Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/arm_arch_timer.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/drivers/clocksource/arm_arch_timer.c
4
*
5
* Copyright (C) 2011 ARM Ltd.
6
* All Rights Reserved
7
*/
8
9
#define pr_fmt(fmt) "arch_timer: " fmt
10
11
#include <linux/init.h>
12
#include <linux/kernel.h>
13
#include <linux/device.h>
14
#include <linux/smp.h>
15
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19
#include <linux/clocksource_ids.h>
20
#include <linux/interrupt.h>
21
#include <linux/kstrtox.h>
22
#include <linux/of_irq.h>
23
#include <linux/of_address.h>
24
#include <linux/io.h>
25
#include <linux/slab.h>
26
#include <linux/sched/clock.h>
27
#include <linux/sched_clock.h>
28
#include <linux/acpi.h>
29
#include <linux/arm-smccc.h>
30
#include <linux/ptp_kvm.h>
31
32
#include <asm/arch_timer.h>
33
#include <asm/virt.h>
34
35
#include <clocksource/arm_arch_timer.h>
36
37
#define CNTTIDR 0x08
38
#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40
#define CNTACR(n) (0x40 + ((n) * 4))
41
#define CNTACR_RPCT BIT(0)
42
#define CNTACR_RVCT BIT(1)
43
#define CNTACR_RFRQ BIT(2)
44
#define CNTACR_RVOFF BIT(3)
45
#define CNTACR_RWVT BIT(4)
46
#define CNTACR_RWPT BIT(5)
47
48
#define CNTPCT_LO 0x00
49
#define CNTVCT_LO 0x08
50
#define CNTFRQ 0x10
51
#define CNTP_CVAL_LO 0x20
52
#define CNTP_CTL 0x2c
53
#define CNTV_CVAL_LO 0x30
54
#define CNTV_CTL 0x3c
55
56
/*
57
* The minimum amount of time a generic counter is guaranteed to not roll over
58
* (40 years)
59
*/
60
#define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61
62
static unsigned arch_timers_present __initdata;
63
64
struct arch_timer {
65
void __iomem *base;
66
struct clock_event_device evt;
67
};
68
69
static struct arch_timer *arch_timer_mem __ro_after_init;
70
71
#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73
static u32 arch_timer_rate __ro_after_init;
74
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76
static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77
[ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
78
[ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79
[ARCH_TIMER_VIRT_PPI] = "virt",
80
[ARCH_TIMER_HYP_PPI] = "hyp-phys",
81
[ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
82
};
83
84
static struct clock_event_device __percpu *arch_timer_evt;
85
86
static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87
static bool arch_timer_c3stop __ro_after_init;
88
static bool arch_timer_mem_use_virtual __ro_after_init;
89
static bool arch_counter_suspend_stop __ro_after_init;
90
#ifdef CONFIG_GENERIC_GETTIMEOFDAY
91
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92
#else
93
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94
#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96
static cpumask_t evtstrm_available = CPU_MASK_NONE;
97
static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
99
static int __init early_evtstrm_cfg(char *buf)
100
{
101
return kstrtobool(buf, &evtstrm_enable);
102
}
103
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105
/*
106
* Makes an educated guess at a valid counter width based on the Generic Timer
107
* specification. Of note:
108
* 1) the system counter is at least 56 bits wide
109
* 2) a roll-over time of not less than 40 years
110
*
111
* See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112
*/
113
static int arch_counter_get_width(void)
114
{
115
u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117
/* guarantee the returned width is within the valid range */
118
return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119
}
120
121
/*
122
* Architected system timer support.
123
*/
124
125
static __always_inline
126
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127
struct clock_event_device *clk)
128
{
129
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130
struct arch_timer *timer = to_arch_timer(clk);
131
switch (reg) {
132
case ARCH_TIMER_REG_CTRL:
133
writel_relaxed((u32)val, timer->base + CNTP_CTL);
134
break;
135
case ARCH_TIMER_REG_CVAL:
136
/*
137
* Not guaranteed to be atomic, so the timer
138
* must be disabled at this point.
139
*/
140
writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141
break;
142
default:
143
BUILD_BUG();
144
}
145
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146
struct arch_timer *timer = to_arch_timer(clk);
147
switch (reg) {
148
case ARCH_TIMER_REG_CTRL:
149
writel_relaxed((u32)val, timer->base + CNTV_CTL);
150
break;
151
case ARCH_TIMER_REG_CVAL:
152
/* Same restriction as above */
153
writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154
break;
155
default:
156
BUILD_BUG();
157
}
158
} else {
159
arch_timer_reg_write_cp15(access, reg, val);
160
}
161
}
162
163
static __always_inline
164
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165
struct clock_event_device *clk)
166
{
167
u32 val;
168
169
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170
struct arch_timer *timer = to_arch_timer(clk);
171
switch (reg) {
172
case ARCH_TIMER_REG_CTRL:
173
val = readl_relaxed(timer->base + CNTP_CTL);
174
break;
175
default:
176
BUILD_BUG();
177
}
178
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179
struct arch_timer *timer = to_arch_timer(clk);
180
switch (reg) {
181
case ARCH_TIMER_REG_CTRL:
182
val = readl_relaxed(timer->base + CNTV_CTL);
183
break;
184
default:
185
BUILD_BUG();
186
}
187
} else {
188
val = arch_timer_reg_read_cp15(access, reg);
189
}
190
191
return val;
192
}
193
194
static noinstr u64 raw_counter_get_cntpct_stable(void)
195
{
196
return __arch_counter_get_cntpct_stable();
197
}
198
199
static notrace u64 arch_counter_get_cntpct_stable(void)
200
{
201
u64 val;
202
preempt_disable_notrace();
203
val = __arch_counter_get_cntpct_stable();
204
preempt_enable_notrace();
205
return val;
206
}
207
208
static noinstr u64 arch_counter_get_cntpct(void)
209
{
210
return __arch_counter_get_cntpct();
211
}
212
213
static noinstr u64 raw_counter_get_cntvct_stable(void)
214
{
215
return __arch_counter_get_cntvct_stable();
216
}
217
218
static notrace u64 arch_counter_get_cntvct_stable(void)
219
{
220
u64 val;
221
preempt_disable_notrace();
222
val = __arch_counter_get_cntvct_stable();
223
preempt_enable_notrace();
224
return val;
225
}
226
227
static noinstr u64 arch_counter_get_cntvct(void)
228
{
229
return __arch_counter_get_cntvct();
230
}
231
232
/*
233
* Default to cp15 based access because arm64 uses this function for
234
* sched_clock() before DT is probed and the cp15 method is guaranteed
235
* to exist on arm64. arm doesn't use this before DT is probed so even
236
* if we don't have the cp15 accessors we won't have a problem.
