
231
232
/* Enable clock */
233
enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
234
regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
235
236
if (gate->reset_idx >= 0) {
237
/* A delay of 10ms is specified by the ASPEED docs */
238
mdelay(10);
239
240
/* Take IP out of reset */
241
regmap_update_bits(gate->map, ASPEED_RESET_CTRL, rst, 0);
242
}
243
244
spin_unlock_irqrestore(gate->lock, flags);
245
246
return 0;
247
}
248
249
static void aspeed_clk_disable(struct clk_hw *hw)
250
{
251
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
252
unsigned long flags;
253
u32 clk = BIT(gate->clock_idx);
254
u32 enval;
255
256
spin_lock_irqsave(gate->lock, flags);
257
258
enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? clk : 0;
259
regmap_update_bits(gate->map, ASPEED_CLK_STOP_CTRL, clk, enval);
260
261
spin_unlock_irqrestore(gate->lock, flags);
262
}
263
264
static const struct clk_ops aspeed_clk_gate_ops = {
265
.enable = aspeed_clk_enable,
266
.disable = aspeed_clk_disable,
267
.is_enabled = aspeed_clk_is_enabled,
268
};
269
270
static const u8 aspeed_resets[] = {
271
/* SCU04 resets */
272
[ASPEED_RESET_XDMA] = 25,
273
[ASPEED_RESET_MCTP] = 24,
274
[ASPEED_RESET_ADC] = 23,
275
[ASPEED_RESET_JTAG_MASTER] = 22,
276
[ASPEED_RESET_MIC] = 18,
277
[ASPEED_RESET_PWM] = 9,
278
[ASPEED_RESET_PECI] = 10,
279
[ASPEED_RESET_I2C] = 2,
280
[ASPEED_RESET_AHB] = 1,
281
282
/*
283
* SCUD4 resets start at an offset to separate them from
284
* the SCU04 resets.
285
*/
286
[ASPEED_RESET_CRT1] = ASPEED_RESET2_OFFSET + 5,
287
};
288
289
static int aspeed_reset_deassert(struct reset_controller_dev *rcdev,
290
unsigned long id)
291
{
292
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
293
u32 reg = ASPEED_RESET_CTRL;
294
u32 bit = aspeed_resets[id];
295
296
if (bit >= ASPEED_RESET2_OFFSET) {
297
bit -= ASPEED_RESET2_OFFSET;
298
reg = ASPEED_RESET_CTRL2;
299
}
300
301
return regmap_update_bits(ar->map, reg, BIT(bit), 0);
302
}
303
304
static int aspeed_reset_assert(struct reset_controller_dev *rcdev,
305
unsigned long id)
306
{
307
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
308
u32 reg = ASPEED_RESET_CTRL;
309
u32 bit = aspeed_resets[id];
310
311
if (bit >= ASPEED_RESET2_OFFSET) {
312
bit -= ASPEED_RESET2_OFFSET;
313
reg = ASPEED_RESET_CTRL2;
314
}
315
316
return regmap_update_bits(ar->map, reg, BIT(bit), BIT(bit));
317
}
318
319
static int aspeed_reset_status(struct reset_controller_dev *rcdev,
320
unsigned long id)
321
{
322
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
323
u32 reg = ASPEED_RESET_CTRL;
324
u32 bit = aspeed_resets[id];
325
int ret, val;
326
327
if (bit >= ASPEED_RESET2_OFFSET) {
328
bit -= ASPEED_RESET2_OFFSET;
329
reg = ASPEED_RESET_CTRL2;
330
}
331
332
ret = regmap_read(ar->map, reg, &val);
333
if (ret)
334
