Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/exynos_mct.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* linux/arch/arm/mach-exynos4/mct.c
3
*
4
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
5
* http://www.samsung.com
6
*
7
* Exynos4 MCT(Multi-Core Timer) support
8
*/
9
10
#include <linux/interrupt.h>
11
#include <linux/irq.h>
12
#include <linux/err.h>
13
#include <linux/clk.h>
14
#include <linux/clockchips.h>
15
#include <linux/cpu.h>
16
#include <linux/delay.h>
17
#include <linux/percpu.h>
18
#include <linux/of.h>
19
#include <linux/of_irq.h>
20
#include <linux/of_address.h>
21
#include <linux/clocksource.h>
22
#include <linux/sched_clock.h>
23
24
#define EXYNOS4_MCTREG(x) (x)
25
#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26
#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27
#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28
#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29
#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30
#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31
#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32
#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33
#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34
#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35
#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36
#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * (x)))
37
#define EXYNOS4_MCT_L_MASK (0xffffff00)
38
39
#define MCT_L_TCNTB_OFFSET (0x00)
40
#define MCT_L_ICNTB_OFFSET (0x08)
41
#define MCT_L_TCON_OFFSET (0x20)
42
#define MCT_L_INT_CSTAT_OFFSET (0x30)
43
#define MCT_L_INT_ENB_OFFSET (0x34)
44
#define MCT_L_WSTAT_OFFSET (0x40)
45
#define MCT_G_TCON_START (1 << 8)
46
#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47
#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48
#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49
#define MCT_L_TCON_INT_START (1 << 1)
50
#define MCT_L_TCON_TIMER_START (1 << 0)
51
52
#define TICK_BASE_CNT 1
53
54
#ifdef CONFIG_ARM
55
/* Use values higher than ARM arch timer. See 6282edb72bed. */
56
#define MCT_CLKSOURCE_RATING 450
57
#define MCT_CLKEVENTS_RATING 500
58
#else
59
#define MCT_CLKSOURCE_RATING 350
60
#define MCT_CLKEVENTS_RATING 350
61
#endif
62
63
/* There are four Global timers starting with 0 offset */
64
#define MCT_G0_IRQ 0
65
/* Local timers count starts after global timer count */
66
#define MCT_L0_IRQ 4
67
/* Max number of IRQ as per DT binding document */
68
#define MCT_NR_IRQS 20
69
/* Max number of local timers */
70
#define MCT_NR_LOCAL (MCT_NR_IRQS - MCT_L0_IRQ)
71
72
enum {
73
MCT_INT_SPI,
74
MCT_INT_PPI
75
};
76
77
static void __iomem *reg_base;
78
static unsigned long clk_rate;
79
static unsigned int mct_int_type;
80
static int mct_irqs[MCT_NR_IRQS];
81
82
struct mct_clock_event_device {
83
struct clock_event_device evt;
84
unsigned long base;
85
/**
86
* The length of the name must be adjusted if number of
87
* local timer interrupts grow over two digits
88
*/
89
char name[11];
90
};
91
92
static void exynos4_mct_write(unsigned int value, unsigned long offset)
93
{
94
unsigned long stat_addr;
95
u32 mask;
96
u32 i;
97
98
writel_relaxed(value, reg_base + offset);
99
100
if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
101
stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
102
switch (offset & ~EXYNOS4_MCT_L_MASK) {
103
case MCT_L_TCON_OFFSET:
104
mask = 1 << 3; /* L_TCON write status */
105
break;
106
case MCT_L_ICNTB_OFFSET:
107
mask = 1 << 1; /* L_ICNTB write status */
108
break;
109
case MCT_L_TCNTB_OFFSET:
110
mask = 1 << 0; /* L_TCNTB write status */
111
break;
112
default:
113
return;
114
}
115
} else {
116
switch (offset) {
117
case EXYNOS4_MCT_G_TCON:
