Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/sh_cmt.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* SuperH Timer Support - CMT
4
*
5
* Copyright (C) 2008 Magnus Damm
6
*/
7
8
#include <linux/clk.h>
9
#include <linux/clockchips.h>
10
#include <linux/clocksource.h>
11
#include <linux/delay.h>
12
#include <linux/err.h>
13
#include <linux/init.h>
14
#include <linux/interrupt.h>
15
#include <linux/io.h>
16
#include <linux/iopoll.h>
17
#include <linux/ioport.h>
18
#include <linux/irq.h>
19
#include <linux/module.h>
20
#include <linux/of.h>
21
#include <linux/platform_device.h>
22
#include <linux/pm_domain.h>
23
#include <linux/pm_runtime.h>
24
#include <linux/sh_timer.h>
25
#include <linux/slab.h>
26
#include <linux/spinlock.h>
27
28
#ifdef CONFIG_SUPERH
29
#include <asm/platform_early.h>
30
#endif
31
32
struct sh_cmt_device;
33
34
/*
35
* The CMT comes in 5 different identified flavours, depending not only on the
36
* SoC but also on the particular instance. The following table lists the main
37
* characteristics of those flavours.
38
*
39
* 16B 32B 32B-F 48B R-Car Gen2
40
* -----------------------------------------------------------------------------
41
* Channels 2 1/4 1 6 2/8
42
* Control Width 16 16 16 16 32
43
* Counter Width 16 32 32 32/48 32/48
44
* Shared Start/Stop Y Y Y Y N
45
*
46
* The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47
* located in the channel registers block. All other versions have a shared
48
* start/stop register located in the global space.
49
*
50
* Channels are indexed from 0 to N-1 in the documentation. The channel index
51
* infers the start/stop bit position in the control register and the channel
52
* registers block address. Some CMT instances have a subset of channels
53
* available, in which case the index in the documentation doesn't match the
54
* "real" index as implemented in hardware. This is for instance the case with
55
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56
* in the documentation but using start/stop bit 5 and having its registers
57
* block at 0x60.
58
*
59
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61
*/
62
63
enum sh_cmt_model {
64
SH_CMT_16BIT,
65
SH_CMT_32BIT,
66
SH_CMT_48BIT,
67
SH_CMT0_RCAR_GEN2,
68
SH_CMT1_RCAR_GEN2,
69
};
70
71
struct sh_cmt_info {
72
enum sh_cmt_model model;
73
74
unsigned int channels_mask;
75
76
unsigned long width; /* 16 or 32 bit version of hardware block */
77
u32 overflow_bit;
78
u32 clear_bits;
79
80
/* callbacks for CMSTR and CMCSR access */
81
u32 (*read_control)(void __iomem *base, unsigned long offs);
82
void (*write_control)(void __iomem *base, unsigned long offs,
83
u32 value);
84
85
/* callbacks for CMCNT and CMCOR access */
86
u32 (*read_count)(void __iomem *base, unsigned long offs);
87
void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88
};
89
90
struct sh_cmt_channel {
91
struct sh_cmt_device *cmt;
92
93
unsigned int index; /* Index in the documentation */
94
unsigned int hwidx; /* Real hardware index */
95
96
void __iomem *iostart;
97
void __iomem *ioctrl;
98
99
unsigned int timer_bit;
100
unsigned long flags;
101
u32 match_value;
102
u32 next_match_value;
103
u32 max_match_value;
104
raw_spinlock_t lock;
105
struct clock_event_device ced;
106
struct clocksource cs;
107
u64 total_cycles;
108
bool cs_enabled;
109
};
110
111
struct sh_cmt_device {
112
struct platform_device *pdev;
113
114
const struct sh_cmt_info *info;
115
116
void __iomem *mapbase;
117
struct clk *clk;
118
unsigned long rate;
119
unsigned int reg_delay;
120
121
raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123
struct sh_cmt_channel *channels;
124
unsigned int num_channels;
125
unsigned int hw_channels;
126
127
bool has_clockevent;
128
bool has_clocksource;
129
};
130
131
#define SH_CMT16_CMCSR_CMF (1 << 7)
132
#define SH_CMT16_CMCSR_CMIE (1 << 6)
133
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
134
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
135