return ret;
335
336
return !!(val & BIT(bit));
337
}
338
339
static const struct reset_control_ops aspeed_reset_ops = {
340
.assert = aspeed_reset_assert,
341
.deassert = aspeed_reset_deassert,
342
.status = aspeed_reset_status,
343
};
344
345
static struct clk_hw *aspeed_clk_hw_register_gate(struct device *dev,
346
const char *name, const char *parent_name, unsigned long flags,
347
struct regmap *map, u8 clock_idx, u8 reset_idx,
348
u8 clk_gate_flags, spinlock_t *lock)
349
{
350
struct aspeed_clk_gate *gate;
351
struct clk_init_data init;
352
struct clk_hw *hw;
353
int ret;
354
355
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
356
if (!gate)
357
return ERR_PTR(-ENOMEM);
358
359
init.name = name;
360
init.ops = &aspeed_clk_gate_ops;
361
init.flags = flags;
362
init.parent_names = parent_name ? &parent_name : NULL;
363
init.num_parents = parent_name ? 1 : 0;
364
365
gate->map = map;
366
gate->clock_idx = clock_idx;
367
gate->reset_idx = reset_idx;
368
gate->flags = clk_gate_flags;
369
gate->lock = lock;
370
gate->hw.init = &init;
371
372
hw = &gate->hw;
373
ret = clk_hw_register(dev, hw);
374
if (ret) {
375
kfree(gate);
376
hw = ERR_PTR(ret);
377
}
378
379
return hw;
380
}
381
382
static int aspeed_clk_probe(struct platform_device *pdev)
383
{
384
const struct aspeed_clk_soc_data *soc_data;
385
struct device *dev = &pdev->dev;
386
struct aspeed_reset *ar;
387
struct regmap *map;
388
struct clk_hw *hw;
389
u32 val, rate;
390
int i, ret;
391
392
map = syscon_node_to_regmap(dev->of_node);
393
if (IS_ERR(map)) {
394
dev_err(dev, "no syscon regmap\n");
395
return PTR_ERR(map);
396
}
397
398
ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL);
399
if (!ar)
400
return -ENOMEM;
401
402
ar->map = map;
403
ar->rcdev.owner = THIS_MODULE;
404
ar->rcdev.nr_resets = ARRAY_SIZE(aspeed_resets);
405
ar->rcdev.ops = &aspeed_reset_ops;
406
ar->rcdev.of_node = dev->of_node;
407
408
ret = devm_reset_controller_register(dev, &ar->rcdev);
409
if (ret) {
410
dev_err(dev, "could not register reset controller\n");
411
return ret;
412
}
413
414
/* SoC generations share common layouts but have different divisors */
415
soc_data = of_device_get_match_data(dev);
416
if (!soc_data) {
417
dev_err(dev, "no match data for platform\n");
418
return -EINVAL;
419
}
420
421
/* UART clock div13 setting */
422
regmap_read(map, ASPEED_MISC_CTRL, &val);
423
if (val & UART_DIV13_EN)
424
rate = 24000000 / 13;
425
else
426
rate = 24000000;
427
/* TODO: Find the parent data for the uart clock */
428
hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate);
429
if (IS_ERR(hw))
430
return PTR_ERR(hw);
431
aspeed_clk_data->hws[ASPEED_CLK_UART] = hw;
432
433
/*
434
* Memory controller (M-PLL) PLL. This clock is configured by the
435
* bootloader, and is exposed to Linux as a read-only clock rate.
