Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-fractional-divider.c
52653 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2014 Intel Corporation
4
*
5
* Adjustable fractional divider clock implementation.
6
* Uses rational best approximation algorithm.
7
*
8
* Output is calculated as
9
*
10
* rate = (m / n) * parent_rate (1)
11
*
12
* This is useful when we have a prescaler block which asks for
13
* m (numerator) and n (denominator) values to be provided to satisfy
14
* the (1) as much as possible.
15
*
16
* Since m and n have the limitation by a range, e.g.
17
*
18
* n >= 1, n < N_width, where N_width = 2^nwidth (2)
19
*
20
* for some cases the output may be saturated. Hence, from (1) and (2),
21
* assuming the worst case when m = 1, the inequality
22
*
23
* floor(log2(parent_rate / rate)) <= nwidth (3)
24
*
25
* may be derived. Thus, in cases when
26
*
27
* (parent_rate / rate) >> N_width (4)
28
*
29
* we might scale up the rate by 2^scale (see the description of
30
* CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
31
*
32
* scale = floor(log2(parent_rate / rate)) - nwidth (5)
33
*
34
* and assume that the IP, that needs m and n, has also its own
35
* prescaler, which is capable to divide by 2^scale. In this way
36
* we get the denominator to satisfy the desired range (2) and
37
* at the same time a much better result of m and n than simple
38
* saturated values.
39
*/
40
41
#include <linux/debugfs.h>
42
#include <linux/device.h>
43
#include <linux/io.h>
44
#include <linux/math.h>
45
#include <linux/module.h>
46
#include <linux/rational.h>
47
#include <linux/slab.h>
48
49
#include <linux/clk-provider.h>
50
51
#include "clk-fractional-divider.h"
52
53
static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
54
{
55
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
56
return ioread32be(fd->reg);
57
58
return readl(fd->reg);
59
}
60
61
static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
62
{
63
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
64
iowrite32be(val, fd->reg);
65
else
66
writel(val, fd->reg);
67
}
68
69
static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
70
{
71
struct clk_fractional_divider *fd = to_clk_fd(hw);
72
unsigned long flags = 0;
73
unsigned long m, n;
74
u32 mmask, nmask;
75
u32 val;
76
77
if (fd->lock)
78
spin_lock_irqsave(fd->lock, flags);
79
else
80
__acquire(fd->lock);
81
82
val = clk_fd_readl(fd);
83
84
if (fd->lock)
85
spin_unlock_irqrestore(fd->lock, flags);
86
else
87
__release(fd->lock);
88
89
mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
90
nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
91
92
m = (val & mmask) >> fd->mshift;
93
n = (val & nmask) >> fd->nshift;
94
95
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
96
m++;
97
n++;
98
}
99
100
fract->numerator = m;
101
fract->denominator = n;
102
}
103
104
static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
105
{
106
struct u32_fract fract;
107
u64 ret;
108
109
clk_fd_get_div(hw, &fract);
110
111
if (!fract.numerator || !fract.denominator)
112
return parent_rate;
113
114
ret = (u64)parent_rate * fract.numerator;
115
do_div(ret, fract.denominator);
116
117
return ret;
118
}
119
120
void clk_fractional_divider_general_approximation(struct clk_hw *hw,
121
unsigned long rate,
122
unsigned long *parent_rate,
123
unsigned long *m, unsigned long *n)
124
{
125
struct clk_fractional_divider *fd = to_clk_fd(hw);
126
unsigned long max_m, max_n;
127
128
/*
129
* Get rate closer to *parent_rate to guarantee there is no overflow
130
* for m and n. In the result it will be the nearest rate left shifted
131
* by (scale - fd->nwidth) bits.
132
*
133
* For the detailed explanation see the top comment in this file.