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
136
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
137
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138
139
#define SH_CMT32_CMCSR_CMF (1 << 15)
140
#define SH_CMT32_CMCSR_OVF (1 << 14)
141
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
142
#define SH_CMT32_CMCSR_STTF (1 << 12)
143
#define SH_CMT32_CMCSR_STPF (1 << 11)
144
#define SH_CMT32_CMCSR_SSIE (1 << 10)
145
#define SH_CMT32_CMCSR_CMS (1 << 9)
146
#define SH_CMT32_CMCSR_CMM (1 << 8)
147
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158
159
static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160
{
161
return ioread16(base + (offs << 1));
162
}
163
164
static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165
{
166
return ioread32(base + (offs << 2));
167
}
168
169
static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170
{
171
iowrite16(value, base + (offs << 1));
172
}
173
174
static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175
{
176
iowrite32(value, base + (offs << 2));
177
}
178
179
static const struct sh_cmt_info sh_cmt_info[] = {
180
[SH_CMT_16BIT] = {
181
.model = SH_CMT_16BIT,
182
.width = 16,
183
.overflow_bit = SH_CMT16_CMCSR_CMF,
184
.clear_bits = ~SH_CMT16_CMCSR_CMF,
185
.read_control = sh_cmt_read16,
186
.write_control = sh_cmt_write16,
187
.read_count = sh_cmt_read16,
188
.write_count = sh_cmt_write16,
189
},
190
[SH_CMT_32BIT] = {
191
.model = SH_CMT_32BIT,
192
.width = 32,
193
.overflow_bit = SH_CMT32_CMCSR_CMF,
194
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195
.read_control = sh_cmt_read16,
196
.write_control = sh_cmt_write16,
197
.read_count = sh_cmt_read32,
198
.write_count = sh_cmt_write32,
199
},
200
[SH_CMT_48BIT] = {
201
.model = SH_CMT_48BIT,
202
.channels_mask = 0x3f,
203
.width = 32,
204
.overflow_bit = SH_CMT32_CMCSR_CMF,
205
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206
.read_control = sh_cmt_read32,
207
.write_control = sh_cmt_write32,
208
.read_count = sh_cmt_read32,
209
.write_count = sh_cmt_write32,
210
},
211
[SH_CMT0_RCAR_GEN2] = {
212
.model = SH_CMT0_RCAR_GEN2,
213
.channels_mask = 0x60,
214
.width = 32,
215
.overflow_bit = SH_CMT32_CMCSR_CMF,
216
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217
.read_control = sh_cmt_read32,
218
.write_control = sh_cmt_write32,
219
.read_count = sh_cmt_read32,
220
.write_count = sh_cmt_write32,
221
},
222
[SH_CMT1_RCAR_GEN2] = {
223
.model = SH_CMT1_RCAR_GEN2,
224
.channels_mask = 0xff,
225
.width = 32,
226
.overflow_bit = SH_CMT32_CMCSR_CMF,
227
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228
.read_control = sh_cmt_read32,
229
.write_control = sh_cmt_write32,
230
.read_count = sh_cmt_read32,
231
.write_count = sh_cmt_write32,
232
},
233
};
234
235
#define CMCSR 0 /* channel register */
236
#define CMCNT 1 /* channel register */
237
#define CMCOR 2 /* channel register */
238
239
#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
240
241
static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242
{
243
if (ch->iostart)
244
return ch->cmt->info->read_control(ch->iostart, 0);
245
else
246
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247
}
248
249
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250
{
251
u32 old_value = sh_cmt_read_cmstr(ch);
252
253
if (value != old_value) {
254
if (ch->iostart) {
255
ch->cmt->info->write_control(ch->iostart, 0, value);
256
udelay(ch->cmt->reg_delay);
257
} else {
258
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259
udelay(ch->cmt->reg_delay);
260
}
261
}
262
}
263
264
static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265
{
266
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267
}
268
269
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270
{
271
u32 old_value = sh_cmt_read_cmcsr(ch);
272
273
if (value != old_value) {
274
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275
udelay(ch->cmt->reg_delay);
276
}
277
}
278
279
