Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/hyperv_timer.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Clocksource driver for the synthetic counter and timers
5
* provided by the Hyper-V hypervisor to guest VMs, as described
6
* in the Hyper-V Top Level Functional Spec (TLFS). This driver
7
* is instruction set architecture independent.
8
*
9
* Copyright (C) 2019, Microsoft, Inc.
10
*
11
* Author: Michael Kelley <[email protected]>
12
*/
13
14
#include <linux/percpu.h>
15
#include <linux/cpumask.h>
16
#include <linux/clockchips.h>
17
#include <linux/clocksource.h>
18
#include <linux/sched_clock.h>
19
#include <linux/mm.h>
20
#include <linux/cpuhotplug.h>
21
#include <linux/interrupt.h>
22
#include <linux/irq.h>
23
#include <linux/acpi.h>
24
#include <linux/hyperv.h>
25
#include <linux/export.h>
26
#include <clocksource/hyperv_timer.h>
27
#include <hyperv/hvhdk.h>
28
#include <asm/mshyperv.h>
29
30
static struct clock_event_device __percpu *hv_clock_event;
31
/* Note: offset can hold negative values after hibernation. */
32
static u64 hv_sched_clock_offset __read_mostly;
33
34
/*
35
* If false, we're using the old mechanism for stimer0 interrupts
36
* where it sends a VMbus message when it expires. The old
37
* mechanism is used when running on older versions of Hyper-V
38
* that don't support Direct Mode. While Hyper-V provides
39
* four stimer's per CPU, Linux uses only stimer0.
40
*
41
* Because Direct Mode does not require processing a VMbus
42
* message, stimer interrupts can be enabled earlier in the
43
* process of booting a CPU, and consistent with when timer
44
* interrupts are enabled for other clocksource drivers.
45
* However, for legacy versions of Hyper-V when Direct Mode
46
* is not enabled, setting up stimer interrupts must be
47
* delayed until VMbus is initialized and can process the
48
* interrupt message.
49
*/
50
static bool direct_mode_enabled;
51
52
static int stimer0_irq = -1;
53
static int stimer0_message_sint;
54
static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
55
56
/*
57
* Common code for stimer0 interrupts coming via Direct Mode or
58
* as a VMbus message.
59
*/
60
void hv_stimer0_isr(void)
61
{
62
struct clock_event_device *ce;
63
64
ce = this_cpu_ptr(hv_clock_event);
65
ce->event_handler(ce);
66
}
67
EXPORT_SYMBOL_GPL(hv_stimer0_isr);
68
69
/*
70
* stimer0 interrupt handler for architectures that support
71
* per-cpu interrupts, which also implies Direct Mode.
72
*/
73
static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
74
{
75
hv_stimer0_isr();
76
return IRQ_HANDLED;
77
}
78
79
static int hv_ce_set_next_event(unsigned long delta,
80
struct clock_event_device *evt)
81
{
82
u64 current_tick;
83
84
current_tick = hv_read_reference_counter();
85
current_tick += delta;
86
hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
87
return 0;
88
}
89
90
static int hv_ce_shutdown(struct clock_event_device *evt)
91
{
92
hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
93
hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
94
if (direct_mode_enabled && stimer0_irq >= 0)
95
disable_percpu_irq(stimer0_irq);
96
97
return 0;
98
}
99
100
static int hv_ce_set_oneshot(struct clock_event_device *evt)
101
{
102
union hv_stimer_config timer_cfg;
103
104
timer_cfg.as_uint64 = 0;
105
timer_cfg.enable = 1;
106
timer_cfg.auto_enable = 1;
107
if (direct_mode_enabled) {
108
/*
109
* When it expires, the timer will directly interrupt
110
* on the specified hardware vector/IRQ.
111
*/
112
timer_cfg.direct_mode = 1;
113
timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
114
if (stimer0_irq >= 0)
115
enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
116
} else {
117
/*
118
* When it expires, the timer will generate a VMbus message,
119
* to be handled by the normal VMbus interrupt handler.
