Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/em_sti.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Emma Mobile Timer Support - STI
4
*
5
* Copyright (C) 2012 Magnus Damm
6
*/
7
8
#include <linux/init.h>
9
#include <linux/platform_device.h>
10
#include <linux/spinlock.h>
11
#include <linux/interrupt.h>
12
#include <linux/ioport.h>
13
#include <linux/io.h>
14
#include <linux/clk.h>
15
#include <linux/irq.h>
16
#include <linux/err.h>
17
#include <linux/delay.h>
18
#include <linux/clocksource.h>
19
#include <linux/clockchips.h>
20
#include <linux/slab.h>
21
#include <linux/module.h>
22
23
enum { USER_CLOCKSOURCE, USER_CLOCKEVENT, USER_NR };
24
25
struct em_sti_priv {
26
void __iomem *base;
27
struct clk *clk;
28
struct platform_device *pdev;
29
unsigned int active[USER_NR];
30
unsigned long rate;
31
raw_spinlock_t lock;
32
struct clock_event_device ced;
33
struct clocksource cs;
34
};
35
36
#define STI_CONTROL 0x00
37
#define STI_COMPA_H 0x10
38
#define STI_COMPA_L 0x14
39
#define STI_COMPB_H 0x18
40
#define STI_COMPB_L 0x1c
41
#define STI_COUNT_H 0x20
42
#define STI_COUNT_L 0x24
43
#define STI_COUNT_RAW_H 0x28
44
#define STI_COUNT_RAW_L 0x2c
45
#define STI_SET_H 0x30
46
#define STI_SET_L 0x34
47
#define STI_INTSTATUS 0x40
48
#define STI_INTRAWSTATUS 0x44
49
#define STI_INTENSET 0x48
50
#define STI_INTENCLR 0x4c
51
#define STI_INTFFCLR 0x50
52
53
static inline unsigned long em_sti_read(struct em_sti_priv *p, int offs)
54
{
55
return ioread32(p->base + offs);
56
}
57
58
static inline void em_sti_write(struct em_sti_priv *p, int offs,
59
unsigned long value)
60
{
61
iowrite32(value, p->base + offs);
62
}
63
64
static int em_sti_enable(struct em_sti_priv *p)
65
{
66
int ret;
67
68
/* enable clock */
69
ret = clk_enable(p->clk);
70
if (ret) {
71
dev_err(&p->pdev->dev, "cannot enable clock\n");
72
return ret;
73
}
74
75
/* reset the counter */
76
em_sti_write(p, STI_SET_H, 0x40000000);
77
em_sti_write(p, STI_SET_L, 0x00000000);
78
79
/* mask and clear pending interrupts */
80
em_sti_write(p, STI_INTENCLR, 3);
81
em_sti_write(p, STI_INTFFCLR, 3);
82
83
/* enable updates of counter registers */
84
em_sti_write(p, STI_CONTROL, 1);
85
86
return 0;
87
}
88
89
static void em_sti_disable(struct em_sti_priv *p)
90
{
91
/* mask interrupts */
92
em_sti_write(p, STI_INTENCLR, 3);
93
94
/* stop clock */
95
clk_disable(p->clk);
96
}
97
98
static u64 em_sti_count(struct em_sti_priv *p)
99
{
100
u64 ticks;
101
unsigned long flags;
102
103
/* the STI hardware buffers the 48-bit count, but to
104
* break it out into two 32-bit access the registers
105
* must be accessed in a certain order.
106
* Always read STI_COUNT_H before STI_COUNT_L.
