Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-cdce925.c
50920 views
1
/*
2
* Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3
*
4
* This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5
* Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6
* basis. Clients can directly request any frequency that the chip can
7
* deliver using the standard clk framework. In addition, the device can
8
* be configured and activated via the devicetree.
9
*
10
* Copyright (C) 2014, Topic Embedded Products
11
* Licenced under GPL
12
*/
13
#include <linux/clk.h>
14
#include <linux/clk-provider.h>
15
#include <linux/delay.h>
16
#include <linux/module.h>
17
#include <linux/i2c.h>
18
#include <linux/regmap.h>
19
#include <linux/regulator/consumer.h>
20
#include <linux/slab.h>
21
#include <linux/gcd.h>
22
23
/* Each chip has different number of PLLs and outputs, for example:
24
* The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25
* Model this as 2 PLL clocks which are parents to the outputs.
26
*/
27
28
struct clk_cdce925_chip_info {
29
int num_plls;
30
int num_outputs;
31
};
32
33
#define MAX_NUMBER_OF_PLLS 4
34
#define MAX_NUMBER_OF_OUTPUTS 9
35
36
#define CDCE925_REG_GLOBAL1 0x01
37
#define CDCE925_REG_Y1SPIPDIVH 0x02
38
#define CDCE925_REG_PDIVL 0x03
39
#define CDCE925_REG_XCSEL 0x05
40
/* PLL parameters start at 0x10, steps of 0x10 */
41
#define CDCE925_OFFSET_PLL 0x10
42
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43
#define CDCE925_PLL_MUX_OUTPUTS 0x14
44
#define CDCE925_PLL_MULDIV 0x18
45
46
#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
47
#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
48
struct clk_cdce925_chip;
49
50
struct clk_cdce925_output {
51
struct clk_hw hw;
52
struct clk_cdce925_chip *chip;
53
u8 index;
54
u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55
};
56
#define to_clk_cdce925_output(_hw) \
57
container_of(_hw, struct clk_cdce925_output, hw)
58
59
struct clk_cdce925_pll {
60
struct clk_hw hw;
61
struct clk_cdce925_chip *chip;
62
u8 index;
63
u16 m; /* 1..511 */
64
u16 n; /* 1..4095 */
65
};
66
#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
67
68
struct clk_cdce925_chip {
69
struct regmap *regmap;
70
struct i2c_client *i2c_client;
71
const struct clk_cdce925_chip_info *chip_info;
72
struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73
struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74
};
75
76
/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77
78
static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79
u16 n, u16 m)
80
{
81
if ((!m || !n) || (m == n))
82
return parent_rate; /* In bypass mode runs at same frequency */
83
return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84
}
85
86
static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87
unsigned long parent_rate)
88
{
89
/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91
92
return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93
}
94
95
static void cdce925_pll_find_rate(unsigned long rate,
96
unsigned long parent_rate, u16 *n, u16 *m)
97
{
98
unsigned long un;
99
unsigned long um;
100
unsigned long g;
101
102
if (rate <= parent_rate) {
103
/* Can always deliver parent_rate in bypass mode */
104
*n = 0;
105
*m = 0;
106
} else {
107
/* In PLL mode, need to apply min/max range */
108
if (rate < CDCE925_PLL_FREQUENCY_MIN)
109
rate = CDCE925_PLL_FREQUENCY_MIN;
110
else if (rate > CDCE925_PLL_FREQUENCY_MAX)
111
rate = CDCE925_PLL_FREQUENCY_MAX;
112
113
g = gcd(rate, parent_rate);
114
um = parent_rate / g;
115
un = rate / g;
116
/* When outside hw range, reduce to fit (rounding errors) */
117
while ((un > 4095) || (um > 511)) {
118
un >>= 1;
119
um >>= 1;
120
}
121
if (un == 0)
122
un = 1;
123
if (um == 0)
124
um = 1;
125
126
*n = un;
127
*m = um;
128
}
129
}
130
131
static int cdce925_pll_determine_rate(struct clk_hw *hw,
132
struct clk_rate_request *req)
133
{
134
u16 n, m;
135
136
cdce925_pll_find_rate(req->rate, req->best_parent_rate, &n, &m);
