Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/sh_cmt.c
49452 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* SuperH Timer Support - CMT
4
*
5
* Copyright (C) 2008 Magnus Damm
6
*/
7
8
#include <linux/clk.h>
9
#include <linux/clockchips.h>
10
#include <linux/clocksource.h>
11
#include <linux/delay.h>
12
#include <linux/err.h>
13
#include <linux/init.h>
14
#include <linux/interrupt.h>
15
#include <linux/io.h>
16
#include <linux/iopoll.h>
17
#include <linux/ioport.h>
18
#include <linux/irq.h>
19
#include <linux/module.h>
20
#include <linux/of.h>
21
#include <linux/platform_device.h>
22
#include <linux/pm_domain.h>
23
#include <linux/pm_runtime.h>
24
#include <linux/sh_timer.h>
25
#include <linux/slab.h>
26
#include <linux/spinlock.h>
27
28
#ifdef CONFIG_SUPERH
29
#include <asm/platform_early.h>
30
#endif
31
32
struct sh_cmt_device;
33
34
/*
35
* The CMT comes in 5 different identified flavours, depending not only on the
36
* SoC but also on the particular instance. The following table lists the main
37
* characteristics of those flavours.
38
*
39
* 16B 32B 32B-F 48B R-Car Gen2
40
* -----------------------------------------------------------------------------
41
* Channels 2 1/4 1 6 2/8
42
* Control Width 16 16 16 16 32
43
* Counter Width 16 32 32 32/48 32/48
44
* Shared Start/Stop Y Y Y Y N
45
*
46
* The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47
* located in the channel registers block. All other versions have a shared
48
* start/stop register located in the global space.
49
*
50
* Channels are indexed from 0 to N-1 in the documentation. The channel index
51
* infers the start/stop bit position in the control register and the channel
52
* registers block address. Some CMT instances have a subset of channels
53
* available, in which case the index in the documentation doesn't match the
54
* "real" index as implemented in hardware. This is for instance the case with
55
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56
* in the documentation but using start/stop bit 5 and having its registers
57
* block at 0x60.
58
*
59
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61
*/
62
63
enum sh_cmt_model {
64
SH_CMT_16BIT,
65
SH_CMT_32BIT,
66
SH_CMT_48BIT,
67
SH_CMT0_RCAR_GEN2,
68
SH_CMT1_RCAR_GEN2,
69
};
70
71
struct sh_cmt_info {
72
enum sh_cmt_model model;
73
74
unsigned int channels_mask;
75
76
unsigned long width; /* 16 or 32 bit version of hardware block */
77
u32 overflow_bit;
78
u32 clear_bits;
79
80
/* callbacks for CMSTR and CMCSR access */
81
u32 (*read_control)(void __iomem *base, unsigned long offs);
82
void (*write_control)(void __iomem *base, unsigned long offs,
83
u32 value);
84
85
/* callbacks for CMCNT and CMCOR access */
86
u32 (*read_count)(void __iomem *base, unsigned long offs);
87
void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88
};
89
90
struct sh_cmt_channel {
91
struct sh_cmt_device *cmt;
92
93
unsigned int index; /* Index in the documentation */
94
unsigned int hwidx; /* Real hardware index */
95
96
void __iomem *iostart;
97
void __iomem *ioctrl;
98
99
unsigned int timer_bit;
100
unsigned long flags;
101
u32 match_value;
102
u32 next_match_value;
103
u32 max_match_value;
104
raw_spinlock_t lock;
105
struct clock_event_device ced;
106
struct clocksource cs;
107
u64 total_cycles;
108
bool cs_enabled;
109
};
110
111
struct sh_cmt_device {
112
struct platform_device *pdev;
113
114
const struct sh_cmt_info *info;
115
116
void __iomem *mapbase;
117
struct clk *clk;
118
unsigned long rate;
119
unsigned int reg_delay;
120
121
raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123
struct sh_cmt_channel *channels;
124
unsigned int num_channels;
125
unsigned int hw_channels;
126
127
bool has_clockevent;
128
bool has_clocksource;
129
};
130
131
#define SH_CMT16_CMCSR_CMF (1 << 7)
132
#define SH_CMT16_CMCSR_CMIE (1 << 6)
133
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
134
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