237
*/
238
u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240
241
static u64 arch_counter_read(struct clocksource *cs)
242
{
243
return arch_timer_read_counter();
244
}
245
246
static u64 arch_counter_read_cc(struct cyclecounter *cc)
247
{
248
return arch_timer_read_counter();
249
}
250
251
static struct clocksource clocksource_counter = {
252
.name = "arch_sys_counter",
253
.id = CSID_ARM_ARCH_COUNTER,
254
.rating = 400,
255
.read = arch_counter_read,
256
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
257
};
258
259
static struct cyclecounter cyclecounter __ro_after_init = {
260
.read = arch_counter_read_cc,
261
};
262
263
struct ate_acpi_oem_info {
264
char oem_id[ACPI_OEM_ID_SIZE + 1];
265
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266
u32 oem_revision;
267
};
268
269
#ifdef CONFIG_FSL_ERRATUM_A008585
270
/*
271
* The number of retries is an arbitrary value well beyond the highest number
272
* of iterations the loop has been observed to take.
273
*/
274
#define __fsl_a008585_read_reg(reg) ({ \
275
u64 _old, _new; \
276
int _retries = 200; \
277
\
278
do { \
279
_old = read_sysreg(reg); \
280
_new = read_sysreg(reg); \
281
_retries--; \
282
} while (unlikely(_old != _new) && _retries); \
283
\
284
WARN_ON_ONCE(!_retries); \
285
_new; \
286
})
287
288
static u64 notrace fsl_a008585_read_cntpct_el0(void)
289
{
290
return __fsl_a008585_read_reg(cntpct_el0);
291
}
292
293
static u64 notrace fsl_a008585_read_cntvct_el0(void)
294
{
295
return __fsl_a008585_read_reg(cntvct_el0);
296
}
297
#endif
298
299
#ifdef CONFIG_HISILICON_ERRATUM_161010101
300
/*
301
* Verify whether the value of the second read is larger than the first by
302
* less than 32 is the only way to confirm the value is correct, so clear the
303
* lower 5 bits to check whether the difference is greater than 32 or not.
304
* Theoretically the erratum should not occur more than twice in succession
305
* when reading the system counter, but it is possible that some interrupts
306
* may lead to more than twice read errors, triggering the warning, so setting
307
* the number of retries far beyond the number of iterations the loop has been
308
* observed to take.
309
*/
310
#define __hisi_161010101_read_reg(reg) ({ \
311
u64 _old, _new; \
312
int _retries = 50; \
313
\
314
do { \
315
_old = read_sysreg(reg); \
316
_new = read_sysreg(reg); \
317
_retries--; \
318
} while (unlikely((_new - _old) >> 5) && _retries); \
319
\
320
WARN_ON_ONCE(!_retries); \
321
_new; \
322
})
323
324
static u64 notrace hisi_161010101_read_cntpct_el0(void)
325
{
326
return __hisi_161010101_read_reg(cntpct_el0);
327
}
328
329
static u64 notrace hisi_161010101_read_cntvct_el0(void)
330
{
331
return __hisi_161010101_read_reg(cntvct_el0);
332
}
333
334
static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335
/*
336
* Note that trailing spaces are required to properly match
337
* the OEM table information.
338
*/
339
{
340
.oem_id = "HISI ",
341
.oem_table_id = "HIP05 ",
342
.oem_revision = 0,
343
},
344
{
345
.oem_id = "HISI ",
346
.oem_table_id = "HIP06 ",
347
.oem_revision = 0,
348
},
349
{
350
.oem_id = "HISI ",
351
.oem_table_id = "HIP07 ",
352
.oem_revision = 0,
353
},
354
{ /* Sentinel indicating the end of the OEM array */ },
355
};
356
#endif
357
358
#ifdef CONFIG_ARM64_ERRATUM_858921
359
static u64 notrace arm64_858921_read_cntpct_el0(void)
360
{
361
u64 old, new;
362
363
old = read_sysreg(cntpct_el0);
364
new = read_sysreg(cntpct_el0);
365
return (((old ^ new) >> 32) & 1) ? old : new;
366
}
367
368
static u64 notrace arm64_858921_read_cntvct_el0(void)
369
{
370
u64 old, new;
371
372
old = read_sysreg(cntvct_el0);
373
new = read_sysreg(cntvct_el0);
374
return (((old ^ new) >> 32) & 1) ? old : new;
375
}
376
#endif
377
378
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379
/*
380
* The low bits of the counter registers are indeterminate while bit 10 or
381
* greater is rolling over. Since the counter value can jump both backward
382
* (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383
* with all ones or all zeros in the low bits. Bound the loop by the maximum
384
* number of CPU cycles in 3 consecutive 24 MHz counter periods.
385
*/
386
#define __sun50i_a64_read_reg(reg) ({ \
387
u64 _val; \
388
int _retries = 150; \
389
\
390
do { \
391
_val = read_sysreg(reg); \
392
_retries--; \
393
} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
394
\
395
WARN_ON_ONCE(!_retries); \
396
_val; \
397
})
398
399
static u64 notrace sun50i_a64_read_cntpct_el0(void)
400
{
401
return __sun50i_a64_read_reg(cntpct_el0);
402
}
403
404
static u64 notrace sun50i_a64_read_cntvct_el0(void)
405
{
406
return __sun50i_a64_read_reg(cntvct_el0);
407
}
408
#endif
409
410
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413
414
static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415
416
/*
417
* Force the inlining of this function so that the register accesses
418
* can be themselves correctly inlined.