120
*/
121
timer_cfg.direct_mode = 0;
122
timer_cfg.sintx = stimer0_message_sint;
123
}
124
hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
125
return 0;
126
}
127
128
/*
129
* hv_stimer_init - Per-cpu initialization of the clockevent
130
*/
131
static int hv_stimer_init(unsigned int cpu)
132
{
133
struct clock_event_device *ce;
134
135
if (!hv_clock_event)
136
return 0;
137
138
ce = per_cpu_ptr(hv_clock_event, cpu);
139
ce->name = "Hyper-V clockevent";
140
ce->features = CLOCK_EVT_FEAT_ONESHOT;
141
ce->cpumask = cpumask_of(cpu);
142
143
/*
144
* Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
145
* so the local APIC timer (lapic_clockevent) is the default timer in
146
* such a VM. The Hyper-V timer is not preferred in such a VM because
147
* it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
148
* page is not enbled in such a VM because the VM uses Invariant TSC
149
* as a better clocksource and it's challenging to mark the Hyper-V
150
* TSC page shared in very early boot).
151
*/
152
if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
153
ce->rating = 90;
154
else
155
ce->rating = 1000;
156
157
ce->set_state_shutdown = hv_ce_shutdown;
158
ce->set_state_oneshot = hv_ce_set_oneshot;
159
ce->set_next_event = hv_ce_set_next_event;
160
161
clockevents_config_and_register(ce,
162
HV_CLOCK_HZ,
163
HV_MIN_DELTA_TICKS,
164
HV_MAX_MAX_DELTA_TICKS);
165
return 0;
166
}
167
168
/*
169
* hv_stimer_cleanup - Per-cpu cleanup of the clockevent
170
*/
171
int hv_stimer_cleanup(unsigned int cpu)
172
{
173
struct clock_event_device *ce;
174
175
if (!hv_clock_event)
176
return 0;
177
178
/*
179
* In the legacy case where Direct Mode is not enabled
180
* (which can only be on x86/64), stimer cleanup happens
181
* relatively early in the CPU offlining process. We
182
* must unbind the stimer-based clockevent device so
183
* that the LAPIC timer can take over until clockevents
184
* are no longer needed in the offlining process. Note
185
* that clockevents_unbind_device() eventually calls
186
* hv_ce_shutdown().
187
*
188
* The unbind should not be done when Direct Mode is
189
* enabled because we may be on an architecture where
190
* there are no other clockevent devices to fallback to.
191
*/
192
ce = per_cpu_ptr(hv_clock_event, cpu);
193
if (direct_mode_enabled)
194
hv_ce_shutdown(ce);
195
else
196
clockevents_unbind_device(ce, cpu);
197
198
return 0;
199
}
200
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
201
202
/*
203
* These placeholders are overridden by arch specific code on
204
* architectures that need special setup of the stimer0 IRQ because
205
* they don't support per-cpu IRQs (such as x86/x64).
206
*/
207
void __weak hv_setup_stimer0_handler(void (*handler)(void))
208
{
209
};
210
211
void __weak hv_remove_stimer0_handler(void)
212
{
213
};
214
215
#ifdef CONFIG_ACPI
216
/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
217
static int hv_setup_stimer0_irq(void)
218
{
219
int ret;
220
221
ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
222
ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
223
if (ret < 0) {
224
pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
225
return ret;
226
}
227
stimer0_irq = ret;
228
229
ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
230
"Hyper-V stimer0", &stimer0_evt);
231
if (ret) {
232
pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
233
stimer0_irq, ret);
234
acpi_unregister_gsi(stimer0_irq);
235
stimer0_irq = -1;
236
}
237
return ret;
238
}
239
240
static void hv_remove_stimer0_irq(void)
241
{
242
if (stimer0_irq == -1) {
243
hv_remove_stimer0_handler();
244
} else {
245
free_percpu_irq(stimer0_irq, &stimer0_evt);
246
acpi_unregister_gsi(stimer0_irq);
247
stimer0_irq = -1;
248
}
249
}
250
#else
251
static int hv_setup_stimer0_irq(void)
252
{
253
return 0;
254
}
255
256
static void hv_remove_stimer0_irq(void)
257
{
258
}
259
#endif
260
261
/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
262
int hv_stimer_alloc(bool have_percpu_irqs)
263
{
264
int ret;
265
266
/*
267
* Synthetic timers are always available except on old versions of
268
* Hyper-V on x86. In that case, return as error as Linux will use a
269
* clockevent based on emulated LAPIC timer hardware.