135
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
136
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
137
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138
139
#define SH_CMT32_CMCSR_CMF (1 << 15)
140
#define SH_CMT32_CMCSR_OVF (1 << 14)
141
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
142
#define SH_CMT32_CMCSR_STTF (1 << 12)
143
#define SH_CMT32_CMCSR_STPF (1 << 11)
144
#define SH_CMT32_CMCSR_SSIE (1 << 10)
145
#define SH_CMT32_CMCSR_CMS (1 << 9)
146
#define SH_CMT32_CMCSR_CMM (1 << 8)
147
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158
159
static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160
{
161
return ioread16(base + (offs << 1));
162
}
163
164
static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165
{
166
return ioread32(base + (offs << 2));
167
}
168
169
static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170
{
171
iowrite16(value, base + (offs << 1));
172
}
173
174
static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175
{
176
iowrite32(value, base + (offs << 2));
177
}
178
179
static const struct sh_cmt_info sh_cmt_info[] = {
180
[SH_CMT_16BIT] = {
181
.model = SH_CMT_16BIT,
182
.width = 16,
183
.overflow_bit = SH_CMT16_CMCSR_CMF,
184
.clear_bits = ~SH_CMT16_CMCSR_CMF,
185
.read_control = sh_cmt_read16,
186
.write_control = sh_cmt_write16,
187
.read_count = sh_cmt_read16,
188
.write_count = sh_cmt_write16,
189
},
190
[SH_CMT_32BIT] = {
191
.model = SH_CMT_32BIT,
192
.width = 32,
193
.overflow_bit = SH_CMT32_CMCSR_CMF,
194
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195
.read_control = sh_cmt_read16,
196
.write_control = sh_cmt_write16,
197
.read_count = sh_cmt_read32,
198
.write_count = sh_cmt_write32,
199
},
200
[SH_CMT_48BIT] = {
201
.model = SH_CMT_48BIT,
202
.channels_mask = 0x3f,
203
.width = 32,
204
.overflow_bit = SH_CMT32_CMCSR_CMF,
205
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206
.read_control = sh_cmt_read32,
207
.write_control = sh_cmt_write32,
208
.read_count = sh_cmt_read32,
209
.write_count = sh_cmt_write32,
210
},
211
[SH_CMT0_RCAR_GEN2] = {
212
.model = SH_CMT0_RCAR_GEN2,
213
.channels_mask = 0x60,
214
.width = 32,
215
.overflow_bit = SH_CMT32_CMCSR_CMF,
216
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217
.read_control = sh_cmt_read32,
218
.write_control = sh_cmt_write32,
219
.read_count = sh_cmt_read32,
220
.write_count = sh_cmt_write32,
221
},
222
[SH_CMT1_RCAR_GEN2] = {
223
.model = SH_CMT1_RCAR_GEN2,
224
.channels_mask = 0xff,
225
.width = 32,
226
.overflow_bit = SH_CMT32_CMCSR_CMF,
227
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228
.read_control = sh_cmt_read32,
229
.write_control = sh_cmt_write32,
230
.read_count = sh_cmt_read32,
231
.write_count = sh_cmt_write32,
232
},
233
};
234
235
#define CMCSR 0 /* channel register */
236
#define CMCNT 1 /* channel register */
237
#define CMCOR 2 /* channel register */
238
239
#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
240
241
static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242
{
243
if (ch->iostart)
244
return ch->cmt->info->read_control(ch->iostart, 0);
245
else
246
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247
}
248
249
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250
{
251
u32 old_value = sh_cmt_read_cmstr(ch);
252
253
if (value != old_value) {
254
if (ch->iostart) {
255
ch->cmt->info->write_control(ch->iostart, 0, value);
256
udelay(ch->cmt->reg_delay);
257
} else {
258
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259
udelay(ch->cmt->reg_delay);
260
}
261
}
262
}
263
264
static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265
{
266
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267
}
268
269
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270
{
271
u32 old_value = sh_cmt_read_cmcsr(ch);
272
273
if (value != old_value) {
274
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275
udelay(ch->cmt->reg_delay);
276
}
277
}
278