118
stat_addr = EXYNOS4_MCT_G_WSTAT;
119
mask = 1 << 16; /* G_TCON write status */
120
break;
121
case EXYNOS4_MCT_G_COMP0_L:
122
stat_addr = EXYNOS4_MCT_G_WSTAT;
123
mask = 1 << 0; /* G_COMP0_L write status */
124
break;
125
case EXYNOS4_MCT_G_COMP0_U:
126
stat_addr = EXYNOS4_MCT_G_WSTAT;
127
mask = 1 << 1; /* G_COMP0_U write status */
128
break;
129
case EXYNOS4_MCT_G_COMP0_ADD_INCR:
130
stat_addr = EXYNOS4_MCT_G_WSTAT;
131
mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
132
break;
133
case EXYNOS4_MCT_G_CNT_L:
134
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135
mask = 1 << 0; /* G_CNT_L write status */
136
break;
137
case EXYNOS4_MCT_G_CNT_U:
138
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
139
mask = 1 << 1; /* G_CNT_U write status */
140
break;
141
default:
142
return;
143
}
144
}
145
146
/* Wait maximum 1 ms until written values are applied */
147
for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
148
if (readl_relaxed(reg_base + stat_addr) & mask) {
149
writel_relaxed(mask, reg_base + stat_addr);
150
return;
151
}
152
153
panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154
}
155
156
/* Clocksource handling */
157
static void exynos4_mct_frc_start(void)
158
{
159
u32 reg;
160
161
reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
162
reg |= MCT_G_TCON_START;
163
exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
164
}
165
166
/**
167
* exynos4_read_count_64 - Read all 64-bits of the global counter
168
*
169
* This will read all 64-bits of the global counter taking care to make sure
170
* that the upper and lower half match. Note that reading the MCT can be quite
171
* slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
172
* only) version when possible.
173
*
174
* Returns the number of cycles in the global counter.
175
*/
176
static u64 exynos4_read_count_64(void)
177
{
178
unsigned int lo, hi;
179
u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
180
181
do {
182
hi = hi2;
183
lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
184
hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
185
} while (hi != hi2);
186
187
return ((u64)hi << 32) | lo;
188
}
189
190
/**
191
* exynos4_read_count_32 - Read the lower 32-bits of the global counter
192
*
193
* This will read just the lower 32-bits of the global counter. This is marked
194
* as notrace so it can be used by the scheduler clock.
195
*
196
* Returns the number of cycles in the global counter (lower 32 bits).
197
*/
198
static u32 notrace exynos4_read_count_32(void)
199
{
200
return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
201
}
202
203
static u64 exynos4_frc_read(struct clocksource *cs)
204
{
205
return exynos4_read_count_32();
206
}
207
208
static void exynos4_frc_resume(struct clocksource *cs)
209
{
210
exynos4_mct_frc_start();
211
}
212
213
static struct clocksource mct_frc = {
214
.name = "mct-frc",
215
.rating = MCT_CLKSOURCE_RATING,
216
.read = exynos4_frc_read,
217
.mask = CLOCKSOURCE_MASK(32),
218
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
219
.resume = exynos4_frc_resume,
220
};
221
222
static u64 notrace exynos4_read_sched_clock(void)
223
{
224
return exynos4_read_count_32();
225
}
226
227
#if defined(CONFIG_ARM)
228
static struct delay_timer exynos4_delay_timer;
229
230
static cycles_t exynos4_read_current_timer(void)
231
{
232
BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
233
"cycles_t needs to move to 32-bit for ARM64 usage");
234
return exynos4_read_count_32();
235
}
236
#endif
237
238
static int __init exynos4_clocksource_init(bool frc_shared)
239
{
240
/*
241
* When the frc is shared, the main processor should have already
242
* turned it on and we shouldn't be writing to TCON.