107
*/
108
raw_spin_lock_irqsave(&p->lock, flags);
109
ticks = (u64)(em_sti_read(p, STI_COUNT_H) & 0xffff) << 32;
110
ticks |= em_sti_read(p, STI_COUNT_L);
111
raw_spin_unlock_irqrestore(&p->lock, flags);
112
113
return ticks;
114
}
115
116
static u64 em_sti_set_next(struct em_sti_priv *p, u64 next)
117
{
118
unsigned long flags;
119
120
raw_spin_lock_irqsave(&p->lock, flags);
121
122
/* mask compare A interrupt */
123
em_sti_write(p, STI_INTENCLR, 1);
124
125
/* update compare A value */
126
em_sti_write(p, STI_COMPA_H, next >> 32);
127
em_sti_write(p, STI_COMPA_L, next & 0xffffffff);
128
129
/* clear compare A interrupt source */
130
em_sti_write(p, STI_INTFFCLR, 1);
131
132
/* unmask compare A interrupt */
133
em_sti_write(p, STI_INTENSET, 1);
134
135
raw_spin_unlock_irqrestore(&p->lock, flags);
136
137
return next;
138
}
139
140
static irqreturn_t em_sti_interrupt(int irq, void *dev_id)
141
{
142
struct em_sti_priv *p = dev_id;
143
144
p->ced.event_handler(&p->ced);
145
return IRQ_HANDLED;
146
}
147
148
static int em_sti_start(struct em_sti_priv *p, unsigned int user)
149
{
150
unsigned long flags;
151
int used_before;
152
int ret = 0;
153
154
raw_spin_lock_irqsave(&p->lock, flags);
155
used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
156
if (!used_before)
157
ret = em_sti_enable(p);
158
159
if (!ret)
160
p->active[user] = 1;
161
raw_spin_unlock_irqrestore(&p->lock, flags);
162
163
return ret;
164
}
165
166
static void em_sti_stop(struct em_sti_priv *p, unsigned int user)
167
{
168
unsigned long flags;
169
int used_before, used_after;
170
171
raw_spin_lock_irqsave(&p->lock, flags);
172
used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
173
p->active[user] = 0;
174
used_after = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
175
176
if (used_before && !used_after)
177
em_sti_disable(p);
178
raw_spin_unlock_irqrestore(&p->lock, flags);
179
}
180
181
static struct em_sti_priv *cs_to_em_sti(struct clocksource *cs)
182
{
183
return container_of(cs, struct em_sti_priv, cs);
184
}
185
186
static u64 em_sti_clocksource_read(struct clocksource *cs)
187
{
188
return em_sti_count(cs_to_em_sti(cs));
189
}
190
191
static int em_sti_clocksource_enable(struct clocksource *cs)
192
{
193
struct em_sti_priv *p = cs_to_em_sti(cs);
194
195
return em_sti_start(p, USER_CLOCKSOURCE);
196
}
197
198
static void em_sti_clocksource_disable(struct clocksource *cs)
199
{
200
em_sti_stop(cs_to_em_sti(cs), USER_CLOCKSOURCE);
201
}
202
203
static void em_sti_clocksource_resume(struct clocksource *cs)
204
{
205
em_sti_clocksource_enable(cs);
206
}
207
208
static int em_sti_register_clocksource(struct em_sti_priv *p)
209
{
210
struct clocksource *cs = &p->cs;
211
212
cs->name = dev_name(&p->pdev->dev);
213
cs->rating = 200;
214
cs->read = em_sti_clocksource_read;
215
cs->enable = em_sti_clocksource_enable;
216
cs->disable = em_sti_clocksource_disable;
217
cs->suspend = em_sti_clocksource_disable;
218
cs->resume = em_sti_clocksource_resume;
219
cs->mask = CLOCKSOURCE_MASK(48);
220
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
221
222
dev_info(&p->pdev->dev, "used as clock source\n");
223
224
clocksource_register_hz(cs, p->rate);
225
return 0;
226
}
227
228
static struct em_sti_priv *ced_to_em_sti(struct clock_event_device *ced)
229
{
230
return container_of(ced, struct em_sti_priv, ced);
231
}
232
233
static int em_sti_clock_event_shutdown(struct clock_event_device *ced)
234
{
235
