Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-cdce925.c
26278 views
1
/*
2
* Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3
*
4
* This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5
* Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6
* basis. Clients can directly request any frequency that the chip can
7
* deliver using the standard clk framework. In addition, the device can
8
* be configured and activated via the devicetree.
9
*
10
* Copyright (C) 2014, Topic Embedded Products
11
* Licenced under GPL
12
*/
13
#include <linux/clk.h>
14
#include <linux/clk-provider.h>
15
#include <linux/delay.h>
16
#include <linux/module.h>
17
#include <linux/i2c.h>
18
#include <linux/regmap.h>
19
#include <linux/regulator/consumer.h>
20
#include <linux/slab.h>
21
#include <linux/gcd.h>
22
23
/* Each chip has different number of PLLs and outputs, for example:
24
* The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25
* Model this as 2 PLL clocks which are parents to the outputs.
26
*/
27
28
struct clk_cdce925_chip_info {
29
int num_plls;
30
int num_outputs;
31
};
32
33
#define MAX_NUMBER_OF_PLLS 4
34
#define MAX_NUMBER_OF_OUTPUTS 9
35
36
#define CDCE925_REG_GLOBAL1 0x01
37
#define CDCE925_REG_Y1SPIPDIVH 0x02
38
#define CDCE925_REG_PDIVL 0x03
39
#define CDCE925_REG_XCSEL 0x05
40
/* PLL parameters start at 0x10, steps of 0x10 */
41
#define CDCE925_OFFSET_PLL 0x10
42
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43
#define CDCE925_PLL_MUX_OUTPUTS 0x14
44
#define CDCE925_PLL_MULDIV 0x18
45
46
#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
47
#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
48
struct clk_cdce925_chip;
49
50
struct clk_cdce925_output {
51
struct clk_hw hw;
52
struct clk_cdce925_chip *chip;
53
u8 index;
54
u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55
};
56
#define to_clk_cdce925_output(_hw) \
57
container_of(_hw, struct clk_cdce925_output, hw)
58
59
struct clk_cdce925_pll {
60
struct clk_hw hw;
61
struct clk_cdce925_chip *chip;
62
u8 index;
63
u16 m; /* 1..511 */
64
u16 n; /* 1..4095 */
65
};
66
#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
67
68
struct clk_cdce925_chip {
69
struct regmap *regmap;
70
struct i2c_client *i2c_client;
71
const struct clk_cdce925_chip_info *chip_info;
72
struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73
struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74
};
75
76
/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77
78
static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79
u16 n, u16 m)
80
{
81
if ((!m || !n) || (m == n))
82
return parent_rate; /* In bypass mode runs at same frequency */
83
return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84
}
85
86
static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87
unsigned long parent_rate)
88
{
89
/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91
92
return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93
}
94
95
static void cdce925_pll_find_rate(unsigned long rate,
96
unsigned long parent_rate, u16 *n, u16 *m)
97
{
98
unsigned long un;
99
unsigned long um;
100
unsigned long g;
101
102
if (rate <= parent_rate) {
103
/* Can always deliver parent_rate in bypass mode */
104
*n = 0;
105
*m = 0;
106
} else {
107
/* In PLL mode, need to apply min/max range */
108
if (rate < CDCE925_PLL_FREQUENCY_MIN)
109
rate = CDCE925_PLL_FREQUENCY_MIN;
110
else if (rate > CDCE925_PLL_FREQUENCY_MAX)
111
rate = CDCE925_PLL_FREQUENCY_MAX;
112
113
g = gcd(rate, parent_rate);
114
um = parent_rate / g;
115
un = rate / g;
116
/* When outside hw range, reduce to fit (rounding errors) */
117
while ((un > 4095) || (um > 511)) {
118
un >>= 1;
119
um >>= 1;
120
}
121
if (un == 0)
122
un = 1;
123
if (um == 0)
124
um = 1;
125
126
*n = un;
127
*m = um;
128
}
129
}
130
131
static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
132
unsigned long *parent_rate)
133
{
134
u16 n, m;
135
136
cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
137
return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
138
}
139
140
static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
141
unsigned long parent_rate)
142
{
143
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
144
145
if (!rate || (rate == parent_rate)) {
146
data->m = 0; /* Bypass mode */
147
data->n = 0;
148
return 0;
149
}
150
151
if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
152
(rate > CDCE925_PLL_FREQUENCY_MAX)) {
153
pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
154
return -EINVAL;
155
}
156
157
if (rate < parent_rate) {
158
pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
159
rate, parent_rate);
160
return -EINVAL;
161
}
162
163
cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
164
return 0;
165
}
166
167
168
/* calculate p = max(0, 4 - int(log2 (n/m))) */
169
static u8 cdce925_pll_calc_p(u16 n, u16 m)
170
{
171
u8 p;
172
u16 r = n / m;
173
174
if (r >= 16)
175
return 0;
176
p = 4;
177
while (r > 1) {
178
r >>= 1;
179
--p;
180
}
181
return p;
182
}
183
184
/* Returns VCO range bits for VCO1_0_RANGE */
185
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
186
{
187
struct clk *parent = clk_get_parent(hw->clk);
188
unsigned long rate = clk_get_rate(parent);
189
190
rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
191
if (rate >= 175000000)
192
return 0x3;
193
if (rate >= 150000000)
194
return 0x02;
195
if (rate >= 125000000)
196
return 0x01;
197
return 0x00;
198
}
199
200
/* I2C clock, hence everything must happen in (un)prepare because this
201
* may sleep */
202
static int cdce925_pll_prepare(struct clk_hw *hw)
203
{
204
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
205
u16 n = data->n;
206
u16 m = data->m;
207
u16 r;
208
u8 q;
209
u8 p;
210
u16 nn;
211
u8 pll[4]; /* Bits are spread out over 4 byte registers */
212
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
213
unsigned i;
214
215
if ((!m || !n) || (m == n)) {
216
/* Set PLL mux to bypass mode, leave the rest as is */
217
regmap_update_bits(data->chip->regmap,
218
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
219
} else {
220
/* According to data sheet: */
221
/* p = max(0, 4 - int(log2 (n/m))) */
222
p = cdce925_pll_calc_p(n, m);
223
/* nn = n * 2^p */
224
nn = n * BIT(p);
225
/* q = int(nn/m) */
226
q = nn / m;
227
if ((q < 16) || (q > 63)) {
228
pr_debug("%s invalid q=%d\n", __func__, q);
229
return -EINVAL;
230
}
231
r = nn - (m*q);
232
if (r > 511) {
233
pr_debug("%s invalid r=%d\n", __func__, r);
234
return -EINVAL;
235
}
236
pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
237
n, m, p, q, r);
238
/* encode into register bits */
239
pll[0] = n >> 4;
240
pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
241
pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
242
pll[3] = ((q & 0x07) << 5) | (p << 2) |
243
cdce925_pll_calc_range_bits(hw, n, m);
244
/* Write to registers */
245
for (i = 0; i < ARRAY_SIZE(pll); ++i)
246
regmap_write(data->chip->regmap,
247
reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
248
/* Enable PLL */
249
regmap_update_bits(data->chip->regmap,
250
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
251
}
252
253
return 0;
254
}
255
256
static void cdce925_pll_unprepare(struct clk_hw *hw)
257
{
258
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
259
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
260
261
regmap_update_bits(data->chip->regmap,
262
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
263
}
264
265
static const struct clk_ops cdce925_pll_ops = {
266
.prepare = cdce925_pll_prepare,
267
.unprepare = cdce925_pll_unprepare,
268
.recalc_rate = cdce925_pll_recalc_rate,
269
.round_rate = cdce925_pll_round_rate,
270
.set_rate = cdce925_pll_set_rate,
271
};
272
273
274
static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
275
{
276
switch (data->index) {
277
case 0:
278
regmap_update_bits(data->chip->regmap,