436
*/
437
regmap_read(map, ASPEED_MPLL_PARAM, &val);
438
hw = soc_data->calc_pll("mpll", val);
439
if (IS_ERR(hw))
440
return PTR_ERR(hw);
441
aspeed_clk_data->hws[ASPEED_CLK_MPLL] = hw;
442
443
/* SD/SDIO clock divider and gate */
444
hw = clk_hw_register_gate(dev, "sd_extclk_gate", "hpll", 0,
445
scu_base + ASPEED_CLK_SELECTION, 15, 0,
446
&aspeed_clk_lock);
447
if (IS_ERR(hw))
448
return PTR_ERR(hw);
449
hw = clk_hw_register_divider_table(dev, "sd_extclk", "sd_extclk_gate",
450
0, scu_base + ASPEED_CLK_SELECTION, 12, 3, 0,
451
soc_data->div_table,
452
&aspeed_clk_lock);
453
if (IS_ERR(hw))
454
return PTR_ERR(hw);
455
aspeed_clk_data->hws[ASPEED_CLK_SDIO] = hw;
456
457
/* MAC AHB bus clock divider */
458
hw = clk_hw_register_divider_table(dev, "mac", "hpll", 0,
459
scu_base + ASPEED_CLK_SELECTION, 16, 3, 0,
460
soc_data->mac_div_table,
461
&aspeed_clk_lock);
462
if (IS_ERR(hw))
463
return PTR_ERR(hw);
464
aspeed_clk_data->hws[ASPEED_CLK_MAC] = hw;
465
466
if (of_device_is_compatible(pdev->dev.of_node, "aspeed,ast2500-scu")) {
467
/* RMII 50MHz RCLK */
468
hw = clk_hw_register_fixed_rate(dev, "mac12rclk", "hpll", 0,
469
50000000);
470
if (IS_ERR(hw))
471
return PTR_ERR(hw);
472
473
/* RMII1 50MHz (RCLK) output enable */
474
hw = clk_hw_register_gate(dev, "mac1rclk", "mac12rclk", 0,
475
scu_base + ASPEED_MAC_CLK_DLY, 29, 0,
476
&aspeed_clk_lock);
477
if (IS_ERR(hw))
478
return PTR_ERR(hw);
479
aspeed_clk_data->hws[ASPEED_CLK_MAC1RCLK] = hw;
480
481
/* RMII2 50MHz (RCLK) output enable */
482
hw = clk_hw_register_gate(dev, "mac2rclk", "mac12rclk", 0,
483
scu_base + ASPEED_MAC_CLK_DLY, 30, 0,
484
&aspeed_clk_lock);
485
if (IS_ERR(hw))
486
return PTR_ERR(hw);
487
aspeed_clk_data->hws[ASPEED_CLK_MAC2RCLK] = hw;
488
}
489
490
/* LPC Host (LHCLK) clock divider */
491
hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0,
492
scu_base + ASPEED_CLK_SELECTION, 20, 3, 0,
493
soc_data->div_table,
494
&aspeed_clk_lock);
495
if (IS_ERR(hw))
496
return PTR_ERR(hw);
497
aspeed_clk_data->hws[ASPEED_CLK_LHCLK] = hw;
498
499
/* P-Bus (BCLK) clock divider */
500
hw = clk_hw_register_divider_table(dev, "bclk", "hpll", 0,
501
scu_base + ASPEED_CLK_SELECTION_2, 0, 2, 0,
502
soc_data->div_table,
503
&aspeed_clk_lock);
504
if (IS_ERR(hw))
505
return PTR_ERR(hw);
506
aspeed_clk_data->hws[ASPEED_CLK_BCLK] = hw;
507
508
/* Fixed 24MHz clock */
509
hw = clk_hw_register_fixed_rate(NULL, "fixed-24m", "clkin",
510
0, 24000000);
511
if (IS_ERR(hw))
512
return PTR_ERR(hw);
513
aspeed_clk_data->hws[ASPEED_CLK_24M] = hw;
514
515
hw = clk_hw_register_mux(dev, "eclk-mux", eclk_parent_names,
516
ARRAY_SIZE(eclk_parent_names), 0,
517
scu_base + ASPEED_CLK_SELECTION, 2, 0x3, 0,
518
&aspeed_clk_lock);
519
if (IS_ERR(hw))
520
return PTR_ERR(hw);
521
aspeed_clk_data->hws[ASPEED_CLK_ECLK_MUX] = hw;
522
523
hw = clk_hw_register_divider_table(dev, "eclk", "eclk-mux", 0,
524
scu_base + ASPEED_CLK_SELECTION, 28,
525
3, 0, soc_data->eclk_div_table,
526
&aspeed_clk_lock);
527
if (IS_ERR(hw))
528
return PTR_ERR(hw);
529
aspeed_clk_data->hws[ASPEED_CLK_ECLK] = hw;
530
531
/*
532
* TODO: There are a number of clocks that not included in this driver
533
* as more information is required:
534
* D2-PLL
535
* D-PLL
536
* YCLK
537
* RGMII
538
* RMII
539
* UART[1..5] clock source mux
540
*/
541
542
for (i = 0; i < ARRAY_SIZE(aspeed_gates); i++) {
543
const struct aspeed_gate_data *gd = &aspeed_gates[i];
544
u32 gate_flags;
545
546
/* Special case: the USB port 1 clock (bit 14) is always
547
* working the opposite way from the other ones.