static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280
{
281
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282
}
283
284
static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285
{
286
/* Tests showed that we need to wait 3 clocks here */
287
unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288
u32 reg;
289
290
if (ch->cmt->info->model > SH_CMT_16BIT) {
291
int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292
!(reg & SH_CMT32_CMCSR_WRFLG),
293
1, cmcnt_delay, false, ch);
294
if (ret < 0)
295
return ret;
296
}
297
298
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299
udelay(cmcnt_delay);
300
return 0;
301
}
302
303
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304
{
305
u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306
307
if (value != old_value) {
308
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309
udelay(ch->cmt->reg_delay);
310
}
311
}
312
313
static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314
{
315
u32 v1, v2, v3;
316
u32 o1, o2;
317
318
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319
320
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321
do {
322
o2 = o1;
323
v1 = sh_cmt_read_cmcnt(ch);
324
v2 = sh_cmt_read_cmcnt(ch);
325
v3 = sh_cmt_read_cmcnt(ch);
326
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329
330
*has_wrapped = o1;
331
return v2;
332
}
333
334
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335
{
336
unsigned long flags;
337
u32 value;
338
339
/* start stop register shared by multiple timer channels */
340
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341
value = sh_cmt_read_cmstr(ch);
342
343
if (start)
344
value |= 1 << ch->timer_bit;
345
else
346
value &= ~(1 << ch->timer_bit);
347
348
sh_cmt_write_cmstr(ch, value);
349
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350
}
351
352
static int sh_cmt_enable(struct sh_cmt_channel *ch)
353
{
354
int ret;
355
356
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357
358
/* enable clock */
359
ret = clk_enable(ch->cmt->clk);
360
if (ret) {
361
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362
ch->index);
363
goto err0;
364
}
365
366
/* make sure channel is disabled */
367
sh_cmt_start_stop_ch(ch, 0);
368
369
/* configure channel, periodic mode and maximum timeout */
370
if (ch->cmt->info->width == 16) {
371
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372
SH_CMT16_CMCSR_CKS512);
373
} else {
374
u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375
SH_CMT32_CMCSR_CMTOUT_IE : 0;
376
sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377
SH_CMT32_CMCSR_CMR_IRQ |
378
SH_CMT32_CMCSR_CKS_RCLK8);
379
}
380
381
sh_cmt_write_cmcor(ch, 0xffffffff);
382
ret = sh_cmt_write_cmcnt(ch, 0);
383
384
if (ret || sh_cmt_read_cmcnt(ch)) {
385
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386
ch->index);
387
ret = -ETIMEDOUT;
388
goto err1;
389
}
390
391
/* enable channel */
392
sh_cmt_start_stop_ch(ch, 1);
393
return 0;
394
err1:
395
/* stop clock */
396
clk_disable(ch->cmt->clk);
397
398
err0:
399
return ret;
400
}
401
402
static void sh_cmt_disable(struct sh_cmt_channel *ch)
403
{
404
/* disable channel */
405
sh_cmt_start_stop_ch(ch, 0);
406
407
/* disable interrupts in CMT block */
408
sh_cmt_write_cmcsr(ch, 0);
409
410
/* stop clock */
411
clk_disable(ch->cmt->clk);
412
413
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414
}
415
416
/* private flags */
417
#define FLAG_CLOCKEVENT (1 << 0)
418
#define FLAG_CLOCKSOURCE (1 << 1)
419
#define FLAG_REPROGRAM (1 << 2)
420
#define FLAG_SKIPEVENT (1 << 3)
421
#define FLAG_IRQCONTEXT (1 << 4)
422
423
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424
int absolute)
425
{
426
u32 value = ch->next_match_value;
427
u32 new_match;
428
u32 delay = 0;
429
u32 now = 0;
430
u32 has_wrapped;
431
432
now = sh_cmt_get_counter(ch, &has_wrapped);
433
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434
435
if (has_wrapped) {
436
/* we're competing with the interrupt handler.