struct em_sti_priv *p = ced_to_em_sti(ced);
236
em_sti_stop(p, USER_CLOCKEVENT);
237
return 0;
238
}
239
240
static int em_sti_clock_event_set_oneshot(struct clock_event_device *ced)
241
{
242
struct em_sti_priv *p = ced_to_em_sti(ced);
243
244
dev_info(&p->pdev->dev, "used for oneshot clock events\n");
245
em_sti_start(p, USER_CLOCKEVENT);
246
return 0;
247
}
248
249
static int em_sti_clock_event_next(unsigned long delta,
250
struct clock_event_device *ced)
251
{
252
struct em_sti_priv *p = ced_to_em_sti(ced);
253
u64 next;
254
int safe;
255
256
next = em_sti_set_next(p, em_sti_count(p) + delta);
257
safe = em_sti_count(p) < (next - 1);
258
259
return !safe;
260
}
261
262
static void em_sti_register_clockevent(struct em_sti_priv *p)
263
{
264
struct clock_event_device *ced = &p->ced;
265
266
ced->name = dev_name(&p->pdev->dev);
267
ced->features = CLOCK_EVT_FEAT_ONESHOT;
268
ced->rating = 200;
269
ced->cpumask = cpu_possible_mask;
270
ced->set_next_event = em_sti_clock_event_next;
271
ced->set_state_shutdown = em_sti_clock_event_shutdown;
272
ced->set_state_oneshot = em_sti_clock_event_set_oneshot;
273
274
dev_info(&p->pdev->dev, "used for clock events\n");
275
276
clockevents_config_and_register(ced, p->rate, 2, 0xffffffff);
277
}
278
279
static int em_sti_probe(struct platform_device *pdev)
280
{
281
struct em_sti_priv *p;
282
int irq, ret;
283
284
p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL);
285
if (p == NULL)
286
return -ENOMEM;
287
288
p->pdev = pdev;
289
platform_set_drvdata(pdev, p);
290
291
irq = platform_get_irq(pdev, 0);
292
if (irq < 0)
293
return irq;
294
295
/* map memory, let base point to the STI instance */
296
p->base = devm_platform_ioremap_resource(pdev, 0);
297
if (IS_ERR(p->base))
298
return PTR_ERR(p->base);
299
300
ret = devm_request_irq(&pdev->dev, irq, em_sti_interrupt,
301
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
302
dev_name(&pdev->dev), p);
303
if (ret) {
304
dev_err(&pdev->dev, "failed to request low IRQ\n");
305
return ret;
306
}
307
308
/* get hold of clock */
309
p->clk = devm_clk_get(&pdev->dev, "sclk");
310
if (IS_ERR(p->clk)) {
311
dev_err(&pdev->dev, "cannot get clock\n");
312
return PTR_ERR(p->clk);
313
}
314
315
ret = clk_prepare(p->clk);
316
if (ret < 0) {
317
dev_err(&pdev->dev, "cannot prepare clock\n");
318
return ret;
319
}
320
321
ret = clk_enable(p->clk);
322
if (ret < 0) {
323
dev_err(&p->pdev->dev, "cannot enable clock\n");
324
clk_unprepare(p->clk);
325
return ret;
326
}
327
p->rate = clk_get_rate(p->clk);
328
clk_disable(p->clk);
329
330
raw_spin_lock_init(&p->lock);
331
em_sti_register_clockevent(p);
332
em_sti_register_clocksource(p);
333
return 0;
334
}
335
336
static const struct of_device_id em_sti_dt_ids[] = {
337
{ .compatible = "renesas,em-sti", },
338
{},
339
};
340
MODULE_DEVICE_TABLE(of, em_sti_dt_ids);
341
342
static struct platform_driver em_sti_device_driver = {
343
.probe = em_sti_probe,
344
.driver = {
345
.name = "em_sti",
346
.of_match_table = em_sti_dt_ids,
347
.suppress_bind_attrs = true,
348
}
349
};
350
351
static int __init em_sti_init(void)
352
{
353
return platform_driver_register(&em_sti_device_driver);
354
}
355
356
static void __exit em_sti_exit(void)
357
{
358
platform_driver_unregister(&em_sti_device_driver);
359
}
360
361
subsys_initcall(em_sti_init);
362
module_exit(em_sti_exit);
363
364
MODULE_AUTHOR("Magnus Damm");
365
MODULE_DESCRIPTION("Renesas Emma Mobile STI Timer Driver");
366
367