134
*/
135
if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
136
unsigned long scale = fls_long(*parent_rate / rate - 1);
137
138
if (scale > fd->nwidth)
139
rate <<= scale - fd->nwidth;
140
}
141
142
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
143
max_m = BIT(fd->mwidth);
144
max_n = BIT(fd->nwidth);
145
} else {
146
max_m = GENMASK(fd->mwidth - 1, 0);
147
max_n = GENMASK(fd->nwidth - 1, 0);
148
}
149
150
rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
151
}
152
EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);
153
154
static int clk_fd_determine_rate(struct clk_hw *hw,
155
struct clk_rate_request *req)
156
{
157
struct clk_fractional_divider *fd = to_clk_fd(hw);
158
unsigned long m, n;
159
u64 ret;
160
161
if (!req->rate || (!clk_hw_can_set_rate_parent(hw) && req->rate >= req->best_parent_rate)) {
162
req->rate = req->best_parent_rate;
163
164
return 0;
165
}
166
167
if (fd->approximation)
168
fd->approximation(hw, req->rate, &req->best_parent_rate, &m, &n);
169
else
170
clk_fractional_divider_general_approximation(hw, req->rate,
171
&req->best_parent_rate,
172
&m, &n);
173
174
ret = (u64)req->best_parent_rate * m;
175
do_div(ret, n);
176
177
req->rate = ret;
178
179
return 0;
180
}
181
182
static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
183
unsigned long parent_rate)
184
{
185
struct clk_fractional_divider *fd = to_clk_fd(hw);
186
unsigned long flags = 0;
187
unsigned long m, n, max_m, max_n;
188
u32 mmask, nmask;
189
u32 val;
190
191
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
192
max_m = BIT(fd->mwidth);
193
max_n = BIT(fd->nwidth);
194
} else {
195
max_m = GENMASK(fd->mwidth - 1, 0);
196
max_n = GENMASK(fd->nwidth - 1, 0);
197
}
198
rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);
199
200
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
201
m--;
202
n--;
203
}
204
205
mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
206
nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
207
208
if (fd->lock)
209
spin_lock_irqsave(fd->lock, flags);
210
else
211
__acquire(fd->lock);
212
213
val = clk_fd_readl(fd);
214
val &= ~(mmask | nmask);
215
val |= (m << fd->mshift) | (n << fd->nshift);
216
clk_fd_writel(fd, val);
217
218
if (fd->lock)
219
spin_unlock_irqrestore(fd->lock, flags);
220
else
221
__release(fd->lock);
222
223
return 0;
224
}
225
226
#ifdef CONFIG_DEBUG_FS
227
static int clk_fd_numerator_get(void *hw, u64 *val)
228
{
229
struct u32_fract fract;
230
231
clk_fd_get_div(hw, &fract);
232
233
*val = fract.numerator;
234
235
return 0;
236
}
237
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
238
239
static int clk_fd_denominator_get(void *hw, u64 *val)
240
{
241
struct u32_fract fract;
242
243
clk_fd_get_div(hw, &fract);
244
245
*val = fract.denominator;
246
247
return 0;
248
}
249
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
250
251
static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
252
{
253
debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
254
debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
255
}
256
#endif
257
258
const struct clk_ops clk_fractional_divider_ops = {
259
.recalc_rate = clk_fd_recalc_rate,
260
.determine_rate = clk_fd_determine_rate,
261
.set_rate = clk_fd_set_rate,
262
#ifdef CONFIG_DEBUG_FS
263
.debug_init = clk_fd_debug_init,
264
#endif
265
};
266
EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
267
268
struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
269
const char *name, const char *parent_name, unsigned long flags,
270
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
271
u8 clk_divider_flags, spinlock_t *lock)
272
{
273
struct clk_fractional_divider *fd;
274
struct clk_init_data init;
275
struct clk_hw *hw;
276
int ret;
277
278
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
279
if (!fd)
280
return ERR_PTR(-ENOMEM);
281
282
init.name = name;
283
init.ops = &clk_fractional_divider_ops;
284
init.flags = flags;
285
init.parent_names = parent_name ? &parent_name : NULL;
286
init.num_parents = parent_name ? 1 : 0;
287
288
fd->reg = reg;
289
fd->mshift = mshift;
290
fd->mwidth = mwidth;
291
fd->nshift = nshift;
292
fd->nwidth = nwidth;
293
fd->flags = clk_divider_flags;
294
fd->lock = lock;
295
fd->hw.init = &init;
296
297
hw = &fd->hw;
298
ret = clk_hw_register(dev, hw);
299
if (ret) {
300
kfree(fd);
301
hw = ERR_PTR(ret);
302
}
303
304
return hw;
305
}
306
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
307
308
struct clk *clk_register_fractional_divider(struct device *dev,
309
const char *name, const char *parent_name, unsigned long flags,
310
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
311
u8 clk_divider_flags, spinlock_t *lock)
312
{
313
struct clk_hw *hw;
314
315
hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
316
reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
317
lock);
318
if (IS_ERR(hw))
319
return ERR_CAST(hw);
320
return hw->clk;
321
}
322
EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
323
324
void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
325
{
326
struct clk_fractional_divider *fd;
327
328
fd = to_clk_fd(hw);
329
330
clk_hw_unregister(hw);
331
kfree(fd);
332
}
333
334