243
*/
244
if (frc_shared)
245
mct_frc.resume = NULL;
246
else
247
exynos4_mct_frc_start();
248
249
#if defined(CONFIG_ARM)
250
exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
251
exynos4_delay_timer.freq = clk_rate;
252
register_current_timer_delay(&exynos4_delay_timer);
253
#endif
254
255
if (clocksource_register_hz(&mct_frc, clk_rate))
256
panic("%s: can't register clocksource\n", mct_frc.name);
257
258
sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
259
260
return 0;
261
}
262
263
static void exynos4_mct_comp0_stop(void)
264
{
265
unsigned int tcon;
266
267
tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268
tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
269
270
exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
271
exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
272
}
273
274
static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
275
{
276
unsigned int tcon;
277
u64 comp_cycle;
278
279
tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
280
281
if (periodic) {
282
tcon |= MCT_G_TCON_COMP0_AUTO_INC;
283
exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
284
}
285
286
comp_cycle = exynos4_read_count_64() + cycles;
287
exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
288
exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
289
290
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
291
292
tcon |= MCT_G_TCON_COMP0_ENABLE;
293
exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
294
}
295
296
static int exynos4_comp_set_next_event(unsigned long cycles,
297
struct clock_event_device *evt)
298
{
299
exynos4_mct_comp0_start(false, cycles);
300
301
return 0;
302
}
303
304
static int mct_set_state_shutdown(struct clock_event_device *evt)
305
{
306
exynos4_mct_comp0_stop();
307
return 0;
308
}
309
310
static int mct_set_state_periodic(struct clock_event_device *evt)
311
{
312
unsigned long cycles_per_jiffy;
313
314
cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
315
>> evt->shift);
316
exynos4_mct_comp0_stop();
317
exynos4_mct_comp0_start(true, cycles_per_jiffy);
318
return 0;
319
}
320
321
static struct clock_event_device mct_comp_device = {
322
.name = "mct-comp",
323
.features = CLOCK_EVT_FEAT_PERIODIC |
324
CLOCK_EVT_FEAT_ONESHOT,
325
.rating = 250,
326
.set_next_event = exynos4_comp_set_next_event,
327
.set_state_periodic = mct_set_state_periodic,
328
.set_state_shutdown = mct_set_state_shutdown,
329
.set_state_oneshot = mct_set_state_shutdown,
330
.set_state_oneshot_stopped = mct_set_state_shutdown,
331
.tick_resume = mct_set_state_shutdown,
332
};
333
334
static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
335
{
336
struct clock_event_device *evt = dev_id;
337
338
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
339
340
evt->event_handler(evt);
341
342
return IRQ_HANDLED;
343
}
344
345
static int exynos4_clockevent_init(void)
346
{
347
mct_comp_device.cpumask = cpumask_of(0);
348
clockevents_config_and_register(&mct_comp_device, clk_rate,
349
0xf, 0xffffffff);
350
if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
351
IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
352
&mct_comp_device))
353
pr_err("%s: request_irq() failed\n", "mct_comp_irq");
354
355
return 0;
356
}
357
358
static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
359
360
/* Clock event handling */
361
static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
362
{
363
unsigned long tmp;
364
unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
365
unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
366
367
tmp = readl_relaxed(reg_base + offset);
368
if (tmp & mask) {
369
tmp &= ~mask;
370
exynos4_mct_write(tmp, offset);
371
}
372
}
373
374
static void exynos4_mct_tick_start(unsigned long cycles,
375
struct mct_clock_event_device *mevt)
376
{
377
unsigned long tmp;
378
379
exynos4_mct_tick_stop(mevt);
380
381
tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
382
383
/* update interrupt count buffer */
384
exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
385
386
/* enable MCT tick interrupt */
387
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
388
389
tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
390
tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
391
MCT_L_TCON_INTERVAL_MODE;
392
exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
393
}
394
395
static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
396
{
397
/* Clear the MCT tick interrupt */
398
if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
399
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
400
}
401
402
static int exynos4_tick_set_next_event(unsigned long cycles,
403
struct clock_event_device *evt)
404
{
405
struct mct_clock_event_device *mevt;
406
407
mevt = container_of(evt, struct mct_clock_event_device, evt);
408
exynos4_mct_tick_start(cycles, mevt);
409
return 0;
410
}
411
412
static int set_state_shutdown(struct clock_event_device *evt)
413
{
414
struct mct_clock_event_device *mevt;
415
416
mevt = container_of(evt, struct mct_clock_event_device, evt);
417
exynos4_mct_tick_stop(mevt);
418
exynos4_mct_tick_clear(mevt);
419
return 0;
420
}
421
422
static int set_state_periodic(struct clock_event_device *evt)
423
{
424
struct mct_clock_event_device *mevt;
425
unsigned long cycles_per_jiffy;
426
427
mevt = container_of(evt, struct mct_clock_event_device, evt);
428
cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
429
>> evt->shift);
430
exynos4_mct_tick_stop(mevt);
431
exynos4_mct_tick_start(cycles_per_jiffy, mevt);
432
return 0;
433
}
434
435
static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
436
{
437
struct mct_clock_event_device *mevt = dev_id;
438
struct clock_event_device *evt = &mevt->evt;
439
440
/*
441
* This is for supporting oneshot mode.