137
req->rate = (long)cdce925_pll_calculate_rate(req->best_parent_rate, n, m);
138
139
return 0;
140
}
141
142
static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
143
unsigned long parent_rate)
144
{
145
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
146
147
if (!rate || (rate == parent_rate)) {
148
data->m = 0; /* Bypass mode */
149
data->n = 0;
150
return 0;
151
}
152
153
if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
154
(rate > CDCE925_PLL_FREQUENCY_MAX)) {
155
pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
156
return -EINVAL;
157
}
158
159
if (rate < parent_rate) {
160
pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
161
rate, parent_rate);
162
return -EINVAL;
163
}
164
165
cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
166
return 0;
167
}
168
169
170
/* calculate p = max(0, 4 - int(log2 (n/m))) */
171
static u8 cdce925_pll_calc_p(u16 n, u16 m)
172
{
173
u8 p;
174
u16 r = n / m;
175
176
if (r >= 16)
177
return 0;
178
p = 4;
179
while (r > 1) {
180
r >>= 1;
181
--p;
182
}
183
return p;
184
}
185
186
/* Returns VCO range bits for VCO1_0_RANGE */
187
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
188
{
189
struct clk *parent = clk_get_parent(hw->clk);
190
unsigned long rate = clk_get_rate(parent);
191
192
rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
193
if (rate >= 175000000)
194
return 0x3;
195
if (rate >= 150000000)
196
return 0x02;
197
if (rate >= 125000000)
198
return 0x01;
199
return 0x00;
200
}
201
202
/* I2C clock, hence everything must happen in (un)prepare because this
203
* may sleep */
204
static int cdce925_pll_prepare(struct clk_hw *hw)
205
{
206
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
207
u16 n = data->n;
208
u16 m = data->m;
209
u16 r;
210
u8 q;
211
u8 p;
212
u16 nn;
213
u8 pll[4]; /* Bits are spread out over 4 byte registers */
214
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
215
unsigned i;
216
217
if ((!m || !n) || (m == n)) {
218
/* Set PLL mux to bypass mode, leave the rest as is */
219
regmap_update_bits(data->chip->regmap,
220
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
221
} else {
222
/* According to data sheet: */
223
/* p = max(0, 4 - int(log2 (n/m))) */
224
p = cdce925_pll_calc_p(n, m);
225
/* nn = n * 2^p */
226
nn = n * BIT(p);
227
/* q = int(nn/m) */
228
q = nn / m;
229
if ((q < 16) || (q > 63)) {
230
pr_debug("%s invalid q=%d\n", __func__, q);
231
return -EINVAL;
232
}
233
r = nn - (m*q);
234
if (r > 511) {
235
pr_debug("%s invalid r=%d\n", __func__, r);
236
return -EINVAL;
237
}
238
pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
239
n, m, p, q, r);
240
/* encode into register bits */
241
pll[0] = n >> 4;
242
pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
243
pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
244
pll[3] = ((q & 0x07) << 5) | (p << 2) |
245
cdce925_pll_calc_range_bits(hw, n, m);
246
/* Write to registers */
247
for (i = 0; i < ARRAY_SIZE(pll); ++i)
248
regmap_write(data->chip->regmap,
249
reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
250
/* Enable PLL */
251
regmap_update_bits(data->chip->regmap,
252
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
253
}
254
255
return 0;
256
}
257
258
static void cdce925_pll_unprepare(struct clk_hw *hw)
259
{
260
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
261
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
262
263
regmap_update_bits(data->chip->regmap,
264
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
265
}
266
267
static const struct clk_ops cdce925_pll_ops = {
268
.prepare = cdce925_pll_prepare,
269
.unprepare = cdce925_pll_unprepare,
270
.recalc_rate = cdce925_pll_recalc_rate,
271
.determine_rate = cdce925_pll_determine_rate,
272
.set_rate = cdce925_pll_set_rate,
273
};
274
275
276
static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
277
{
278
switch (data->index) {
279
case 0:
280
regmap_update_bits(data->chip->regmap,
281