279
CDCE925_REG_Y1SPIPDIVH,
280
0x03, (pdiv >> 8) & 0x03);
281
regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
282
break;
283
case 1:
284
regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
285
break;
286
case 2:
287
regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
288
break;
289
case 3:
290
regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
291
break;
292
case 4:
293
regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
294
break;
295
case 5:
296
regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
297
break;
298
case 6:
299
regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
300
break;
301
case 7:
302
regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
303
break;
304
case 8:
305
regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
306
break;
307
}
308
}
309
310
static void cdce925_clk_activate(struct clk_cdce925_output *data)
311
{
312
switch (data->index) {
313
case 0:
314
regmap_update_bits(data->chip->regmap,
315
CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
316
break;
317
case 1:
318
case 2:
319
regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
320
break;
321
case 3:
322
case 4:
323
regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
324
break;
325
case 5:
326
case 6:
327
regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
328
break;
329
case 7:
330
case 8:
331
regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
332
break;
333
}
334
}
335
336
static int cdce925_clk_prepare(struct clk_hw *hw)
337
{
338
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
339
340
cdce925_clk_set_pdiv(data, data->pdiv);
341
cdce925_clk_activate(data);
342
return 0;
343
}
344
345
static void cdce925_clk_unprepare(struct clk_hw *hw)
346
{
347
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
348
349
/* Disable clock by setting divider to "0" */
350
cdce925_clk_set_pdiv(data, 0);
351
}
352
353
static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
354
unsigned long parent_rate)
355
{
356
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
357
358
if (data->pdiv)
359
return parent_rate / data->pdiv;
360
return 0;
361
}
362
363
static u16 cdce925_calc_divider(unsigned long rate,
364
unsigned long parent_rate)
365
{
366
unsigned long divider;
367
368
if (!rate)
369
return 0;
370
if (rate >= parent_rate)
371
return 1;
372
373
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
374
if (divider > 0x7F)
375
divider = 0x7F;
376
377
return (u16)divider;
378
}
379
380
static unsigned long cdce925_clk_best_parent_rate(
381
struct clk_hw *hw, unsigned long rate)
382
{
383
struct clk *pll = clk_get_parent(hw->clk);
384
struct clk *root = clk_get_parent(pll);
385
unsigned long root_rate = clk_get_rate(root);
386
unsigned long best_rate_error = rate;
387
u16 pdiv_min;
388
u16 pdiv_max;
389
u16 pdiv_best;
390
u16 pdiv_now;
391
392
if (root_rate % rate == 0)
393
return root_rate; /* Don't need the PLL, use bypass */
394
395
pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
396
pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
397
398
if (pdiv_min > pdiv_max)
399
return 0; /* No can do? */
400
401
pdiv_best = pdiv_min;
402
for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
403
unsigned long target_rate = rate * pdiv_now;
404
long pll_rate = clk_round_rate(pll, target_rate);
405
unsigned long actual_rate;
406
unsigned long rate_error;
407
408
if (pll_rate <= 0)
409
continue;
410
actual_rate = pll_rate / pdiv_now;
411
rate_error = abs((long)actual_rate - (long)rate);
412
if (rate_error < best_rate_error) {
413
pdiv_best = pdiv_now;
414
best_rate_error = rate_error;
415
}
416
/* TODO: Consider PLL frequency based on smaller n/m values
417
* and pick the better one if the error is equal */
418
}
419
420
return rate * pdiv_best;
421
}
422
423
static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
424
unsigned long *parent_rate)
425
{
426
unsigned long l_parent_rate = *parent_rate;
