Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clk/clk-fractional-divider.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2014 Intel Corporation
4
*
5
* Adjustable fractional divider clock implementation.
6
* Uses rational best approximation algorithm.
7
*
8
* Output is calculated as
9
*
10
* rate = (m / n) * parent_rate (1)
11
*
12
* This is useful when we have a prescaler block which asks for
13
* m (numerator) and n (denominator) values to be provided to satisfy
14
* the (1) as much as possible.
15
*
16
* Since m and n have the limitation by a range, e.g.
17
*
18
* n >= 1, n < N_width, where N_width = 2^nwidth (2)
19
*
20
* for some cases the output may be saturated. Hence, from (1) and (2),
21
* assuming the worst case when m = 1, the inequality
22
*
23
* floor(log2(parent_rate / rate)) <= nwidth (3)
24
*
25
* may be derived. Thus, in cases when
26
*
27
* (parent_rate / rate) >> N_width (4)
28
*
29
* we might scale up the rate by 2^scale (see the description of
30
* CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
31
*
32
* scale = floor(log2(parent_rate / rate)) - nwidth (5)
33
*
34
* and assume that the IP, that needs m and n, has also its own
35
* prescaler, which is capable to divide by 2^scale. In this way
36
* we get the denominator to satisfy the desired range (2) and
37
* at the same time a much better result of m and n than simple
38
* saturated values.
39
*/
40
41
#include <linux/debugfs.h>
42
#include <linux/device.h>
43
#include <linux/io.h>
44
#include <linux/math.h>
45
#include <linux/module.h>
46
#include <linux/rational.h>
47
#include <linux/slab.h>
48
49
#include <linux/clk-provider.h>
50
51
#include "clk-fractional-divider.h"
52
53
static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
54
{
55
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
56
return ioread32be(fd->reg);
57
58
return readl(fd->reg);
59
}
60
61
static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
62
{
63
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
64
iowrite32be(val, fd->reg);
65
else
66
writel(val, fd->reg);
67
}
68
69
static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
70
{
71
struct clk_fractional_divider *fd = to_clk_fd(hw);
72
unsigned long flags = 0;
73
unsigned long m, n;
74
u32 mmask, nmask;
75
u32 val;
76
77
if (fd->lock)
78
spin_lock_irqsave(fd->lock, flags);
79
else
80
__acquire(fd->lock);
81
82
val = clk_fd_readl(fd);
83
84
if (fd->lock)
85
spin_unlock_irqrestore(fd->lock, flags);
86
else
87
__release(fd->lock);
88
89
mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
90
nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
91
92
m = (val & mmask) >> fd->mshift;
93
n = (val & nmask) >> fd->nshift;
94
95
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
96
m++;
97
n++;
98
}
99
100
fract->numerator = m;
101
fract->denominator = n;
102
}
103
104
static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
105
{
106
struct u32_fract fract;
107
u64 ret;
108
109
clk_fd_get_div(hw, &fract);
110
111
if (!fract.numerator || !fract.denominator)
112
return parent_rate;
113
114
ret = (u64)parent_rate * fract.numerator;
115
do_div(ret, fract.denominator);
116
117
return ret;
118
}
119
120
void clk_fractional_divider_general_approximation(struct clk_hw *hw,
121
unsigned long rate,
122
unsigned long *parent_rate,
123
unsigned long *m, unsigned long *n)
124
{
125
struct clk_fractional_divider *fd = to_clk_fd(hw);
126
unsigned long max_m, max_n;
127
128
/*
129
* Get rate closer to *parent_rate to guarantee there is no overflow
130
* for m and n. In the result it will be the nearest rate left shifted
131
* by (scale - fd->nwidth) bits.
132
*
133
* For the detailed explanation see the top comment in this file.
