Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/dw_apb_timer.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* (C) Copyright 2009 Intel Corporation
4
* Author: Jacob Pan ([email protected])
5
*
6
* Shared with ARM platforms, Jamie Iles, Picochip 2011
7
*
8
* Support for the Synopsys DesignWare APB Timers.
9
*/
10
#include <linux/dw_apb_timer.h>
11
#include <linux/delay.h>
12
#include <linux/kernel.h>
13
#include <linux/interrupt.h>
14
#include <linux/irq.h>
15
#include <linux/io.h>
16
#include <linux/slab.h>
17
18
#define APBT_MIN_PERIOD 4
19
#define APBT_MIN_DELTA_USEC 200
20
21
#define APBTMR_N_LOAD_COUNT 0x00
22
#define APBTMR_N_CURRENT_VALUE 0x04
23
#define APBTMR_N_CONTROL 0x08
24
#define APBTMR_N_EOI 0x0c
25
#define APBTMR_N_INT_STATUS 0x10
26
27
#define APBTMRS_INT_STATUS 0xa0
28
#define APBTMRS_EOI 0xa4
29
#define APBTMRS_RAW_INT_STATUS 0xa8
30
#define APBTMRS_COMP_VERSION 0xac
31
32
#define APBTMR_CONTROL_ENABLE (1 << 0)
33
/* 1: periodic, 0:free running. */
34
#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
35
#define APBTMR_CONTROL_INT (1 << 2)
36
37
static inline struct dw_apb_clock_event_device *
38
ced_to_dw_apb_ced(struct clock_event_device *evt)
39
{
40
return container_of(evt, struct dw_apb_clock_event_device, ced);
41
}
42
43
static inline struct dw_apb_clocksource *
44
clocksource_to_dw_apb_clocksource(struct clocksource *cs)
45
{
46
return container_of(cs, struct dw_apb_clocksource, cs);
47
}
48
49
static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
50
{
51
return readl(timer->base + offs);
52
}
53
54
static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
55
unsigned long offs)
56
{
57
writel(val, timer->base + offs);
58
}
59
60
static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
61
{
62
return readl_relaxed(timer->base + offs);
63
}
64
65
static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
66
unsigned long offs)
67
{
68
writel_relaxed(val, timer->base + offs);
69
}
70
71
static void apbt_eoi(struct dw_apb_timer *timer)
72
{
73
apbt_readl_relaxed(timer, APBTMR_N_EOI);
74
}
75
76
static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
77
{
78
struct clock_event_device *evt = data;
79
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
80
81
if (!evt->event_handler) {
82
pr_info("Spurious APBT timer interrupt %d\n", irq);
83
return IRQ_NONE;
84
}
85
86
if (dw_ced->eoi)
87
dw_ced->eoi(&dw_ced->timer);
88
89
evt->event_handler(evt);
90
return IRQ_HANDLED;
91
}
92
93
static void apbt_enable_int(struct dw_apb_timer *timer)
94
{
95
u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
96
/* clear pending intr */
97
apbt_readl(timer, APBTMR_N_EOI);
98
ctrl &= ~APBTMR_CONTROL_INT;
99
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
100
}
101
102
static int apbt_shutdown(struct clock_event_device *evt)
103
{
104
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
105
u32 ctrl;
106
107
pr_debug("%s CPU %d state=shutdown\n", __func__,
108
cpumask_first(evt->cpumask));
109
110
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
111
ctrl &= ~APBTMR_CONTROL_ENABLE;
112
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
113
return 0;
114
}
115
116
static int apbt_set_oneshot(struct clock_event_device *evt)
117
{
118
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119
u32 ctrl;
120
121
pr_debug("%s CPU %d state=oneshot\n", __func__,
122
cpumask_first(evt->cpumask));
123
124
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
125
/*
126
* set free running mode, this mode will let timer reload max
127
* timeout which will give time (3min on 25MHz clock) to rearm
128
* the next event, therefore emulate the one-shot mode.
129
*/
130
ctrl &= ~APBTMR_CONTROL_ENABLE;
131
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
132
133
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
134
/* write again to set free running mode */
135
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
136
137
/*
138
* DW APB p. 46, load counter with all 1s before starting free
139
* running mode.
140
*/
141
apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
142
ctrl &= ~APBTMR_CONTROL_INT;
143
ctrl |= APBTMR_CONTROL_ENABLE;
144
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
145
return 0;
146
}
147
148
static int apbt_set_periodic(struct clock_event_device *evt)
149
{
150
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
151
unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
152
u32 ctrl;
153
154
pr_debug("%s CPU %d state=periodic\n", __func__,
155
cpumask_first(evt->cpumask));
156
157
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
158
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
159
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
160
/*
161
* DW APB p. 46, have to disable timer before load counter,
162
* may cause sync problem.
163
*/
164
ctrl &= ~APBTMR_CONTROL_ENABLE;
165
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
166
udelay(1);
167
pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
168
apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
169
ctrl |= APBTMR_CONTROL_ENABLE;
170
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171
return 0;
172
}
173
174
static int apbt_resume(struct clock_event_device *evt)
175
{
176
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
177
178
pr_debug("%s CPU %d state=resume\n", __func__,
179
cpumask_first(evt->cpumask));
180
181
apbt_enable_int(&dw_ced->timer);
182
return 0;
183
}
184
185
static int apbt_next_event(unsigned long delta,
186
struct clock_event_device *evt)
187
{
188
u32 ctrl;
189
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
190
191
/* Disable timer */
192
ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
193
ctrl &= ~APBTMR_CONTROL_ENABLE;
194
apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
195
/* write new count */
196
apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
197
ctrl |= APBTMR_CONTROL_ENABLE;
198
apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
199
200
return 0;
201
}
202
203
/**
204
* dw_apb_clockevent_init() - use an APB timer as a clock_event_device
205
*
206
* @cpu: The CPU the events will be targeted at or -1 if CPU affiliation
207
* isn't required.