437
* -> let the interrupt handler reprogram the timer.
438
* -> interrupt number two handles the event.
439
*/
440
ch->flags |= FLAG_SKIPEVENT;
441
return;
442
}
443
444
if (absolute)
445
now = 0;
446
447
do {
448
/* reprogram the timer hardware,
449
* but don't save the new match value yet.
450
*/
451
new_match = now + value + delay;
452
if (new_match > ch->max_match_value)
453
new_match = ch->max_match_value;
454
455
sh_cmt_write_cmcor(ch, new_match);
456
457
now = sh_cmt_get_counter(ch, &has_wrapped);
458
if (has_wrapped && (new_match > ch->match_value)) {
459
/* we are changing to a greater match value,
460
* so this wrap must be caused by the counter
461
* matching the old value.
462
* -> first interrupt reprograms the timer.
463
* -> interrupt number two handles the event.
464
*/
465
ch->flags |= FLAG_SKIPEVENT;
466
break;
467
}
468
469
if (has_wrapped) {
470
/* we are changing to a smaller match value,
471
* so the wrap must be caused by the counter
472
* matching the new value.
473
* -> save programmed match value.
474
* -> let isr handle the event.
475
*/
476
ch->match_value = new_match;
477
break;
478
}
479
480
/* be safe: verify hardware settings */
481
if (now < new_match) {
482
/* timer value is below match value, all good.
483
* this makes sure we won't miss any match events.
484
* -> save programmed match value.
485
* -> let isr handle the event.
486
*/
487
ch->match_value = new_match;
488
break;
489
}
490
491
/* the counter has reached a value greater
492
* than our new match value. and since the
493
* has_wrapped flag isn't set we must have
494
* programmed a too close event.
495
* -> increase delay and retry.
496
*/
497
if (delay)
498
delay <<= 1;
499
else
500
delay = 1;
501
502
if (!delay)
503
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504
ch->index);
505
506
} while (delay);
507
}
508
509
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510
{
511
if (delta > ch->max_match_value)
512
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513
ch->index);
514
515
ch->next_match_value = delta;
516
sh_cmt_clock_event_program_verify(ch, 0);
517
}
518
519
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520
{
521
unsigned long flags;
522
523
raw_spin_lock_irqsave(&ch->lock, flags);
524
__sh_cmt_set_next(ch, delta);
525
raw_spin_unlock_irqrestore(&ch->lock, flags);
526
}
527
528
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529
{
530
struct sh_cmt_channel *ch = dev_id;
531
unsigned long flags;
532
533
/* clear flags */
534
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535
ch->cmt->info->clear_bits);
536
537
/* update clock source counter to begin with if enabled
538
* the wrap flag should be cleared by the timer specific
539
* isr before we end up here.
540
*/
541
if (ch->flags & FLAG_CLOCKSOURCE)
542
ch->total_cycles += ch->match_value + 1;
543
544
if (!(ch->flags & FLAG_REPROGRAM))
545
ch->next_match_value = ch->max_match_value;
546
547
ch->flags |= FLAG_IRQCONTEXT;
548
549
if (ch->flags & FLAG_CLOCKEVENT) {
550
if (!(ch->flags & FLAG_SKIPEVENT)) {
551
if (clockevent_state_oneshot(&ch->ced)) {
552
ch->next_match_value = ch->max_match_value;
553
ch->flags |= FLAG_REPROGRAM;
554
}
555
556
ch->ced.event_handler(&ch->ced);
557
}
558
}
559
560
ch->flags &= ~FLAG_SKIPEVENT;
561
562
raw_spin_lock_irqsave(&ch->lock, flags);
563
564
if (ch->flags & FLAG_REPROGRAM) {
565
ch->flags &= ~FLAG_REPROGRAM;
566
sh_cmt_clock_event_program_verify(ch, 1);
567
568
if (ch->flags & FLAG_CLOCKEVENT)
569
if ((clockevent_state_shutdown(&ch->ced))
570
|| (ch->match_value == ch->next_match_value))
571
ch->flags &= ~FLAG_REPROGRAM;
572
}
573
574
ch->flags &= ~FLAG_IRQCONTEXT;
575
576
raw_spin_unlock_irqrestore(&ch->lock, flags);
577
578
return IRQ_HANDLED;
579
}
580
581
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
582
{
583
int ret = 0;
584
unsigned long flags;
585
586
if (flag & FLAG_CLOCKSOURCE)
587
pm_runtime_get_sync(&ch->cmt->pdev->dev);
588
589
raw_spin_lock_irqsave(&ch->lock, flags);
590
591
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
592
if (flag & FLAG_CLOCKEVENT)
593
pm_runtime_get_sync(&ch->cmt->pdev->dev);
594
ret = sh_cmt_enable(ch);
595
}
596
597