419
*/
420
static __always_inline
421
void erratum_set_next_event_generic(const int access, unsigned long evt,
422
struct clock_event_device *clk)
423
{
424
unsigned long ctrl;
425
u64 cval;
426
427
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428
ctrl |= ARCH_TIMER_CTRL_ENABLE;
429
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430
431
if (access == ARCH_TIMER_PHYS_ACCESS) {
432
cval = evt + arch_counter_get_cntpct_stable();
433
write_sysreg(cval, cntp_cval_el0);
434
} else {
435
cval = evt + arch_counter_get_cntvct_stable();
436
write_sysreg(cval, cntv_cval_el0);
437
}
438
439
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440
}
441
442
static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443
struct clock_event_device *clk)
444
{
445
erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446
return 0;
447
}
448
449
static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450
struct clock_event_device *clk)
451
{
452
erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453
return 0;
454
}
455
456
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457
#ifdef CONFIG_FSL_ERRATUM_A008585
458
{
459
.match_type = ate_match_dt,
460
.id = "fsl,erratum-a008585",
461
.desc = "Freescale erratum a005858",
462
.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463
.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464
.set_next_event_phys = erratum_set_next_event_phys,
465
.set_next_event_virt = erratum_set_next_event_virt,
466
},
467
#endif
468
#ifdef CONFIG_HISILICON_ERRATUM_161010101
469
{
470
.match_type = ate_match_dt,
471
.id = "hisilicon,erratum-161010101",
472
.desc = "HiSilicon erratum 161010101",
473
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475
.set_next_event_phys = erratum_set_next_event_phys,
476
.set_next_event_virt = erratum_set_next_event_virt,
477
},
478
{
479
.match_type = ate_match_acpi_oem_info,
480
.id = hisi_161010101_oem_info,
481
.desc = "HiSilicon erratum 161010101",
482
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484
.set_next_event_phys = erratum_set_next_event_phys,
485
.set_next_event_virt = erratum_set_next_event_virt,
486
},
487
#endif
488
#ifdef CONFIG_ARM64_ERRATUM_858921
489
{
490
.match_type = ate_match_local_cap_id,
491
.id = (void *)ARM64_WORKAROUND_858921,
492
.desc = "ARM erratum 858921",
493
.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494
.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495
.set_next_event_phys = erratum_set_next_event_phys,
496
.set_next_event_virt = erratum_set_next_event_virt,
497
},
498
#endif
499
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500
{
501
.match_type = ate_match_dt,
502
.id = "allwinner,erratum-unknown1",
503
.desc = "Allwinner erratum UNKNOWN1",
504
.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505
.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506
.set_next_event_phys = erratum_set_next_event_phys,
507
.set_next_event_virt = erratum_set_next_event_virt,
508
},
509
#endif
510
#ifdef CONFIG_ARM64_ERRATUM_1418040
511
{
512
.match_type = ate_match_local_cap_id,
513
.id = (void *)ARM64_WORKAROUND_1418040,
514
.desc = "ARM erratum 1418040",
515
.disable_compat_vdso = true,
516
},
517
#endif
518
};
519
520
typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521
const void *);
522
523
static
524
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525
const void *arg)
526
{
527
const struct device_node *np = arg;
528
529
return of_property_read_bool(np, wa->id);
530
}
531
532
static
533
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534
const void *arg)
535
{
536
return this_cpu_has_cap((uintptr_t)wa->id);
537
}
538
539
540
static
541
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542
const void *arg)
543
{
544
static const struct ate_acpi_oem_info empty_oem_info = {};
545
const struct ate_acpi_oem_info *info = wa->id;
546
const struct acpi_table_header *table = arg;
547
548
/* Iterate over the ACPI OEM info array, looking for a match */
549
while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550
if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551
!memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552
info->oem_revision == table->oem_revision)
553
return true;
554
555
info++;
556
}
557
558
return false;
559
}
560
561
static const struct arch_timer_erratum_workaround *
562
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563
ate_match_fn_t match_fn,
564
void *arg)
565
{
566
int i;
567
568
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569
if (ool_workarounds[i].match_type != type)
570
continue;
571
572
if (match_fn(&ool_workarounds[i], arg))
573
return &ool_workarounds[i];
574
}
575
576
return NULL;
577
}
578
579
static
580
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581
bool local)
582
{
583
int i;
584
585
if (local) {
586
__this_cpu_write(timer_unstable_counter_workaround, wa);
587
} else {
588
for_each_possible_cpu(i)
589
per_cpu(timer_unstable_counter_workaround, i) = wa;
590
}
591
592
if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593
atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594
595
/*
596
* Don't use the vdso fastpath if errata require using the
597
* out-of-line counter accessor. We may change our mind pretty
598
* late in the game (with a per-CPU erratum, for example), so
599
* change both the default value and the vdso itself.
600
*/
601
if (wa->read_cntvct_el0) {
602
clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603
vdso_default = VDSO_CLOCKMODE_NONE;
604
} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605
vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606
clocksource_counter.vdso_clock_mode = vdso_default;
607
}
608
}
609
610
static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611
void *arg)
612
{
613
const struct arch_timer_erratum_workaround *wa, *__wa;
614
ate_match_fn_t match_fn = NULL;
615
bool local = false;
616
617
switch (type) {
618
case ate_match_dt:
619
match_fn = arch_timer_check_dt_erratum;
620
break;
621
case ate_match_local_cap_id:
622
match_fn = arch_timer_check_local_cap_erratum;
623
local = true;
624
break;
625
case ate_match_acpi_oem_info:
626
match_fn = arch_timer_check_acpi_oem_erratum;
627
break;
628
default:
629
WARN_ON(1);
630
return;
631
}
632
633
wa = arch_timer_iterate_errata(type, match_fn, arg);
634
if (!wa)
635
return;
636
637
__wa = __this_cpu_read(timer_unstable_counter_workaround);
638
if (__wa && wa != __wa)
639
pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640
wa->desc, __wa->desc);
641
642
if (__wa)
643
return;
644
645
arch_timer_enable_workaround(wa, local);
646
pr_info("Enabling %s workaround for %s\n",
647
local ? "local" : "global", wa->desc);
648
}
649
650
static bool arch_timer_this_cpu_has_cntvct_wa(void)
651
{
652
return has_erratum_handler(read_cntvct_el0);
653
}
654
655
static bool arch_timer_counter_has_wa(void)
656
{
657
return atomic_read(&timer_unstable_counter_workaround_in_use);
658
}
659
#else
660
#define arch_timer_check_ool_workaround(t,a) do { } while(0)
661
#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
662
#define arch_timer_counter_has_wa() ({false;})
663
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664
665
static __always_inline irqreturn_t timer_handler(const int access,
666
struct clock_event_device *evt)
667
{
668
unsigned long ctrl;
669
670
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672
ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674
evt->event_handler(evt);
675
return IRQ_HANDLED;
676
}
677
678
return IRQ_NONE;
679
}
680
681
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682
{
683
struct clock_event_device *evt = dev_id;