CDCE925_REG_Y1SPIPDIVH,
282
0x03, (pdiv >> 8) & 0x03);
283
regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
284
break;
285
case 1:
286
regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
287
break;
288
case 2:
289
regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
290
break;
291
case 3:
292
regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
293
break;
294
case 4:
295
regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
296
break;
297
case 5:
298
regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
299
break;
300
case 6:
301
regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
302
break;
303
case 7:
304
regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
305
break;
306
case 8:
307
regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
308
break;
309
}
310
}
311
312
static void cdce925_clk_activate(struct clk_cdce925_output *data)
313
{
314
switch (data->index) {
315
case 0:
316
regmap_update_bits(data->chip->regmap,
317
CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
318
break;
319
case 1:
320
case 2:
321
regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
322
break;
323
case 3:
324
case 4:
325
regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
326
break;
327
case 5:
328
case 6:
329
regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
330
break;
331
case 7:
332
case 8:
333
regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
334
break;
335
}
336
}
337
338
static int cdce925_clk_prepare(struct clk_hw *hw)
339
{
340
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
341
342
cdce925_clk_set_pdiv(data, data->pdiv);
343
cdce925_clk_activate(data);
344
return 0;
345
}
346
347
static void cdce925_clk_unprepare(struct clk_hw *hw)
348
{
349
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
350
351
/* Disable clock by setting divider to "0" */
352
cdce925_clk_set_pdiv(data, 0);
353
}
354
355
static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
356
unsigned long parent_rate)
357
{
358
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
359
360
if (data->pdiv)
361
return parent_rate / data->pdiv;
362
return 0;
363
}
364
365
static u16 cdce925_calc_divider(unsigned long rate,
366
unsigned long parent_rate)
367
{
368
unsigned long divider;
369
370
if (!rate)
371
return 0;
372
if (rate >= parent_rate)
373
return 1;
374
375
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
376
if (divider > 0x7F)
377
divider = 0x7F;
378
379
return (u16)divider;
380
}
381
382
static unsigned long cdce925_clk_best_parent_rate(
383
struct clk_hw *hw, unsigned long rate)
384
{
385
struct clk *pll = clk_get_parent(hw->clk);
386
struct clk *root = clk_get_parent(pll);
387
unsigned long root_rate = clk_get_rate(root);
388
unsigned long best_rate_error = rate;
389
u16 pdiv_min;
390
u16 pdiv_max;
391
u16 pdiv_best;
392
u16 pdiv_now;
393
394
if (root_rate % rate == 0)
395
return root_rate; /* Don't need the PLL, use bypass */
396
397
pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
398
pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
399
400
if (pdiv_min > pdiv_max)
401
return 0; /* No can do? */
402
403
pdiv_best = pdiv_min;
404
for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
405
unsigned long target_rate = rate * pdiv_now;
406
long pll_rate = clk_round_rate(pll, target_rate);
407
unsigned long actual_rate;
408
unsigned long rate_error;
409
410
if (pll_rate <= 0)
411
continue;
412
actual_rate = pll_rate / pdiv_now;
413
rate_error = abs((long)actual_rate - (long)rate);
414
if (rate_error < best_rate_error) {
415
pdiv_best = pdiv_now;
416
best_rate_error = rate_error;
417
}
418
/* TODO: Consider PLL frequency based on smaller n/m values
419
* and pick the better one if the error is equal */
420
}
421
422
return rate * pdiv_best;
423
}
424
425
static int cdce925_clk_determine_rate(struct clk_hw *hw,
426
struct clk_rate_request *req)
427
{
428
unsigned long l_parent_rate = req->best_parent_rate;
429
u16 divider = cdce925_calc_divider(req->rate, l_parent_rate);
