Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/arc_timer.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
4
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5
*/
6
7
/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
8
* programmed to go from @count to @limit and optionally interrupt.
9
* We've designated TIMER0 for clockevents and TIMER1 for clocksource
10
*
11
* ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
12
* which are suitable for UP and SMP based clocksources respectively
13
*/
14
15
#include <linux/interrupt.h>
16
#include <linux/bits.h>
17
#include <linux/clk.h>
18
#include <linux/clk-provider.h>
19
#include <linux/clocksource.h>
20
#include <linux/clockchips.h>
21
#include <linux/cpu.h>
22
#include <linux/of.h>
23
#include <linux/of_irq.h>
24
#include <linux/sched_clock.h>
25
26
#include <soc/arc/timers.h>
27
#include <soc/arc/mcip.h>
28
29
30
static unsigned long arc_timer_freq;
31
32
static int noinline arc_get_timer_clk(struct device_node *node)
33
{
34
struct clk *clk;
35
int ret;
36
37
clk = of_clk_get(node, 0);
38
if (IS_ERR(clk)) {
39
pr_err("timer missing clk\n");
40
return PTR_ERR(clk);
41
}
42
43
ret = clk_prepare_enable(clk);
44
if (ret) {
45
pr_err("Couldn't enable parent clk\n");
46
return ret;
47
}
48
49
arc_timer_freq = clk_get_rate(clk);
50
51
return 0;
52
}
53
54
/********** Clock Source Device *********/
55
56
#ifdef CONFIG_ARC_TIMERS_64BIT
57
58
static u64 arc_read_gfrc(struct clocksource *cs)
59
{
60
unsigned long flags;
61
u32 l, h;
62
63
/*
64
* From a programming model pov, there seems to be just one instance of
65
* MCIP_CMD/MCIP_READBACK however micro-architecturally there's
66
* an instance PER ARC CORE (not per cluster), and there are dedicated
67
* hardware decode logic (per core) inside ARConnect to handle
68
* simultaneous read/write accesses from cores via those two registers.
69
* So several concurrent commands to ARConnect are OK if they are
70
* trying to access two different sub-components (like GFRC,
71
* inter-core interrupt, etc...). HW also supports simultaneously
72
* accessing GFRC by multiple cores.
73
* That's why it is safe to disable hard interrupts on the local CPU
74
* before access to GFRC instead of taking global MCIP spinlock
75
* defined in arch/arc/kernel/mcip.c
76
*/
77
local_irq_save(flags);
78
79
__mcip_cmd(CMD_GFRC_READ_LO, 0);
80
l = read_aux_reg(ARC_REG_MCIP_READBACK);
81
82
__mcip_cmd(CMD_GFRC_READ_HI, 0);
83
h = read_aux_reg(ARC_REG_MCIP_READBACK);
84
85
local_irq_restore(flags);
86
87
return (((u64)h) << 32) | l;
88
}
89
90
static notrace u64 arc_gfrc_clock_read(void)
91
{
92
return arc_read_gfrc(NULL);
93
}
94
95
static struct clocksource arc_counter_gfrc = {
96
.name = "ARConnect GFRC",
97
.rating = 400,
98
.read = arc_read_gfrc,
99
.mask = CLOCKSOURCE_MASK(64),
100
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
101
};
102
103
static int __init arc_cs_setup_gfrc(struct device_node *node)
104
{
105
struct mcip_bcr mp;
106
int ret;
107
108
READ_BCR(ARC_REG_MCIP_BCR, mp);
109
if (!mp.gfrc) {
110
pr_warn("Global-64-bit-Ctr clocksource not detected\n");
111
return -ENXIO;
112
}
113
114
ret = arc_get_timer_clk(node);
115
if (ret)
116
return ret;
117
118
sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
119
120
return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
121
}
122
TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
123
124
#define AUX_RTC_CTRL 0x103
125
#define AUX_RTC_LOW 0x104
126
#define AUX_RTC_HIGH 0x105
127
128
static u64 arc_read_rtc(struct clocksource *cs)
129
{
130
unsigned long status;
131
u32 l, h;
132
133
/*
134
* hardware has an internal state machine which tracks readout of
135
* low/high and updates the CTRL.status if
136
* - interrupt/exception taken between the two reads
137
* - high increments after low has been read
138
*/
139
do {
140
l = read_aux_reg(AUX_RTC_LOW);
141
h = read_aux_reg(AUX_RTC_HIGH);
142
status = read_aux_reg(AUX_RTC_CTRL);
143
} while (!(status & BIT(31)));
144
145
return (((u64)h) << 32) | l;
146
}
147
148
static notrace u64 arc_rtc_clock_read(void)
149
{
150
return arc_read_rtc(NULL);
151
}
152
153
static struct clocksource arc_counter_rtc = {
154
.name = "ARCv2 RTC",
155
.rating = 350,
156
.read = arc_read_rtc,
157
.mask = CLOCKSOURCE_MASK(64),
158
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
159
};
160
161
static int __init arc_cs_setup_rtc(struct device_node *node)
162
{
163
struct bcr_timer timer;
164
int ret;
165
166
READ_BCR(ARC_REG_TIMERS_BCR, timer);
167
if (!timer.rtc) {
168
pr_warn("Local-64-bit-Ctr clocksource not detected\n");
169
return -ENXIO;
170
}
171
172
/* Local to CPU hence not usable in SMP */
173
if (IS_ENABLED(CONFIG_SMP)) {
174
pr_warn("Local-64-bit-Ctr not usable in SMP\n");
175
return -EINVAL;
176
}
177
178
ret = arc_get_timer_clk(node);
179
if (ret)
180
return ret;
181
182
write_aux_reg(AUX_RTC_CTRL, 1);
183
184
sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
185
186
return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