684
685
return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686
}
687
688
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689
{
690
struct clock_event_device *evt = dev_id;
691
692
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693
}
694
695
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696
{
697
struct clock_event_device *evt = dev_id;
698
699
return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700
}
701
702
static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703
{
704
struct clock_event_device *evt = dev_id;
705
706
return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707
}
708
709
static __always_inline int arch_timer_shutdown(const int access,
710
struct clock_event_device *clk)
711
{
712
unsigned long ctrl;
713
714
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717
718
return 0;
719
}
720
721
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722
{
723
return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724
}
725
726
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727
{
728
return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729
}
730
731
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732
{
733
return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734
}
735
736
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737
{
738
return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739
}
740
741
static __always_inline void set_next_event(const int access, unsigned long evt,
742
struct clock_event_device *clk)
743
{
744
unsigned long ctrl;
745
u64 cnt;
746
747
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748
ctrl |= ARCH_TIMER_CTRL_ENABLE;
749
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750
751
if (access == ARCH_TIMER_PHYS_ACCESS)
752
cnt = __arch_counter_get_cntpct();
753
else
754
cnt = __arch_counter_get_cntvct();
755
756
arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758
}
759
760
static int arch_timer_set_next_event_virt(unsigned long evt,
761
struct clock_event_device *clk)
762
{
763
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764
return 0;
765
}
766
767
static int arch_timer_set_next_event_phys(unsigned long evt,
768
struct clock_event_device *clk)
769
{
770
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771
return 0;
772
}
773
774
static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775
{
776
u32 cnt_lo, cnt_hi, tmp_hi;
777
778
do {
779
cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780
cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781
tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782
} while (cnt_hi != tmp_hi);
783
784
return ((u64) cnt_hi << 32) | cnt_lo;
785
}
786
787
static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788
struct clock_event_device *clk)
789
{
790
struct arch_timer *timer = to_arch_timer(clk);
791
unsigned long ctrl;
792
u64 cnt;
793
794
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795
796
/* Timer must be disabled before programming CVAL */
797
if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
798
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
799
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
800
}
801
802
ctrl |= ARCH_TIMER_CTRL_ENABLE;
803
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
804
805
if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
806
cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
807
else
808
cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
809
810
arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
811
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
812
}
813
814
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
815
struct clock_event_device *clk)
816
{
817
set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
818
return 0;
819
}
820
821
static int arch_timer_set_next_event_phys_mem(unsigned long evt,
822
struct clock_event_device *clk)
823
{
824
set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
825
return 0;
826
}
827
828
static u64 __arch_timer_check_delta(void)
829
{
830
#ifdef CONFIG_ARM64
831
const struct midr_range broken_cval_midrs[] = {
832
/*
833
* XGene-1 implements CVAL in terms of TVAL, meaning
834
* that the maximum timer range is 32bit. Shame on them.
835
*
836
* Note that TVAL is signed, thus has only 31 of its
837
* 32 bits to express magnitude.
838
*/
839
MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
840
APM_CPU_PART_XGENE),
841
APM_CPU_VAR_POTENZA, 0x0, 0xf),
842
{},
843
};
844
845
if (is_midr_in_range_list(broken_cval_midrs)) {
846
pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
847
return CLOCKSOURCE_MASK(31);
848
}
849
#endif
850
return CLOCKSOURCE_MASK(arch_counter_get_width());
851
}
852
853
static void __arch_timer_setup(unsigned type,
854
struct clock_event_device *clk)
855
{
856
u64 max_delta;
857
858
clk->features = CLOCK_EVT_FEAT_ONESHOT;
859
860
if (type == ARCH_TIMER_TYPE_CP15) {
861
typeof(clk->set_next_event) sne;
862
863
arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
864
865
if (arch_timer_c3stop)
866
clk->features |= CLOCK_EVT_FEAT_C3STOP;
867
clk->name = "arch_sys_timer";
868
clk->rating = 450;
869
clk->cpumask = cpumask_of(smp_processor_id());
870
clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
871
switch (arch_timer_uses_ppi) {
872
case ARCH_TIMER_VIRT_PPI:
873
clk->set_state_shutdown = arch_timer_shutdown_virt;
874
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
875
sne = erratum_handler(set_next_event_virt);
876
break;
877
case ARCH_TIMER_PHYS_SECURE_PPI:
878
case ARCH_TIMER_PHYS_NONSECURE_PPI:
879
case ARCH_TIMER_HYP_PPI:
880
clk->set_state_shutdown = arch_timer_shutdown_phys;
881
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
882
sne = erratum_handler(set_next_event_phys);
883
break;
884
default:
885
BUG();
886
}
887
888
clk->set_next_event = sne;
889
max_delta = __arch_timer_check_delta();
890
} else {
891
clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
892
clk->name = "arch_mem_timer";
893
clk->rating = 400;
894
clk->cpumask = cpu_possible_mask;
895
if (arch_timer_mem_use_virtual) {
896
clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
897
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
898
clk->set_next_event =
899
arch_timer_set_next_event_virt_mem;
900
} else {
901
clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
902
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
903
clk->set_next_event =
904
arch_timer_set_next_event_phys_mem;
905
}
906
907
max_delta = CLOCKSOURCE_MASK(56);
908
}
909
910
clk->set_state_shutdown(clk);
911
912
clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
913
}
914
915
static void arch_timer_evtstrm_enable(unsigned int divider)
916
{
917
u32 cntkctl = arch_timer_get_cntkctl();
918
919
#ifdef CONFIG_ARM64
920
/* ECV is likely to require a large divider. Use the EVNTIS flag. */
921
if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
922
cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
923
divider -= 8;
924
}
925
#endif
926
927
divider = min(divider, 15U);
928
cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
929
/* Set the divider and enable virtual event stream */
930
cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
931
| ARCH_TIMER_VIRT_EVT_EN;
932
arch_timer_set_cntkctl(cntkctl);
933
arch_timer_set_evtstrm_feature();
934
cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
935
}
936
937
static void arch_timer_configure_evtstream(void)
938
{
939
int evt_stream_div, lsb;
940
941
/*
942
* As the event stream can at most be generated at half the frequency
943
* of the counter, use half the frequency when computing the divider.