if (ret)
598
goto out;
599
ch->flags |= flag;
600
601
/* setup timeout if no clockevent */
602
if (ch->cmt->num_channels == 1 &&
603
flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
604
__sh_cmt_set_next(ch, ch->max_match_value);
605
out:
606
raw_spin_unlock_irqrestore(&ch->lock, flags);
607
608
return ret;
609
}
610
611
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
612
{
613
unsigned long flags;
614
unsigned long f;
615
616
raw_spin_lock_irqsave(&ch->lock, flags);
617
618
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
619
ch->flags &= ~flag;
620
621
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
622
sh_cmt_disable(ch);
623
if (flag & FLAG_CLOCKEVENT)
624
pm_runtime_put(&ch->cmt->pdev->dev);
625
}
626
627
/* adjust the timeout to maximum if only clocksource left */
628
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
629
__sh_cmt_set_next(ch, ch->max_match_value);
630
631
raw_spin_unlock_irqrestore(&ch->lock, flags);
632
633
if (flag & FLAG_CLOCKSOURCE)
634
pm_runtime_put(&ch->cmt->pdev->dev);
635
}
636
637
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
638
{
639
return container_of(cs, struct sh_cmt_channel, cs);
640
}
641
642
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
643
{
644
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
645
u32 has_wrapped;
646
647
if (ch->cmt->num_channels == 1) {
648
unsigned long flags;
649
u64 value;
650
u32 raw;
651
652
raw_spin_lock_irqsave(&ch->lock, flags);
653
value = ch->total_cycles;
654
raw = sh_cmt_get_counter(ch, &has_wrapped);
655
656
if (unlikely(has_wrapped))
657
raw += ch->match_value + 1;
658
raw_spin_unlock_irqrestore(&ch->lock, flags);
659
660
return value + raw;
661
}
662
663
return sh_cmt_get_counter(ch, &has_wrapped);
664
}
665
666
static int sh_cmt_clocksource_enable(struct clocksource *cs)
667
{
668
int ret;
669
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
670
671
WARN_ON(ch->cs_enabled);
672
673
ch->total_cycles = 0;
674
675
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
676
if (!ret)
677
ch->cs_enabled = true;
678
679
return ret;
680
}
681
682
static void sh_cmt_clocksource_disable(struct clocksource *cs)
683
{
684
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
685
686
WARN_ON(!ch->cs_enabled);
687
688
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
689
ch->cs_enabled = false;
690
}
691
692
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
693
{
694
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
695
696
if (!ch->cs_enabled)
697
return;
698
699
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
700
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
701
}
702
703
static void sh_cmt_clocksource_resume(struct clocksource *cs)
704
{
705
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
706
707
if (!ch->cs_enabled)
708
return;
709
710
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
711
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
712
}
713
714
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
715
const char *name)
716
{
717
struct clocksource *cs = &ch->cs;
718
719
cs->name = name;
720
cs->rating = 125;
721
cs->read = sh_cmt_clocksource_read;
722
cs->enable = sh_cmt_clocksource_enable;
723
cs->disable = sh_cmt_clocksource_disable;
724
cs->suspend = sh_cmt_clocksource_suspend;
725
cs->resume = sh_cmt_clocksource_resume;
726
cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
727
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
728
729
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
730
ch->index);
731
732
clocksource_register_hz(cs, ch->cmt->rate);
733
return 0;
734
}
735
736
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
737
{
738
return container_of(ced, struct sh_cmt_channel, ced);
739
}
740
741
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
742
{
743
sh_cmt_start(ch, FLAG_CLOCKEVENT);
744
745
if (periodic)
746
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
747
else
748
sh_cmt_set_next(ch, ch->max_match_value);
749
}
750
751
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
752
{
753
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
754
755
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