442
* Mct would generate interrupt periodically
443
* without explicit stopping.
444
*/
445
if (!clockevent_state_periodic(&mevt->evt))
446
exynos4_mct_tick_stop(mevt);
447
448
exynos4_mct_tick_clear(mevt);
449
450
evt->event_handler(evt);
451
452
return IRQ_HANDLED;
453
}
454
455
static int exynos4_mct_starting_cpu(unsigned int cpu)
456
{
457
struct mct_clock_event_device *mevt =
458
per_cpu_ptr(&percpu_mct_tick, cpu);
459
struct clock_event_device *evt = &mevt->evt;
460
461
snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
462
463
evt->name = mevt->name;
464
evt->cpumask = cpumask_of(cpu);
465
evt->set_next_event = exynos4_tick_set_next_event;
466
evt->set_state_periodic = set_state_periodic;
467
evt->set_state_shutdown = set_state_shutdown;
468
evt->set_state_oneshot = set_state_shutdown;
469
evt->set_state_oneshot_stopped = set_state_shutdown;
470
evt->tick_resume = set_state_shutdown;
471
evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
472
CLOCK_EVT_FEAT_PERCPU;
473
evt->rating = MCT_CLKEVENTS_RATING;
474
475
exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
476
477
if (mct_int_type == MCT_INT_SPI) {
478
479
if (evt->irq == -1)
480
return -EIO;
481
482
irq_force_affinity(evt->irq, cpumask_of(cpu));
483
enable_irq(evt->irq);
484
} else {
485
enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
486
}
487
clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
488
0xf, 0x7fffffff);
489
490
return 0;
491
}
492
493
static int exynos4_mct_dying_cpu(unsigned int cpu)
494
{
495
struct mct_clock_event_device *mevt =
496
per_cpu_ptr(&percpu_mct_tick, cpu);
497
struct clock_event_device *evt = &mevt->evt;
498
499
if (mct_int_type == MCT_INT_SPI) {
500
if (evt->irq != -1)
501
disable_irq_nosync(evt->irq);
502
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
503
} else {
504
disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
505
}
506
return 0;
507
}
508
509
static int __init exynos4_timer_resources(struct device_node *np)
510
{
511
struct clk *mct_clk, *tick_clk;
512
513
reg_base = of_iomap(np, 0);
514
if (!reg_base)
515
panic("%s: unable to ioremap mct address space\n", __func__);
516
517
tick_clk = of_clk_get_by_name(np, "fin_pll");
518
if (IS_ERR(tick_clk))
519
panic("%s: unable to determine tick clock rate\n", __func__);
520
clk_rate = clk_get_rate(tick_clk);
521
522
mct_clk = of_clk_get_by_name(np, "mct");
523
if (IS_ERR(mct_clk))
524
panic("%s: unable to retrieve mct clock instance\n", __func__);
525
clk_prepare_enable(mct_clk);
526
527
return 0;
528
}
529
530
/**
531
* exynos4_timer_interrupts - initialize MCT interrupts
532
* @np: device node for MCT
533
* @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI
534
* @local_idx: array mapping CPU numbers to local timer indices
535
* @nr_local: size of @local_idx array
536
*/
537
static int __init exynos4_timer_interrupts(struct device_node *np,
538
unsigned int int_type,
539
const u32 *local_idx,
540
size_t nr_local)
541
{
542
int nr_irqs, i, err, cpu;
543
544
mct_int_type = int_type;
545
546
/* This driver uses only one global timer interrupt */
547
mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
548
549
/*
550
* Find out the number of local irqs specified. The local
551
* timer irqs are specified after the four global timer
552
* irqs are specified.