944
*/
945
evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
946
947
/*
948
* Find the closest power of two to the divisor. If the adjacent bit
949
* of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
950
*/
951
lsb = fls(evt_stream_div) - 1;
952
if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
953
lsb++;
954
955
/* enable event stream */
956
arch_timer_evtstrm_enable(max(0, lsb));
957
}
958
959
static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
960
{
961
arch_timer_configure_evtstream();
962
return 0;
963
}
964
965
static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
966
{
967
cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
968
return 0;
969
}
970
971
static int __init arch_timer_evtstrm_register(void)
972
{
973
if (!arch_timer_evt || !evtstrm_enable)
974
return 0;
975
976
return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
977
"clockevents/arm/arch_timer_evtstrm:starting",
978
arch_timer_evtstrm_starting_cpu,
979
arch_timer_evtstrm_dying_cpu);
980
}
981
core_initcall(arch_timer_evtstrm_register);
982
983
static void arch_counter_set_user_access(void)
984
{
985
u32 cntkctl = arch_timer_get_cntkctl();
986
987
/* Disable user access to the timers and both counters */
988
/* Also disable virtual event stream */
989
cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
990
| ARCH_TIMER_USR_VT_ACCESS_EN
991
| ARCH_TIMER_USR_VCT_ACCESS_EN
992
| ARCH_TIMER_VIRT_EVT_EN
993
| ARCH_TIMER_USR_PCT_ACCESS_EN);
994
995
/*
996
* Enable user access to the virtual counter if it doesn't
997
* need to be workaround. The vdso may have been already
998
* disabled though.
999
*/
1000
if (arch_timer_this_cpu_has_cntvct_wa())
1001
pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
1002
else
1003
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
1004
1005
arch_timer_set_cntkctl(cntkctl);
1006
}
1007
1008
static bool arch_timer_has_nonsecure_ppi(void)
1009
{
1010
return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
1011
arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1012
}
1013
1014
static u32 check_ppi_trigger(int irq)
1015
{
1016
u32 flags = irq_get_trigger_type(irq);
1017
1018
if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
1019
pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
1020
pr_warn("WARNING: Please fix your firmware\n");
1021
flags = IRQF_TRIGGER_LOW;
1022
}
1023
1024
return flags;
1025
}
1026
1027
static int arch_timer_starting_cpu(unsigned int cpu)
1028
{
1029
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1030
u32 flags;
1031
1032
__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1033
1034
flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1035
enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1036
1037
if (arch_timer_has_nonsecure_ppi()) {
1038
flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1039
enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1040
flags);
1041
}
1042
1043
arch_counter_set_user_access();
1044
1045
return 0;
1046
}
1047
1048
static int validate_timer_rate(void)
1049
{
1050
if (!arch_timer_rate)
1051
return -EINVAL;
1052
1053
/* Arch timer frequency < 1MHz can cause trouble */
1054
WARN_ON(arch_timer_rate < 1000000);
1055
1056
return 0;
1057
}
1058
1059
/*
1060
* For historical reasons, when probing with DT we use whichever (non-zero)
1061
* rate was probed first, and don't verify that others match. If the first node
1062
* probed has a clock-frequency property, this overrides the HW register.
1063
*/
1064
static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1065
{
1066
/* Who has more than one independent system counter? */
1067
if (arch_timer_rate)
1068
return;
1069
1070
if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1071
arch_timer_rate = rate;
1072
1073
/* Check the timer frequency. */
1074
if (validate_timer_rate())
1075
pr_warn("frequency not available\n");
1076
}
1077
1078
static void __init arch_timer_banner(unsigned type)
1079
{
1080
pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1081
type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1082
type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1083
" and " : "",
1084
type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1085
(unsigned long)arch_timer_rate / 1000000,
1086
(unsigned long)(arch_timer_rate / 10000) % 100,
1087
type & ARCH_TIMER_TYPE_CP15 ?
1088
(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1089
"",
1090
type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1091
type & ARCH_TIMER_TYPE_MEM ?
1092
arch_timer_mem_use_virtual ? "virt" : "phys" :
1093
"");
1094
}
1095
1096
u32 arch_timer_get_rate(void)
1097
{
1098
return arch_timer_rate;
1099
}
1100
1101
bool arch_timer_evtstrm_available(void)
1102
{
1103
/*
1104
* We might get called from a preemptible context. This is fine
1105
* because availability of the event stream should be always the same
1106
* for a preemptible context and context where we might resume a task.