756
return 0;
757
}
758
759
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
760
int periodic)
761
{
762
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
763
764
/* deal with old setting first */
765
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
766
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
767
768
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
769
ch->index, periodic ? "periodic" : "oneshot");
770
sh_cmt_clock_event_start(ch, periodic);
771
return 0;
772
}
773
774
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
775
{
776
return sh_cmt_clock_event_set_state(ced, 0);
777
}
778
779
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
780
{
781
return sh_cmt_clock_event_set_state(ced, 1);
782
}
783
784
static int sh_cmt_clock_event_next(unsigned long delta,
785
struct clock_event_device *ced)
786
{
787
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
788
unsigned long flags;
789
790
BUG_ON(!clockevent_state_oneshot(ced));
791
792
raw_spin_lock_irqsave(&ch->lock, flags);
793
794
if (likely(ch->flags & FLAG_IRQCONTEXT))
795
ch->next_match_value = delta - 1;
796
else
797
__sh_cmt_set_next(ch, delta - 1);
798
799
raw_spin_unlock_irqrestore(&ch->lock, flags);
800
801
return 0;
802
}
803
804
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
805
{
806
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
807
808
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
809
clk_unprepare(ch->cmt->clk);
810
}
811
812
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
813
{
814
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
815
816
clk_prepare(ch->cmt->clk);
817
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
818
}
819
820
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
821
const char *name)
822
{
823
struct clock_event_device *ced = &ch->ced;
824
int irq;
825
int ret;
826
827
irq = platform_get_irq(ch->cmt->pdev, ch->index);
828
if (irq < 0)
829
return irq;
830
831
ret = request_irq(irq, sh_cmt_interrupt,
832
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
833
dev_name(&ch->cmt->pdev->dev), ch);
834
if (ret) {
835
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
836
ch->index, irq);
837
return ret;
838
}
839
840
ced->name = name;
841
ced->features = CLOCK_EVT_FEAT_PERIODIC;
842
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
843
ced->rating = 125;
844
ced->cpumask = cpu_possible_mask;
845
ced->set_next_event = sh_cmt_clock_event_next;
846
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
847
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
848
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
849
ced->suspend = sh_cmt_clock_event_suspend;
850
ced->resume = sh_cmt_clock_event_resume;
851
852
/* TODO: calculate good shift from rate and counter bit width */
853
ced->shift = 32;
854
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
855
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
856
ced->max_delta_ticks = ch->max_match_value;
857
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
858
ced->min_delta_ticks = 0x1f;
859
860
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
861
ch->index);
862
clockevents_register_device(ced);
863
864
return 0;
865
}
866
867
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
868
bool clockevent, bool clocksource)
869
{
870
int ret;
871
872
if (clockevent) {
873
ch->cmt->has_clockevent = true;
874
ret = sh_cmt_register_clockevent(ch, name);
875
if (ret < 0)
876
return ret;
877
}
878
879
if (clocksource) {
880
ch->cmt->has_clocksource = true;
881
sh_cmt_register_clocksource(ch, name);
882
}
883
884
return 0;
885
}
886
887
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
888
unsigned int hwidx, bool clockevent,
889
bool clocksource, struct sh_cmt_device *cmt)
890
{
891
u32 value;
892
int ret;
893
894
/* Skip unused channels. */
895
if (!clockevent && !clocksource)
896
return 0;
897
898
ch->cmt = cmt;
899
ch->index = index;
900
ch->hwidx = hwidx;
901
ch->timer_bit = hwidx;
902
903
/*
904
* Compute the address of the channel control register block. For the
905
* timers with a per-channel start/stop register, compute its address
906
* as well.
