Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/timer-atmel-st.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* linux/arch/arm/mach-at91/at91rm9200_time.c
4
*
5
* Copyright (C) 2003 SAN People
6
* Copyright (C) 2003 ATMEL
7
*/
8
9
#include <linux/kernel.h>
10
#include <linux/interrupt.h>
11
#include <linux/irq.h>
12
#include <linux/clk.h>
13
#include <linux/clockchips.h>
14
#include <linux/export.h>
15
#include <linux/mfd/syscon.h>
16
#include <linux/mfd/syscon/atmel-st.h>
17
#include <linux/of_irq.h>
18
#include <linux/regmap.h>
19
20
static unsigned long last_crtr;
21
static u32 irqmask;
22
static struct clock_event_device clkevt;
23
static struct regmap *regmap_st;
24
static int timer_latch;
25
26
/*
27
* The ST_CRTR is updated asynchronously to the master clock ... but
28
* the updates as seen by the CPU don't seem to be strictly monotonic.
29
* Waiting until we read the same value twice avoids glitching.
30
*/
31
static inline unsigned long read_CRTR(void)
32
{
33
unsigned int x1, x2;
34
35
regmap_read(regmap_st, AT91_ST_CRTR, &x1);
36
do {
37
regmap_read(regmap_st, AT91_ST_CRTR, &x2);
38
if (x1 == x2)
39
break;
40
x1 = x2;
41
} while (1);
42
return x1;
43
}
44
45
/*
46
* IRQ handler for the timer.
47
*/
48
static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
49
{
50
u32 sr;
51
52
regmap_read(regmap_st, AT91_ST_SR, &sr);
53
sr &= irqmask;
54
55
/*
56
* irqs should be disabled here, but as the irq is shared they are only
57
* guaranteed to be off if the timer irq is registered first.
58
*/
59
WARN_ON_ONCE(!irqs_disabled());
60
61
/* simulate "oneshot" timer with alarm */
62
if (sr & AT91_ST_ALMS) {
63
clkevt.event_handler(&clkevt);
64
return IRQ_HANDLED;
65
}
66
67
/* periodic mode should handle delayed ticks */
68
if (sr & AT91_ST_PITS) {
69
u32 crtr = read_CRTR();
70
71
while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) {
72
last_crtr += timer_latch;
73
clkevt.event_handler(&clkevt);
74
}
75
return IRQ_HANDLED;
76
}
77
78
/* this irq is shared ... */
79
return IRQ_NONE;
80
}
81
82
static u64 read_clk32k(struct clocksource *cs)
83
{
84
return read_CRTR();
85
}
86
87
static struct clocksource clk32k = {
88
.name = "32k_counter",
89
.rating = 150,
90
.read = read_clk32k,
91
.mask = CLOCKSOURCE_MASK(20),
92
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
93
};
94
95
static void clkdev32k_disable_and_flush_irq(void)
96
{
97
unsigned int val;
98
99
/* Disable and flush pending timer interrupts */
100
regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
101
regmap_read(regmap_st, AT91_ST_SR, &val);
102
last_crtr = read_CRTR();
103
}
104
105
static int clkevt32k_shutdown(struct clock_event_device *evt)
106
{
107
clkdev32k_disable_and_flush_irq();
108
irqmask = 0;
109
regmap_write(regmap_st, AT91_ST_IER, irqmask);
110
return 0;
111
}
112
113
static int clkevt32k_set_oneshot(struct clock_event_device *dev)
114
{
115
clkdev32k_disable_and_flush_irq();
116
117
/*
118
* ALM for oneshot irqs, set by next_event()
119
* before 32 seconds have passed.
120
*/
121
irqmask = AT91_ST_ALMS;
122
regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
123
regmap_write(regmap_st, AT91_ST_IER, irqmask);
124
return 0;
125
}
126
127
static int clkevt32k_set_periodic(struct clock_event_device *dev)
128
{
129
clkdev32k_disable_and_flush_irq();
130
131
/* PIT for periodic irqs; fixed rate of 1/HZ */
132
irqmask = AT91_ST_PITS;
133
regmap_write(regmap_st, AT91_ST_PIMR, timer_latch);
134
regmap_write(regmap_st, AT91_ST_IER, irqmask);
135
return 0;
136
}
137
138
static int
139
clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
140
{
141
u32 alm;
142
unsigned int val;
143
144
BUG_ON(delta < 2);
145
146
/* The alarm IRQ uses absolute time (now+delta), not the relative
147
* time (delta) in our calling convention. Like all clockevents
148
* using such "match" hardware, we have a race to defend against.