279
static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280
{
281
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282
}
283
284
static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285
{
286
/* Tests showed that we need to wait 3 clocks here */
287
unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288
u32 reg;
289
290
if (ch->cmt->info->model > SH_CMT_16BIT) {
291
int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292
!(reg & SH_CMT32_CMCSR_WRFLG),
293
1, cmcnt_delay, false, ch);
294
if (ret < 0)
295
return ret;
296
}
297
298
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299
udelay(cmcnt_delay);
300
return 0;
301
}
302
303
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304
{
305
u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306
307
if (value != old_value) {
308
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309
udelay(ch->cmt->reg_delay);
310
}
311
}
312
313
static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314
{
315
u32 v1, v2, v3;
316
u32 o1, o2;
317
318
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319
320
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321
do {
322
o2 = o1;
323
v1 = sh_cmt_read_cmcnt(ch);
324
v2 = sh_cmt_read_cmcnt(ch);
325
v3 = sh_cmt_read_cmcnt(ch);
326
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329
330
*has_wrapped = o1;
331
return v2;
332
}
333
334
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335
{
336
unsigned long flags;
337
u32 value;
338
339
/* start stop register shared by multiple timer channels */
340
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341
value = sh_cmt_read_cmstr(ch);
342
343
if (start)
344
value |= 1 << ch->timer_bit;
345
else
346
value &= ~(1 << ch->timer_bit);
347
348
sh_cmt_write_cmstr(ch, value);
349
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350
}
351
352
static int sh_cmt_enable(struct sh_cmt_channel *ch)
353
{
354
int ret;
355
356
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357
358
/* make sure channel is disabled */
359
sh_cmt_start_stop_ch(ch, 0);
360
361
/* configure channel, periodic mode and maximum timeout */
362
if (ch->cmt->info->width == 16) {
363
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
364
SH_CMT16_CMCSR_CKS512);
365
} else {
366
u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
367
SH_CMT32_CMCSR_CMTOUT_IE : 0;
368
sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
369
SH_CMT32_CMCSR_CMR_IRQ |
370
SH_CMT32_CMCSR_CKS_RCLK8);
371
}
372
373
sh_cmt_write_cmcor(ch, 0xffffffff);
374
ret = sh_cmt_write_cmcnt(ch, 0);
375
376
if (ret || sh_cmt_read_cmcnt(ch)) {
377
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
378
ch->index);
379
return -ETIMEDOUT;
380
}
381
382
/* enable channel */
383
sh_cmt_start_stop_ch(ch, 1);
384
return 0;
385
}
386
387
static void sh_cmt_disable(struct sh_cmt_channel *ch)
388
{
389
/* disable channel */
390
sh_cmt_start_stop_ch(ch, 0);
391
392
/* disable interrupts in CMT block */
393
sh_cmt_write_cmcsr(ch, 0);
394
395
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
396
}
397
398
/* private flags */
399
#define FLAG_CLOCKEVENT (1 << 0)
400
#define FLAG_CLOCKSOURCE (1 << 1)
401
#define FLAG_REPROGRAM (1 << 2)
402
#define FLAG_SKIPEVENT (1 << 3)
403
#define FLAG_IRQCONTEXT (1 << 4)
404
405
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406
int absolute)
407
{
408
u32 value = ch->next_match_value;
409
u32 new_match;
410
u32 delay = 0;
411
u32 now = 0;
412
u32 has_wrapped;
413
414
now = sh_cmt_get_counter(ch, &has_wrapped);
415
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416
417
if (has_wrapped) {
418
/* we're competing with the interrupt handler.
419
* -> let the interrupt handler reprogram the timer.
420
* -> interrupt number two handles the event.
421
*/
422
ch->flags |= FLAG_SKIPEVENT;
423
return;
424
}
425
426
if (absolute)
427
now = 0;
428
429
do {
430
/* reprogram the timer hardware,
431
* but don't save the new match value yet.