907
*/
908
switch (cmt->info->model) {
909
case SH_CMT_16BIT:
910
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
911
break;
912
case SH_CMT_32BIT:
913
case SH_CMT_48BIT:
914
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
915
break;
916
case SH_CMT0_RCAR_GEN2:
917
case SH_CMT1_RCAR_GEN2:
918
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
919
ch->ioctrl = ch->iostart + 0x10;
920
ch->timer_bit = 0;
921
922
/* Enable the clock supply to the channel */
923
value = ioread32(cmt->mapbase + CMCLKE);
924
value |= BIT(hwidx);
925
iowrite32(value, cmt->mapbase + CMCLKE);
926
break;
927
}
928
929
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
930
ch->max_match_value = ~0;
931
else
932
ch->max_match_value = (1 << cmt->info->width) - 1;
933
934
ch->match_value = ch->max_match_value;
935
raw_spin_lock_init(&ch->lock);
936
937
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
938
clockevent, clocksource);
939
if (ret) {
940
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
941
ch->index);
942
return ret;
943
}
944
ch->cs_enabled = false;
945
946
return 0;
947
}
948
949
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
950
{
951
struct resource *mem;
952
953
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
954
if (!mem) {
955
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
956
return -ENXIO;
957
}
958
959
cmt->mapbase = ioremap(mem->start, resource_size(mem));
960
if (cmt->mapbase == NULL) {
961
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
962
return -ENXIO;
963
}
964
965
return 0;
966
}
967
968
static const struct platform_device_id sh_cmt_id_table[] = {
969
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
970
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
971
{ }
972
};
973
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
974
975
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
976
{
977
/* deprecated, preserved for backward compatibility */
978
.compatible = "renesas,cmt-48",
979
.data = &sh_cmt_info[SH_CMT_48BIT]
980
},
981
{
982
/* deprecated, preserved for backward compatibility */
983
.compatible = "renesas,cmt-48-gen2",
984
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
985
},
986
{
987
.compatible = "renesas,r8a7740-cmt1",
988
.data = &sh_cmt_info[SH_CMT_48BIT]
989
},
990
{
991
.compatible = "renesas,sh73a0-cmt1",
992
.data = &sh_cmt_info[SH_CMT_48BIT]
993
},
994
{
995
.compatible = "renesas,rcar-gen2-cmt0",
996
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
997
},
998
{
999
.compatible = "renesas,rcar-gen2-cmt1",
1000
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1001
},
1002
{
1003
.compatible = "renesas,rcar-gen3-cmt0",
1004
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005
},
1006
{
1007
.compatible = "renesas,rcar-gen3-cmt1",
1008
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009
},
1010
{
1011
.compatible = "renesas,rcar-gen4-cmt0",
1012
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013
},
1014
{
1015
.compatible = "renesas,rcar-gen4-cmt1",
1016
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017
},
1018
{ }
1019
};
1020
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1021
1022
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1023
{
1024
unsigned int mask, i;
1025
unsigned long rate;
1026
int ret;
1027
1028
cmt->pdev = pdev;
1029
raw_spin_lock_init(&cmt->lock);
1030
1031
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1032
cmt->info = of_device_get_match_data(&pdev->dev);
1033
cmt->hw_channels = cmt->info->channels_mask;
1034
} else if (pdev->dev.platform_data) {
1035
struct sh_timer_config *cfg = pdev->dev.platform_data;
1036
const struct platform_device_id *id = pdev->id_entry;
1037
1038
cmt->info = (const struct sh_cmt_info *)id->driver_data;
1039
cmt->hw_channels = cfg->channels_mask;
1040
} else {
1041
dev_err(&cmt->pdev->dev, "missing platform data\n");
1042
return -ENXIO;
1043
}
1044
1045
/* Get hold of clock. */
1046
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1047
if (IS_ERR(cmt->clk)) {
1048
dev_err(&cmt->pdev->dev, "cannot get clock\n");
1049
return PTR_ERR(cmt->clk);
1050
}
1051
1052
ret = clk_prepare(cmt->clk);
1053
if (ret < 0)
1054
goto err_clk_put;
1055
1056
/* Determine clock rate. */
1057
ret = clk_enable(cmt->clk);
1058
if (ret < 0)
1059
goto err_clk_unprepare;
1060
1061
rate = clk_get_rate(cmt->clk);
1062
if (!rate) {
1063
ret = -EINVAL;
1064
goto err_clk_disable;
1065
}
1066
1067
/* We shall wait 2 input clks after register writes */
1068
if (cmt->info->model >= SH_CMT_48BIT)
1069
cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1070
cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1071
1072
/* Map the memory resource(s). */
1073
ret = sh_cmt_map_memory(cmt);
1074
if (ret < 0)
1075
goto err_clk_disable;
1076
1077
/* Allocate and setup the channels. */
1078
cmt->num_channels = hweight8(cmt->hw_channels);
1079
cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1080
GFP_KERNEL);
1081
if (cmt->channels == NULL) {
1082
ret = -ENOMEM;
1083
goto err_unmap;
1084
}
1085
1086
/*
1087
* Use the first channel as a clock event device and the second channel
1088
* as a clock source. If only one channel is available use it for both.