208
* @name: The name used for the timer and the IRQ for it.
209
* @rating: The rating to give the timer.
210
* @base: I/O base for the timer registers.
211
* @irq: The interrupt number to use for the timer.
212
* @freq: The frequency that the timer counts at.
213
*
214
* This creates a clock_event_device for using with the generic clock layer
215
* but does not start and register it. This should be done with
216
* dw_apb_clockevent_register() as the next step. If this is the first time
217
* it has been called for a timer then the IRQ will be requested, if not it
218
* just be enabled to allow CPU hotplug to avoid repeatedly requesting and
219
* releasing the IRQ.
220
*/
221
struct dw_apb_clock_event_device *
222
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
223
void __iomem *base, int irq, unsigned long freq)
224
{
225
struct dw_apb_clock_event_device *dw_ced =
226
kzalloc(sizeof(*dw_ced), GFP_KERNEL);
227
int err;
228
229
if (!dw_ced)
230
return NULL;
231
232
dw_ced->timer.base = base;
233
dw_ced->timer.irq = irq;
234
dw_ced->timer.freq = freq;
235
236
clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
237
dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
238
&dw_ced->ced);
239
dw_ced->ced.max_delta_ticks = 0x7fffffff;
240
dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
241
dw_ced->ced.min_delta_ticks = 5000;
242
dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
243
dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
244
CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
245
dw_ced->ced.set_state_shutdown = apbt_shutdown;
246
dw_ced->ced.set_state_periodic = apbt_set_periodic;
247
dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
248
dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
249
dw_ced->ced.tick_resume = apbt_resume;
250
dw_ced->ced.set_next_event = apbt_next_event;
251
dw_ced->ced.irq = dw_ced->timer.irq;
252
dw_ced->ced.rating = rating;
253
dw_ced->ced.name = name;
254
255
dw_ced->eoi = apbt_eoi;
256
err = request_irq(irq, dw_apb_clockevent_irq,
257
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
258
dw_ced->ced.name, &dw_ced->ced);
259
if (err) {
260
pr_err("failed to request timer irq\n");
261
kfree(dw_ced);
262
dw_ced = NULL;
263
}
264
265
return dw_ced;
266
}
267
268
/**
269
* dw_apb_clockevent_register() - register the clock with the generic layer
270
*
271
* @dw_ced: The APB clock to register as a clock_event_device.
272
*/
273
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
274
{
275
apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
276
clockevents_register_device(&dw_ced->ced);
277
apbt_enable_int(&dw_ced->timer);
278
}
279
280
/**
281
* dw_apb_clocksource_start() - start the clocksource counting.
282
*
283
* @dw_cs: The clocksource to start.
284
*
285
* This is used to start the clocksource before registration and can be used
286
* to enable calibration of timers.
287
*/
288
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
289
{
290
/*
291
* start count down from 0xffff_ffff. this is done by toggling the
292
* enable bit then load initial load count to ~0.
293
*/
294
u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
295
296
ctrl &= ~APBTMR_CONTROL_ENABLE;
297
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
298
apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
299
/* enable, mask interrupt */
300
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
301
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
302
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
303
/* read it once to get cached counter value initialized */
304
dw_apb_clocksource_read(dw_cs);
305
}
306
307
static u64 __apbt_read_clocksource(struct clocksource *cs)
308
{
309
u32 current_count;
310
struct dw_apb_clocksource *dw_cs =
311
clocksource_to_dw_apb_clocksource(cs);
312
313
current_count = apbt_readl_relaxed(&dw_cs->timer,
314
APBTMR_N_CURRENT_VALUE);
315
316
return (u64)~current_count;
317
}
318
319
static void apbt_restart_clocksource(struct clocksource *cs)
320
{
321
struct dw_apb_clocksource *dw_cs =
322
clocksource_to_dw_apb_clocksource(cs);
323
324
dw_apb_clocksource_start(dw_cs);
325
}
326
327
/**
328
* dw_apb_clocksource_init() - use an APB timer as a clocksource.
329
*
330
* @rating: The rating to give the clocksource.
331
* @name: The name for the clocksource.
332
* @base: The I/O base for the timer registers.
333
* @freq: The frequency that the timer counts at.
334
*
335
* This creates a clocksource using an APB timer but does not yet register it
336
* with the clocksource system. This should be done with
337
* dw_apb_clocksource_register() as the next step.
338
*/
339
struct dw_apb_clocksource *
340
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
341
unsigned long freq)
342
{
343
struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
344
345
if (!dw_cs)
346
return NULL;
347
348
dw_cs->timer.base = base;
349
dw_cs->timer.freq = freq;
350
dw_cs->cs.name = name;
351
dw_cs->cs.rating = rating;
352
dw_cs->cs.read = __apbt_read_clocksource;
353
dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
354
dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
355
dw_cs->cs.resume = apbt_restart_clocksource;
356
357
return dw_cs;
358
}
359
360
/**
361
* dw_apb_clocksource_register() - register the APB clocksource.
362
*
363
* @dw_cs: The clocksource to register.
364
*/
365
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
366
{
367
clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
368
}
369
370
/**
371
* dw_apb_clocksource_read() - read the current value of a clocksource.
372
*
373
* @dw_cs: The clocksource to read.
374
*/
375
u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
376
{
377
return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
378
}
379
380