432
*/
433
new_match = now + value + delay;
434
if (new_match > ch->max_match_value)
435
new_match = ch->max_match_value;
436
437
sh_cmt_write_cmcor(ch, new_match);
438
439
now = sh_cmt_get_counter(ch, &has_wrapped);
440
if (has_wrapped && (new_match > ch->match_value)) {
441
/* we are changing to a greater match value,
442
* so this wrap must be caused by the counter
443
* matching the old value.
444
* -> first interrupt reprograms the timer.
445
* -> interrupt number two handles the event.
446
*/
447
ch->flags |= FLAG_SKIPEVENT;
448
break;
449
}
450
451
if (has_wrapped) {
452
/* we are changing to a smaller match value,
453
* so the wrap must be caused by the counter
454
* matching the new value.
455
* -> save programmed match value.
456
* -> let isr handle the event.
457
*/
458
ch->match_value = new_match;
459
break;
460
}
461
462
/* be safe: verify hardware settings */
463
if (now < new_match) {
464
/* timer value is below match value, all good.
465
* this makes sure we won't miss any match events.
466
* -> save programmed match value.
467
* -> let isr handle the event.
468
*/
469
ch->match_value = new_match;
470
break;
471
}
472
473
/* the counter has reached a value greater
474
* than our new match value. and since the
475
* has_wrapped flag isn't set we must have
476
* programmed a too close event.
477
* -> increase delay and retry.
478
*/
479
if (delay)
480
delay <<= 1;
481
else
482
delay = 1;
483
484
if (!delay)
485
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486
ch->index);
487
488
} while (delay);
489
}
490
491
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492
{
493
if (delta > ch->max_match_value)
494
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495
ch->index);
496
497
ch->next_match_value = delta;
498
sh_cmt_clock_event_program_verify(ch, 0);
499
}
500
501
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502
{
503
unsigned long flags;
504
505
raw_spin_lock_irqsave(&ch->lock, flags);
506
__sh_cmt_set_next(ch, delta);
507
raw_spin_unlock_irqrestore(&ch->lock, flags);
508
}
509
510
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511
{
512
struct sh_cmt_channel *ch = dev_id;
513
unsigned long flags;
514
515
/* clear flags */
516
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
517
ch->cmt->info->clear_bits);
518
519
/* update clock source counter to begin with if enabled
520
* the wrap flag should be cleared by the timer specific
521
* isr before we end up here.
522
*/
523
if (ch->flags & FLAG_CLOCKSOURCE)
524
ch->total_cycles += ch->match_value + 1;
525
526
if (!(ch->flags & FLAG_REPROGRAM))
527
ch->next_match_value = ch->max_match_value;
528
529
ch->flags |= FLAG_IRQCONTEXT;
530
531
if (ch->flags & FLAG_CLOCKEVENT) {
532
if (!(ch->flags & FLAG_SKIPEVENT)) {
533
if (clockevent_state_oneshot(&ch->ced)) {
534
ch->next_match_value = ch->max_match_value;
535
ch->flags |= FLAG_REPROGRAM;
536
}
537
538
ch->ced.event_handler(&ch->ced);
539
}
540
}
541
542
ch->flags &= ~FLAG_SKIPEVENT;
543
544
raw_spin_lock_irqsave(&ch->lock, flags);
545
546
if (ch->flags & FLAG_REPROGRAM) {
547
ch->flags &= ~FLAG_REPROGRAM;
548
sh_cmt_clock_event_program_verify(ch, 1);
549
550
if (ch->flags & FLAG_CLOCKEVENT)
551
if ((clockevent_state_shutdown(&ch->ced))
552
|| (ch->match_value == ch->next_match_value))
553
ch->flags &= ~FLAG_REPROGRAM;
554
}
555
556
ch->flags &= ~FLAG_IRQCONTEXT;
557
558
raw_spin_unlock_irqrestore(&ch->lock, flags);
559
560
return IRQ_HANDLED;
561
}
562
563
static int sh_cmt_start_clocksource(struct sh_cmt_channel *ch)
564
{
565
int ret = 0;
566
unsigned long flags;
567
568
raw_spin_lock_irqsave(&ch->lock, flags);
569
570
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
571
ret = sh_cmt_enable(ch);
572
573
if (ret)
574
goto out;
575
576
ch->flags |= FLAG_CLOCKSOURCE;
577
578
/* setup timeout if no clockevent */
579
if (ch->cmt->num_channels == 1 && !(ch->flags & FLAG_CLOCKEVENT))
580
__sh_cmt_set_next(ch, ch->max_match_value);
581
out:
582
raw_spin_unlock_irqrestore(&ch->lock, flags);
583
584
return ret;
585
}
586
587
static void sh_cmt_stop_clocksource(struct sh_cmt_channel *ch)
588
{
589
unsigned long flags;
590
unsigned long f;
591
592
raw_spin_lock_irqsave(&ch->lock, flags);