548
*/
549
gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE;
550
hw = aspeed_clk_hw_register_gate(dev,
551
gd->name,
552
gd->parent_name,
553
gd->flags,
554
map,
555
gd->clock_idx,
556
gd->reset_idx,
557
gate_flags,
558
&aspeed_clk_lock);
559
if (IS_ERR(hw))
560
return PTR_ERR(hw);
561
aspeed_clk_data->hws[i] = hw;
562
}
563
564
return 0;
565
};
566
567
static const struct of_device_id aspeed_clk_dt_ids[] = {
568
{ .compatible = "aspeed,ast2400-scu", .data = &ast2400_data },
569
{ .compatible = "aspeed,ast2500-scu", .data = &ast2500_data },
570
{ }
571
};
572
573
static struct platform_driver aspeed_clk_driver = {
574
.probe = aspeed_clk_probe,
575
.driver = {
576
.name = "aspeed-clk",
577
.of_match_table = aspeed_clk_dt_ids,
578
.suppress_bind_attrs = true,
579
},
580
};
581
builtin_platform_driver(aspeed_clk_driver);
582
583
static void __init aspeed_ast2400_cc(struct regmap *map)
584
{
585
struct clk_hw *hw;
586
u32 val, div, clkin, hpll;
587
const u16 hpll_rates[][4] = {
588
{384, 360, 336, 408},
589
{400, 375, 350, 425},
590
};
591
int rate;
592
593
/*
594
* CLKIN is the crystal oscillator, 24, 48 or 25MHz selected by
595
* strapping
596
*/
597
regmap_read(map, ASPEED_STRAP, &val);
598
rate = (val >> 8) & 3;
599
if (val & CLKIN_25MHZ_EN) {
600
clkin = 25000000;
601
hpll = hpll_rates[1][rate];
602
} else if (val & AST2400_CLK_SOURCE_SEL) {
603
clkin = 48000000;
604
hpll = hpll_rates[0][rate];
605
} else {
606
clkin = 24000000;
607
hpll = hpll_rates[0][rate];
608
}
609
hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, clkin);
610
pr_debug("clkin @%u MHz\n", clkin / 1000000);
611
612
/*
613
* High-speed PLL clock derived from the crystal. This the CPU clock,
614
* and we assume that it is enabled. It can be configured through the
615
* HPLL_PARAM register, or set to a specified frequency by strapping.