1107
*/
1108
return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1109
}
1110
1111
static noinstr u64 arch_counter_get_cntvct_mem(void)
1112
{
1113
return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1114
}
1115
1116
static struct arch_timer_kvm_info arch_timer_kvm_info;
1117
1118
struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1119
{
1120
return &arch_timer_kvm_info;
1121
}
1122
1123
static void __init arch_counter_register(unsigned type)
1124
{
1125
u64 (*scr)(void);
1126
u64 start_count;
1127
int width;
1128
1129
/* Register the CP15 based counter if we have one */
1130
if (type & ARCH_TIMER_TYPE_CP15) {
1131
u64 (*rd)(void);
1132
1133
if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1134
arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1135
if (arch_timer_counter_has_wa()) {
1136
rd = arch_counter_get_cntvct_stable;
1137
scr = raw_counter_get_cntvct_stable;
1138
} else {
1139
rd = arch_counter_get_cntvct;
1140
scr = arch_counter_get_cntvct;
1141
}
1142
} else {
1143
if (arch_timer_counter_has_wa()) {
1144
rd = arch_counter_get_cntpct_stable;
1145
scr = raw_counter_get_cntpct_stable;
1146
} else {
1147
rd = arch_counter_get_cntpct;
1148
scr = arch_counter_get_cntpct;
1149
}
1150
}
1151
1152
arch_timer_read_counter = rd;
1153
clocksource_counter.vdso_clock_mode = vdso_default;
1154
} else {
1155
arch_timer_read_counter = arch_counter_get_cntvct_mem;
1156
scr = arch_counter_get_cntvct_mem;
1157
}
1158
1159
width = arch_counter_get_width();
1160
clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1161
cyclecounter.mask = CLOCKSOURCE_MASK(width);
1162
1163
if (!arch_counter_suspend_stop)
1164
clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1165
start_count = arch_timer_read_counter();
1166
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1167
cyclecounter.mult = clocksource_counter.mult;
1168
cyclecounter.shift = clocksource_counter.shift;
1169
timecounter_init(&arch_timer_kvm_info.timecounter,
1170
&cyclecounter, start_count);
1171
1172
sched_clock_register(scr, width, arch_timer_rate);
1173
}
1174
1175
static void arch_timer_stop(struct clock_event_device *clk)
1176
{
1177
pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1178
1179
disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1180
if (arch_timer_has_nonsecure_ppi())
1181
disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1182
}
1183
1184
static int arch_timer_dying_cpu(unsigned int cpu)
1185
{
1186
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1187
1188
arch_timer_stop(clk);
1189
return 0;
1190
}
1191
1192
#ifdef CONFIG_CPU_PM
1193
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1194
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1195
unsigned long action, void *hcpu)
1196
{
1197
if (action == CPU_PM_ENTER) {
1198
__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1199
1200
cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1201
} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1202
arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1203
1204
if (arch_timer_have_evtstrm_feature())
1205
cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1206
}
1207
return NOTIFY_OK;
1208
}
1209
1210
static struct notifier_block arch_timer_cpu_pm_notifier = {
1211
.notifier_call = arch_timer_cpu_pm_notify,
1212
};
1213
1214
static int __init arch_timer_cpu_pm_init(void)
1215
{
1216
return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1217
}
1218
1219
static void __init arch_timer_cpu_pm_deinit(void)
1220
{
1221
WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1222
}
1223
1224
#else
1225
static int __init arch_timer_cpu_pm_init(void)
1226
{
1227
return 0;
1228
}
1229
1230
static void __init arch_timer_cpu_pm_deinit(void)
1231
{
1232
}
1233
#endif
1234
1235
static int __init arch_timer_register(void)
1236
{
1237
int err;
1238
int ppi;
1239
1240
arch_timer_evt = alloc_percpu(struct clock_event_device);
1241
if (!arch_timer_evt) {
1242
err = -ENOMEM;
1243
goto out;
1244
}
1245
1246
ppi = arch_timer_ppi[arch_timer_uses_ppi];
1247
switch (arch_timer_uses_ppi) {
1248
case ARCH_TIMER_VIRT_PPI:
1249
err = request_percpu_irq(ppi, arch_timer_handler_virt,
1250
"arch_timer", arch_timer_evt);
1251
break;
1252
case ARCH_TIMER_PHYS_SECURE_PPI:
1253
case ARCH_TIMER_PHYS_NONSECURE_PPI:
1254
err = request_percpu_irq(ppi, arch_timer_handler_phys,
1255
"arch_timer", arch_timer_evt);
1256
if (!err && arch_timer_has_nonsecure_ppi()) {
1257
ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1258
err = request_percpu_irq(ppi, arch_timer_handler_phys,
1259
"arch_timer", arch_timer_evt);
1260
if (err)
1261
free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1262
arch_timer_evt);
1263
}
1264
break;
1265
case ARCH_TIMER_HYP_PPI:
1266
err = request_percpu_irq(ppi, arch_timer_handler_phys,
1267
"arch_timer", arch_timer_evt);
1268
break;
1269
default:
1270
BUG();
1271
}
1272
1273
if (err) {
1274
pr_err("can't register interrupt %d (%d)\n", ppi, err);
1275
goto out_free;
1276
}
1277
1278
err = arch_timer_cpu_pm_init();
1279
if (err)
1280
goto out_unreg_notify;
1281
1282
/* Register and immediately configure the timer on the boot CPU */
1283
err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1284
"clockevents/arm/arch_timer:starting",
1285
arch_timer_starting_cpu, arch_timer_dying_cpu);
1286
if (err)
1287
goto out_unreg_cpupm;
1288
return 0;
1289
1290
out_unreg_cpupm:
1291
arch_timer_cpu_pm_deinit();
1292
1293
out_unreg_notify:
1294
free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1295
if (arch_timer_has_nonsecure_ppi())
1296
free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1297
arch_timer_evt);
1298
1299
out_free:
1300
free_percpu(arch_timer_evt);
1301
arch_timer_evt = NULL;
1302
out:
1303
return err;
1304
}
1305
1306
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1307
{
1308
int ret;
1309
irq_handler_t func;
1310
1311
arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1312
if (!arch_timer_mem)
1313
return -ENOMEM;
1314
1315
arch_timer_mem->base = base;
1316
arch_timer_mem->evt.irq = irq;
1317
__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1318
1319
if (arch_timer_mem_use_virtual)
1320
func = arch_timer_handler_virt_mem;
1321
else
1322
func = arch_timer_handler_phys_mem;
1323
1324
ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1325
if (ret) {
1326
pr_err("Failed to request mem timer irq\n");
1327
kfree(arch_timer_mem);
1328
arch_timer_mem = NULL;
1329
}
1330
1331
return ret;
1332
}
1333
1334
static const struct of_device_id arch_timer_of_match[] __initconst = {
1335
{ .compatible = "arm,armv7-timer", },
1336
{ .compatible = "arm,armv8-timer", },
1337
{},
1338
};
1339
1340
static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1341
{ .compatible = "arm,armv7-timer-mem", },
1342
{},
1343
};
1344
1345
static bool __init arch_timer_needs_of_probing(void)
1346
{
1347
struct device_node *dn;
1348
bool needs_probing = false;
1349
unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1350
1351
/* We have two timers, and both device-tree nodes are probed. */
1352
if ((arch_timers_present & mask) == mask)
1353
return false;
1354
1355
/*
1356
* Only one type of timer is probed,
1357
* check if we have another type of timer node in device-tree.
1358
*/
1359
if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1360
dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1361
else
1362
dn = of_find_matching_node(NULL, arch_timer_of_match);
1363
1364
if (dn && of_device_is_available(dn))
1365
needs_probing = true;
1366
1367
of_node_put(dn);
1368
1369
return needs_probing;
1370
}
1371
1372
static int __init arch_timer_common_init(void)
1373
{
1374
arch_timer_banner(arch_timers_present);
1375
arch_counter_register(arch_timers_present);
1376
return arch_timer_arch_init();
1377
}
1378
1379
/**
1380
* arch_timer_select_ppi() - Select suitable PPI for the current system.
1381
*
1382
* If HYP mode is available, we know that the physical timer
1383
* has been configured to be accessible from PL1. Use it, so
1384
* that a guest can use the virtual timer instead.