1089
*/
1090
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1091
unsigned int hwidx = ffs(mask) - 1;
1092
bool clocksource = i == 1 || cmt->num_channels == 1;
1093
bool clockevent = i == 0;
1094
1095
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1096
clockevent, clocksource, cmt);
1097
if (ret < 0)
1098
goto err_unmap;
1099
1100
mask &= ~(1 << hwidx);
1101
}
1102
1103
clk_disable(cmt->clk);
1104
1105
platform_set_drvdata(pdev, cmt);
1106
1107
return 0;
1108
1109
err_unmap:
1110
kfree(cmt->channels);
1111
iounmap(cmt->mapbase);
1112
err_clk_disable:
1113
clk_disable(cmt->clk);
1114
err_clk_unprepare:
1115
clk_unprepare(cmt->clk);
1116
err_clk_put:
1117
clk_put(cmt->clk);
1118
return ret;
1119
}
1120
1121
static int sh_cmt_probe(struct platform_device *pdev)
1122
{
1123
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1124
int ret;
1125
1126
if (!is_sh_early_platform_device(pdev)) {
1127
pm_runtime_set_active(&pdev->dev);
1128
pm_runtime_enable(&pdev->dev);
1129
}
1130
1131
if (cmt) {
1132
dev_info(&pdev->dev, "kept as earlytimer\n");
1133
goto out;
1134
}
1135
1136
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1137
if (cmt == NULL)
1138
return -ENOMEM;
1139
1140
ret = sh_cmt_setup(cmt, pdev);
1141
if (ret) {
1142
kfree(cmt);
1143
pm_runtime_idle(&pdev->dev);
1144
return ret;
1145
}
1146
if (is_sh_early_platform_device(pdev))
1147
return 0;
1148
1149
out:
1150
if (cmt->has_clockevent || cmt->has_clocksource)
1151
pm_runtime_irq_safe(&pdev->dev);
1152
else
1153
pm_runtime_idle(&pdev->dev);
1154
1155
return 0;
1156
}
1157
1158
static struct platform_driver sh_cmt_device_driver = {
1159
.probe = sh_cmt_probe,
1160
.driver = {
1161
.name = "sh_cmt",
1162
.of_match_table = of_match_ptr(sh_cmt_of_table),
1163
.suppress_bind_attrs = true,
1164
},
1165
.id_table = sh_cmt_id_table,
1166
};
1167
1168
static int __init sh_cmt_init(void)
1169
{
1170
return platform_driver_register(&sh_cmt_device_driver);
1171
}
1172
1173
static void __exit sh_cmt_exit(void)
1174
{
1175
platform_driver_unregister(&sh_cmt_device_driver);
1176
}
1177
1178
#ifdef CONFIG_SUPERH
1179
sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1180
#endif
1181
1182
subsys_initcall(sh_cmt_init);
1183
module_exit(sh_cmt_exit);
1184
1185
MODULE_AUTHOR("Magnus Damm");
1186
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1187
1188