616
*/
617
regmap_read(map, ASPEED_HPLL_PARAM, &val);
618
if (val & AST2400_HPLL_PROGRAMMED)
619
hw = aspeed_ast2400_calc_pll("hpll", val);
620
else
621
hw = clk_hw_register_fixed_rate(NULL, "hpll", "clkin", 0,
622
hpll * 1000000);
623
624
aspeed_clk_data->hws[ASPEED_CLK_HPLL] = hw;
625
626
/*
627
* Strap bits 11:10 define the CPU/AHB clock frequency ratio (aka HCLK)
628
* 00: Select CPU:AHB = 1:1
629
* 01: Select CPU:AHB = 2:1
630
* 10: Select CPU:AHB = 4:1
631
* 11: Select CPU:AHB = 3:1
632
*/
633
regmap_read(map, ASPEED_STRAP, &val);
634
val = (val >> 10) & 0x3;
635
div = val + 1;
636
if (div == 3)
637
div = 4;
638
else if (div == 4)
639
div = 3;
640
hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
641
aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
642
643
/* APB clock clock selection register SCU08 (aka PCLK) */
644
hw = clk_hw_register_divider_table(NULL, "apb", "hpll", 0,
645
scu_base + ASPEED_CLK_SELECTION, 23, 3, 0,
646
ast2400_div_table,
647
&aspeed_clk_lock);
648
aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
649
}
650
651
static void __init aspeed_ast2500_cc(struct regmap *map)
652
{
653
struct clk_hw *hw;
654
u32 val, freq, div;
655
656
/* CLKIN is the crystal oscillator, 24 or 25MHz selected by strapping */
657
regmap_read(map, ASPEED_STRAP, &val);
658
if (val & CLKIN_25MHZ_EN)
659
freq = 25000000;
660
else
661
freq = 24000000;
662
hw = clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, freq);
663
pr_debug("clkin @%u MHz\n", freq / 1000000);
664
665
/*
666
* High-speed PLL clock derived from the crystal. This the CPU clock,
667
* and we assume that it is enabled
668
*/
669
regmap_read(map, ASPEED_HPLL_PARAM, &val);
670
aspeed_clk_data->hws[ASPEED_CLK_HPLL] = aspeed_ast2500_calc_pll("hpll", val);
671
672
/* Strap bits 11:9 define the AXI/AHB clock frequency ratio (aka HCLK)*/
673
regmap_read(map, ASPEED_STRAP, &val);
674
val = (val >> 9) & 0x7;
675
WARN(val == 0, "strapping is zero: cannot determine ahb clock");
676
div = 2 * (val + 1);
677
hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, div);
678
aspeed_clk_data->hws[ASPEED_CLK_AHB] = hw;
679
680
/* APB clock clock selection register SCU08 (aka PCLK) */
681
regmap_read(map, ASPEED_CLK_SELECTION, &val);
682
val = (val >> 23) & 0x7;
683
div = 4 * (val + 1);
684
hw = clk_hw_register_fixed_factor(NULL, "apb", "hpll", 0, 1, div);
685
aspeed_clk_data->hws[ASPEED_CLK_APB] = hw;
686
};
687
688
static void __init aspeed_cc_init(struct device_node *np)
689
{
690
struct regmap *map;
691
u32 val;
692
int ret;
693
int i;
694
695
scu_base = of_iomap(np, 0);
696
if (!scu_base)
697
return;
698
699
aspeed_clk_data = kzalloc(struct_size(aspeed_clk_data, hws,
700
ASPEED_NUM_CLKS),
701
GFP_KERNEL);
702
if (!aspeed_clk_data)
703
return;
704
aspeed_clk_data->num = ASPEED_NUM_CLKS;
705
706
/*
707
* This way all clocks fetched before the platform device probes,
708
* except those we assign here for early use, will be deferred.
709
*/
710
for (i = 0; i < ASPEED_NUM_CLKS; i++)
711
aspeed_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER);
712
713
map = syscon_node_to_regmap(np);
714
if (IS_ERR(map)) {
715
pr_err("no syscon regmap\n");
716
return;
717
}
718
/*
719
* We check that the regmap works on this very first access,
720
* but as this is an MMIO-backed regmap, subsequent regmap
721
* access is not going to fail and we skip error checks from
722
* this point.
723
*/
724
ret = regmap_read(map, ASPEED_STRAP, &val);
725
if (ret) {
726
pr_err("failed to read strapping register\n");
727
return;
728
}
729
730
if (of_device_is_compatible(np, "aspeed,ast2400-scu"))
731
aspeed_ast2400_cc(map);
732
else if (of_device_is_compatible(np, "aspeed,ast2500-scu"))
733
aspeed_ast2500_cc(map);
734
else
735
pr_err("unknown platform, failed to add clocks\n");
736
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_clk_data);
737
if (ret)
738
pr_err("failed to add DT provider: %d\n", ret);
739
};
740
CLK_OF_DECLARE_DRIVER(aspeed_cc_g5, "aspeed,ast2500-scu", aspeed_cc_init);
741
CLK_OF_DECLARE_DRIVER(aspeed_cc_g4, "aspeed,ast2400-scu", aspeed_cc_init);
742
743