593
594
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595
596
ch->flags &= ~FLAG_CLOCKSOURCE;
597
598
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599
sh_cmt_disable(ch);
600
601
raw_spin_unlock_irqrestore(&ch->lock, flags);
602
}
603
604
static int sh_cmt_start_clockevent(struct sh_cmt_channel *ch)
605
{
606
int ret = 0;
607
unsigned long flags;
608
609
raw_spin_lock_irqsave(&ch->lock, flags);
610
611
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
612
ret = sh_cmt_enable(ch);
613
614
if (ret)
615
goto out;
616
617
ch->flags |= FLAG_CLOCKEVENT;
618
out:
619
raw_spin_unlock_irqrestore(&ch->lock, flags);
620
621
return ret;
622
}
623
624
static void sh_cmt_stop_clockevent(struct sh_cmt_channel *ch)
625
{
626
unsigned long flags;
627
unsigned long f;
628
629
raw_spin_lock_irqsave(&ch->lock, flags);
630
631
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
632
633
ch->flags &= ~FLAG_CLOCKEVENT;
634
635
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
636
sh_cmt_disable(ch);
637
638
/* adjust the timeout to maximum if only clocksource left */
639
if (ch->flags & FLAG_CLOCKSOURCE)
640
__sh_cmt_set_next(ch, ch->max_match_value);
641
642
raw_spin_unlock_irqrestore(&ch->lock, flags);
643
}
644
645
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
646
{
647
return container_of(cs, struct sh_cmt_channel, cs);
648
}
649
650
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
651
{
652
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653
u32 has_wrapped;
654
655
if (ch->cmt->num_channels == 1) {
656
unsigned long flags;
657
u64 value;
658
u32 raw;
659
660
raw_spin_lock_irqsave(&ch->lock, flags);
661
value = ch->total_cycles;
662
raw = sh_cmt_get_counter(ch, &has_wrapped);
663
664
if (unlikely(has_wrapped))
665
raw += ch->match_value + 1;
666
raw_spin_unlock_irqrestore(&ch->lock, flags);
667
668
return value + raw;
669
}
670
671
return sh_cmt_get_counter(ch, &has_wrapped);
672
}
673
674
static int sh_cmt_clocksource_enable(struct clocksource *cs)
675
{
676
int ret;
677
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
678
679
WARN_ON(ch->cs_enabled);
680
681
ch->total_cycles = 0;
682
683
ret = sh_cmt_start_clocksource(ch);
684
if (!ret)
685
ch->cs_enabled = true;
686
687
return ret;
688
}
689
690
static void sh_cmt_clocksource_disable(struct clocksource *cs)
691
{
692
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
693
694
WARN_ON(!ch->cs_enabled);
695
696
sh_cmt_stop_clocksource(ch);
697
ch->cs_enabled = false;
698
}
699
700
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
701
{
702
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
703
704
if (!ch->cs_enabled)
705
return;
706
707
sh_cmt_stop_clocksource(ch);
708
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
709
}
710
711
static void sh_cmt_clocksource_resume(struct clocksource *cs)
712
{
713
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
714
715
if (!ch->cs_enabled)
716
return;
717
718
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
719
sh_cmt_start_clocksource(ch);
720
}
721
722
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
723
const char *name)
724
{
725
struct clocksource *cs = &ch->cs;
726
727
cs->name = name;
728
cs->rating = 125;
729
cs->read = sh_cmt_clocksource_read;
730
cs->enable = sh_cmt_clocksource_enable;
731
cs->disable = sh_cmt_clocksource_disable;
732
cs->suspend = sh_cmt_clocksource_suspend;
733
cs->resume = sh_cmt_clocksource_resume;
734
cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
735
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
736
737
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
738
ch->index);
739
740
clocksource_register_hz(cs, ch->cmt->rate);
741
return 0;
742
}
743
744
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
745
{
746
return container_of(ced, struct sh_cmt_channel, ced);
747
}
748
749
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
750
{
751
sh_cmt_start_clockevent(ch);
752
753
if (periodic)
754
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
755
else
756
sh_cmt_set_next(ch, ch->max_match_value);
757
}
758
759
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
760
{
761