149
*
150
* Our defense here is to have set up the clockevent device so the
151
* delta is at least two. That way we never end up writing RTAR
152
* with the value then held in CRTR ... which would mean the match
153
* wouldn't trigger until 32 seconds later, after CRTR wraps.
154
*/
155
alm = read_CRTR();
156
157
/* Cancel any pending alarm; flush any pending IRQ */
158
regmap_write(regmap_st, AT91_ST_RTAR, alm);
159
regmap_read(regmap_st, AT91_ST_SR, &val);
160
161
/* Schedule alarm by writing RTAR. */
162
alm += delta;
163
regmap_write(regmap_st, AT91_ST_RTAR, alm);
164
165
return 0;
166
}
167
168
static struct clock_event_device clkevt = {
169
.name = "at91_tick",
170
.features = CLOCK_EVT_FEAT_PERIODIC |
171
CLOCK_EVT_FEAT_ONESHOT,
172
.rating = 150,
173
.set_next_event = clkevt32k_next_event,
174
.set_state_shutdown = clkevt32k_shutdown,
175
.set_state_periodic = clkevt32k_set_periodic,
176
.set_state_oneshot = clkevt32k_set_oneshot,
177
.tick_resume = clkevt32k_shutdown,
178
};
179
180
/*
181
* ST (system timer) module supports both clockevents and clocksource.
182
*/
183
static int __init atmel_st_timer_init(struct device_node *node)
184
{
185
struct clk *sclk;
186
unsigned int sclk_rate, val;
187
int irq, ret;
188
189
regmap_st = syscon_node_to_regmap(node);
190
if (IS_ERR(regmap_st)) {
191
pr_err("Unable to get regmap\n");
192
return PTR_ERR(regmap_st);
193
}
194
195
/* Disable all timer interrupts, and clear any pending ones */
196
regmap_write(regmap_st, AT91_ST_IDR,
197
AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
198
regmap_read(regmap_st, AT91_ST_SR, &val);
199
200
/* Get the interrupts property */
201
irq = irq_of_parse_and_map(node, 0);
202
if (!irq) {
203
pr_err("Unable to get IRQ from DT\n");
204
return -EINVAL;
205
}
206
207
/* Make IRQs happen for the system timer */
208
ret = request_irq(irq, at91rm9200_timer_interrupt,
209
IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
210
"at91_tick", regmap_st);
211
if (ret) {
212
pr_err("Unable to setup IRQ\n");
213
return ret;
214
}
215
216
sclk = of_clk_get(node, 0);
217
if (IS_ERR(sclk)) {
218
pr_err("Unable to get slow clock\n");
219
return PTR_ERR(sclk);
220
}
221
222
ret = clk_prepare_enable(sclk);
223
if (ret) {
224
pr_err("Could not enable slow clock\n");
225
return ret;
226
}
227
228
sclk_rate = clk_get_rate(sclk);
229
if (!sclk_rate) {
230
pr_err("Invalid slow clock rate\n");
231
return -EINVAL;
232
}
233
timer_latch = (sclk_rate + HZ / 2) / HZ;
234
235
/* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
236
* directly for the clocksource and all clockevents, after adjusting
237
* its prescaler from the 1 Hz default.
238
*/
239
regmap_write(regmap_st, AT91_ST_RTMR, 1);
240
241
/* Setup timer clockevent, with minimum of two ticks (important!!) */
242
clkevt.cpumask = cpumask_of(0);
243
clockevents_config_and_register(&clkevt, sclk_rate,
244
2, AT91_ST_ALMV);
245
246
/* register clocksource */
247
return clocksource_register_hz(&clk32k, sclk_rate);
248
}
249
TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
250
atmel_st_timer_init);
251
252