430
431
if (l_parent_rate / divider != req->rate) {
432
l_parent_rate = cdce925_clk_best_parent_rate(hw, req->rate);
433
divider = cdce925_calc_divider(req->rate, l_parent_rate);
434
req->best_parent_rate = l_parent_rate;
435
}
436
437
if (divider)
438
req->rate = (long)(l_parent_rate / divider);
439
else
440
req->rate = 0;
441
442
return 0;
443
}
444
445
static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
446
unsigned long parent_rate)
447
{
448
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
449
450
data->pdiv = cdce925_calc_divider(rate, parent_rate);
451
452
return 0;
453
}
454
455
static const struct clk_ops cdce925_clk_ops = {
456
.prepare = cdce925_clk_prepare,
457
.unprepare = cdce925_clk_unprepare,
458
.recalc_rate = cdce925_clk_recalc_rate,
459
.determine_rate = cdce925_clk_determine_rate,
460
.set_rate = cdce925_clk_set_rate,
461
};
462
463
464
static u16 cdce925_y1_calc_divider(unsigned long rate,
465
unsigned long parent_rate)
466
{
467
unsigned long divider;
468
469
if (!rate)
470
return 0;
471
if (rate >= parent_rate)
472
return 1;
473
474
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
475
if (divider > 0x3FF) /* Y1 has 10-bit divider */
476
divider = 0x3FF;
477
478
return (u16)divider;
479
}
480
481
static int cdce925_clk_y1_determine_rate(struct clk_hw *hw,
482
struct clk_rate_request *req)
483
{
484
unsigned long l_parent_rate = req->best_parent_rate;
485
u16 divider = cdce925_y1_calc_divider(req->rate, l_parent_rate);
486
487
if (divider)
488
req->rate = (long)(l_parent_rate / divider);
489
else
490
req->rate = 0;
491
492
return 0;
493
}
494
495
static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
496
unsigned long parent_rate)
497
{
498
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
499
500
data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
501
502
return 0;
503
}
504
505
static const struct clk_ops cdce925_clk_y1_ops = {
506
.prepare = cdce925_clk_prepare,
507
.unprepare = cdce925_clk_unprepare,
508
.recalc_rate = cdce925_clk_recalc_rate,
509
.determine_rate = cdce925_clk_y1_determine_rate,
510
.set_rate = cdce925_clk_y1_set_rate,
511
};
512
513
#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
514
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
515
516
static int cdce925_regmap_i2c_write(
517
void *context, const void *data, size_t count)
518
{
519
struct device *dev = context;
520
struct i2c_client *i2c = to_i2c_client(dev);
521
int ret;
522
u8 reg_data[2];
523
524
if (count != 2)
525
return -ENOTSUPP;
526
527
/* First byte is command code */
528
reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
529
reg_data[1] = ((u8 *)data)[1];
530
531
dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
532
reg_data[0], reg_data[1]);
533
534
ret = i2c_master_send(i2c, reg_data, count);
535
if (likely(ret == count))
536
return 0;
537
else if (ret < 0)
538
return ret;
539
else
540
return -EIO;
541
}
542
543
static int cdce925_regmap_i2c_read(void *context,
544
const void *reg, size_t reg_size, void *val, size_t val_size)
545
{
546
struct device *dev = context;
547
struct i2c_client *i2c = to_i2c_client(dev);
548
struct i2c_msg xfer[2];
549
int ret;
550
u8 reg_data[2];
551
552
if (reg_size != 1)
553
return -ENOTSUPP;
554
555
xfer[0].addr = i2c->addr;
556
xfer[0].flags = 0;
557
xfer[0].buf = reg_data;
558
if (val_size == 1) {
559
reg_data[0] =
560
CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
561
xfer[0].len = 1;
562
} else {
563
reg_data[0] =
564
CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
565
reg_data[1] = val_size;
566
xfer[0].len = 2;
567
}
568
569
xfer[1].addr = i2c->addr;
570
xfer[1].flags = I2C_M_RD;
571
xfer[1].len = val_size;
572
xfer[1].buf = val;
573
574
ret = i2c_transfer(i2c->adapter, xfer, 2);
575
if (likely(ret == 2)) {
576
dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
577
reg_size, val_size, reg_data[0], *((u8 *)val));
578
return 0;
579
} else if (ret < 0)
580