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763
sh_cmt_stop_clockevent(ch);
764
return 0;
765
}
766
767
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
768
int periodic)
769
{
770
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
771
772
/* deal with old setting first */
773
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
774
sh_cmt_stop_clockevent(ch);
775
776
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
777
ch->index, periodic ? "periodic" : "oneshot");
778
sh_cmt_clock_event_start(ch, periodic);
779
return 0;
780
}
781
782
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
783
{
784
return sh_cmt_clock_event_set_state(ced, 0);
785
}
786
787
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
788
{
789
return sh_cmt_clock_event_set_state(ced, 1);
790
}
791
792
static int sh_cmt_clock_event_next(unsigned long delta,
793
struct clock_event_device *ced)
794
{
795
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
796
unsigned long flags;
797
798
BUG_ON(!clockevent_state_oneshot(ced));
799
800
raw_spin_lock_irqsave(&ch->lock, flags);
801
802
if (likely(ch->flags & FLAG_IRQCONTEXT))
803
ch->next_match_value = delta - 1;
804
else
805
__sh_cmt_set_next(ch, delta - 1);
806
807
raw_spin_unlock_irqrestore(&ch->lock, flags);
808
809
return 0;
810
}
811
812
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
813
{
814
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
815
816
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
817
clk_unprepare(ch->cmt->clk);
818
}
819
820
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
821
{
822
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
823
824
clk_prepare(ch->cmt->clk);
825
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
826
}
827
828
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
829
const char *name)
830
{
831
struct clock_event_device *ced = &ch->ced;
832
int irq;
833
int ret;
834
835
irq = platform_get_irq(ch->cmt->pdev, ch->index);
836
if (irq < 0)
837
return irq;
838
839
ret = request_irq(irq, sh_cmt_interrupt,
840
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
841
dev_name(&ch->cmt->pdev->dev), ch);
842
if (ret) {
843
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
844
ch->index, irq);
845
return ret;
846
}
847
848
ced->name = name;
849
ced->features = CLOCK_EVT_FEAT_PERIODIC;
850
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
851
ced->rating = 125;
852
ced->cpumask = cpu_possible_mask;
853
ced->set_next_event = sh_cmt_clock_event_next;
854
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
855
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
856
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
857
ced->suspend = sh_cmt_clock_event_suspend;
858
ced->resume = sh_cmt_clock_event_resume;
859
860
/* TODO: calculate good shift from rate and counter bit width */
861
ced->shift = 32;
862
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
863
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
864
ced->max_delta_ticks = ch->max_match_value;
865
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
866
ced->min_delta_ticks = 0x1f;
867
868
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
869
ch->index);
870
clockevents_register_device(ced);
871
872
return 0;
873
}
874
875
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
876
bool clockevent, bool clocksource)
877
{
878
int ret;
879
880
if (clockevent) {
881
ch->cmt->has_clockevent = true;
882
ret = sh_cmt_register_clockevent(ch, name);
883
if (ret < 0)
884
return ret;
885
}
886
887
if (clocksource) {
888
ch->cmt->has_clocksource = true;
889
sh_cmt_register_clocksource(ch, name);
890
}
891
892
return 0;
893
}
894
895
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
896
unsigned int hwidx, bool clockevent,
897
bool clocksource, struct sh_cmt_device *cmt)
898
{
899
u32 value;
900
int ret;
901
902
/* Skip unused channels. */
903
if (!clockevent && !clocksource)
904
return 0;
905
906
ch->cmt = cmt;
907
ch->index = index;
908
ch->hwidx = hwidx;
909
ch->timer_bit = hwidx;
910
911
/*
912
* Compute the address of the channel control register block. For the
913
* timers with a per-channel start/stop register, compute its address
914
* as well.