1385
*
1386
* On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1387
* accesses to CNTP_*_EL1 registers are silently redirected to
1388
* their CNTHP_*_EL2 counterparts, and use a different PPI
1389
* number.
1390
*
1391
* If no interrupt provided for virtual timer, we'll have to
1392
* stick to the physical timer. It'd better be accessible...
1393
* For arm64 we never use the secure interrupt.
1394
*
1395
* Return: a suitable PPI type for the current system.
1396
*/
1397
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1398
{
1399
if (is_kernel_in_hyp_mode())
1400
return ARCH_TIMER_HYP_PPI;
1401
1402
if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1403
return ARCH_TIMER_VIRT_PPI;
1404
1405
if (IS_ENABLED(CONFIG_ARM64))
1406
return ARCH_TIMER_PHYS_NONSECURE_PPI;
1407
1408
return ARCH_TIMER_PHYS_SECURE_PPI;
1409
}
1410
1411
static void __init arch_timer_populate_kvm_info(void)
1412
{
1413
arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1414
if (is_kernel_in_hyp_mode())
1415
arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1416
}
1417
1418
static int __init arch_timer_of_init(struct device_node *np)
1419
{
1420
int i, irq, ret;
1421
u32 rate;
1422
bool has_names;
1423
1424
if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1425
pr_warn("multiple nodes in dt, skipping\n");
1426
return 0;
1427
}
1428
1429
arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1430
1431
has_names = of_property_present(np, "interrupt-names");
1432
1433
for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1434
if (has_names)
1435
irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1436
else
1437
irq = of_irq_get(np, i);
1438
if (irq > 0)
1439
arch_timer_ppi[i] = irq;
1440
}
1441
1442
arch_timer_populate_kvm_info();
1443
1444
rate = arch_timer_get_cntfrq();
1445
arch_timer_of_configure_rate(rate, np);
1446
1447
arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1448
1449
/* Check for globally applicable workarounds */
1450
arch_timer_check_ool_workaround(ate_match_dt, np);
1451
1452
/*
1453
* If we cannot rely on firmware initializing the timer registers then
1454
* we should use the physical timers instead.
1455
*/
1456
if (IS_ENABLED(CONFIG_ARM) &&
1457
of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1458
arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1459
else
1460
arch_timer_uses_ppi = arch_timer_select_ppi();
1461
1462
if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1463
pr_err("No interrupt available, giving up\n");
1464
return -EINVAL;
1465
}
1466
1467
/* On some systems, the counter stops ticking when in suspend. */
1468
arch_counter_suspend_stop = of_property_read_bool(np,
1469
"arm,no-tick-in-suspend");
1470
1471
ret = arch_timer_register();
1472
if (ret)
1473
return ret;
1474
1475
if (arch_timer_needs_of_probing())
1476
return 0;
1477
1478
return arch_timer_common_init();
1479
}
1480
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1481
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1482
1483
static u32 __init
1484
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1485
{
1486
void __iomem *base;
1487
u32 rate;
1488
1489
base = ioremap(frame->cntbase, frame->size);
1490
if (!base) {
1491
pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1492
return 0;
1493
}
1494
1495
rate = readl_relaxed(base + CNTFRQ);
1496
1497
iounmap(base);
1498
1499
return rate;
1500
}
1501
1502
static struct arch_timer_mem_frame * __init
1503
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1504
{
1505
struct arch_timer_mem_frame *frame, *best_frame = NULL;
1506
void __iomem *cntctlbase;
1507
u32 cnttidr;
1508
int i;
1509
1510
cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1511
if (!cntctlbase) {
1512
pr_err("Can't map CNTCTLBase @ %pa\n",
1513
&timer_mem->cntctlbase);
1514
return NULL;
1515
}
1516
1517
cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1518
1519
/*
1520
* Try to find a virtual capable frame. Otherwise fall back to a
1521
* physical capable frame.
1522
*/
1523
for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1524
u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1525
CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1526
1527
frame = &timer_mem->frame[i];
1528
if (!frame->valid)
1529
continue;
1530
1531
/* Try enabling everything, and see what sticks */
1532
writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1533
cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1534
1535
if ((cnttidr & CNTTIDR_VIRT(i)) &&
1536
!(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1537
best_frame = frame;
1538
arch_timer_mem_use_virtual = true;
1539
break;
1540
}
1541
1542
if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1543
continue;
1544
1545
best_frame = frame;
1546
}
1547
1548
iounmap(cntctlbase);
1549
1550
return best_frame;
1551
}
1552
1553
static int __init
1554
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1555
{
1556
void __iomem *base;
1557
int ret, irq;
1558
1559
if (arch_timer_mem_use_virtual)
1560
irq = frame->virt_irq;
1561
else
1562
irq = frame->phys_irq;
1563
1564
if (!irq) {
1565
pr_err("Frame missing %s irq.\n",
1566
arch_timer_mem_use_virtual ? "virt" : "phys");
1567
return -EINVAL;
1568
}
1569
1570
if (!request_mem_region(frame->cntbase, frame->size,
1571
"arch_mem_timer"))
1572
return -EBUSY;
1573
1574
base = ioremap(frame->cntbase, frame->size);
1575
if (!base) {
1576
pr_err("Can't map frame's registers\n");
1577
return -ENXIO;
1578
}
1579
1580
ret = arch_timer_mem_register(base, irq);
1581
if (ret) {
1582
iounmap(base);
1583
return ret;
1584
}
1585
1586
arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1587
1588
return 0;
1589
}
1590
1591
static int __init arch_timer_mem_of_init(struct device_node *np)
1592
{
1593
struct arch_timer_mem *timer_mem;
1594
struct arch_timer_mem_frame *frame;
1595
struct resource res;
1596
int ret = -EINVAL;
1597
u32 rate;
1598
1599
timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1600
if (!timer_mem)
1601
return -ENOMEM;
1602
1603
if (of_address_to_resource(np, 0, &res))
1604
goto out;
1605
timer_mem->cntctlbase = res.start;
1606
timer_mem->size = resource_size(&res);
1607
1608
for_each_available_child_of_node_scoped(np, frame_node) {
1609
u32 n;
1610
struct arch_timer_mem_frame *frame;