427
u16 divider = cdce925_calc_divider(rate, l_parent_rate);
428
429
if (l_parent_rate / divider != rate) {
430
l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
431
divider = cdce925_calc_divider(rate, l_parent_rate);
432
*parent_rate = l_parent_rate;
433
}
434
435
if (divider)
436
return (long)(l_parent_rate / divider);
437
return 0;
438
}
439
440
static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
441
unsigned long parent_rate)
442
{
443
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
444
445
data->pdiv = cdce925_calc_divider(rate, parent_rate);
446
447
return 0;
448
}
449
450
static const struct clk_ops cdce925_clk_ops = {
451
.prepare = cdce925_clk_prepare,
452
.unprepare = cdce925_clk_unprepare,
453
.recalc_rate = cdce925_clk_recalc_rate,
454
.round_rate = cdce925_clk_round_rate,
455
.set_rate = cdce925_clk_set_rate,
456
};
457
458
459
static u16 cdce925_y1_calc_divider(unsigned long rate,
460
unsigned long parent_rate)
461
{
462
unsigned long divider;
463
464
if (!rate)
465
return 0;
466
if (rate >= parent_rate)
467
return 1;
468
469
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
470
if (divider > 0x3FF) /* Y1 has 10-bit divider */
471
divider = 0x3FF;
472
473
return (u16)divider;
474
}
475
476
static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
477
unsigned long *parent_rate)
478
{
479
unsigned long l_parent_rate = *parent_rate;
480
u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
481
482
if (divider)
483
return (long)(l_parent_rate / divider);
484
return 0;
485
}
486
487
static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
488
unsigned long parent_rate)
489
{
490
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
491
492
data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
493
494
return 0;
495
}
496
497
static const struct clk_ops cdce925_clk_y1_ops = {
498
.prepare = cdce925_clk_prepare,
499
.unprepare = cdce925_clk_unprepare,
500
.recalc_rate = cdce925_clk_recalc_rate,
501
.round_rate = cdce925_clk_y1_round_rate,
502
.set_rate = cdce925_clk_y1_set_rate,
503
};
504
505
#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
506
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
507
508
static int cdce925_regmap_i2c_write(
509
void *context, const void *data, size_t count)
510
{
511
struct device *dev = context;
512
struct i2c_client *i2c = to_i2c_client(dev);
513
int ret;
514
u8 reg_data[2];
515
516
if (count != 2)
517
return -ENOTSUPP;
518
519
/* First byte is command code */
520
reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
521
reg_data[1] = ((u8 *)data)[1];
522
523
dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
524
reg_data[0], reg_data[1]);
525
526
ret = i2c_master_send(i2c, reg_data, count);
527
if (likely(ret == count))
528
return 0;
529
else if (ret < 0)
530
return ret;
531
else
532
return -EIO;
533
}
534
535
static int cdce925_regmap_i2c_read(void *context,
536
const void *reg, size_t reg_size, void *val, size_t val_size)
537
{
538
struct device *dev = context;
539
struct i2c_client *i2c = to_i2c_client(dev);
540
struct i2c_msg xfer[2];
541
int ret;
542
u8 reg_data[2];
543
544
if (reg_size != 1)
545
return -ENOTSUPP;
546
547
xfer[0].addr = i2c->addr;
548
xfer[0].flags = 0;
549
xfer[0].buf = reg_data;
550
if (val_size == 1) {
551
reg_data[0] =
552
CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
553
xfer[0].len = 1;
554
} else {
555
reg_data[0] =
556
CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
557
reg_data[1] = val_size;
558
xfer[0].len = 2;
559
}
560
561
xfer[1].addr = i2c->addr;
562
xfer[1].flags = I2C_M_RD;
563
xfer[1].len = val_size;
564
xfer[1].buf = val;
565
566
ret = i2c_transfer(i2c->adapter, xfer, 2);
567
if (likely(ret == 2)) {
568
dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
569
reg_size, val_size, reg_data[0], *((u8 *)val));
570
return 0;
571
} else if (ret < 0)
572
return ret;
573
else
574
return -EIO;
575
}
576
577
static struct clk_hw *