270
*/
271
if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
272
return -EINVAL;
273
274
hv_clock_event = alloc_percpu(struct clock_event_device);
275
if (!hv_clock_event)
276
return -ENOMEM;
277
278
direct_mode_enabled = ms_hyperv.misc_features &
279
HV_STIMER_DIRECT_MODE_AVAILABLE;
280
281
/*
282
* If Direct Mode isn't enabled, the remainder of the initialization
283
* is done later by hv_stimer_legacy_init()
284
*/
285
if (!direct_mode_enabled)
286
return 0;
287
288
if (have_percpu_irqs) {
289
ret = hv_setup_stimer0_irq();
290
if (ret)
291
goto free_clock_event;
292
} else {
293
hv_setup_stimer0_handler(hv_stimer0_isr);
294
}
295
296
/*
297
* Since we are in Direct Mode, stimer initialization
298
* can be done now with a CPUHP value in the same range
299
* as other clockevent devices.
300
*/
301
ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
302
"clockevents/hyperv/stimer:starting",
303
hv_stimer_init, hv_stimer_cleanup);
304
if (ret < 0) {
305
hv_remove_stimer0_irq();
306
goto free_clock_event;
307
}
308
return ret;
309
310
free_clock_event:
311
free_percpu(hv_clock_event);
312
hv_clock_event = NULL;
313
return ret;
314
}
315
EXPORT_SYMBOL_GPL(hv_stimer_alloc);
316
317
/*
318
* hv_stimer_legacy_init -- Called from the VMbus driver to handle
319
* the case when Direct Mode is not enabled, and the stimer
320
* must be initialized late in the CPU onlining process.
321
*
322
*/
323
void hv_stimer_legacy_init(unsigned int cpu, int sint)
324
{
325
if (direct_mode_enabled)
326
return;
327
328
/*
329
* This function gets called by each vCPU, so setting the
330
* global stimer_message_sint value each time is conceptually
331
* not ideal, but the value passed in is always the same and
332
* it avoids introducing yet another interface into this
333
* clocksource driver just to set the sint in the legacy case.
334
*/
335
stimer0_message_sint = sint;
336
(void)hv_stimer_init(cpu);
337
}
338
EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
339
340
/*
341
* hv_stimer_legacy_cleanup -- Called from the VMbus driver to
342
* handle the case when Direct Mode is not enabled, and the
343
* stimer must be cleaned up early in the CPU offlining
344
* process.
345
*/
346
void hv_stimer_legacy_cleanup(unsigned int cpu)
347
{
348
if (direct_mode_enabled)
349
return;
350
(void)hv_stimer_cleanup(cpu);
351
}
352
EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
353
354
/*
355
* Do a global cleanup of clockevents for the cases of kexec and
356
* vmbus exit
357
*/
358
void hv_stimer_global_cleanup(void)
359
{
360
int cpu;
361
362
/*
363
* hv_stime_legacy_cleanup() will stop the stimer if Direct
364
* Mode is not enabled, and fallback to the LAPIC timer.
365
*/
366
for_each_present_cpu(cpu) {
367
hv_stimer_legacy_cleanup(cpu);
368
}
369
370
if (!hv_clock_event)
371
return;
372
373
if (direct_mode_enabled) {
374
cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
375
hv_remove_stimer0_irq();
376
stimer0_irq = -1;
377
}
378
free_percpu(hv_clock_event);
379
hv_clock_event = NULL;
380
381
}
382
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
383
384
static __always_inline u64 read_hv_clock_msr(void)
385
{
386
/*
387
* Read the partition counter to get the current tick count. This count
388
* is set to 0 when the partition is created and is incremented in 100
389
* nanosecond units.