553
*/
554
nr_irqs = of_irq_count(np);
555
if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
556
pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
557
nr_irqs);
558
nr_irqs = ARRAY_SIZE(mct_irqs);
559
}
560
for (i = MCT_L0_IRQ; i < nr_irqs; i++)
561
mct_irqs[i] = irq_of_parse_and_map(np, i);
562
563
if (mct_int_type == MCT_INT_PPI) {
564
565
err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
566
exynos4_mct_tick_isr, "MCT",
567
&percpu_mct_tick);
568
WARN(err, "MCT: can't request IRQ %d (%d)\n",
569
mct_irqs[MCT_L0_IRQ], err);
570
} else {
571
for_each_possible_cpu(cpu) {
572
int mct_irq;
573
unsigned int irq_idx;
574
struct mct_clock_event_device *pcpu_mevt =
575
per_cpu_ptr(&percpu_mct_tick, cpu);
576
577
if (cpu >= nr_local) {
578
err = -EINVAL;
579
goto out_irq;
580
}
581
582
irq_idx = MCT_L0_IRQ + local_idx[cpu];
583
584
pcpu_mevt->evt.irq = -1;
585
if (irq_idx >= ARRAY_SIZE(mct_irqs))
586
break;
587
mct_irq = mct_irqs[irq_idx];
588
589
irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
590
if (request_irq(mct_irq,
591
exynos4_mct_tick_isr,
592
IRQF_TIMER | IRQF_NOBALANCING,
593
pcpu_mevt->name, pcpu_mevt)) {
594
pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
595
cpu);
596
597
continue;
598
}
599
pcpu_mevt->evt.irq = mct_irq;
600
}
601
}
602
603
for_each_possible_cpu(cpu) {
604
struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu);
605
606
if (cpu >= nr_local) {
607
err = -EINVAL;
608
goto out_irq;
609
}
610
611
mevt->base = EXYNOS4_MCT_L_BASE(local_idx[cpu]);
612
}
613
614
/* Install hotplug callbacks which configure the timer on this CPU */
615
err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
616
"clockevents/exynos4/mct_timer:starting",
617
exynos4_mct_starting_cpu,
618
exynos4_mct_dying_cpu);
619
if (err)
620
goto out_irq;
621
622
return 0;
623
624
out_irq:
625
if (mct_int_type == MCT_INT_PPI) {
626
free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
627
} else {
628
for_each_possible_cpu(cpu) {
629
struct mct_clock_event_device *pcpu_mevt =
630
per_cpu_ptr(&percpu_mct_tick, cpu);
631
632
if (pcpu_mevt->evt.irq != -1) {
633
free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
634
pcpu_mevt->evt.irq = -1;
635
}
636
}
637
}
638
return err;
639
}
640
641
static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
642
{
643
bool frc_shared = of_property_read_bool(np, "samsung,frc-shared");
644
u32 local_idx[MCT_NR_LOCAL] = {0};
645
int nr_local;
646
int ret;
647
648
nr_local = of_property_count_u32_elems(np, "samsung,local-timers");
649
if (nr_local == 0)
650
return -EINVAL;
651
if (nr_local > 0) {
652
if (nr_local > ARRAY_SIZE(local_idx))
653
return -EINVAL;
654
655
ret = of_property_read_u32_array(np, "samsung,local-timers",
656
local_idx, nr_local);
657
if (ret)
658
return ret;
659
} else {
660
int i;
661
662
nr_local = ARRAY_SIZE(local_idx);
663
for (i = 0; i < nr_local; i++)
664
local_idx[i] = i;
665
}
666
667
ret = exynos4_timer_resources(np);
668
if (ret)
669
return ret;
670
671
ret = exynos4_timer_interrupts(np, int_type, local_idx, nr_local);
672
if (ret)
673
return ret;
674
675
ret = exynos4_clocksource_init(frc_shared);
676
if (ret)
677
return ret;
678
679
/*
680
* When the FRC is shared with a main processor, this secondary
681
* processor cannot use the global comparator.
682
*/
683
if (frc_shared)
684
return 0;
685
686
return exynos4_clockevent_init();
687
}
688
689
690
static int __init mct_init_spi(struct device_node *np)
691
{
692
return mct_init_dt(np, MCT_INT_SPI);
693
}
694
695
static int __init mct_init_ppi(struct device_node *np)
696
{
697
return mct_init_dt(np, MCT_INT_PPI);
698
}
699
TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
700
TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
701
702