return ret;
581
else
582
return -EIO;
583
}
584
585
static struct clk_hw *
586
of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
587
{
588
struct clk_cdce925_chip *data = _data;
589
unsigned int idx = clkspec->args[0];
590
591
if (idx >= ARRAY_SIZE(data->clk)) {
592
pr_err("%s: invalid index %u\n", __func__, idx);
593
return ERR_PTR(-EINVAL);
594
}
595
596
return &data->clk[idx].hw;
597
}
598
599
static int cdce925_regulator_enable(struct device *dev, const char *name)
600
{
601
int err;
602
603
err = devm_regulator_get_enable(dev, name);
604
if (err)
605
dev_err_probe(dev, err, "Failed to enable %s:\n", name);
606
607
return err;
608
}
609
610
/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
611
* just weird, so just use the single byte mode exclusively. */
612
static const struct regmap_bus regmap_cdce925_bus = {
613
.write = cdce925_regmap_i2c_write,
614
.read = cdce925_regmap_i2c_read,
615
};
616
617
static int cdce925_probe(struct i2c_client *client)
618
{
619
struct clk_cdce925_chip *data;
620
struct device_node *node = client->dev.of_node;
621
const char *parent_name;
622
const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
623
struct clk_init_data init;
624
u32 value;
625
int i;
626
int err;
627
struct device_node *np_output;
628
char child_name[6];
629
struct regmap_config config = {
630
.name = "configuration0",
631
.reg_bits = 8,
632
.val_bits = 8,
633
.cache_type = REGCACHE_MAPLE,
634
};
635
636
dev_dbg(&client->dev, "%s\n", __func__);
637
638
err = cdce925_regulator_enable(&client->dev, "vdd");
639
if (err)
640
return err;
641
642
err = cdce925_regulator_enable(&client->dev, "vddout");
643
if (err)
644
return err;
645
646
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
647
if (!data)
648
return -ENOMEM;
649
650
data->i2c_client = client;
651
data->chip_info = i2c_get_match_data(client);
652
config.max_register = CDCE925_OFFSET_PLL +
653
data->chip_info->num_plls * 0x10 - 1;
654
data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
655
&client->dev, &config);
656
if (IS_ERR(data->regmap)) {
657
dev_err(&client->dev, "failed to allocate register map\n");
658
return PTR_ERR(data->regmap);
659
}
660
i2c_set_clientdata(client, data);
661
662
parent_name = of_clk_get_parent_name(node, 0);
663
if (!parent_name) {
664
dev_err(&client->dev, "missing parent clock\n");
665
return -ENODEV;
666
}
667
dev_dbg(&client->dev, "parent is: %s\n", parent_name);
668
669
if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
670
regmap_write(data->regmap,
671
CDCE925_REG_XCSEL, (value << 3) & 0xF8);
672
/* PWDN bit */
673
regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
674
675
/* Set input source for Y1 to be the XTAL */
676
regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
677
678
init.ops = &cdce925_pll_ops;
679
init.flags = 0;
680
init.parent_names = &parent_name;
681
init.num_parents = 1;
682
683
/* Register PLL clocks */
684
for (i = 0; i < data->chip_info->num_plls; ++i) {
685
pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
686
client->dev.of_node, i);
687
if (!pll_clk_name[i]) {
688
err = -ENOMEM;
689
goto error;
690
}
691
init.name = pll_clk_name[i];
692
data->pll[i].chip = data;
693
data->pll[i].hw.init = &init;
694
data->pll[i].index = i;
695
err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
696
if (err) {
697
dev_err(&client->dev, "Failed register PLL %d\n", i);
698
goto error;
699
}
700
sprintf(child_name, "PLL%d", i+1);
701
np_output = of_get_child_by_name(node, child_name);
702
if (!np_output)
703
continue;
704
if (!of_property_read_u32(np_output,
705
"clock-frequency", &value)) {
706
err = clk_set_rate(data->pll[i].hw.clk, value);
707
if (err)
708
dev_err(&client->dev,
709
"unable to set PLL frequency %ud\n",
710
value);
711
}
712
if (!of_property_read_u32(np_output,
713
"spread-spectrum", &value)) {
714
u8 flag = of_property_read_bool(np_output,
715
"spread-spectrum-center") ? 0x80 : 0x00;
716
regmap_update_bits(data->regmap,