915
*/
916
switch (cmt->info->model) {
917
case SH_CMT_16BIT:
918
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
919
break;
920
case SH_CMT_32BIT:
921
case SH_CMT_48BIT:
922
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
923
break;
924
case SH_CMT0_RCAR_GEN2:
925
case SH_CMT1_RCAR_GEN2:
926
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
927
ch->ioctrl = ch->iostart + 0x10;
928
ch->timer_bit = 0;
929
930
/* Enable the clock supply to the channel */
931
value = ioread32(cmt->mapbase + CMCLKE);
932
value |= BIT(hwidx);
933
iowrite32(value, cmt->mapbase + CMCLKE);
934
break;
935
}
936
937
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
938
ch->max_match_value = ~0;
939
else
940
ch->max_match_value = (1 << cmt->info->width) - 1;
941
942
ch->match_value = ch->max_match_value;
943
raw_spin_lock_init(&ch->lock);
944
945
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
946
clockevent, clocksource);
947
if (ret) {
948
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
949
ch->index);
950
return ret;
951
}
952
ch->cs_enabled = false;
953
954
return 0;
955
}
956
957
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
958
{
959
struct resource *mem;
960
961
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
962
if (!mem) {
963
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
964
return -ENXIO;
965
}
966
967
cmt->mapbase = ioremap(mem->start, resource_size(mem));
968
if (cmt->mapbase == NULL) {
969
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
970
return -ENXIO;
971
}
972
973
return 0;
974
}
975
976
static const struct platform_device_id sh_cmt_id_table[] = {
977
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
978
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
979
{ }
980
};
981
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
982
983
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
984
{
985
/* deprecated, preserved for backward compatibility */
986
.compatible = "renesas,cmt-48",
987
.data = &sh_cmt_info[SH_CMT_48BIT]
988
},
989
{
990
/* deprecated, preserved for backward compatibility */
991
.compatible = "renesas,cmt-48-gen2",
992
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
993
},
994
{
995
.compatible = "renesas,r8a7740-cmt1",
996
.data = &sh_cmt_info[SH_CMT_48BIT]
997
},
998
{
999
.compatible = "renesas,sh73a0-cmt1",
1000
.data = &sh_cmt_info[SH_CMT_48BIT]
1001
},
1002
{
1003
.compatible = "renesas,rcar-gen2-cmt0",
1004
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005
},
1006
{
1007
.compatible = "renesas,rcar-gen2-cmt1",
1008
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009
},
1010
{
1011
.compatible = "renesas,rcar-gen3-cmt0",
1012
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013
},
1014
{
1015
.compatible = "renesas,rcar-gen3-cmt1",
1016
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017
},
1018
{
1019
.compatible = "renesas,rcar-gen4-cmt0",
1020
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1021
},
1022
{
1023
.compatible = "renesas,rcar-gen4-cmt1",
1024
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1025
},
1026
{ }
1027
};
1028
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1029
1030
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1031
{
1032
unsigned int mask, i;
1033
unsigned long rate;
1034
int ret;
1035
1036
cmt->pdev = pdev;
1037
raw_spin_lock_init(&cmt->lock);
1038
1039
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1040
cmt->info = of_device_get_match_data(&pdev->dev);
1041
cmt->hw_channels = cmt->info->channels_mask;
1042
} else if (pdev->dev.platform_data) {
1043
struct sh_timer_config *cfg = pdev->dev.platform_data;
1044
const struct platform_device_id *id = pdev->id_entry;
1045
1046
cmt->info = (const struct sh_cmt_info *)id->driver_data;