578
of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
579
{
580
struct clk_cdce925_chip *data = _data;
581
unsigned int idx = clkspec->args[0];
582
583
if (idx >= ARRAY_SIZE(data->clk)) {
584
pr_err("%s: invalid index %u\n", __func__, idx);
585
return ERR_PTR(-EINVAL);
586
}
587
588
return &data->clk[idx].hw;
589
}
590
591
static int cdce925_regulator_enable(struct device *dev, const char *name)
592
{
593
int err;
594
595
err = devm_regulator_get_enable(dev, name);
596
if (err)
597
dev_err_probe(dev, err, "Failed to enable %s:\n", name);
598
599
return err;
600
}
601
602
/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
603
* just weird, so just use the single byte mode exclusively. */
604
static const struct regmap_bus regmap_cdce925_bus = {
605
.write = cdce925_regmap_i2c_write,
606
.read = cdce925_regmap_i2c_read,
607
};
608
609
static int cdce925_probe(struct i2c_client *client)
610
{
611
struct clk_cdce925_chip *data;
612
struct device_node *node = client->dev.of_node;
613
const char *parent_name;
614
const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
615
struct clk_init_data init;
616
u32 value;
617
int i;
618
int err;
619
struct device_node *np_output;
620
char child_name[6];
621
struct regmap_config config = {
622
.name = "configuration0",
623
.reg_bits = 8,
624
.val_bits = 8,
625
.cache_type = REGCACHE_MAPLE,
626
};
627
628
dev_dbg(&client->dev, "%s\n", __func__);
629
630
err = cdce925_regulator_enable(&client->dev, "vdd");
631
if (err)
632
return err;
633
634
err = cdce925_regulator_enable(&client->dev, "vddout");
635
if (err)
636
return err;
637
638
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
639
if (!data)
640
return -ENOMEM;
641
642
data->i2c_client = client;
643
data->chip_info = i2c_get_match_data(client);
644
config.max_register = CDCE925_OFFSET_PLL +
645
data->chip_info->num_plls * 0x10 - 1;
646
data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
647
&client->dev, &config);
648
if (IS_ERR(data->regmap)) {
649
dev_err(&client->dev, "failed to allocate register map\n");
650
return PTR_ERR(data->regmap);
651
}
652
i2c_set_clientdata(client, data);
653
654
parent_name = of_clk_get_parent_name(node, 0);
655
if (!parent_name) {
656
dev_err(&client->dev, "missing parent clock\n");
657
return -ENODEV;
658
}
659
dev_dbg(&client->dev, "parent is: %s\n", parent_name);
660
661
if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
662
regmap_write(data->regmap,
663
CDCE925_REG_XCSEL, (value << 3) & 0xF8);
664
/* PWDN bit */
665
regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
666
667
/* Set input source for Y1 to be the XTAL */
668
regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
669
670
init.ops = &cdce925_pll_ops;
671
init.flags = 0;
672
init.parent_names = &parent_name;
673
init.num_parents = 1;
674
675
/* Register PLL clocks */
676
for (i = 0; i < data->chip_info->num_plls; ++i) {
677
pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
678
client->dev.of_node, i);
679
if (!pll_clk_name[i]) {
680
err = -ENOMEM;
681
goto error;
682
}
683
init.name = pll_clk_name[i];
684
data->pll[i].chip = data;
685
data->pll[i].hw.init = &init;
686
data->pll[i].index = i;
687
err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
688
if (err) {
689
dev_err(&client->dev, "Failed register PLL %d\n", i);
690
goto error;
691
}
692
sprintf(child_name, "PLL%d", i+1);
693
np_output = of_get_child_by_name(node, child_name);
694
if (!np_output)
695
continue;
696
if (!of_property_read_u32(np_output,
697
"clock-frequency", &value)) {
698
err = clk_set_rate(data->pll[i].hw.clk, value);
699
if (err)
700
dev_err(&client->dev,
701
"unable to set PLL frequency %ud\n",
702
value);
703
}
704
if (!of_property_read_u32(np_output,
705
"spread-spectrum", &value)) {
706
u8 flag = of_property_read_bool(np_output,
707
"spread-spectrum-center") ? 0x80 : 0x00;
708
regmap_update_bits(data->regmap,
709
0x16 + (i*CDCE925_OFFSET_PLL),