134
*/
135
if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
136
unsigned long scale = fls_long(*parent_rate / rate - 1);
137
138
if (scale > fd->nwidth)
139
rate <<= scale - fd->nwidth;
140
}
141
142
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
143
max_m = BIT(fd->mwidth);
144
max_n = BIT(fd->nwidth);
145
} else {
146
max_m = GENMASK(fd->mwidth - 1, 0);
147
max_n = GENMASK(fd->nwidth - 1, 0);
148
}
149
150
rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
151
}
152
EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);
153
154
static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
155
unsigned long *parent_rate)
156
{
157
struct clk_fractional_divider *fd = to_clk_fd(hw);
158
unsigned long m, n;
159
u64 ret;
160
161
if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
162
return *parent_rate;
163
164
if (fd->approximation)
165
fd->approximation(hw, rate, parent_rate, &m, &n);
166
else
167
clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);
168
169
ret = (u64)*parent_rate * m;
170
do_div(ret, n);
171
172
return ret;
173
}
174
175
static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
176
unsigned long parent_rate)
177
{
178
struct clk_fractional_divider *fd = to_clk_fd(hw);
179
unsigned long flags = 0;
180
unsigned long m, n, max_m, max_n;
181
u32 mmask, nmask;
182
u32 val;
183
184
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
185
max_m = BIT(fd->mwidth);
186
max_n = BIT(fd->nwidth);
187
} else {
188
max_m = GENMASK(fd->mwidth - 1, 0);
189
max_n = GENMASK(fd->nwidth - 1, 0);
190
}
191
rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);
192
193
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
194
m--;
195
n--;
196
}
197
198
mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
199
nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
200
201
if (fd->lock)
202
spin_lock_irqsave(fd->lock, flags);
203
else
204
__acquire(fd->lock);
205
206
val = clk_fd_readl(fd);
207
val &= ~(mmask | nmask);
208
val |= (m << fd->mshift) | (n << fd->nshift);
209
clk_fd_writel(fd, val);
210
211
if (fd->lock)
212
spin_unlock_irqrestore(fd->lock, flags);
213
else
214
__release(fd->lock);
215
216
return 0;
217
}
218
219
#ifdef CONFIG_DEBUG_FS
220
static int clk_fd_numerator_get(void *hw, u64 *val)
221
{
222
struct u32_fract fract;
223
224
clk_fd_get_div(hw, &fract);
225
226
*val = fract.numerator;
227
228
return 0;
229
}
230
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
231
232
static int clk_fd_denominator_get(void *hw, u64 *val)
233
{
234
struct u32_fract fract;
235
236
clk_fd_get_div(hw, &fract);
237
238
*val = fract.denominator;
239
240
return 0;
241
}
242
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
243
244
static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
245
{
246
debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
247
debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
248
}
249
#endif
250
251
const struct clk_ops clk_fractional_divider_ops = {
252
.recalc_rate = clk_fd_recalc_rate,
253
.round_rate = clk_fd_round_rate,
254
.set_rate = clk_fd_set_rate,
255
#ifdef CONFIG_DEBUG_FS
256
.debug_init = clk_fd_debug_init,
257
#endif
258
};
259
EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
260
261
struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
262
const char *name, const char *parent_name, unsigned long flags,
263
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
264
u8 clk_divider_flags, spinlock_t *lock)
265
{
266
struct clk_fractional_divider *fd;
267
struct clk_init_data init;
268
struct clk_hw *hw;
269
int ret;
270
271
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
272
if (!fd)
273
return ERR_PTR(-ENOMEM);
274
275
init.name = name;
276
init.ops = &clk_fractional_divider_ops;
277
init.flags = flags;
278
init.parent_names = parent_name ? &parent_name : NULL;
279
init.num_parents = parent_name ? 1 : 0;
280
281
fd->reg = reg;
282
fd->mshift = mshift;
283
fd->mwidth = mwidth;
284
fd->nshift = nshift;
285
fd->nwidth = nwidth;
286
fd->flags = clk_divider_flags;
287
fd->lock = lock;
288
fd->hw.init = &init;
289
290
hw = &fd->hw;
291
ret = clk_hw_register(dev, hw);
292
if (ret) {
293
kfree(fd);
294
hw = ERR_PTR(ret);
295
}
296
297
return hw;
298
}
299
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
300
301
struct clk *clk_register_fractional_divider(struct device *dev,
302
const char *name, const char *parent_name, unsigned long flags,
303
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
304
u8 clk_divider_flags, spinlock_t *lock)
305
{
306
struct clk_hw *hw;
307
308
hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
309
reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
310
lock);
311
if (IS_ERR(hw))
312
return ERR_CAST(hw);
313
return hw->clk;
314
}
315
EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
316
317
void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
318
{
319
struct clk_fractional_divider *fd;
320
321
fd = to_clk_fd(hw);
322
323
clk_hw_unregister(hw);
324
kfree(fd);
325
}
326
327