187
}
188
TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
189
190
#endif
191
192
/*
193
* 32bit TIMER1 to keep counting monotonically and wraparound
194
*/
195
196
static u64 arc_read_timer1(struct clocksource *cs)
197
{
198
return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
199
}
200
201
static notrace u64 arc_timer1_clock_read(void)
202
{
203
return arc_read_timer1(NULL);
204
}
205
206
static struct clocksource arc_counter_timer1 = {
207
.name = "ARC Timer1",
208
.rating = 300,
209
.read = arc_read_timer1,
210
.mask = CLOCKSOURCE_MASK(32),
211
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
212
};
213
214
static int __init arc_cs_setup_timer1(struct device_node *node)
215
{
216
int ret;
217
218
/* Local to CPU hence not usable in SMP */
219
if (IS_ENABLED(CONFIG_SMP))
220
return -EINVAL;
221
222
ret = arc_get_timer_clk(node);
223
if (ret)
224
return ret;
225
226
write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
227
write_aux_reg(ARC_REG_TIMER1_CNT, 0);
228
write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH);
229
230
sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
231
232
return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
233
}
234
235
/********** Clock Event Device *********/
236
237
static int arc_timer_irq;
238
239
/*
240
* Arm the timer to interrupt after @cycles
241
* The distinction for oneshot/periodic is done in arc_event_timer_ack() below
242
*/
243
static void arc_timer_event_setup(unsigned int cycles)
244
{
245
write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
246
write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
247
248
write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH);
249
}
250
251
252
static int arc_clkevent_set_next_event(unsigned long delta,
253
struct clock_event_device *dev)
254
{
255
arc_timer_event_setup(delta);
256
return 0;
257
}
258
259
static int arc_clkevent_set_periodic(struct clock_event_device *dev)
260
{
261
/*
262
* At X Hz, 1 sec = 1000ms -> X cycles;
263
* 10ms -> X / 100 cycles
264
*/
265
arc_timer_event_setup(arc_timer_freq / HZ);
266
return 0;
267
}
268
269
static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
270
.name = "ARC Timer0",
271
.features = CLOCK_EVT_FEAT_ONESHOT |
272
CLOCK_EVT_FEAT_PERIODIC,
273
.rating = 300,
274
.set_next_event = arc_clkevent_set_next_event,
275
.set_state_periodic = arc_clkevent_set_periodic,
276
};
277
278
static irqreturn_t timer_irq_handler(int irq, void *dev_id)
279
{
280
/*
281
* Note that generic IRQ core could have passed @evt for @dev_id if
282
* irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
283
*/
284
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
285
int irq_reenable = clockevent_state_periodic(evt);
286
287
/*
288
* 1. ACK the interrupt
289
* - For ARC700, any write to CTRL reg ACKs it, so just rewrite
290
* Count when [N]ot [H]alted bit.
291
* - For HS3x, it is a bit subtle. On taken count-down interrupt,
292
* IP bit [3] is set, which needs to be cleared for ACK'ing.
293
* The write below can only update the other two bits, hence
294
* explicitly clears IP bit
295
* 2. Re-arm interrupt if periodic by writing to IE bit [0]
296
*/
297
write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH);
298
299
evt->event_handler(evt);
300
301
return IRQ_HANDLED;
302
}
303
304
305
static int arc_timer_starting_cpu(unsigned int cpu)
306
{
307
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
308
309
evt->cpumask = cpumask_of(smp_processor_id());
310
311
clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
312
enable_percpu_irq(arc_timer_irq, 0);
313
return 0;
314
}
315
316
static int arc_timer_dying_cpu(unsigned int cpu)
317
{
318
disable_percpu_irq(arc_timer_irq);
319
return 0;
320
}
321
322
/*
323
* clockevent setup for boot CPU
324
*/
325
static int __init arc_clockevent_setup(struct device_node *node)
326
{
327
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
328
int ret;
329
330
arc_timer_irq = irq_of_parse_and_map(node, 0);
331
if (arc_timer_irq <= 0) {
332
pr_err("clockevent: missing irq\n");
333
return -EINVAL;
334
}
335
336
ret = arc_get_timer_clk(node);
337
if (ret)
338
return ret;
339
340
/* Needs apriori irq_set_percpu_devid() done in intc map function */
341
ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
342
"Timer0 (per-cpu-tick)", evt);
343
if (ret) {
344
pr_err("clockevent: unable to request irq\n");
345
return ret;
346
}
347
348
ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
349
"clockevents/arc/timer:starting",
350
arc_timer_starting_cpu,
351
arc_timer_dying_cpu);
352
if (ret) {
353
pr_err("Failed to setup hotplug state\n");
354
return ret;
355
}
356
return 0;
357
}
358
359
static int __init arc_of_timer_init(struct device_node *np)
360
{
361
static int init_count = 0;
362
int ret;
363
364
if (!init_count) {
365
init_count = 1;
366
ret = arc_clockevent_setup(np);
367
} else {
368
ret = arc_cs_setup_timer1(np);
369
}
370
371
return ret;
372
}
373
TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
374
375