1047
cmt->hw_channels = cfg->channels_mask;
1048
} else {
1049
dev_err(&cmt->pdev->dev, "missing platform data\n");
1050
return -ENXIO;
1051
}
1052
1053
/* Get hold of clock. */
1054
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1055
if (IS_ERR(cmt->clk)) {
1056
dev_err(&cmt->pdev->dev, "cannot get clock\n");
1057
return PTR_ERR(cmt->clk);
1058
}
1059
1060
ret = clk_prepare(cmt->clk);
1061
if (ret < 0)
1062
goto err_clk_put;
1063
1064
/* Determine clock rate. */
1065
ret = clk_enable(cmt->clk);
1066
if (ret < 0)
1067
goto err_clk_unprepare;
1068
1069
rate = clk_get_rate(cmt->clk);
1070
if (!rate) {
1071
ret = -EINVAL;
1072
goto err_clk_disable;
1073
}
1074
1075
/* We shall wait 2 input clks after register writes */
1076
if (cmt->info->model >= SH_CMT_48BIT)
1077
cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1078
cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1079
1080
/* Map the memory resource(s). */
1081
ret = sh_cmt_map_memory(cmt);
1082
if (ret < 0)
1083
goto err_clk_disable;
1084
1085
/* Allocate and setup the channels. */
1086
cmt->num_channels = hweight8(cmt->hw_channels);
1087
cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1088
GFP_KERNEL);
1089
if (cmt->channels == NULL) {
1090
ret = -ENOMEM;
1091
goto err_unmap;
1092
}
1093
1094
/*
1095
* Use the first channel as a clock event device and the second channel
1096
* as a clock source. If only one channel is available use it for both.
1097
*/
1098
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1099
unsigned int hwidx = ffs(mask) - 1;
1100
bool clocksource = i == 1 || cmt->num_channels == 1;
1101
bool clockevent = i == 0;
1102
1103
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1104
clockevent, clocksource, cmt);
1105
if (ret < 0)
1106
goto err_unmap;
1107
1108
mask &= ~(1 << hwidx);
1109
}
1110
1111
platform_set_drvdata(pdev, cmt);
1112
1113
return 0;
1114
1115
err_unmap:
1116
kfree(cmt->channels);
1117
iounmap(cmt->mapbase);
1118
err_clk_disable:
1119
clk_disable(cmt->clk);
1120
err_clk_unprepare:
1121
clk_unprepare(cmt->clk);
1122
err_clk_put:
1123
clk_put(cmt->clk);
1124
return ret;
1125
}
1126
1127
static int sh_cmt_probe(struct platform_device *pdev)
1128
{
1129
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1130
int ret;
1131
1132
if (!is_sh_early_platform_device(pdev)) {
1133
pm_runtime_set_active(&pdev->dev);
1134
pm_runtime_enable(&pdev->dev);
1135
}
1136
1137
if (cmt) {
1138
dev_info(&pdev->dev, "kept as earlytimer\n");
1139
goto out;
1140
}
1141
1142
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1143
if (cmt == NULL)
1144
return -ENOMEM;
1145
1146
ret = sh_cmt_setup(cmt, pdev);
1147
if (ret) {
1148
kfree(cmt);
1149
pm_runtime_idle(&pdev->dev);
1150
return ret;
1151
}
1152
if (is_sh_early_platform_device(pdev))
1153
return 0;
1154
1155
out:
1156
if (cmt->has_clockevent || cmt->has_clocksource)
1157
pm_runtime_irq_safe(&pdev->dev);
1158
1159
return 0;
1160
}
1161
1162
static struct platform_driver sh_cmt_device_driver = {
1163
.probe = sh_cmt_probe,
1164
.driver = {
1165
.name = "sh_cmt",
1166
.of_match_table = of_match_ptr(sh_cmt_of_table),
1167
.suppress_bind_attrs = true,
1168
},
1169
.id_table = sh_cmt_id_table,
1170
};
1171
1172
static int __init sh_cmt_init(void)
1173
{
1174
return platform_driver_register(&sh_cmt_device_driver);
1175
}
1176
1177
static void __exit sh_cmt_exit(void)
1178
{
1179
platform_driver_unregister(&sh_cmt_device_driver);
1180
}
1181
1182
#ifdef CONFIG_SUPERH
1183
sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1184
#endif
1185
1186
subsys_initcall(sh_cmt_init);
1187
module_exit(sh_cmt_exit);
1188
1189
MODULE_AUTHOR("Magnus Damm");
1190
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1191
1192