390
*
391
* Use hv_raw_get_msr() because this function is used from
392
* noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
393
* register it doesn't need the GHCB path.
394
*/
395
return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
396
}
397
398
/*
399
* Code and definitions for the Hyper-V clocksources. Two
400
* clocksources are defined: one that reads the Hyper-V defined MSR, and
401
* the other that uses the TSC reference page feature as defined in the
402
* TLFS. The MSR version is for compatibility with old versions of
403
* Hyper-V and 32-bit x86. The TSC reference page version is preferred.
404
*/
405
406
static union {
407
struct ms_hyperv_tsc_page page;
408
u8 reserved[PAGE_SIZE];
409
} tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
410
411
static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
412
static unsigned long tsc_pfn;
413
414
unsigned long hv_get_tsc_pfn(void)
415
{
416
return tsc_pfn;
417
}
418
EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
419
420
struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
421
{
422
return tsc_page;
423
}
424
EXPORT_SYMBOL_GPL(hv_get_tsc_page);
425
426
static __always_inline u64 read_hv_clock_tsc(void)
427
{
428
u64 cur_tsc, time;
429
430
/*
431
* The Hyper-V Top-Level Function Spec (TLFS), section Timers,
432
* subsection Refererence Counter, guarantees that the TSC and MSR
433
* times are in sync and monotonic. Therefore we can fall back
434
* to the MSR in case the TSC page indicates unavailability.
435
*/
436
if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
437
time = read_hv_clock_msr();
438
439
return time;
440
}
441
442
static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
443
{
444
return read_hv_clock_tsc();
445
}
446
447
static u64 noinstr read_hv_sched_clock_tsc(void)
448
{
449
return (read_hv_clock_tsc() - hv_sched_clock_offset) *
450
(NSEC_PER_SEC / HV_CLOCK_HZ);
451
}
452
453
static void suspend_hv_clock_tsc(struct clocksource *arg)
454
{
455
union hv_reference_tsc_msr tsc_msr;
456
457
/* Disable the TSC page */
458
tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
459
tsc_msr.enable = 0;
460
hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
461
}
462
463
464
static void resume_hv_clock_tsc(struct clocksource *arg)
465
{
466
union hv_reference_tsc_msr tsc_msr;
467
468
/* Re-enable the TSC page */
469
tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
470
tsc_msr.enable = 1;
471
tsc_msr.pfn = tsc_pfn;
472
hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
473
}
474
475
/*
476
* Called during resume from hibernation, from overridden
477
* x86_platform.restore_sched_clock_state routine. This is to adjust offsets
478
* used to calculate time for hv tsc page based sched_clock, to account for
479
* time spent before hibernation.
480
*/
481
void hv_adj_sched_clock_offset(u64 offset)
482
{
483
hv_sched_clock_offset -= offset;
484
}
485
486
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
487
static int hv_cs_enable(struct clocksource *cs)
488
{
489
vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
490
return 0;
491
}
492
#endif
493
494
static struct clocksource hyperv_cs_tsc = {
495
.name = "hyperv_clocksource_tsc_page",
496
.rating = 500,
497
.read = read_hv_clock_tsc_cs,
498
.mask = CLOCKSOURCE_MASK(64),
499
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
500
.suspend= suspend_hv_clock_tsc,
501
.resume = resume_hv_clock_tsc,
502
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
503
.enable = hv_cs_enable,
504
.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
505
#else
506
.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
507
#endif
508
};
509
510
static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
511
{
512
return read_hv_clock_msr();
513
}
514
515
static struct clocksource hyperv_cs_msr = {
516
.name = "hyperv_clocksource_msr",
517
.rating = 495,
518
.read = read_hv_clock_msr_cs,
519
.mask = CLOCKSOURCE_MASK(64),
520
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
521
};
522
523
/*
524
* Reference to pv_ops must be inline so objtool
525
* detection of noinstr violations can work correctly.