1611
1612
if (of_property_read_u32(frame_node, "frame-number", &n)) {
1613
pr_err(FW_BUG "Missing frame-number.\n");
1614
goto out;
1615
}
1616
if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1617
pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1618
ARCH_TIMER_MEM_MAX_FRAMES - 1);
1619
goto out;
1620
}
1621
frame = &timer_mem->frame[n];
1622
1623
if (frame->valid) {
1624
pr_err(FW_BUG "Duplicated frame-number.\n");
1625
goto out;
1626
}
1627
1628
if (of_address_to_resource(frame_node, 0, &res))
1629
goto out;
1630
1631
frame->cntbase = res.start;
1632
frame->size = resource_size(&res);
1633
1634
frame->virt_irq = irq_of_parse_and_map(frame_node,
1635
ARCH_TIMER_VIRT_SPI);
1636
frame->phys_irq = irq_of_parse_and_map(frame_node,
1637
ARCH_TIMER_PHYS_SPI);
1638
1639
frame->valid = true;
1640
}
1641
1642
frame = arch_timer_mem_find_best_frame(timer_mem);
1643
if (!frame) {
1644
pr_err("Unable to find a suitable frame in timer @ %pa\n",
1645
&timer_mem->cntctlbase);
1646
ret = -EINVAL;
1647
goto out;
1648
}
1649
1650
rate = arch_timer_mem_frame_get_cntfrq(frame);
1651
arch_timer_of_configure_rate(rate, np);
1652
1653
ret = arch_timer_mem_frame_register(frame);
1654
if (!ret && !arch_timer_needs_of_probing())
1655
ret = arch_timer_common_init();
1656
out:
1657
kfree(timer_mem);
1658
return ret;
1659
}
1660
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1661
arch_timer_mem_of_init);
1662
1663
#ifdef CONFIG_ACPI_GTDT
1664
static int __init
1665
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1666
{
1667
struct arch_timer_mem_frame *frame;
1668
u32 rate;
1669
int i;
1670
1671
for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1672
frame = &timer_mem->frame[i];
1673
1674
if (!frame->valid)
1675
continue;
1676
1677
rate = arch_timer_mem_frame_get_cntfrq(frame);
1678
if (rate == arch_timer_rate)
1679
continue;
1680
1681
pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1682
&frame->cntbase,
1683
(unsigned long)rate, (unsigned long)arch_timer_rate);
1684
1685
return -EINVAL;
1686
}
1687
1688
return 0;
1689
}
1690
1691
static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1692
{
1693
struct arch_timer_mem *timers, *timer;
1694
struct arch_timer_mem_frame *frame, *best_frame = NULL;
1695
int timer_count, i, ret = 0;
1696
1697
timers = kcalloc(platform_timer_count, sizeof(*timers),
1698
GFP_KERNEL);
1699
if (!timers)
1700
return -ENOMEM;
1701
1702
ret = acpi_arch_timer_mem_init(timers, &timer_count);
1703
if (ret || !timer_count)
1704
goto out;
1705
1706
/*
1707
* While unlikely, it's theoretically possible that none of the frames
1708
* in a timer expose the combination of feature we want.
1709
*/
1710
for (i = 0; i < timer_count; i++) {
1711
timer = &timers[i];
1712
1713
frame = arch_timer_mem_find_best_frame(timer);
1714
if (!best_frame)
1715
best_frame = frame;
1716
1717
ret = arch_timer_mem_verify_cntfrq(timer);
1718
if (ret) {
1719
pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1720
goto out;
1721
}
1722
1723
if (!best_frame) /* implies !frame */
1724
/*
1725
* Only complain about missing suitable frames if we
1726
* haven't already found one in a previous iteration.
1727
*/
1728
pr_err("Unable to find a suitable frame in timer @ %pa\n",
1729
&timer->cntctlbase);
1730
}
1731
1732
if (best_frame)
1733
ret = arch_timer_mem_frame_register(best_frame);
1734
out:
1735
kfree(timers);
1736
return ret;
1737
}
1738
1739
/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1740
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1741
{
1742
int ret, platform_timer_count;
1743
1744
if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1745
pr_warn("already initialized, skipping\n");
1746
return -EINVAL;
1747
}
1748
1749
arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1750
1751
ret = acpi_gtdt_init(table, &platform_timer_count);
1752
if (ret)
1753
return ret;
1754
1755
arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1756
acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1757
1758
arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1759
acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1760
1761
arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1762
acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1763
1764
arch_timer_populate_kvm_info();
1765
1766
/*
1767
* When probing via ACPI, we have no mechanism to override the sysreg
1768
* CNTFRQ value. This *must* be correct.
1769
*/
1770
arch_timer_rate = arch_timer_get_cntfrq();
1771
ret = validate_timer_rate();
1772
if (ret) {
1773
pr_err(FW_BUG "frequency not available.\n");
1774
return ret;
1775
}
1776
1777
arch_timer_uses_ppi = arch_timer_select_ppi();
1778
if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1779
pr_err("No interrupt available, giving up\n");
1780
return -EINVAL;
1781
}
1782
1783
/* Always-on capability */
1784
arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1785
1786
/* Check for globally applicable workarounds */
1787
arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1788
1789
ret = arch_timer_register();
1790
if (ret)
1791
return ret;
1792
1793
if (platform_timer_count &&
1794
arch_timer_mem_acpi_init(platform_timer_count))
1795
pr_err("Failed to initialize memory-mapped timer.\n");
1796
1797
return arch_timer_common_init();
1798
}
1799
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1800
#endif
1801
1802
int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1803
enum clocksource_ids *cs_id)
1804
{
1805
struct arm_smccc_res hvc_res;
1806
u32 ptp_counter;
1807
ktime_t ktime;
1808
1809
if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1810
return -EOPNOTSUPP;
1811
1812
if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1813
ptp_counter = KVM_PTP_VIRT_COUNTER;
1814
else
1815
ptp_counter = KVM_PTP_PHYS_COUNTER;
1816
1817
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1818
ptp_counter, &hvc_res);
1819
1820
if ((int)(hvc_res.a0) < 0)
1821
return -EOPNOTSUPP;
1822
1823
ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1824
*ts = ktime_to_timespec64(ktime);
1825
if (cycle)
1826
*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1827
if (cs_id)
1828
*cs_id = CSID_ARM_ARCH_COUNTER;
1829
1830
return 0;
1831
}
1832
EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1833
1834