710
0x80, flag);
711
regmap_update_bits(data->regmap,
712
0x12 + (i*CDCE925_OFFSET_PLL),
713
0x07, value & 0x07);
714
}
715
of_node_put(np_output);
716
}
717
718
/* Register output clock Y1 */
719
init.ops = &cdce925_clk_y1_ops;
720
init.flags = 0;
721
init.num_parents = 1;
722
init.parent_names = &parent_name; /* Mux Y1 to input */
723
init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
724
if (!init.name) {
725
err = -ENOMEM;
726
goto error;
727
}
728
data->clk[0].chip = data;
729
data->clk[0].hw.init = &init;
730
data->clk[0].index = 0;
731
data->clk[0].pdiv = 1;
732
err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
733
kfree(init.name); /* clock framework made a copy of the name */
734
if (err) {
735
dev_err(&client->dev, "clock registration Y1 failed\n");
736
goto error;
737
}
738
739
/* Register output clocks Y2 .. Y5*/
740
init.ops = &cdce925_clk_ops;
741
init.flags = CLK_SET_RATE_PARENT;
742
init.num_parents = 1;
743
for (i = 1; i < data->chip_info->num_outputs; ++i) {
744
init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
745
client->dev.of_node, i+1);
746
if (!init.name) {
747
err = -ENOMEM;
748
goto error;
749
}
750
data->clk[i].chip = data;
751
data->clk[i].hw.init = &init;
752
data->clk[i].index = i;
753
data->clk[i].pdiv = 1;
754
switch (i) {
755
case 1:
756
case 2:
757
/* Mux Y2/3 to PLL1 */
758
init.parent_names = &pll_clk_name[0];
759
break;
760
case 3:
761
case 4:
762
/* Mux Y4/5 to PLL2 */
763
init.parent_names = &pll_clk_name[1];
764
break;
765
case 5:
766
case 6:
767
/* Mux Y6/7 to PLL3 */
768
init.parent_names = &pll_clk_name[2];
769
break;
770
case 7:
771
case 8:
772
/* Mux Y8/9 to PLL4 */
773
init.parent_names = &pll_clk_name[3];
774
break;
775
}
776
err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
777
kfree(init.name); /* clock framework made a copy of the name */
778
if (err) {
779
dev_err(&client->dev, "clock registration failed\n");
780
goto error;
781
}
782
}
783
784
/* Register the output clocks */
785
err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
786
data);
787
if (err)
788
dev_err(&client->dev, "unable to add OF clock provider\n");
789
790
err = 0;
791
792
error:
793
for (i = 0; i < data->chip_info->num_plls; ++i)
794
/* clock framework made a copy of the name */
795
kfree(pll_clk_name[i]);
796
797
return err;
798
}
799
800
static const struct clk_cdce925_chip_info clk_cdce913_info = {
801
.num_plls = 1,
802
.num_outputs = 3,
803
};
804
805
static const struct clk_cdce925_chip_info clk_cdce925_info = {
806
.num_plls = 2,
807
.num_outputs = 5,
808
};
809
810
static const struct clk_cdce925_chip_info clk_cdce937_info = {
811
.num_plls = 3,
812
.num_outputs = 7,
813
};
814
815
static const struct clk_cdce925_chip_info clk_cdce949_info = {
816
.num_plls = 4,
817
.num_outputs = 9,
818
};
819
820
static const struct i2c_device_id cdce925_id[] = {
821
{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
822
{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
823
{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
824
{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
825
{ }
826
};
827
MODULE_DEVICE_TABLE(i2c, cdce925_id);
828
829
static const struct of_device_id clk_cdce925_of_match[] = {
830
{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
831
{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
832
{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
833
{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
834
{ }
835
};
836
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
837
838
static struct i2c_driver cdce925_driver = {
839
.driver = {
840
.name = "cdce925",
841
.of_match_table = clk_cdce925_of_match,
842
},
843
.probe = cdce925_probe,
844
.id_table = cdce925_id,
845
};
846
module_i2c_driver(cdce925_driver);
847
848
MODULE_AUTHOR("Mike Looijmans <[email protected]>");
849
MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
850
MODULE_LICENSE("GPL");
851
852