526
*/
527
#ifdef CONFIG_GENERIC_SCHED_CLOCK
528
static __always_inline void hv_setup_sched_clock(void *sched_clock)
529
{
530
/*
531
* We're on an architecture with generic sched clock (not x86/x64).
532
* The Hyper-V sched clock read function returns nanoseconds, not
533
* the normal 100ns units of the Hyper-V synthetic clock.
534
*/
535
sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
536
}
537
#elif defined CONFIG_PARAVIRT
538
static __always_inline void hv_setup_sched_clock(void *sched_clock)
539
{
540
/* We're on x86/x64 *and* using PV ops */
541
paravirt_set_sched_clock(sched_clock);
542
}
543
#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
544
static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
545
#endif /* CONFIG_GENERIC_SCHED_CLOCK */
546
547
static void __init hv_init_tsc_clocksource(void)
548
{
549
union hv_reference_tsc_msr tsc_msr;
550
551
/*
552
* If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
553
* handles frequency and offset changes due to live migration,
554
* pause/resume, and other VM management operations. So lower the
555
* Hyper-V Reference TSC rating, causing the generic TSC to be used.
556
* TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
557
* TSC will be preferred over the virtualized ARM64 arch counter.
558
*/
559
if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
560
hyperv_cs_tsc.rating = 250;
561
hyperv_cs_msr.rating = 245;
562
}
563
564
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
565
return;
566
567
hv_read_reference_counter = read_hv_clock_tsc;
568
569
/*
570
* TSC page mapping works differently in root compared to guest.
571
* - In guest partition the guest PFN has to be passed to the
572
* hypervisor.
573
* - In root partition it's other way around: it has to map the PFN
574
* provided by the hypervisor.
575
* But it can't be mapped right here as it's too early and MMU isn't
576
* ready yet. So, we only set the enable bit here and will remap the
577
* page later in hv_remap_tsc_clocksource().
578
*
579
* It worth mentioning, that TSC clocksource read function
580
* (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
581
* TSC page is zeroed (which is the case until the PFN is remapped) and
582
* thus TSC clocksource will work even without the real TSC page
583
* mapped.
584
*/
585
tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
586
if (hv_root_partition())
587
tsc_pfn = tsc_msr.pfn;
588
else
589
tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
590
tsc_msr.enable = 1;
591
tsc_msr.pfn = tsc_pfn;
592
hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
593
594
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
595
596
/*
597
* If TSC is invariant, then let it stay as the sched clock since it
598
* will be faster than reading the TSC page. But if not invariant, use
599
* the TSC page so that live migrations across hosts with different
600
* frequencies is handled correctly.
601
*/
602
if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
603
hv_sched_clock_offset = hv_read_reference_counter();
604
hv_setup_sched_clock(read_hv_sched_clock_tsc);
605
}
606
}
607
608
void __init hv_init_clocksource(void)
609
{
610
/*
611
* Try to set up the TSC page clocksource, then the MSR clocksource.
612
* At least one of these will always be available except on very old
613
* versions of Hyper-V on x86. In that case we won't have a Hyper-V
614
* clocksource, but Linux will still run with a clocksource based
615
* on the emulated PIT or LAPIC timer.
616
*
617
* Never use the MSR clocksource as sched clock. It's too slow.
618
* Better to use the native sched clock as the fallback.
619
*/
620
hv_init_tsc_clocksource();
621
622
if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
623
clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
624
}
625
626
void __init hv_remap_tsc_clocksource(void)
627
{
628
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
629
return;
630
631
if (!hv_root_partition()) {
632
WARN(1, "%s: attempt to remap TSC page in guest partition\n",
633
__func__);
634
return;
635
}
636
637
tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
638
MEMREMAP_WB);
639
if (!tsc_page)
640
pr_err("Failed to remap Hyper-V TSC page.\n");
641
}
642
643