717
0x16 + (i*CDCE925_OFFSET_PLL),
718
0x80, flag);
719
regmap_update_bits(data->regmap,
720
0x12 + (i*CDCE925_OFFSET_PLL),
721
0x07, value & 0x07);
722
}
723
of_node_put(np_output);
724
}
725
726
/* Register output clock Y1 */
727
init.ops = &cdce925_clk_y1_ops;
728
init.flags = 0;
729
init.num_parents = 1;
730
init.parent_names = &parent_name; /* Mux Y1 to input */
731
init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
732
if (!init.name) {
733
err = -ENOMEM;
734
goto error;
735
}
736
data->clk[0].chip = data;
737
data->clk[0].hw.init = &init;
738
data->clk[0].index = 0;
739
data->clk[0].pdiv = 1;
740
err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
741
kfree(init.name); /* clock framework made a copy of the name */
742
if (err) {
743
dev_err(&client->dev, "clock registration Y1 failed\n");
744
goto error;
745
}
746
747
/* Register output clocks Y2 .. Y5*/
748
init.ops = &cdce925_clk_ops;
749
init.flags = CLK_SET_RATE_PARENT;
750
init.num_parents = 1;
751
for (i = 1; i < data->chip_info->num_outputs; ++i) {
752
init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
753
client->dev.of_node, i+1);
754
if (!init.name) {
755
err = -ENOMEM;
756
goto error;
757
}
758
data->clk[i].chip = data;
759
data->clk[i].hw.init = &init;
760
data->clk[i].index = i;
761
data->clk[i].pdiv = 1;
762
switch (i) {
763
case 1:
764
case 2:
765
/* Mux Y2/3 to PLL1 */
766
init.parent_names = &pll_clk_name[0];
767
break;
768
case 3:
769
case 4:
770
/* Mux Y4/5 to PLL2 */
771
init.parent_names = &pll_clk_name[1];
772
break;
773
case 5:
774
case 6:
775
/* Mux Y6/7 to PLL3 */
776
init.parent_names = &pll_clk_name[2];
777
break;
778
case 7:
779
case 8:
780
/* Mux Y8/9 to PLL4 */
781
init.parent_names = &pll_clk_name[3];
782
break;
783
}
784
err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
785
kfree(init.name); /* clock framework made a copy of the name */
786
if (err) {
787
dev_err(&client->dev, "clock registration failed\n");
788
goto error;
789
}
790
}
791
792
/* Register the output clocks */
793
err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
794
data);
795
if (err)
796
dev_err(&client->dev, "unable to add OF clock provider\n");
797
798
err = 0;
799
800
error:
801
for (i = 0; i < data->chip_info->num_plls; ++i)
802
/* clock framework made a copy of the name */
803
kfree(pll_clk_name[i]);
804
805
return err;
806
}
807
808
static const struct clk_cdce925_chip_info clk_cdce913_info = {
809
.num_plls = 1,
810
.num_outputs = 3,
811
};
812
813
static const struct clk_cdce925_chip_info clk_cdce925_info = {
814
.num_plls = 2,
815
.num_outputs = 5,
816
};
817
818
static const struct clk_cdce925_chip_info clk_cdce937_info = {
819
.num_plls = 3,
820
.num_outputs = 7,
821
};
822
823
static const struct clk_cdce925_chip_info clk_cdce949_info = {
824
.num_plls = 4,
825
.num_outputs = 9,
826
};
827
828
static const struct i2c_device_id cdce925_id[] = {
829
{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
830
{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
831
{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
832
{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
833
{ }
834
};
835
MODULE_DEVICE_TABLE(i2c, cdce925_id);
836
837
static const struct of_device_id clk_cdce925_of_match[] = {
838
{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
839
{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
840
{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
841
{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
842
{ }
843
};
844
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
845
846
static struct i2c_driver cdce925_driver = {
847
.driver = {
848
.name = "cdce925",
849
.of_match_table = clk_cdce925_of_match,
850
},
851
.probe = cdce925_probe,
852
.id_table = cdce925_id,
853
};
854
module_i2c_driver(cdce925_driver);
855
856
MODULE_AUTHOR("Mike Looijmans <[email protected]>");
857
MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
858
MODULE_LICENSE("GPL");
859
860